

TEST REPORT

Reference No. : WTX23X03057573W002
FCC ID : 2ACGT-TLA001
Applicant : Guangzhou Shangke Information Technology Co., LTD.
Address : Room 1205-1212, R&F To-Win Building, No.30 Huaxia Road, Tianhe District, Guangzhou, Guangdong Province, China
Manufacturer : The same as Applicant
Address : The same as Applicant
Product Name : Tablet PC
Model No. : TLA001
Standards : FCC Part 22
Date of Receipt sample : 2023-03-22
Date of Test : 2023-03-22 to 2023-05-06
Date of Issue : 2023-05-08
Test Report Form No. : WTX_Part 22_Part 24_Part 27W
Test Result : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of approver.

Prepared By:

Waltek Testing Group (Shenzhen) Co., Ltd.

Address: 1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road,
Block 70 Bao'an District, Shenzhen, Guangdong, China
Tel.: +86-755-33663308 Fax.: +86-755-33663309 Email: sem@waltek.com.cn

Tested by:

Mike Shi

Approved by:

Silin Chen

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	4
1.2 TEST STANDARDS.....	5
1.3 TEST METHODOLOGY.....	5
1.4 TEST FACILITY	5
1.5 EUT SETUP AND TEST MODE	6
1.6 MEASUREMENT UNCERTAINTY	7
1.7 TEST EQUIPMENT LIST AND DETAILS	8
2. SUMMARY OF TEST RESULTS	11
3. RF OUTPUT POWER	12
3.1 STANDARD APPLICABLE.....	12
3.2 TEST PROCEDURE.....	12
3.3 SUMMARY OF TEST RESULTS/PLOTS	12
4. PEAK-TO-AVERAGE RATIO (PAR) OF TRANSMITTER.....	14
4.1 STANDARD APPLICABLE.....	14
4.2 TEST PROCEDURE.....	14
4.3 SUMMARY OF TEST RESULTS	14
5. EMISSION BANDWIDTH.....	15
5.1 STANDARD APPLICABLE.....	15
5.2 TEST PROCEDURE.....	15
5.3 SUMMARY OF TEST RESULTS/PLOTS	15
6. OUT OF BAND EMISSIONS AT ANTENNA TERMINAL.....	16
6.1 STANDARD APPLICABLE.....	16
6.2 TEST PROCEDURE.....	16
6.3 SUMMARY OF TEST RESULTS/PLOTS	17
7. SPURIOUS RADIATED EMISSIONS.....	18
7.1 STANDARD APPLICABLE.....	18
7.2 TEST PROCEDURE.....	18
7.3 SUMMARY OF TEST RESULTS/PLOTS	18
8. FREQUENCY STABILITY	22
8.1 STANDARD APPLICABLE.....	22
8.2 TEST PROCEDURE.....	22
8.3 SUMMARY OF TEST RESULTS/PLOTS	22
APPENDIX PHOTOGRAPHS.....	23

Report version

Version No.	Date of issue	Description
Rev.00	2023-05-08	Original
/	/	/

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

General Description of EUT:	
Product Name:	Tablet PC
Trade Name:	TECLAST
Model No.:	TLA001
Adding Model(s):	TLA002, TLA003, TLA005, TLA006, TLA007, TLA008, TLA009, TLA010, TLA011, TLA012, TLA013, TLA015, TLA016, TLA017, TLA018, TLA019, TLA020, TLA021, TLA022, TLA023, TLA025, TLA026, TLA027, TLA028, TLA029, TLA030, TLC005, TLC006, TLC007, TLC008, TLC009, TLC010, TLC011, TLC012, TLC013, TLC014, TLC015, TLC016, TA10
Rated Voltage:	Charging Port:DC5V Battery:DC3.80
Battery:	6000mAh
Adapter Model:	Model:XY-CU01200500200U01 Input:AC100-240V~50-60Hz 0.4A MAX Output:DC5.0V,2.0A
IMEI:	/
Device Category:	Portable Device

Note: The Antenna Gain is provided by the customer and can affect the validity of results.
The test data is gathered from a production sample provided by the manufacturer. The appearance of others models listed in the report is different from main-test model TLA001, but the circuit and the electronic construction do not change, declared by the manufacturer.

