

MRT Technology (Suzhou) Co., Ltd
Phone: +86-512-66308358
Fax: +86-512-66308368
Web: www.mrt-cert.com

Report No.: 1405RSU01601
Report Version: V02
Issue Date: 05-29-2014

MEASUREMENT REPORT

FCC PART 15.231

FCC ID: 2ACFYHHRGB14

APPLICANT: ZHENGJI LIGHTING&ELECTRONICS TECHNOLOGY CO., LTD

Application Type: Certification

Product: LED RF Remote Control

Model No.: HHRGB14, RFMIN17, RFMIN11, RFDIM, RFCON

Brand Name: Zengge

FCC Classification: FCC Part 15 Security/Remote Control Transmitter (DSC)

FCC Rule Part(s): Part 15.231

Test Procedure(s): ANSI C63.10-2009

Test Date: May 21 ~ 26, 2014

Reviewed By : Robin Wu
(Robin Wu)

Approved By : Marlin Chen
(Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2009. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date
1405RSU01601	Rev. 01	Initial report	05-27-2014
1405RSU01601	Rev. 02	Added the 9kHz ~ 30MHz Test Setup	05-29-2014

CONTENTS

Description	Page
1. INTRODUCTION	6
1.1. Scope	6
1.2. MRT Test Location	6
2. PRODUCT INFORMATION	7
2.1. Equipment Description.....	7
2.2. Test Standards	7
2.3. Test Methodology	7
2.4. EUT Setup and Test Mode	8
3. ANTENNA REQUIREMENTS.....	9
4. TEST EQUIPMENT CALIBRATION DATA	10
5. MEASUREMENT UNCERTAINTY.....	11
6. TEST RESULT	12
6.1. Summary	12
6.2. Radiated Emissions	13
6.2.1. Standard Applicable	13
6.2.2. Test Procedure.....	13
6.2.3. Test Setup.....	14
6.2.4. Test Results	16
6.3. 20dB Bandwidth	21
6.3.1. Standard Applicable	21
6.3.2. Test Procedure.....	21
6.3.3. Test Setup.....	21
6.3.4. Test Result.....	22
6.4. Duty Cycle	23
6.4.1. Standard Applicable	23
6.4.2. Test Procedure.....	23
6.4.3. Test Setup.....	23
6.4.4. Test Result.....	24
6.5. Transmission Time.....	26
6.5.1. Standard Applicable	26
6.5.2. Test Procedure.....	26
6.5.3. Test Setup.....	26
6.5.4. Test Result.....	27

7. CONCLUSION..... 28

§2.1033 General Information

Applicant:	ZHENGJI LIGHTING&ELECTRONICS TECHNOLOGY CO., LTD
Applicant Address:	3F, B Building, Second Laowei Industrial Area, Dalang Street, Longhua Baoan District, Shenzhen, Guangdong, China
Manufacturer:	ZHENGJI LIGHTING&ELECTRONICS TECHNOLOGY CO., LTD
Manufacturer Address:	3F, B Building, Second Laowei Industrial Area, Dalang Street, Longhua Baoan District, Shenzhen, Guangdong, China
Test Site:	MRT Technology (Suzhou) Co., Ltd
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China
MRT Registration No.:	809388
FCC Rule Part(s):	Part 15.231
Model No.	HHRGB14, RFMIN17, RFMIN11, RFDIM, RFCON
FCC ID:	2ACFYHHRGB14
Test Device Serial No.:	N/A <input type="checkbox"/> Production <input checked="" type="checkbox"/> Pre-Production <input type="checkbox"/> Engineering
FCC Classification:	FCC Part 15 Security/Remote Control Transmitter (DSC)
Date(s) of Test:	May 21 ~ 26, 2014
Test Report S/N:	1405RSU01601

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	LED RF Remote Control
Model No.	HHRGB14, RFMIN17, RFMIN11, RFDIM, RFCON
Trade Name	Zengge
Frequency Range	433.92 MHz
Type of modulation	OOK
Antenna Type	Integral Antenna
Antenna Gain	0dBi

2.2. Test Standards

The following report is prepared on behalf of the Suzhou Sate Auto Electronic Co., Ltd. in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which results in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

2.3. Test Methodology

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009).

Deviation from measurement procedure..........**None**

2.4. EUT Setup and Test Mode

The EUT was operated at continuous transmitting mode that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List		
Test Mode	Description	Remark
Mode 1	Transmitting	With modulation

Special Cable List and Details			
Cable Description	Length (m)	Shielded / Unshielded	With / Without Ferrite
N/A	N/A	N/A	N/A

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
N/A	N/A	N/A	N/A

3. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

“An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.”

- The antenna of the LED RF Remote Control is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The LED RF Remote Control **FCC ID: 2ACFYHHRGB14** unit complies with the requirement of §15.203.

4. TEST EQUIPMENT CALIBRATION DATA

Radiated Emission

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due. Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
Preamplifier	MRT	AP01G18	1310002	1 year	2014/10/07
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2014/11/24
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

20dB Bandwidth

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due. Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
Loop Antenna	Schwarzbeck	FMZB1519	1519-041	1 year	2014/11/24
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2014/11/24
Preamplifier	MRT	AP01G18	1310002	1 year	2014/10/07
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

Transmission Time

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due. Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Preamplifier	MRT	AP01G18	1310002	1 year	2014/10/07
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

Duty Cycle

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due. Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Preamplifier	MRT	AP01G18	1310002	1 year	2014/10/07
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

5. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

Radiated Emission Measurement

Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$):

9kHz ~ 1GHz: $\pm 4.18\text{dB}$

1GHz ~ 40GHz: $\pm 4.76\text{dB}$

6. TEST RESULT

6.1. Summary

Company Name: ZHENGJI LIGHTING&ELECTRONICS TECHNOLOGY CO., LTD
FCC ID: 2ACFYHHRGB14

FCC Part Section(s)	Test Description	Test Condition	Test Result
15.205	Radiated Spurious Emissions	Radiated	Pass
15.231(b)			Pass
15.231(c)	20dB Bandwidth		Pass
15.231(b)	Transmission Time		Pass
15.231(b)	Duty Cycle		Pass

