

## FCC TEST REPORT

FOR

SuZhou MuLan Ele&amp;Tec Co.,Ltd

RFID Reader

Model No.: ML-M2000DX

Prepared for : SuZhou MuLan Ele&Tec Co.,Ltd  
Address : No. 625, ChuangYe Building, Binhe Road, Suzhou, Jiangshu  
Province, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd  
Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,  
Bao'an District, Shenzhen, Guangdong , China

Date of receipt of test sample : May 06, 2014  
Number of tested samples : 1  
Serial number : Prototype  
Date of Test : May 06, 2014 - May 13, 2014  
Date of Report : May 13, 2014

**FCC TEST REPORT****FCC CFR 47 PART 15 C(15.249): 2013****Report Reference No. .... : LCS1405060201E**

Date of Issue..... : May 13, 2014

**Testing Laboratory Name ..... : Shenzhen LCS Compliance Testing Laboratory Ltd.**

Address..... : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure ..... : Full application of Harmonised standards Partial application of Harmonised standards Other standard testing method **Applicant's Name..... : SuZhou MuLan Ele&Tec Co.,Ltd**

Address..... : No. 625, ChuangYe Building, Binhe Road, Suzhou, Jiangshu Province, China

**Test Specification**

Standard ..... : FCC CFR 47 PART 15 C(15.249): 2013

Test Report Form No. ..... : LCSEMC-1.0

TRF Originator..... : Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF ..... : Dated 2011-03

**Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.**

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

**Test Item Description..... : RFID Reader**Trade Mark..... : 

Model/ Type reference ..... : ML-M2000DX

Ratings ..... : DC 9~12V, 1000mA

**Result ..... : Positive****Compiled by:**

Jacky Li/ File administrators

**Supervised by:**

Danny Huang/ Technique principal

**Approved by:**

Gavin Liang/ Manager

## FCC -- TEST REPORT

|                                         |                                      |
|-----------------------------------------|--------------------------------------|
| <b>Test Report No. : LCS1405060201E</b> | <u>May 13, 2014</u><br>Date of issue |
|-----------------------------------------|--------------------------------------|

Type / Model..... : ML-M2000DX

EUT..... : RFID Reader

**Applicant..... : SuZhou MuLan Ele&Tec Co.,Ltd**

Address..... : No. 625, ChuangYe Building, Binhe Road, Suzhou, Jiangshu Province, China

Telephone..... : /

Fax..... : /

**Manufacturer..... : SuZhou MuLan Ele&Tec Co.,Ltd**

Address..... : No. 625, ChuangYe Building, Binhe Road, Suzhou, Jiangshu Province, China

Telephone..... : /

Fax..... : /

**Factory..... : SuZhou MuLan Ele&Tec Co.,Ltd**

Address..... : No. 625, ChuangYe Building, Binhe Road, Suzhou, Jiangshu Province, China

Telephone..... : /

Fax..... : /

|                    |                 |
|--------------------|-----------------|
| <b>Test Result</b> | <b>Positive</b> |
|--------------------|-----------------|