Technical Characteristics of EUT:	
4G	
Support Networks:	FDD-LTE
Support Band:	FDD-LTE Band 5
Uplink Frequency:	FDD-LTE Band 5: Tx: 824-849MHz,
Downlink Frequency:	FDD-LTE Band 5: Rx: 869-894MHz,
RF Output Power:	FDD-LTE Band 5: 23.76dBm,
Type of Emission:	FDD-LTE Band 5: 8M98G7D, 8M98W7D
Type of Modulation:	QPSK, 16QAM
Antenna Type:	FPC Antenna
Antenna Gain:	FDD-LTE Band 5: 0.8dBi,

1.2 Test Standards

The tests were performed according to following standards:

FCC Rules Part 2: Frequency Allocations and Radio Treaty Matters; General Rules and Regulations.

FCC Rules Part 22: Private Land Mobile Radio Services.

TIA/EIA 603 E March 2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26-2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services.

KDB 971168 D01 Power Meas License Digital Systems v03r01: Measurement Guidance for Certification of Licensed Digital Transmitters.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with TIA/EIA 603 E/ KDB 971168/ ANSI C63.26. The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions.

1.4 Test Facility

Address of the test laboratory

Laboratory: Waltek Testing Group (Shenzhen) Co., Ltd.

Address: 1/F., Room 101, Building 1, Hongwei Industrial Park, Liuxian 2nd Road, Block 70 Bao'an District, Shenzhen, Guangdong, China

FCC – Registration No.: 125990

Waltek Testing Group (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Waltek Testing Group (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A and the CAB identifier is CN0057.

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List		
Test Mode	Description	Remark
TM1	FDD-LTE Band 5	Low, Middle, High Channels

Test Conditions	
Temperature:	22~25 °C
Relative Humidity:	50~55 %.
ATM Pressure:	1019 mbar

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
Type-C Cable	1.0	Shielded	Without Ferrite

Special Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
Computer	Lenovo	L13 Yoga	/

1.6 Measurement Uncertainty

Measurement uncertainty		
Parameter	Conditions	Uncertainty
RF Output Power	Conducted	±0.42dB
Occupied Bandwidth	Conducted	±1.5%
Frequency Stability	Conducted	2.3%
Transmitter Spurious Emissions	Conducted	±0.42dB
Transmitter Spurious Emissions	Radiated	30-200MHz ±4.52dB
		0.2-1GHz ±5.56dB
		1-6GHz ±3.84dB
		6-18GHz ±3.92dB

1.7 Test Equipment List and Details

Fixed asset Number	Description	Manufacturer	Model	Serial No.	Cal Date	Due. Date
WTXE1041 A1001	Communication Tester	Rohde & Schwarz	CMW500	148650	2023-02-25	2024-02-24
WTXE1022 A1002	GSM Tester	Rohde & Schwarz	CMU200	114403	2023-02-25	2024-02-24
WTXE1104 A1001	MXG Vector Signal Generator	Agilent	N5182A	MY474201 08	2023-02-25	2024-02-24
WTXE1104 A1002	DC Power Supply	Agilent	E3634A	MY400092 94	2023-02-25	2024-02-24
WTXE1104 A1003	EXG Analog Signal Generator	KEYSIGHT	N5173B	MY612528 92	2023-02-25	2024-02-24
WTXE1104 A1004	Spectrum Analyzer	Rohde&Schwarz	FSV40-N	101559	2023-02-25	2024-02-24
WTXE1104 A1005-2	Band Reject Filter Group	Tonscend	JS0806-F	23A806F0 658	2023-02-25	2024-02-24
<input checked="" type="checkbox"/> Chamber A: Below 1GHz						
WTXE1005 A1003	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/03 5	2023-02-25	2024-02-24
WTXE1007 A1001	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/00 5	2023-02-25	2024-02-24
WTXE1007 A1001	Amplifier	HP	8447F	2805A034 75	2023-02-25	2024-02-24
WTXE1010 A1007	Loop Antenna	Schwarz beck	FMZB 1516	9773	2021-03-20	2024-03-19
WTXE1010 A1006	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2023-03-20	2026-03-19
<input checked="" type="checkbox"/> Chamber A: Above 1GHz						
WTXE1005 A1003	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/03 5	2023-02-25	2024-02-24
WTXE1007 A1001	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/00 5	2023-02-25	2024-02-24
WTXE1065 A1001	Amplifier	C&D	PAP-1G18	14918	2023-02-25	2024-02-24
WTXE1010 A1005	Horn Antenna	ETS	3117	00086197	2021-03-19	2024-03-18
WTXE1010 A1010	DRG Horn Antenna	A.H. SYSTEMS	SAS-574	571	2021-03-19	2024-03-18
WTXE1003	Pre-amplifier	Schwarzbeck	BBV 9721	9721-031	2023-02-25	2024-02-24