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

6.2. Radiated Emissions

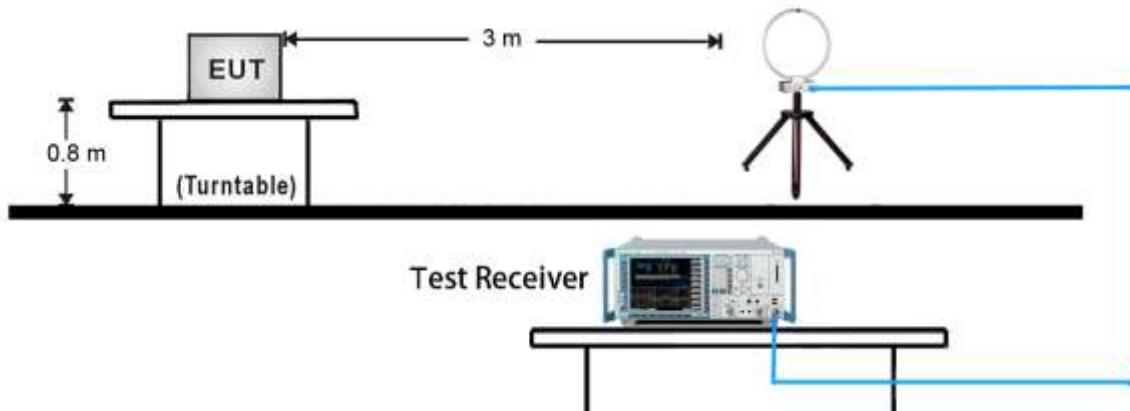
6.2.1. Standard Applicable

According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

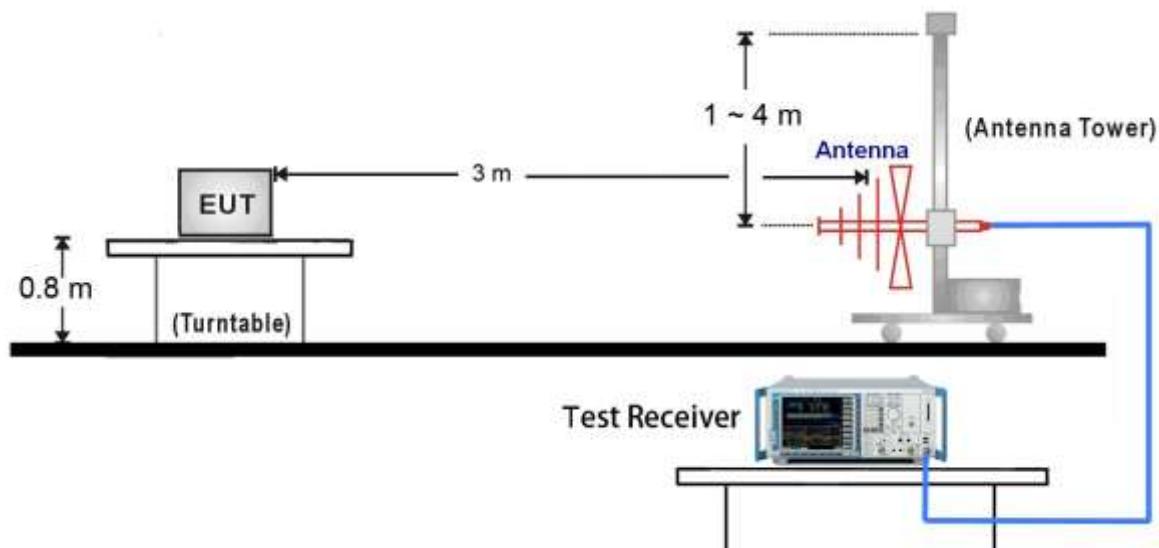
Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

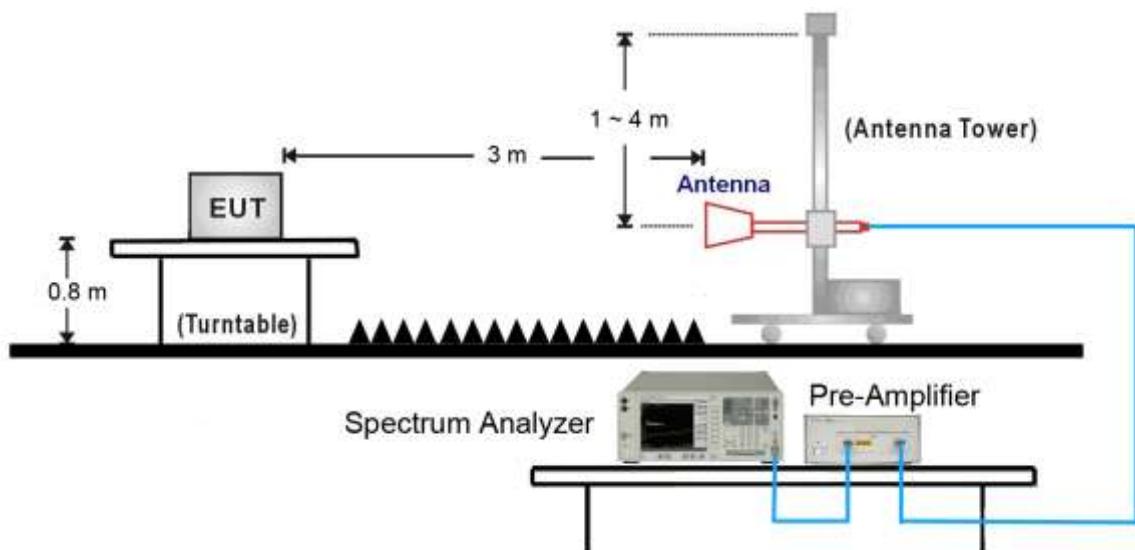
The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements start below or at the lowest crystal frequency.