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

## TABLE OF CONTENTS

|                                                            |           |
|------------------------------------------------------------|-----------|
| <b>1. GENERAL INFORMATION</b> .....                        | <b>5</b>  |
| 1.1. Description of Device (EUT) .....                     | 5         |
| 1.2. Host System Configuration List and Details .....      | 5         |
| 1.3. External I/O .....                                    | 5         |
| 1.4. Description of Test Facility .....                    | 6         |
| 1.5. Statement of the measurement uncertainty.....         | 6         |
| 1.6. Measurement Uncertainty .....                         | 6         |
| 1.7. Description Of Test Modes .....                       | 7         |
| <b>2. TEST METHODOLOGY</b> .....                           | <b>8</b>  |
| 2.1. EUT Configuration .....                               | 8         |
| 2.2. EUT Exercise.....                                     | 8         |
| 2.3. General Test Procedures.....                          | 8         |
| <b>3. CONNECTION DIAGRAM OF TEST SYSTEM</b> .....          | <b>9</b>  |
| 3.1. Justification .....                                   | 9         |
| 3.2. EUT Exercise Software .....                           | 9         |
| 3.3. Special Accessories .....                             | 9         |
| 3.4. Block Diagram/Schematics .....                        | 9         |
| 3.5. Equipment Modifications .....                         | 9         |
| 3.6. Test Setup .....                                      | 9         |
| <b>4. SUMMARY OF TEST RESULTS</b> .....                    | <b>10</b> |
| <b>5. POWER LINE CONDUCTED EMISSIONS</b> .....             | <b>11</b> |
| 5.1 Standard Applicable .....                              | 11        |
| 5.2 Block Diagram of Test Setup .....                      | 11        |
| 5.3 Test Results .....                                     | 11        |
| <b>6. ANTENNA REQUIREMENT</b> .....                        | <b>13</b> |
| 6.1. Standard Applicable .....                             | 13        |
| 6.2. Antenna Connected Construction.....                   | 13        |
| <b>7. RADIATED EMISSION MEASUREMENT</b> .....              | <b>14</b> |
| 7.1. Standard Applicable .....                             | 14        |
| 7.2. Measuring Instruments and Setting .....               | 14        |
| 7.3. Test Procedure .....                                  | 15        |
| 7.4. Test Equipment List and Details .....                 | 16        |
| 7.5. Block Diagram of Test Setup .....                     | 16        |
| 7.6. Test Results .....                                    | 17        |
| <b>8. BANDEDGES MEASUREMENT</b> .....                      | <b>22</b> |
| 8.1. Standard Applicable .....                             | 22        |
| 8.2. Test Equipment List and Details .....                 | 22        |
| 8.3. Block Diagram of Test Setup .....                     | 22        |
| 8.4. Test Procedure .....                                  | 22        |
| 8.5. Test Results .....                                    | 23        |
| <b>9. 20 DB BANDWIDTH MEASUREMENT</b> .....                | <b>24</b> |
| 9.1. Standard Applicable .....                             | 24        |
| 9.2. Test Equipment List and Details .....                 | 24        |
| 9.3. Block Diagram of Test Setup .....                     | 24        |
| 9.4. Test Procedure .....                                  | 24        |
| 9.5. Test Results .....                                    | 25        |
| <b>10. MANUFACTURER/ APPROVAL HOLDER DECLARATION</b> ..... | <b>27</b> |

## 1. GENERAL INFORMATION

### 1.1. Description of Device (EUT)

EUT : RFID Reader

Model Number : ML-M2000DX

Power Supply : DC 9~12V, 1000mA

Frequency Range : 2401.00-2480.00MHz

Channel frequency list (MHz) : 2401-2480MHz(Channel Number: 80, Channel Frequency=2401+1(K-1), K=1, 2, 3 .....80);

Channel number : 80

Modulation Technology : GFSK

Antenna Type and Gain : Integral Antenna, 15.0dBi(Max.)

### 1.2. Host System Configuration List and Details

| Manufacturer | Description   | Model      | Serial Number | Certificate |
|--------------|---------------|------------|---------------|-------------|
| --           | AC/DC Adapter | YGY-121000 | --            | VOC         |

### 1.3. External I/O

| I/O Port Description | Quantity | Cable |
|----------------------|----------|-------|
| DC Port              | 1        | --    |

## 1.4. Description of Test Facility

### Site Description

#### EMC Lab.

- : Accredited by CNAS, June 04, 2010  
The Certificate Registration Number. is L4595.
- Accredited by FCC, April 22, 2011  
The Certificate Registration Number. is 899208.
- Accredited by Industry Canada, May. 02, 2011  
The Certificate Registration Number. is 9642A-1
- Accredited by VCCI, Japan January 30, 2012  
The Certificate Registration Number. is C-4260 and R-3804
- Accredited by ESMD, April 24, 2012  
The Certificate Registration Number. is ARCB0108.
- Accredited by UL, June 11, 2012  
The Certificate Registration Number. is 100571-492.
- Accredited by TUV, November 21, 2012  
The Certificate Registration Number. is SCN1081
- Accredited by Intertek, December 21, 2012  
The Certificate Registration Number. is 2011-RTL-L1-50.