A1001						
WTXE1004 A1-001	Spectrum Analyzer	Rohde & Schwarz	FSP40	100612	2023-02-25	2024-02-24
<input type="checkbox"/> Chamber B: Below 1GHz						
WTXE1010 A1006	Trilog Broadband Antenna	Schwarz beck	VULB9163(B)	9163-635	2021-04-09	2024-04-08
WTXE1038 A1001	Amplifier	Agilent	8447D	2944A101 79	2023-02-25	2024-02-24
WTXE1001 A1002	EMI Test Receiver	Rohde & Schwarz	ESPI	101391	2023-02-25	2024-02-24
<input type="checkbox"/> Chamber C: Below 1GHz						
WTXE1093 A1001	EMI Test Receiver	Rohde & Schwarz	ESIB 26	100401	2023-02-25	2024-02-24
WTXE1010 A1013-1	Trilog Broadband Antenna	Schwarz beck	VULB 9168	1194	2021-05-28	2024-05-27
WTXE1007 A1002	Amplifier	HP	8447F	2944A038 69	2023-02-25	2024-02-24
<input type="checkbox"/> Chamber C: Above 1GHz						
WTXE1093 A1001	EMI Test Receiver	Rohde & Schwarz	ESIB 26	100401	2023-02-25	2024-02-24
WTXE1103 A1005	Horn Antenna	POAM	RTF-11A	LP228060 221	2023-03-10	2026-03-09
WTXE1103 A1006	Amplifier	Tonscend	TAP01018050	AP22E806 235	2023-02-25	2024-02-24
<input checked="" type="checkbox"/> Conducted Room 1#						
WTXE1001 A1001	EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2023-02-25	2024-02-24
WTXE1002 A1001	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2023-02-25	2024-02-24
WTXE1003 A1001	AC LISN	Schwarz beck	NSLK8126	8126-224	2023-02-25	2024-02-24
<input type="checkbox"/> Conducted Room 2#						
WTXE1001 A1004	EMI Test Receiver	Rohde & Schwarz	ESPI	101259	2023-02-25	2024-02-24
WTXE1003 A1003	LISN	Rohde & Schwarz	ENV 216	100097	2023-02-25	2024-02-24

Software List			
Description	Manufacturer	Model	Version
EMI Test Software (Radiated Emission)*	Farad	EZ-EMC	RA-03A1
LTE Test System*	Tonscend	JS1120-1	V2.5

*Remark: indicates software version used in the compliance certification testing.

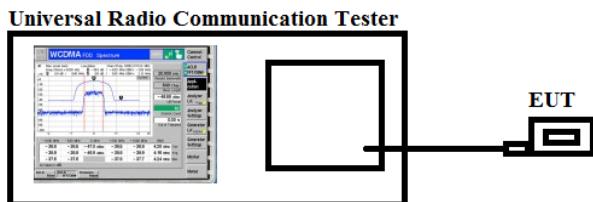
2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§22.913(a), §24.232(c), §27.50(d)	RF Output Power	Compliant
§24.51, §27.50	Peak-to-average Ratio (PAR) of Transmitter	Compliant
§22.917(b), §24.238(b), §27.53	Emission Bandwidth	Compliant
§22.917(a), §24.238(a), §27.53(h)	Spurious Emissions at Antenna Terminal	Compliant
§22.917(a), §24.238(a), §27.53(h)	Spurious Radiation Emissions	Compliant
§2.917(a), §24.238(a), §27.53(h)	Out of Band Emissions	Compliant
§22.355, §24.235, §27.54	Frequency Stability	Compliant

3. RF Output Power

3.1 Standard Applicable

According to §22.913(a)(2), the ERP of mobile and portable stations transmitters and auxiliary test transmitters must not exceed 7 Watts.


According to §24.232(c), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to §27.50(d)(4), fixed, mobile, and portable (hand-held) stations operating in the 1710-1755MHz band and mobile and portable stations operating in the 1695-1710MHz and 1755-1780MHz bands are limited to 1 watt EIRP.