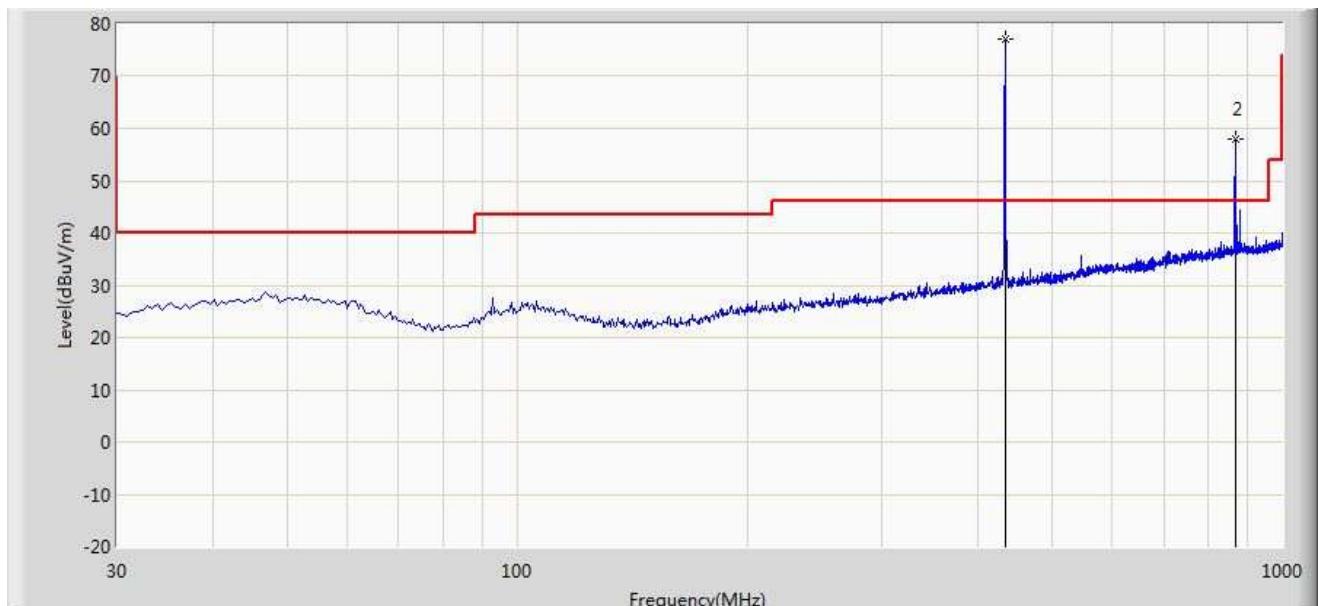

Compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

6.2.2. Test Procedure


The setup of EUT is according with per ANSI C63.10-2009 measurement procedure. The specification used was with the FCC Part 15.231(b) and FCC Part 15.209 Limit.


6.2.3. Test Setup

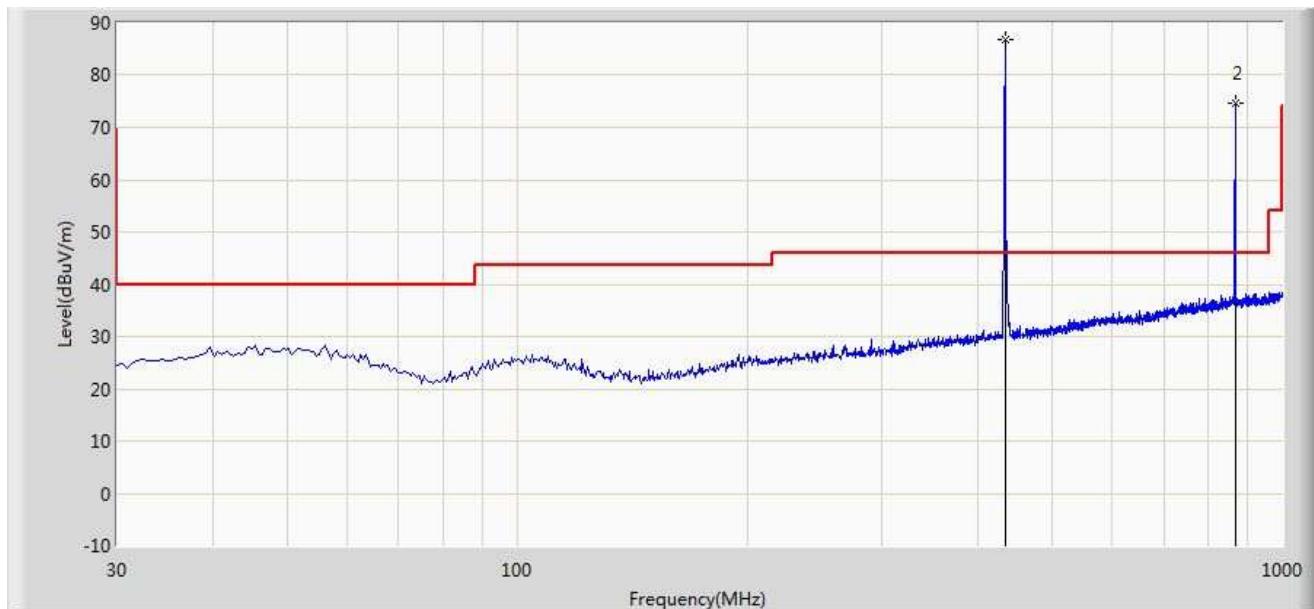
9kHz ~ 30MHz Test Setup:


30MHz ~ 1GHz Test Setup:

1GHz ~ 25GHz Test Setup:

