FCC ID: 2ACDX-MRR-20

ISED No: 11988A-MRR20 Report No.: T171122I01-RP

FCC 47 CFR PART 95 SUBPART M & INDUSTRY CANADA RSS-251 Issue 1

TEST REPORT

For

Automotive Radar

Model: MRR-20

Trade Name: Mando

Issued to

For FCC:

MANDO corp.

21, Pangyo-ro 255beon-gil, Bundang-gu, Gyeonggi-do, Seongnam-si, 463-400, South Korea

For IC:

MANDO corp.

21, Pangyo-ro 255beon-gil, Bundang-gu, Gyeonggi-do, Seongnam-si, 463-400, Korea (Rep.)

Issued by

Compliance Certification Services Inc.

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com

Issued Date: February 8, 2018

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Page 1 / 39 Rev.01

ISED No: 11988A-MRR20

Revision History

Report No.: T171122I01-RP

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	February 8, 2018	Initial Issue	ALL	Angel Cheng
01	March 1, 2018	Removed section 4.4 Add equipment in table Add notes for limits in radiated emission.	8,9,20	Angel Cheng

Page 2 Rev.01

Report No.: T171122I01-RP

1. TE	EST RESULT CERTIFICATION	4
2. El	UT DESCRIPTION	5
3. TE	EST SUMMERY	6
	EST METHODOLOGY	
4.1	EUT CONFIGURATION	
4.2 4.3	EUT EXERCISE	
4.3 4.4	GENERAL TEST PROCEDURES DESCRIPTION OF TEST MODES	
4.4	DESCRIPTION OF TEST MODES	o
5. IN	ISTRUMENT CALIBRATION	9
5.1	MEASURING INSTRUMENT CALIBRATION	q
5.2	MEASUREMENT EQUIPMENT USED	
5.3	MEASUREMENT UNCERTAINTY	
6. F	ACILITIES AND ACCREDITATIONS	11
6.1	FACILITIES 11	
6.2	EQUIPMENT	11
7. SI	ETUP OF EQUIPMENT UNDER TEST	12
7.1	SETUP CONFIGURATION OF EUT	12
7.2	SUPPORT EQUIPMENT	
8. TE	EST REQUIREMENTS	13
8.1	FREQUENCY BAND	13
8.2	EQUIVALENT ISOTROPICALLY RADIATED POWER (EIRP)	
8.3	SPURIOUS EMISSIONS	20
8.4	FREQUENCY STABILITY	35
A DDE	ENDIX I PHOTOGRAPHS OF TEST SETUP	25
		57
APPE	ENDIX 1 - PHOTOGRAPHS OF EUT	

1. TEST RESULT CERTIFICATION

Applicant: For FCC:

MANDO corp.

21, Pangyo-ro 255beon-qil, Bundang-qu, Gyeongqi-do,

Report No.: T171122I01-RP

Seongnam-si, 463-400, South Korea

For IC:

MANDO corp.

21, Pangyo-ro 255beon-gil, Bundang-gu, Gyeonggi-do,

Seongnam-si, 463-400, Korea (Rep.)

Manufacturer: For FCC:

MANDO corp.

21, Pangyo-ro 255beon-gil, Bundang-gu, Gyeonggi-do,

Seongnam-si, 463-400, South Korea

For IC:

MANDO corp.

21, Pangyo-ro 255beon-gil, Bundang-gu, Gyeonggi-do,

Seongnam-si, 463-400, Korea (Rep.)

Equipment Under Test: Automotive Radar

Trade Name: Mando Model: MRR-20

Date of Test: November 27, 2017 ~ February 5, 2018

APPLICABLE STANDARDS					
STANDARD TEST RESULT					
FCC 47 CFR Part 95 Subpart M					
&	No non-compliance noted				
INDUSTRY CANADA RSS-251 issue 1					

We hereby certify that:

All test results conform to above mentioned standards.

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 95.3367 and 95.3379.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by:

Sam Chuang

Manager

Compliance Certification Services Inc.

Hem Cleany

Jerry Ching

Reviewed by:

Jerry Chuang

Engineer

Compliance Certification Services Inc.

Page 4 Rev.01

2. EUT DESCRIPTION

	<u></u>			
Product	Automotive Radar			
Trade Name	Mando			
Model Number	MRR-20			
Model Discrepancy	N/A			
Received Date	November 22, 2017			
Power Supply	12.0-Vpc from power supply			
Frequency Band	76.0 – 77.0 GHz			
Modulation	FMCW			
Number of Channel	1 (76.5 GHz)			
Antenna Designation	Patch Antenna / Gain: 20 dBi			
Temperature Range	-40°C to +85 °C			

Remark:

1. The sample selected for test was production product and was provided by manufacturer.

Page 5 Rev.01

Report No.: T171122I01-RP

ISED No: 11988A-MRR20

Report No.: T171122I01-RP

3. TEST SUMMERY

Report Section	FCC Standard Section	IC Standard Section	Test Item	Result
8.1	95.3379(b)	RSS-251 Sec 5.1	Frequency band	Pass
8.2	8.2 95.3367 R		Equivalent Isotropically Radiated Power (EIRP)	Pass
8.3	95.3379(a)	RSS-251 Sec 5.3	Radiated spurious emissions	Pass
8.4	05 3370/h) RSS-251		Frequency stability	Pass

Page 6 Rev.01

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013, ANSI 63.4 2014 and FCC CFR 47 Part 95.3367, 95.3379.