According to §27.50(c)(10), portable stations (hand-held devices) in the 698-746 MHz band are limited to 3 watts ERP.

3.2 Test Procedure

- Conducted output power test method:

- Radiated power test method:

1. The setup of EUT is according with per ANSI/TIA Standard 603E and ANSI C63.26 measurement procedure.
2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

3.3 Summary of Test Results/Plots

Max. Radiated Power:

FDD-LTE Band 5

Channel Bandwidth: 1.4MHz			
Modulation	Channel	E.i.r.p [dBm]	Verdict
QPSK	LCH	20.16	PASS
	MCH	19.56	PASS
	HCH	20.28	PASS
16QAM	LCH	20.52	PASS
	MCH	20.35	PASS
	HCH	20.65	PASS
Channel Bandwidth: 3MHz			
Modulation	Channel	E.r.p [dBm]	Verdict
QPSK	LCH	20.37	PASS
	MCH	20.47	PASS
	HCH	20.57	PASS
16QAM	LCH	21.30	PASS
	MCH	20.94	PASS
	HCH	20.27	PASS
Channel Bandwidth: 5MHz			
Modulation	Channel	E.i.r.p [dBm]	Verdict
QPSK	LCH	20.38	PASS
	MCH	19.81	PASS
	HCH	20.91	PASS
16QAM	LCH	20.82	PASS
	MCH	20.58	PASS
	HCH	20.12	PASS
Channel Bandwidth: 10MHz			
Modulation	Channel	E.r.p [dBm]	Verdict
QPSK	LCH	18.22	PASS
	MCH	19.68	PASS
	HCH	19.02	PASS
16QAM	LCH	19.36	PASS
	MCH	20.26	PASS
	HCH	18.97	PASS

Max. Conducted Output Power

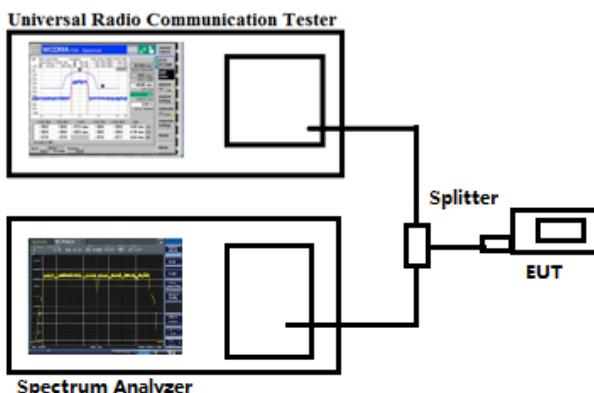
Please refer to Appendix A: Average Power Output Data

Test result: Pass

4. Peak-to-average Ratio (PAR) of Transmitter

4.1 Standard Applicable

According to §24.232(d), power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51, in measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13dB.


According to §27.50(B), the peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

4.2 Test Procedure

According with KDB 971168

1. The signal analyzer's CCDF measurement profile is enabled.
2. Frequency = carrier center frequency.
3. Measurement BW > Emission bandwidth of signal.
4. The signal analyzer was set to collect one million samples to generate the CCDF curve.
5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power.

Test Configuration for the emission bandwidth testing:

4.3 Summary of Test Results

Please refer to Appendix B: Peak-to-Average Ratio

Test result: Pass

Waltek Testing Group (Shenzhen) Co., Ltd.

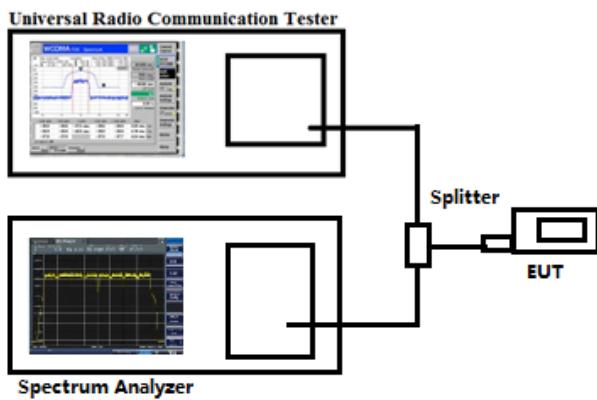
[Http://www.waltek.com.cn](http://www.waltek.com.cn)

Page 14 of 23

5. Emission Bandwidth

5.1 Standard Applicable

According to §22.917(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.