6.2.4. Test Results

Engineer: Roy Cheng	
Site: AC1	Time: 2014/05/24 - 21:36
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: VULB9162_0.03-8GHz	Polarity: Horizontal
EUT: LED RF Remote Control	Power: By Battery
Note: Normal Operation	


No	Frequency (MHz)	Reading Level (dBuV)	Factor (dB)	Duty Cycle Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Ant Pos (cm)	Table Pos (deg)	Type
1	434.005	60.541	16.643	N/A	77.184	100.8	-23.616	100	123	PK
	434.005	60.541	16.643	-10.5	66.684	80.8	-14.116	100	112	AV
2	868.080	34.939	23.065	N/A	58.004	80.8	-22.796	100	324	PK
	868.080	34.939	23.065	-10.5	47.504	60.8	-13.296	100	312	AV

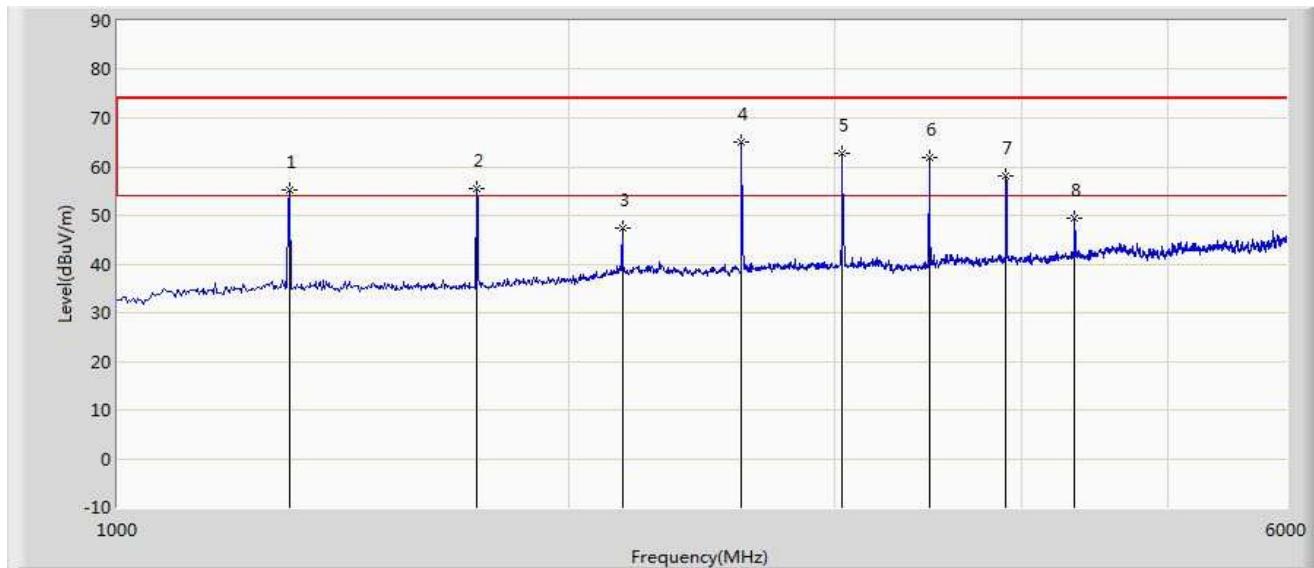
Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case test configuration was found in the EUT in the H positioning. The data reported in the table above was measured in this test setup.

Engineer: Roy Cheng	
Site: AC1	Time: 2014/05/24 - 21:57
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: VULB9162_0.03-8GHz	Polarity: Vertical
EUT: LED RF Remote Control	Power: By Battery
Note: Normal Operation	

No	Frequency (MHz)	Reading Level (dB μ V)	Factor (dB)	Duty Cycle Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Over Limit (dB)	Ant Pos (cm)	Table Pos (deg)	Type
1	434.005	64.311	16.643	N/A	80.954	100.8	-19.846	100	124	PK
	434.005	64.311	16.643	-10.5	70.454	80.8	-10.346	100	132	AV
2	868.080	36.982	23.065	N/A	60.047	80.8	-20.753	100	43	PK
	868.080	36.982	23.065	-10.5	49.547	60.8	-11.253	100	37	AV

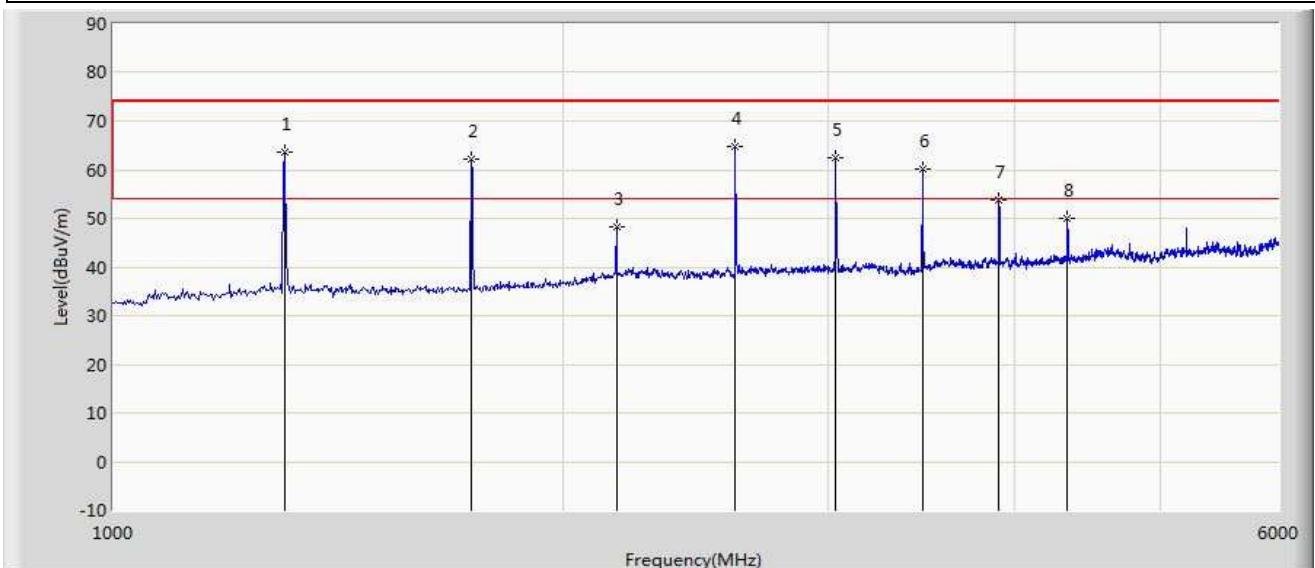

Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The EUT was tested in three orthogonal planes and in all possible test configurations and positioning.