Report No.: T171122I01-RP

4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

4.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in ANSI C63.10: 2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 1.5 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10: 2013.

Page 7 Rev.01

4.4 DESCRIPTION OF TEST MODES

The EUT (model: MRR-20) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed. The worst case data rate is determined as the data rate with highest output power.

Report No.: T171122I01-RP

The product does not transmits in stop condition.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

Radiated Emission Measurement Above 1G					
Test Condition Radiated Emission Above 1G					
Voltage/Hz	Voltage/Hz 12V				
Test Mode	Test Mode Mode 1:EUT power by Battery.				
Worst Mode					

Radiated Emission Measurement Below 1G				
Test Condition Radiated Emission Below 1G				
Voltage/Hz 12V				
Test Mode Mode 1:EUT power by Battery.				
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4				

Remark:

1. The worst mode was record in this test report.

Page 8 Rev.01

5. INSTRUMENT CALIBRATION

5.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Report No.: T171122I01-RP

5.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

Conducted Emissions Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due	
Spectrum Analyzer	R&S	FSV 40	101073	10/05/2017	10/04/2018	
Thermostatic/Hrgrosatic Chamber	GWINSTEK	GTC-288MH-CC	TH160402	05/23/2017	05/22/2018	
Harmonic Mixer	ROHDE&SCHWARZ	FH-PP-75 / FS-Z75	10001 / 100162	04/21/2017	04/20/2018	
Harmonic Mixer	ROHDE&SCHWARZ	FH-PP-110 / FS-Z110	10003 / 100096	04/23/2017	04/22/2018	
Harmonic Mixer	ROHDE&SCHWARZ	FH-PP-170 / SAM-170	10003 / 20011	04/26/2017	04/25/2018	
Harmonic Mixer	ROHDE&SCHWARZ	FH-PP-220 / SAM-220	10003 / 20013	04/29/2017	04/28/2018	
Harmonic Mixer	Radiometer Physics Gmbn	FH-PP-325 / SAM-325	10007 / 20048	05/04/2017	05/03/2018	
Harmonic Mixer	A-INFO / ROHDE&SCHWARZ	LB-19-20-A / FS-Z60	J202020872 / 100142	04/16/2017	04/15/2018	

966A Test Site							
Name of Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due		
Bilog Antenna	Sunol Sciences	JB3	A030105	06/20/2017	06/19/2018		
Horn Antenna	EMCO	3117	00055165	02/20/2017	02/19/2018		
Pre-Amplifier	EMCI	EMC 012635	980151	08/01/2017	07/31/2018		
Pre-Amplifier	EMEC	EM330	060609	06/07/2017	06/06/2018		
Cable	HUBER SUHNER	SUCOFLEX 104PEA	25157	7/31/2017	7/30/2018		
Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	7/31/2017	7/30/2018		
Antenna Tower	ccs	CC-A-1F	N/A	N.C.R	N.C.R		
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R		
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R		

Page 9 Rev.01

Report No.: T171122I01-RP

5.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 6dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 10 Rev.01

6. FACILITIES AND ACCREDITATIONS **6.1 FACILITIES**

All measurement facilities used to collect the measurement data are located at No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029 No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) Tel: 886-2-2299-9720 / Fax: 886-2-2299-9721 No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C. Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

6.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

> Page 11 Rev.01

Report No.: T171122I01-RP

7. SETUP OF EQUIPMENT UNDER TEST

7.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

Report No.: T171122I01-RP

7.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	DC Power Source	GWINST EK	SPS-3610	GPE880163	FCC DoC	1.5m shielding	1.8m non-shielding

Remark:

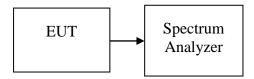
- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 12 Rev.01

FCC ID: 2ACDX-MRR-20

ISED No: 11988A-MRR20

Report No.: T171122I01-RP


8. TEST REQUIREMENTS

8.1 FREQUENCY BAND

LIMIT

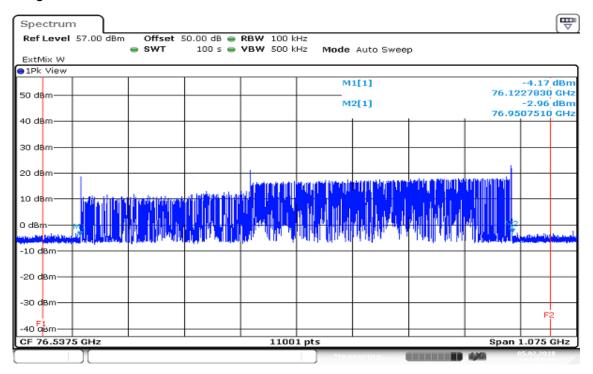
According to FCC 95.3379(b) and RSS-251 Sec 5.1, systems using digital modulation techniques may operate in the 76.0 GHz-77 GHz.