## 1.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 “Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements” and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

## 1.6. Measurement Uncertainty

| Test Item              | Frequency Range | Uncertainty | Note |
|------------------------|-----------------|-------------|------|
| Radiation Uncertainty  | 9KHz~30MHz      | ± 3.10dB    | (1)  |
|                        | 30MHz~200MHz    | ± 2.96dB    | (1)  |
|                        | 200MHz~1000MHz  | ± 3.10dB    | (1)  |
|                        | 1GHz~26.5GHz    | ± 4.00dB    | (1)  |
| Conduction Uncertainty | 150kHz~30MHz    | ± 1.63dB    | (1)  |
| Power disturbance      | 30MHz~300MHz    | ± 1.60dB    | (1)  |

- (1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

## 1.7. Description Of Test Modes

The EUT operates in the unlicensed ISM band at 2.4GHz. The following operating modes were applied for the related test items. And the new battery is used during the measurement.

The EUT received DC 12.0V power from a AC/DC Adapter which are new and full power.

All test modes were tested, only the result of the worst case was recorded in the report.

The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

| Mode of Operations     | Transmitting Frequency (MHz) |
|------------------------|------------------------------|
| GFSK                   | 2401                         |
|                        | 2441                         |
|                        | 2480                         |
| For Conducted Emission |                              |
| Test Mode              | TX Mode                      |
| For Radiated Emission  |                              |
| Test Mode              | TX Mode                      |

## 2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

### 2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

### 2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

### 2.3. General Test Procedures

#### 2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

#### 2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4

### 3. CONNECTION DIAGRAM OF TEST SYSTEM

#### 3.1. Justification

The system was configured for testing in a continuous transmit condition.

#### 3.2. EUT Exercise Software

N/A

#### 3.3. Special Accessories

N/A

#### 3.4. Block Diagram/Schematics

Please refer to the related document

#### 3.5. Equipment Modifications

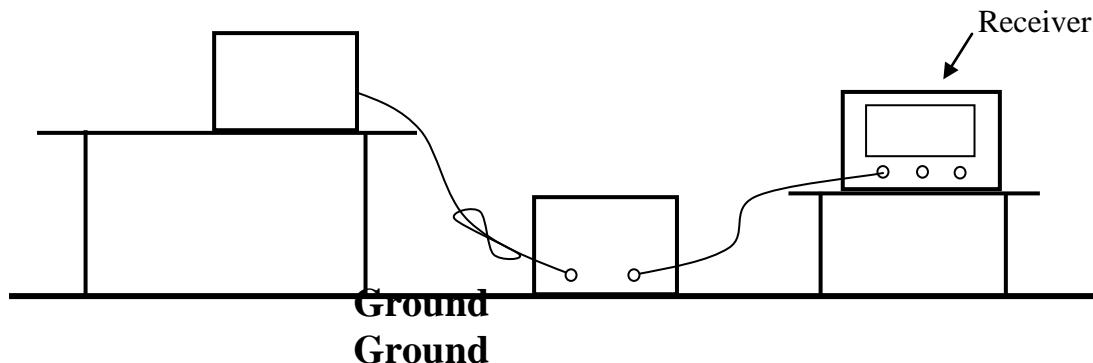
Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

#### 3.6. Test Setup

Please refer to the test setup photo.