The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case test configuration was found in the EUT in the H positioning. The data reported in the table above was measured in this test setup.

Engineer: Roy Cheng	
Site: AC1	Time: 2014/05/24 - 21:57
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal
EUT: LED RF Remote Control	Power: By Battery
Note: Normal Operation	


No	Frequency (MHz)	Reading Level (dBuV)	Factor (dB)	Duty cycle Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Ant Pos (cm)	Table Pos (deg)	Type
1	*1302.500	56.956	-1.662	N/A	55.294	74.0	-18.706	100	123	PK
	*1302.500	56.956	-1.662	-10.5	44.794	54.0	-9.206	100	134	AV
2	1735.000	56.182	-0.614	N/A	55.568	80.8	-25.232	100	27	PK
	1735.000	56.182	-0.614	-10.5	45.068	60.8	-15.732	100	30	AV
3	2170.000	44.615	2.808	N/A	47.423	80.8	-33.377	100	98	PK
	2170.000	44.615	2.808	-10.5	36.923	60.8	-23.877	100	96	AV
4	2605.000	62.258	2.913	N/A	65.171	80.8	-15.629	100	36	PK
	2605.000	62.258	2.913	-10.5	54.671	60.8	-6.129	100	31	AV
5	3040.000	59.287	3.412	N/A	62.699	80.8	-18.101	100	97	PK
	3040.000	59.287	3.412	-10.5	52.199	60.8	-8.601	100	89	AV
6	3472.500	58.161	3.703	N/A	61.864	80.8	-18.936	100	102	PK
	3472.500	58.161	3.703	-10.5	51.364	60.8	-9.436	100	112	AV
7	*3905.000	53.642	4.334	N/A	57.976	74.0	-16.024	100	187	PK
	*3905.000	53.642	4.334	-10.5	47.476	54.0	-6.524	100	189	AV
8	*4340.000	44.113	5.361	N/A	49.474	74.0	-24.526	100	320	PK
	*4340.000	44.113	5.361	-10.5	38.974	54.0	-15.026	100	321	AV

Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The worst case test configuration was found in the EUT in the H positioning. The data reported in the table above was measured in this test setup.

Engineer: Roy Cheng	
Site: AC1	Time: 2014/05/24 - 17:43
Limit: FCC_Part15.209_RE(3m)	Margin: 0
Probe: BBHA9120D_1-18GHz	Polarity: Vertical
EUT: LED RF Remote Control	Power: By Battery
Note: Normal Operation	

No	Frequency (MHz)	Reading Level (dBuV)	Factor (dB)	Duty cycle Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Ant Pos (cm)	Table Pos (deg)	Type
1	*1302.500	65.386	-1.662	N/A	63.724	74.0	-10.276	100	256	PK
	*1302.500	65.386	-1.662	-10.5	53.224	54.0	-0.776	100	247	AV
2	1737.500	62.862	-0.614	N/A	62.248	80.8	-18.552	100	132	PK
	1737.500	62.862	-0.614	-10.5	51.748	60.8	-9.052	100	128	AV
3	2170.000	45.402	2.808	N/A	48.210	80.8	-32.59	100	34	PK
	2170.000	45.402	2.808	-10.5	37.710	60.8	-23.09	100	35	AV
4	2602.500	61.879	2.913	N/A	64.792	80.8	-16.008	100	97	PK
	2602.500	61.879	2.913	-10.5	54.292	60.8	-6.508	100	95	AV
5	3037.500	58.948	3.412	N/A	62.360	80.8	-18.44	100	137	PK
	3037.500	58.948	3.412	-10.5	51.860	60.8	-8.940	100	134	AV
6	3472.500	56.321	3.703	N/A	60.024	80.8	-20.776	100	78	PK
	3472.500	56.321	3.703	-10.5	49.524	60.8	-11.276	100	72	AV
7	*3905.000	49.580	4.334	N/A	53.914	74.0	-20.086	100	315	PK

	*3905.000	49.580	4.334	-10.5	43.414	54.0	-10.586	100	310	AV
8	*4340.000	44.554	5.361	N/A	49.915	74.0	-24.085	100	28	PK
	*4340.000	44.554	5.361	-10.5	39.415	54.0	-14.585	100	21	AV

Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The worst case test configuration was found in the EUT in the H positioning. The data reported in the table above was measured in this test setup.