Test Configuration

TEST PROCEDURE

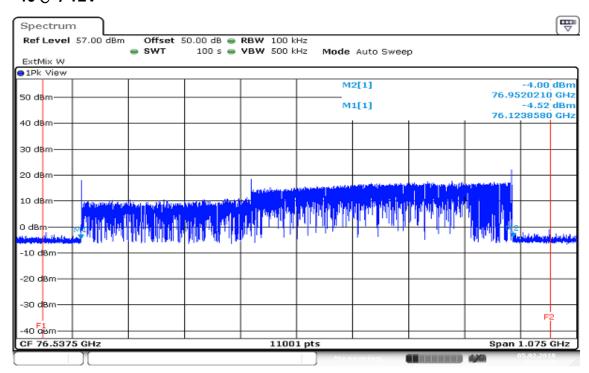
The transmitter output is connected to the spectrum analyzer. Set the RBW=1MHz the emission bandwidth, VBW \geq 3 x RBW, Detector = Peak, Trace mode = Max hold, Sweep = 100S. Mark point 1 and point 2 to Measure the operation frequency range.

TEST RESULTS


No non-compliance noted

Page 13 Rev.01

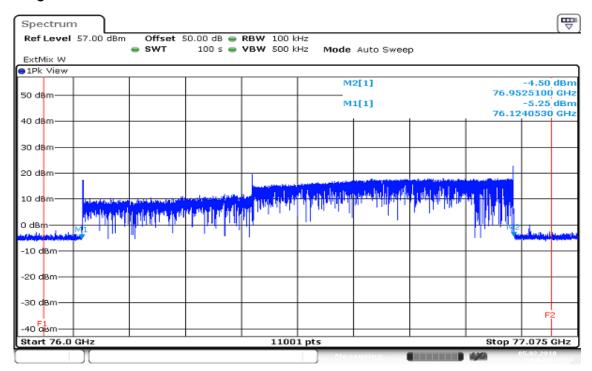
Test Data


Test Plot

20℃ /12V

Date: 5.FEB.2018 11:58:49

-40℃ / 12V


Date: 5.FEB.2018 15:32:39

Page 14 Rev.01

Report No.: T171122I01-RP

Report No.: T171122I01-RP

85℃ / 12V

Date: 5.FEB.2018 16:01:02

Page 15 Rev.01

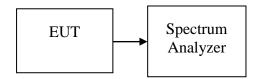
FCC ID: 2ACDX-MRR-20

ISED No: 11988A-MRR20

Report No.: T171122I01-RP

8.2 EQUIVALENT ISOTROPICALLY RADIATED POWER (EIRP)

LIMIT


The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows:

According to FCC 95.3367 and RSS-251 Sec 5.2.2

The maximum power (EIRP) within the 76-81 GHz band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 MHz Resolution Bandwidth (RBW).

The maximum peak power (EIRP) within the 76-81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW.

Test Configuration

TEST RESULTS

No non-compliance noted.

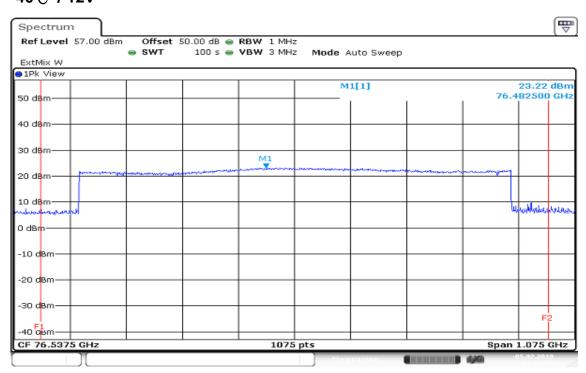
Test Condition	Frequency(GHz)	Peak EIRP(dBm)	Limit (dBm)
20℃ /12V		23.99	
-40°C /12V	76.2	23.22	55
85℃ / 12V		23.00	

Test Condition	Frequency(GHz)	AVG EIRP (dBm)	Limit (dBm)
20℃ /12V		22.35	
-40°C /12V	76.2	22.35	50
85℃ / 12V		22.09	