According to §24.238(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

According to §27.53, the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

5.2 Test Procedure

According to §22.917(b), the emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

Test Configuration for the emission bandwidth testing:

5.3 Summary of Test Results/Plots

Please refer to Appendix C: 26dB Bandwidth and Occupied Bandwidth

Test result: Pass

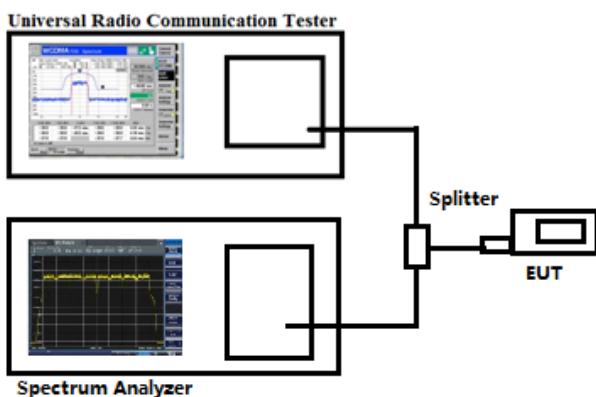
6. Out of Band Emissions at Antenna Terminal

6.1 Standard Applicable

According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to §24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to §27.53(h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}(P)$ dB.


According to §27.53(g), for operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log(P)$ dB.

According to §27.53(m)(4), for mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log(P)$ dB on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log(P)$ dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55 + 10 \log(P)$ dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less than $43 + 10 \log(P)$ dB on all frequencies between 2490.5MHz and 2496 MHz and $55 + 10 \log(P)$ dB at or below 2490.5MHz.

6.2 Test Procedure

The RF output terminal of the transmitter was connected to the input of the spectrum analyzer via a suitable attenuation. The RBW of the spectrum analyzer was set to 100kHz and 1MHz for the scan frequency from 30MHz to 1GHz and the scan frequency from 1GHz to up to 10th harmonic.

Test Configuration for the out of band emissions testing:

6.3 Summary of Test Results/Plots

Please refer to Appendix D & E: Band Edge & Conducted Spurious Emission

Test result: Pass

7. Spurious Radiated Emissions

7.1 Standard Applicable

According to §22.917(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

According to §24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

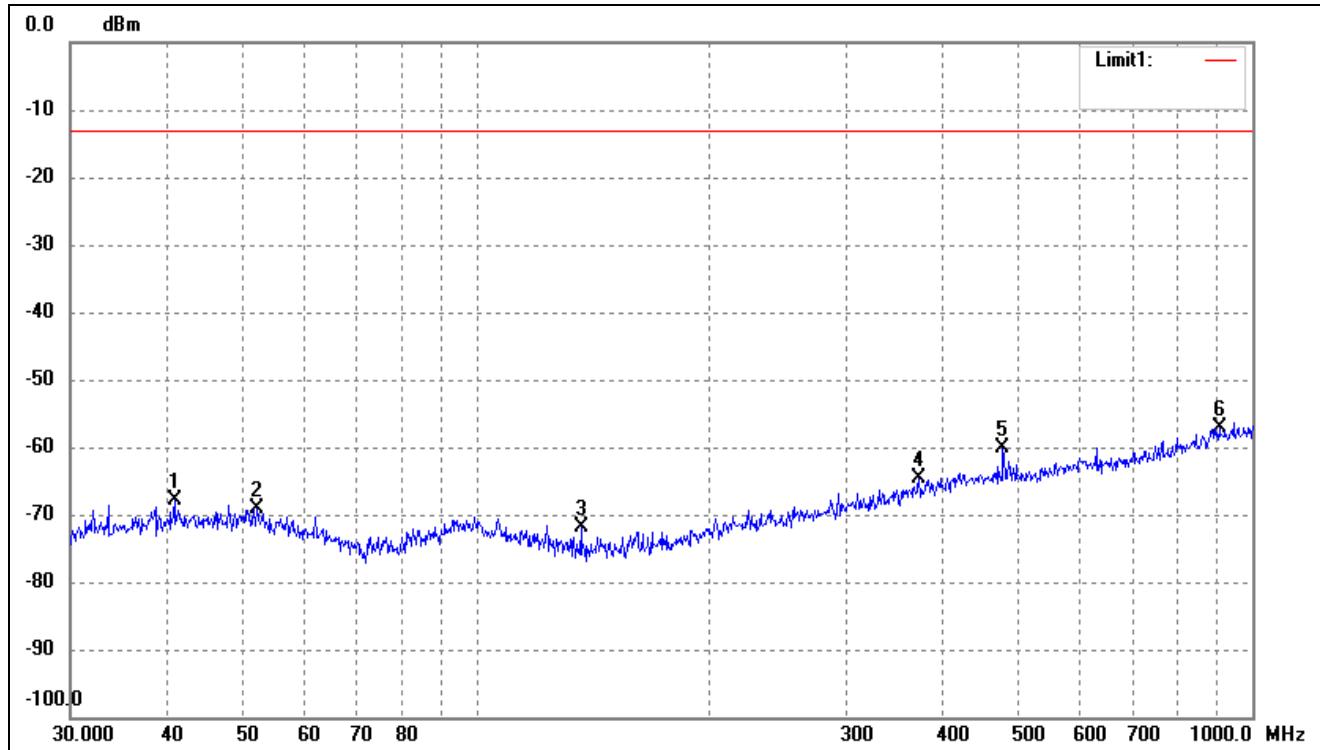
According to §27.53(h), the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}(P)$ dB.