## 4. SUMMARY OF TEST RESULTS

| FCC Rules                                         | Description Of Test               | Result    |
|---------------------------------------------------|-----------------------------------|-----------|
| §15.203                                           | Antenna Requirement               | Compliant |
| §15.207(a)                                        | Conduction Emissions              | Compliant |
| §15.205(a), §15.209(a),<br>§15.249(a), §15.249(c) | Radiated Emissions<br>Measurement | Compliant |
| §15.249                                           | Band Edges Measurement            | Compliant |
| §15.249, §15.215                                  | 20 dB Bandwidth                   | Compliant |

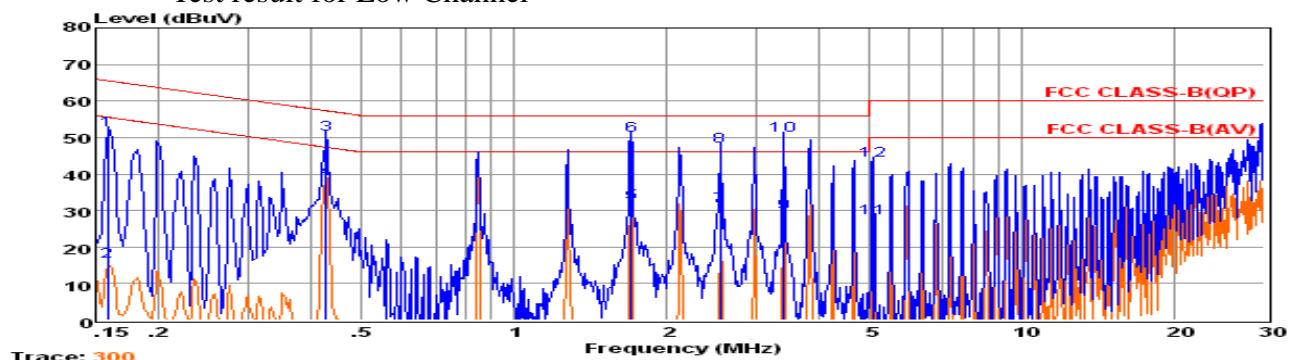

## 5. POWER LINE CONDUCTED EMISSIONS

### 5.1 Standard Applicable

According to RSS-Gen: For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

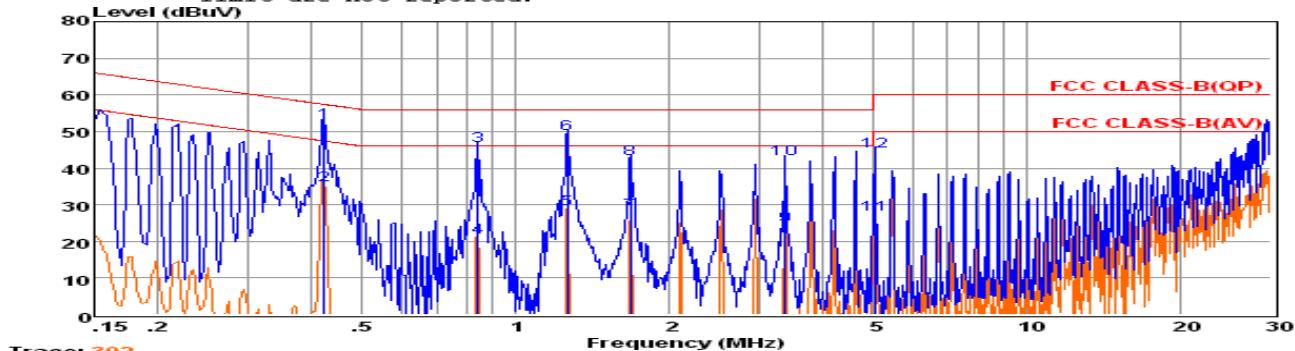
| Frequency Range (MHz) | Limits (dB $\mu$ V) |          |
|-----------------------|---------------------|----------|
|                       | Quasi-pea k         | Average  |
| 0.15 to 0.50          | 66 to 56            | 56 to 46 |
| 0.50 to 5             | 56                  | 46       |
| 5 to 30               | 60                  | 50       |

### 5.2 Block Diagram of Test Setup




### 5.3 Test Results

PASS.