Page 16 Rev.01

Report No.: T171122I01-RP

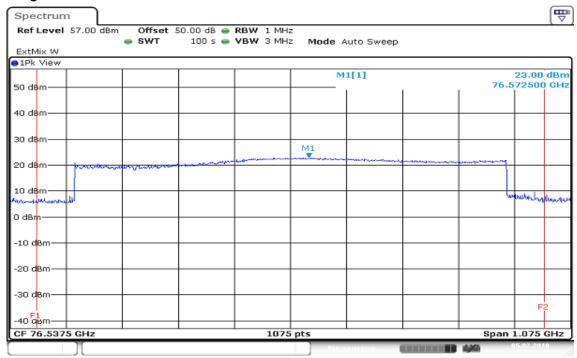
Test Data


Peak Power

20℃ /12V

Date: 5.FEB.2018 12:02:13

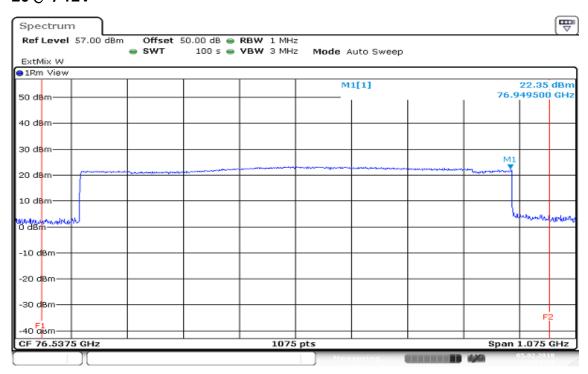
-40℃ / 12V



Date: 5.FEB.2018 13:13:09

Page 17 Rev.01

Report No.: T171122I01-RP

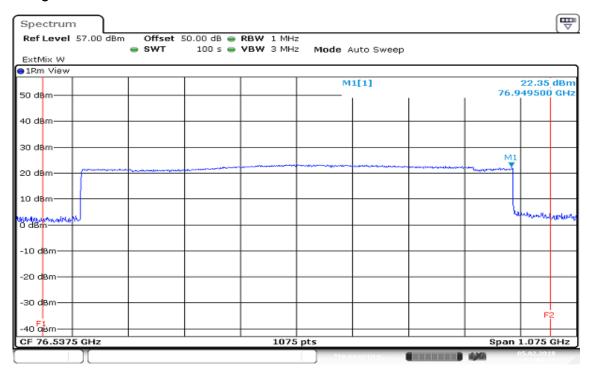

85℃ / 12V

Date: 5.FEB.2018 14:59:46

Average Power

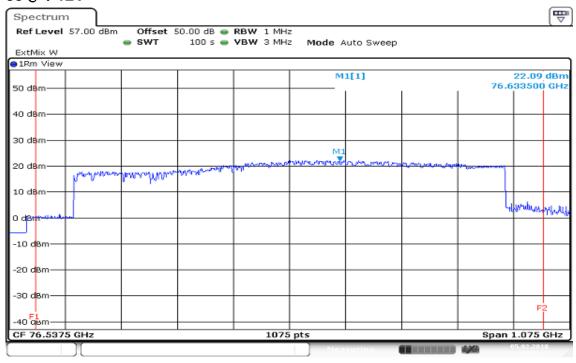
20℃ /12V

Date: 5.FEB.2018 13:09:29


Page 18 Rev.01

FCC ID: 2ACDX-MRR-20

ISED No: 11988A-MRR20


Report No.: T171122I01-RP

-40°C / 12V

Date: 5.FEB.2018 13:09:12

85℃ /12V

Date: 5.FEB.2018 15:05:17

Page 19 Rev.01

Report No.: T171122I01-RP

8.3 SPURIOUS EMISSIONS

8.3.1 Radiated Emissions

LIMIT

1. According to FCC PART 95.3379(a) and RSS-251 Sec 5.3, Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

- 2. For radiated emissions outside the 76-81 GHz band between 40 GHz and 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 600 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.
- 3. For radiated emissions above 200 GHz from field disturbance sensors and radar systems operating in the 76-81 GHz band: 1000 pW/cm² at a distance of 3 meters from the exterior surface of the radiating structure.