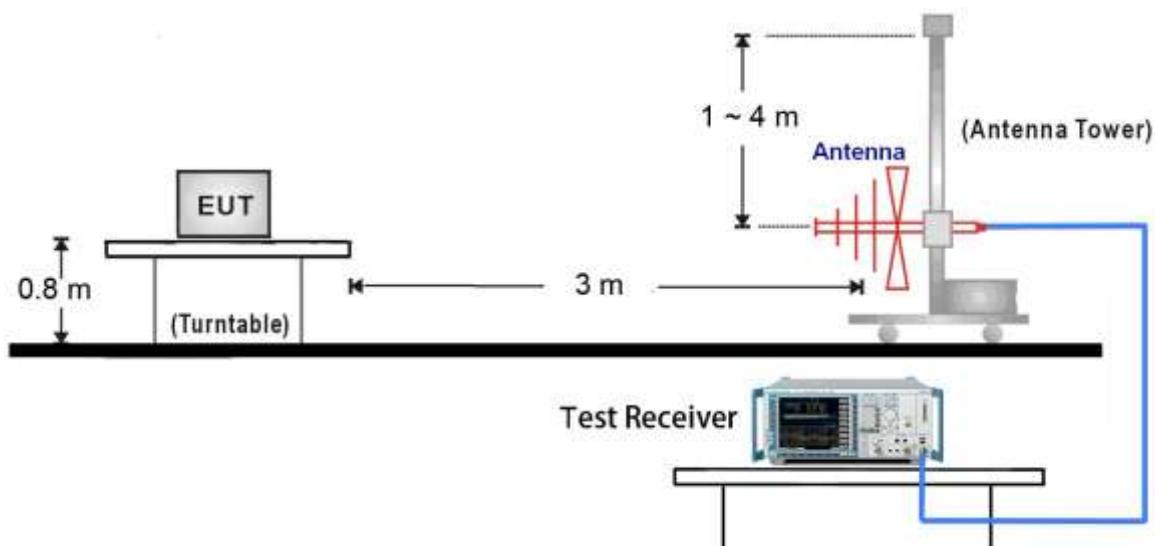
Note 3: Testing is carried out with frequency range 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz ~ 30 MHz, the permissible value is not shown in the report.

Note 4: The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 433.92MHz.

Note 5: AV Measure Level = Peak Measure Level – Duty Cycle Factor.

Note 6: “*” means the frequency is in the Restricted bands.

6.3. 20dB Bandwidth

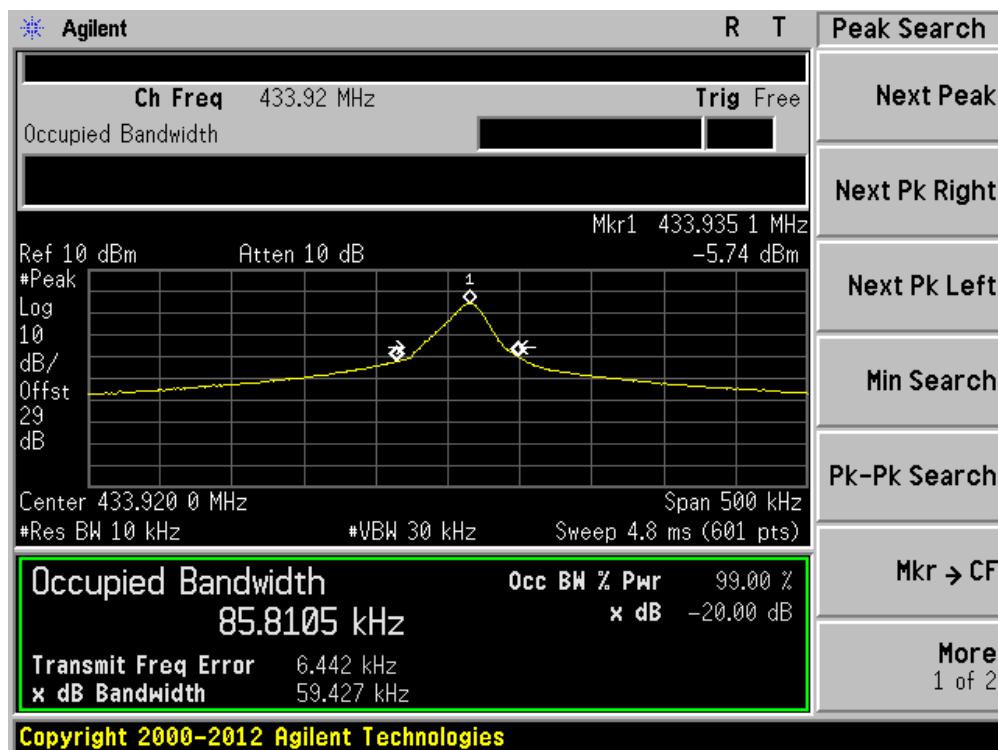

6.3.1. Standard Applicable

According to FCC Part 15.231(c), the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

6.3.2. Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

6.3.3. Test Setup



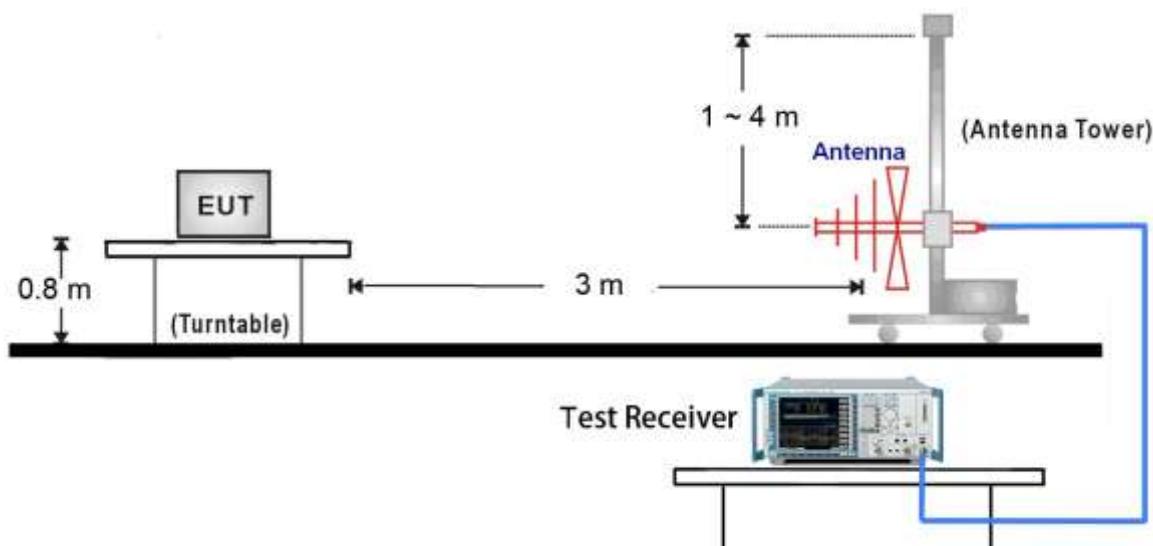
6.3.4. Test Result

Test Frequency (MHz)	20dB Bandwidth (KHz)	Limit (KHz)	Result
433.92	59.427	1084.8	Pass