According to §27.53(g) the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log(P)$ dB.

7.2 Test Procedure

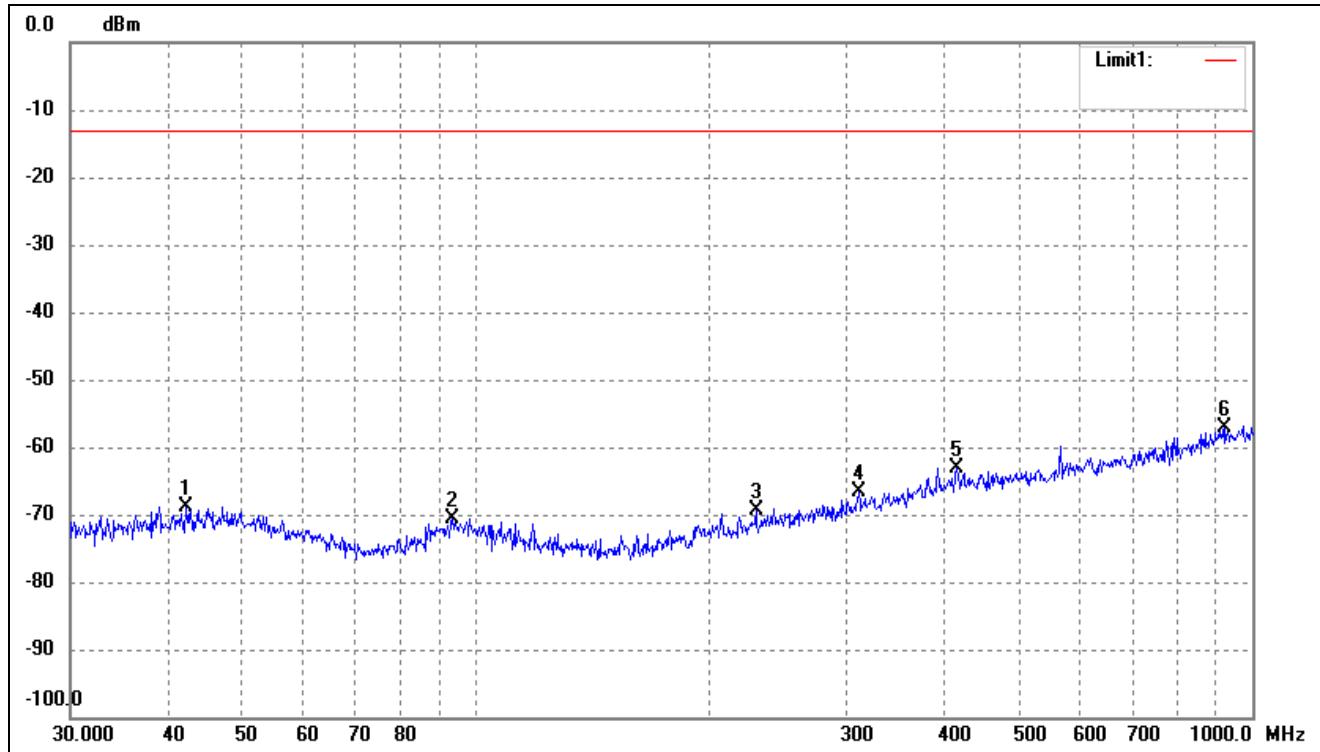
1. The setup of EUT is according with per ANSI/TIA-603-E and ANSI C63.4-2014 measurement procedure.
2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB = $43 + 10 \log_{10}$ (power out in Watts)


7.3 Summary of Test Results/Plots

Note: 1. this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

2. All test modes (different bandwidth and different modulation) are performed, but only the worst case is recorded in this report.