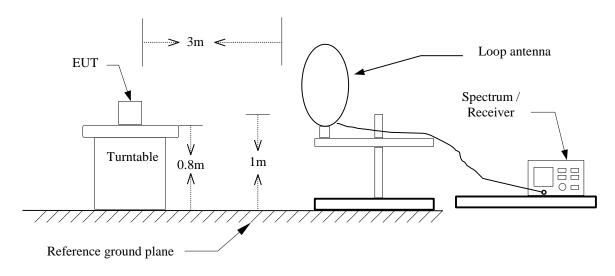
Notes:

P(mW) = Power density (mW/m²) X 4π (r)²

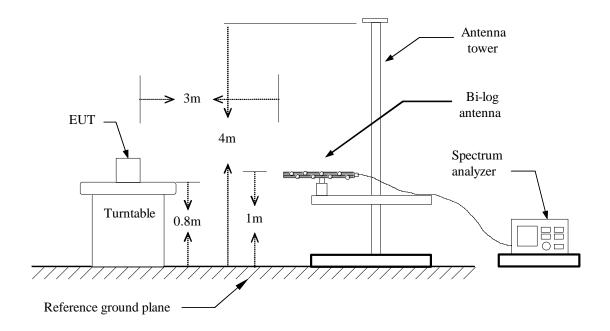
 $600 \text{ pW/cm}^2 = -1.7 \text{dBm} @ 3\text{m} = 7.84 \text{ dBm} @ 1\text{m}$

 $1000 \text{ pW/cm}^2 = 0.5 \text{ dBm} @ 3m = 10.04 \text{ dBm} @ 1m$

P: Power


r: measurement distance(m)

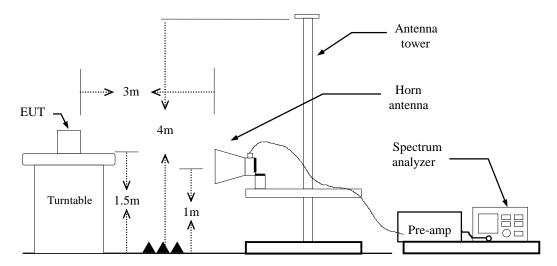
Page 20 Rev.01


Report No.: T171122I01-RP

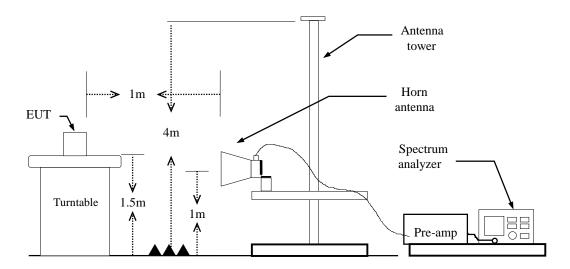
Test Configuration

9kHz ~ 30MHz

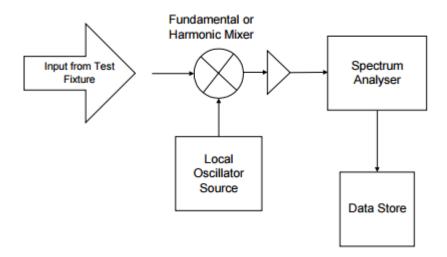
30MHz ~ 1 GHz


Page 21 Rev.01

FCC ID: 2ACDX-MRR-20


ISED No: 11988A-MRR20

Report No.: T171122I01-RP


Above 1 GHz ~ 18GHz

18GHz ~ 40GHz

Above 40 GHz

Page 22 Rev.01

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

Report No.: T171122I01-RP

- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Above 1GHz:

(a)PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO

(b)AVERAGE: RBW=1MHz,

Above 40GHz:

RBW = 1 MHz, VBW = 3 MHz,

Detector = Peak, Trace mode = max hold, Sweep = AUTO.

7. Repeat above procedures until the measurements for all frequencies are complete.

Page 23 Rev.01

FCC ID: 2ACDX-MRR-20 ISED No: 11988A-MRR20 Report No.: T171122I01-RP

Below 1 GHz

Operation Mode: Normal Link Test Date: 2017/11/27

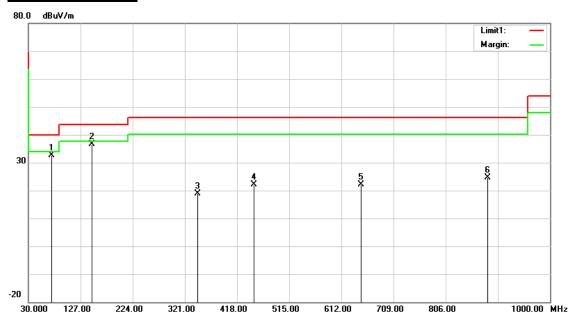
Temperature: 28°C **Tested by:** Jerry Chuang

Humidity: 53% RH **Polarity:** Ver. / Hor.