Limit = Fundamental Frequency X 0.25% = 433.92 MHz X 0.25% = 1084.8 KHz

20dB Bandwidth Test Plot

6.4. Duty Cycle

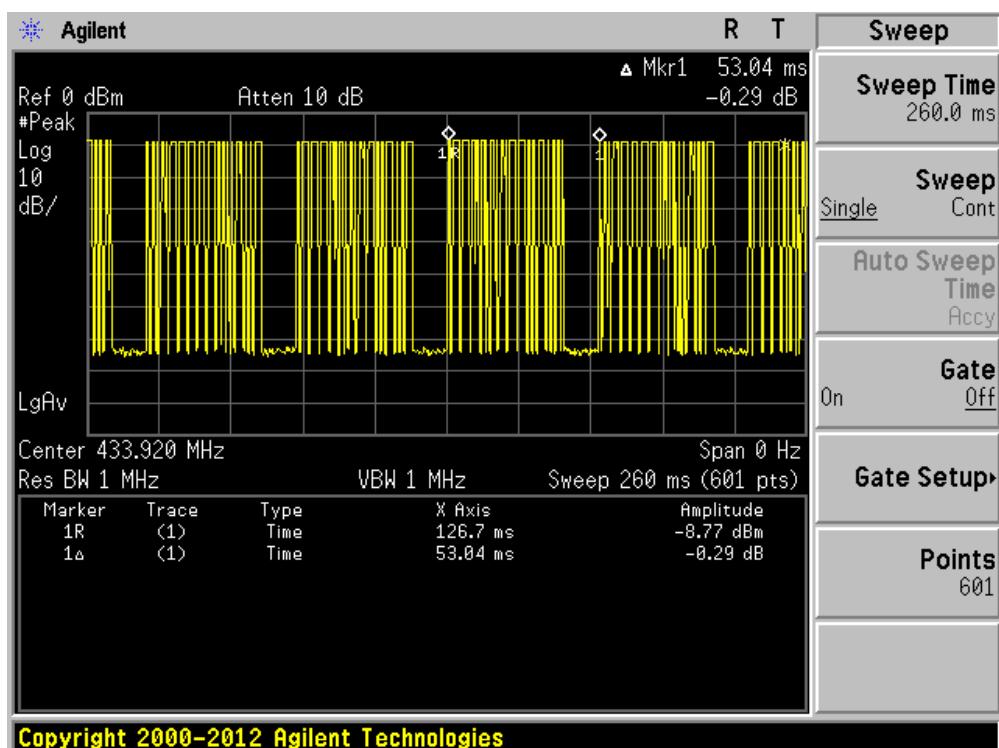

6.4.1. Standard Applicable

According to FCC Part 15.231(b) and 15.35(c), for pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

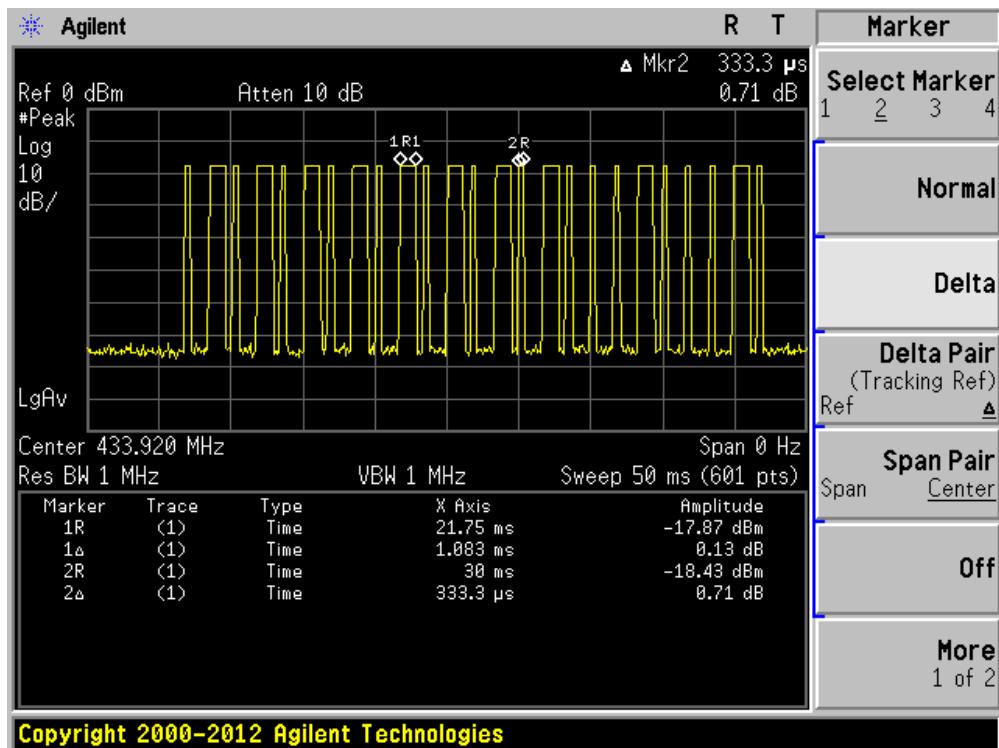
6.4.2. Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

6.4.3. Test Setup


6.4.4. Test Result

Test Period (Tp) (ms)	Total Time (Ton) (ms)	Duty Cycle (%)	Duty Cycle Factor (dB)
53.04	15.83	29.85	-10.5