➤ Spurious Emissions Below 1GHz

Test Mode	FDD_LTE Band 5	Polarity:	Horizontal
-----------	----------------	-----------	------------

No.	Frequency (MHz)	Reading (dBm)	Correct dB	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	40.8446	-68.73	0.89	-67.84	-13.00	-54.84	ERP
2	52.2079	-69.55	0.49	-69.06	-13.00	-56.06	ERP
3	136.4598	-68.66	-3.24	-71.90	-13.00	-58.90	ERP
4	372.0045	-69.33	4.72	-64.61	-13.00	-51.61	ERP
5	477.1694	-66.77	6.54	-60.23	-13.00	-47.23	ERP
6	906.4824	-69.52	12.33	-57.19	-13.00	-44.19	ERP

Test Mode	FDD_LTE Band 5	Polarity:	Vertical
-----------	----------------	-----------	----------

No.	Frequency (MHz)	Reading (dBm)	Correct dB	Result (dBm)	Limit (dBm)	Margin (dB)	Remark
1	42.3022	-69.73	0.90	-68.83	-13.00	-55.83	ERP
2	93.1132	-69.78	-0.77	-70.55	-13.00	-57.55	ERP
3	229.2931	-69.68	0.27	-69.41	-13.00	-56.41	ERP
4	311.0867	-69.29	2.78	-66.51	-13.00	-53.51	ERP
5	416.1791	-69.37	6.17	-63.20	-13.00	-50.20	ERP
6	922.5157	-69.69	12.48	-57.21	-13.00	-44.21	ERP

Note: Margin= (Reading+ Correct)- Limit

➤ Spurious Emissions Above 1GHz

For FDD_LTE Band 5 Mode

Frequency (MHz)	Reading (dBm)	Correct dB	Result (dBm)	Limit (dBm)	Margin (dB)	Polar H/V
Low Channel (824.7MHz)						
1649.40	-32.54	-13	-19.54	-32.54	-13	H
2474.10	-35.79	-13	-22.79	-35.79	-13	H
1649.40	-32.01	-13	-19.01	-32.01	-13	V
2474.10	-30.90	-13	-17.90	-30.90	-13	V
Middle Channel (836.5MHz)						
1673.00	-34.55	-13	-21.55	-34.55	-13	H
2509.50	-37.60	-13	-24.60	-37.60	-13	H
1673.00	-33.02	-13	-20.02	-33.02	-13	V
2509.50	-33.74	-13	-20.74	-33.74	-13	V
High Channel (848.3MHz)						
1696.60	-30.18	-13	-17.18	-30.18	-13	H
2544.90	-36.35	-13	-23.35	-36.35	-13	H
1696.60	-32.01	-13	-19.01	-32.01	-13	V
2544.90	-33.44	-13	-20.44	-33.44	-13	V

Note: Result=Reading+ Correct, Margin= Result- Limit

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, other than listed in the table above are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

8. Frequency Stability

8.1 Standard Applicable

According to §22.355 the limit is 2.5ppm.

8.2 Test Procedure

According to §2.1055, the following test procedure was performed.

The Frequency Stability is measured directly with a Frequency Domain Analyzer. Frequency Deviation in ppm is calculated from the measured peak to peak value.

The Carrier Frequency Stability over Power Supply Voltage and over Temperature is measured with a Frequency Domain Analyzer in histogram mode.

8.3 Summary of Test Results/Plots

Note: 1. Normal Voltage NV=DC3.8V; Low Voltage LV=DC3.5V; High Voltage HV=DC4.35V

Please refer to Appendix F: Frequency Stability

Test result: Pass

APPENDIX PHOTOGRAPHS

Please refer to “ANNEX”

******* END OF REPORT *******