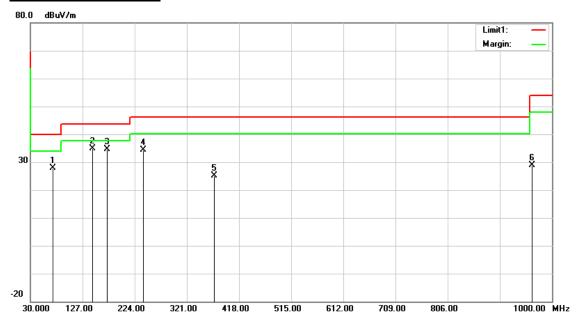
Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
73.6500	53.88	-21.34	32.54	40.00	-7.46	peak	V
148.3400	52.42	-15.72	36.70	43.52	-6.82	peak	V
345.2500	32.09	-13.09	19.00	46.02	-27.02	peak	V
449.0400	31.86	-9.63	22.23	46.02	-23.79	peak	V
648.8600	27.79	-5.58	22.21	46.02	-23.81	peak	V
884.5700	26.84	-2.28	24.56	46.02	-21.46	peak	V
71.7100	49.06	-21.29	27.77	40.00	-12.23	peak	Н
145.4300	50.53	-15.65	34.88	43.52	-8.64	QP	Н
172.5900	51.23	-16.71	34.52	43.52	-9.00	peak	Н
239.5200	50.54	-16.16	34.38	46.02	-11.64	peak	Н
372.4100	37.32	-12.27	25.05	46.02	-20.97	peak	Н
963.1400	29.81	-1.04	28.77	54.00	-25.23	peak	Н

Remark:

- No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).
- 2. Radiated emissions measured were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).


Page 24 Rev.01

FCC ID: 2ACDX-MRR-20


ISED No: 11988A-MRR20

Report No.: T171122I01-RP

Polarity: Vertical

Polarity: Horizontal

Page 25 Rev.01

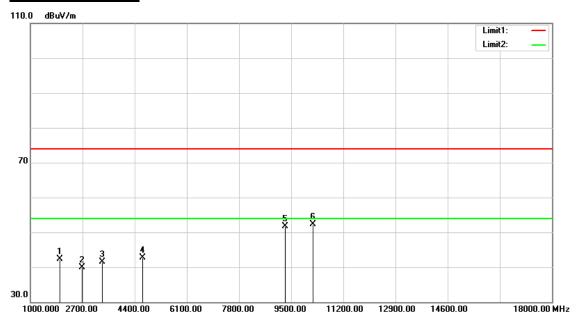
FCC ID: 2ACDX-MRR-20 ISED No: 11988A-MRR20 Report No.: T171122I01-RP

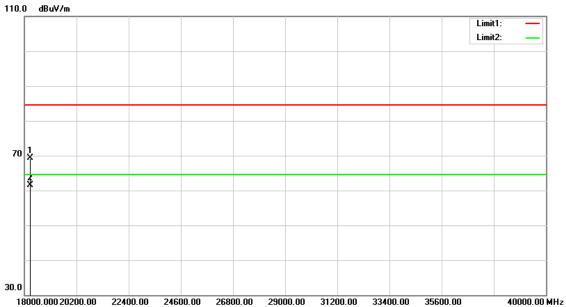
Above 1 GHz

Operation Mode: Test Mode Test Date: 2017/11/27

Temperature: 28°C **Tested by:** Jerry Chuang

Humidity: 53% RH **Polarity:** Ver. / Hor.

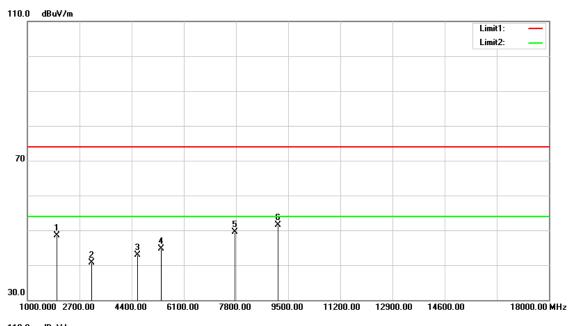

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1966.000	46.71	-4.44	42.27	74.00	-31.73	peak	V
2687.000	42.12	-2.27	39.85	74.00	-34.15	peak	V
3345.000	41.09	0.36	41.45	74.00	-32.55	peak	V
4668.000	38.69	4.10	42.79	74.00	-31.21	peak	V
9300.000	38.69	12.98	51.67	74.00	-22.33	peak	V
10210.000	38.31	13.94	52.25	74.00	-21.75	peak	V
18255.000	25.21	44.05	69.26	84.54	-15.28	peak	V
18255.000	17.41	44.05	61.46	64.54	-3.08	AVG	V
1966.000	52.92	-4.44	48.48	74.00	-25.52	peak	Н
3093.000	41.77	-1.10	40.67	74.00	-33.33	peak	Н
4591.000	38.92	3.96	42.88	74.00	-31.12	peak	Н
5354.000	39.05	5.56	44.61	74.00	-29.39	peak	Н
7755.000	38.34	11.12	49.46	74.00	-24.54	peak	Н
9170.000	38.64	12.96	51.60	74.00	-22.40	peak	Н
18195.000	22.50	43.99	66.49	84.54	-18.05	peak	Н
18195.000	17.04	43.99	61.03	64.54	-3.51	AVG	Н