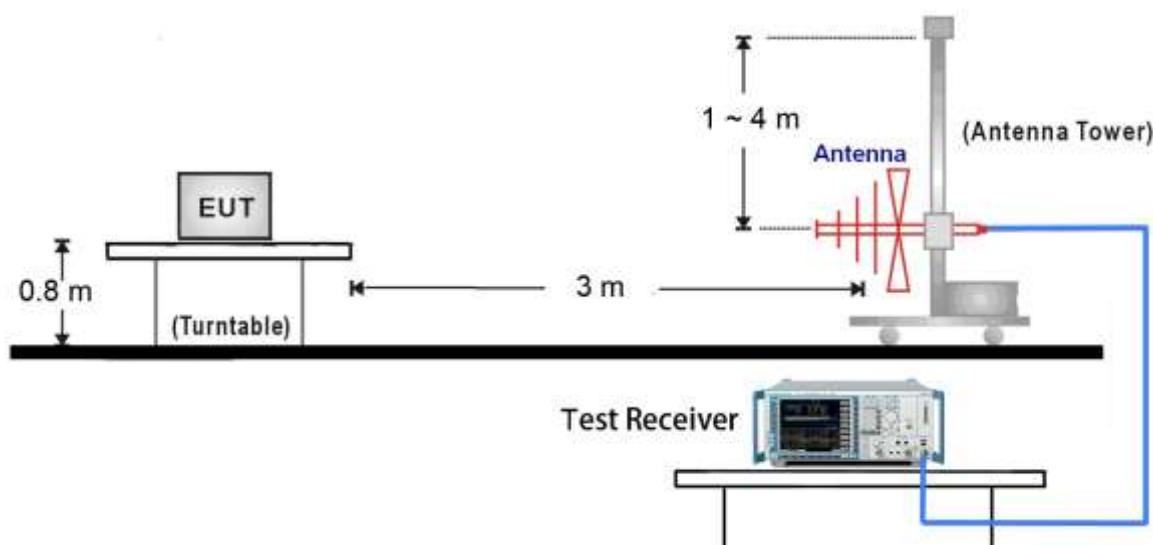

Note 1: Duty Cycle Factor = $-20 \cdot \log(1/\text{Duty Cycle})$.

Note 2: Effective period of the cycle = $1.083\text{ms} \cdot \text{Number of the TX}_{\text{on}} 1\Delta + 0.3333 \cdot \text{Number of the TX}_{\text{on}} 2\Delta$

The Duration of One Cycle

Effective Period of the Cycle

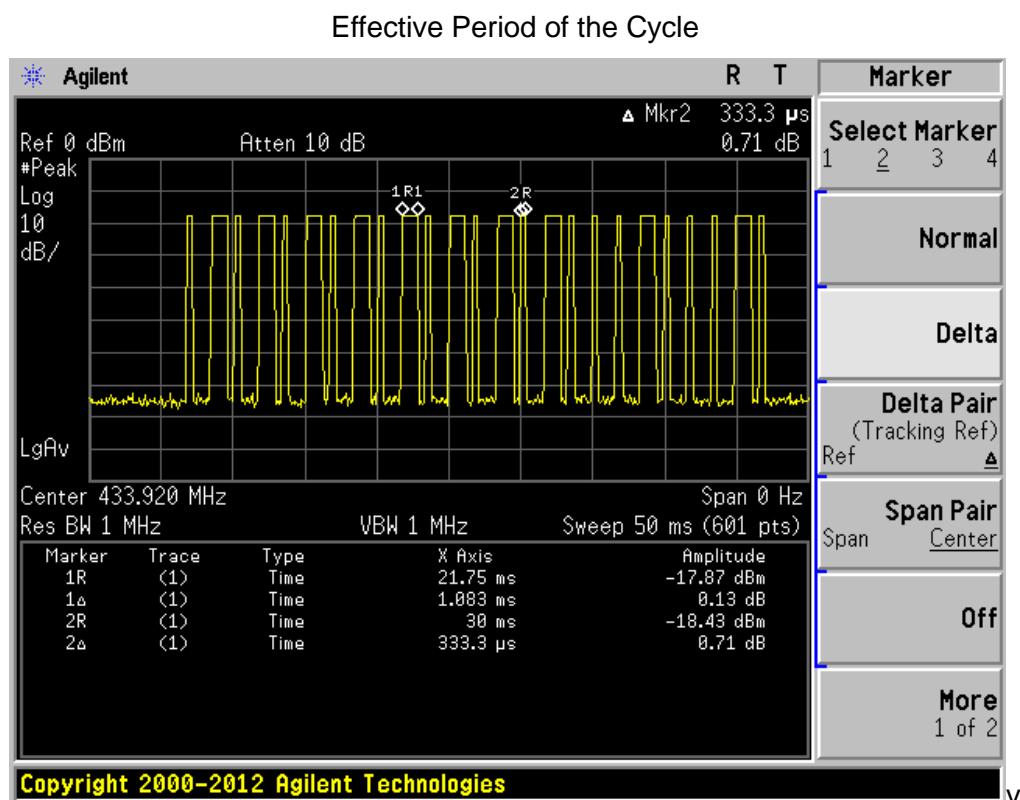
6.5. Transmission Time


6.5.1. Standard Applicable

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

6.5.2. Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, then set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.


6.5.3. Test Setup

6.5.4. Test Result

Item	Measured Value	Limit	Result
Transmission Time(Ton)	0.0158 s	≤5 s	Pass

Note: Effective period of the cycle = 1.083ms * Number of the TX_{on} 1△+ 0.3333 * Number of the TX_{on} 2△

7. CONCLUSION

The data collected relate only the item(s) tested and show that the **LED RF Remote Control FCC ID: 2ACFYHHRGB14** is in compliance with FCC Part 15.231 of the FCC Rules.

The End