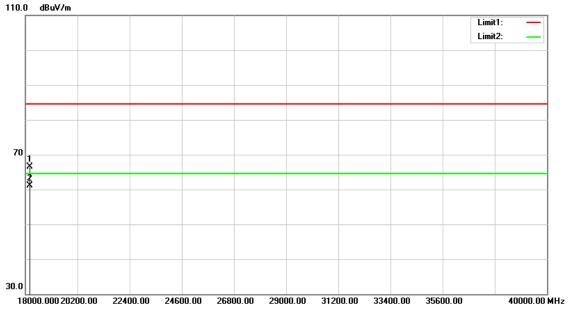

Remark:

- Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 26 Rev.01

Polarity: Vertical





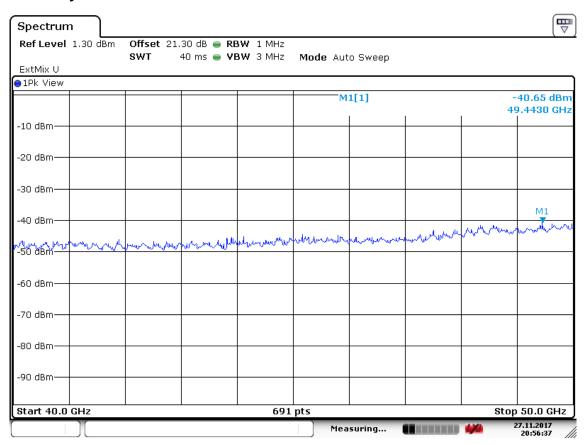
Page 27 Rev.01

Report No.: T171122I01-RP

Polarity: Horizontal

Page 28 Rev.01

Report No.: T171122I01-RP


Report No.: T171122I01-RP

40G-50G

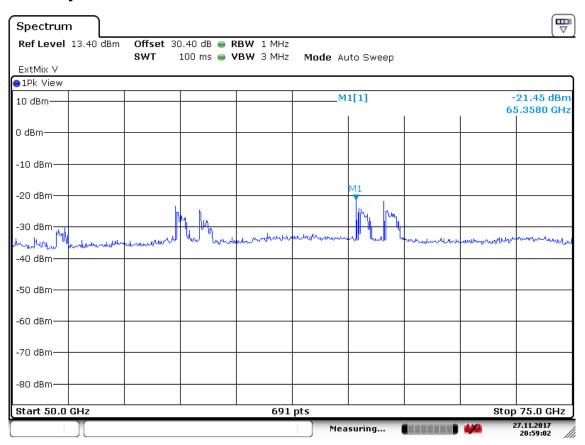
Operation Mode: Test Mode Test Date: 2017/11/27

Temperature: 28°C **Tested by:** Jerry Chuang

Humidity: 53% RH

Date: 27.NOV.2017 20:56:38

Page 29 Rev.01


Report No.: T171122I01-RP

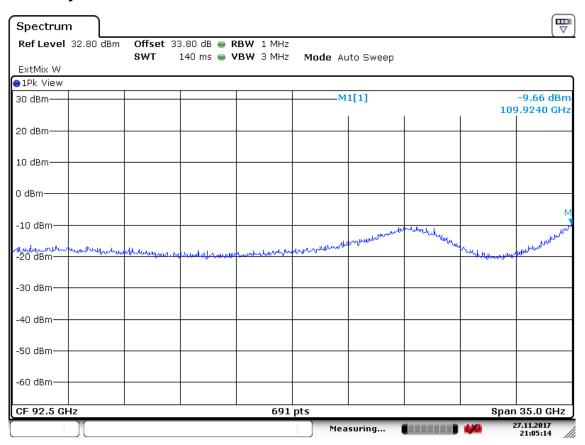
50G-75G

Operation Mode: Test Mode Test Date: 2017/11/27

Temperature: 28°C **Tested by:** Jerry Chuang

Humidity: 53% RH

Date: 27.NOV.2017 20:59:02


Page 30 Rev.01

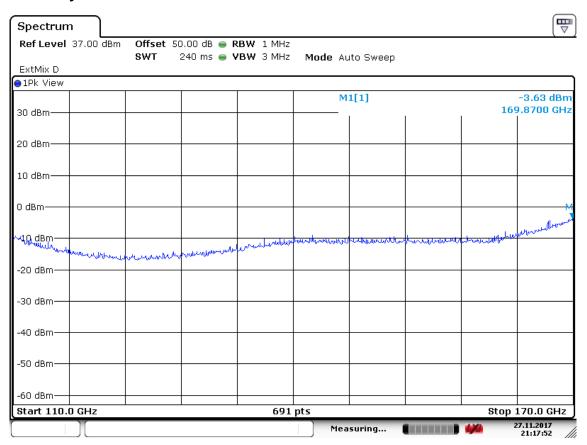
75G-110G

Operation Mode: Test Mode Test Date: 2017/11/27

Temperature: 28°C **Tested by:** Jerry Chuang

Humidity: 53% RH

Date: 27.NOV.2017 21:05:15


Page 31 Rev.01

110G-170G

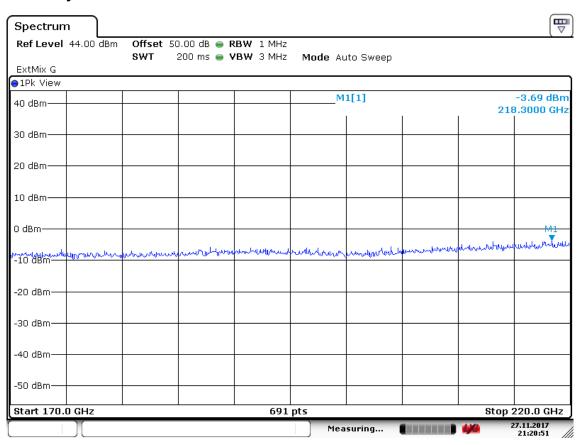
Operation Mode: Test Mode Test Date: 2017/11/27

Temperature: 28°C **Tested by:** Jerry Chuang

Humidity: 53% RH

Date: 27.NOV.2017 21:17:53

Page 32 Rev.01


Report No.: T171122I01-RP

170G-220G

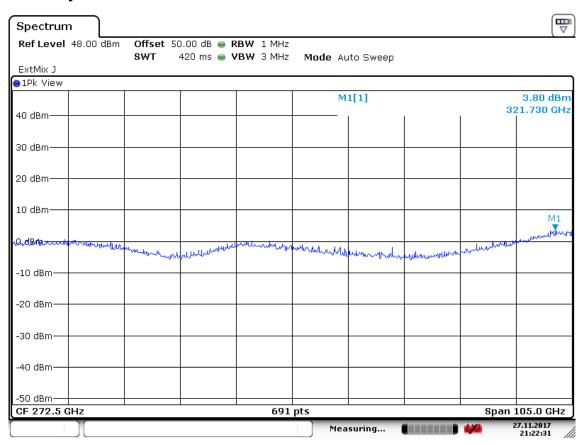
Operation Mode: Test Mode Test Date: 2017/11/27

Temperature: 28°C **Tested by:** Jerry Chuang

Humidity: 53% RH

Date: 27.NOV.2017 21:20:52

Page 33 Rev.01


FCC ID: 2ACDX-MRR-20 ISED No: 11988A-MRR20 Report No.: T171122I01-RP

220G-325G

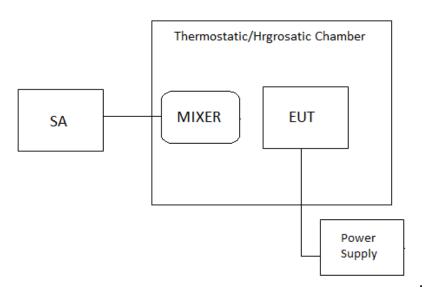
Operation Mode: Test Mode Test Date: 2017/11/27

Temperature: 28°C **Tested by:** Jerry Chuang

Humidity: 53% RH

Date: 27.NOV.2017 21:22:31

Page 34 Rev.01


8.4 FREQUENCY STABILITY

LIMIT

According to FCC 95.3379(b) and RSS-251 Sec 5.4. Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to + 50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

Report No.: T171122I01-RP

Test Configuration

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

> Page 35 Rev.01

FCC ID: 2ACDX-MRR-20

ISED No: 11988A-MRR20

Report No.: T171122I01-RP

TEST RESULTS

No non-compliance noted.

Operating Frequency: 76.5 GHz						
Environment Temperature(°C)	Voltage (V)	Measured Frequency (GHz)	Margin	Limit Range(GHz)	Test Result	
50	12	76.9513	0.4513	76-77	Pass	
40	12	76.9498	0.4498	76-77	Pass	
30	12	76.9513	0.4513	76-77	Pass	
20	12	76.9498	0.4498	76-77	Pass	
10	12	76.9498	0.4498	76-77	Pass	
0	12	76.2481	-0.2519	76-77	Pass	
-10	12	76.9513	0.4513	76-77	Pass	
-20	12	76.2481	-0.2519	76-77	Pass	
-30	12	76.9513	0.4513	76-77	Pass	

Operating Frequency: 76.5 GHz						
Environment Voltage Measured Frequency Temperature(°C) (V) (GHz) Margin				Limit Range(GHz)	Test Result	
20	10.8	76.9498	0.4498	76-77	Pass	
	12	76.9498	0.4498	76-77	Pass	
	13.2	76.9501	0.4501	76-77	Pass	

Page 36 Rev.01