The test data please refer to following page.

## Test result for Low Channel



| Freq | Reading | LisnFac | CabLos | AttFac | Measured | Limit | Over  | Remark         |
|------|---------|---------|--------|--------|----------|-------|-------|----------------|
| MHz  | dBuV    | dB      | dB     | dB     | dBuV     | dBuV  | dB    |                |
| 1    | 0.15816 | 32.33   | 9.58   | 0.02   | 10.00    | 51.93 | 65.56 | -13.63 QP      |
| 2    | 0.15826 | -3.68   | 9.58   | 0.02   | 10.00    | 15.92 | 55.55 | -39.63 Average |
| 3    | 0.42598 | 31.19   | 9.62   | 0.04   | 10.00    | 50.85 | 57.33 | -6.48 QP       |
| 4    | 0.42599 | 19.05   | 9.62   | 0.04   | 10.00    | 38.71 | 47.33 | -8.62 Average  |
| 5    | 1.69820 | 12.35   | 9.64   | 0.05   | 10.00    | 32.04 | 46.00 | -13.96 Average |
| 6    | 1.69810 | 30.73   | 9.64   | 0.05   | 10.00    | 50.42 | 56.00 | -5.58 QP       |
| 7    | 2.54014 | 11.57   | 9.64   | 0.05   | 10.00    | 31.26 | 46.00 | -14.74 Average |
| 8    | 2.54004 | 27.85   | 9.64   | 0.05   | 10.00    | 47.54 | 56.00 | -8.46 QP       |
| 9    | 3.39947 | 9.65    | 9.65   | 0.06   | 10.00    | 29.36 | 46.00 | -16.64 Average |
| 10   | 3.39937 | 30.83   | 9.65   | 0.06   | 10.00    | 50.54 | 56.00 | -5.46 QP       |
| 11   | 5.08493 | 8.39    | 9.65   | 0.06   | 10.00    | 28.10 | 50.00 | -21.90 Average |
| 12   | 5.08483 | 23.87   | 9.65   | 0.06   | 10.00    | 43.58 | 60.00 | -16.42 QP      |

Remarks: 1. Measured = Reading + Lisn Factor + Cable Loss + AttFac.  
2. The emission levels that are 20dB below the official limit are not reported.



| Freq | Reading | LisnFac | CabLos | AttFac | Measured | Limit | Over  | Remark         |
|------|---------|---------|--------|--------|----------|-------|-------|----------------|
| MHz  | dBuV    | dB      | dB     | dB     | dBuV     | dBuV  | dB    |                |
| 1    | 0.42149 | 33.13   | 9.61   | 0.04   | 10.00    | 52.78 | 57.42 | -4.64 QP       |
| 2    | 0.42159 | 15.61   | 9.61   | 0.04   | 10.00    | 35.26 | 47.42 | -12.16 Average |
| 3    | 0.84378 | 26.34   | 9.63   | 0.04   | 10.00    | 46.01 | 56.00 | -9.99 QP       |
| 4    | 0.84388 | 1.35    | 9.63   | 0.04   | 10.00    | 21.02 | 46.00 | -24.98 Average |
| 5    | 1.26223 | 9.27    | 9.63   | 0.05   | 10.00    | 28.95 | 46.00 | -17.05 Average |
| 6    | 1.26213 | 29.68   | 9.63   | 0.05   | 10.00    | 49.36 | 56.00 | -6.64 QP       |
| 7    | 1.68030 | 8.17    | 9.63   | 0.05   | 10.00    | 27.85 | 46.00 | -18.15 Average |
| 8    | 1.68020 | 22.98   | 9.63   | 0.05   | 10.00    | 42.66 | 56.00 | -13.34 QP      |
| 9    | 3.36363 | 4.69    | 9.65   | 0.06   | 10.00    | 24.40 | 46.00 | -21.60 Average |
| 10   | 3.36353 | 22.67   | 9.65   | 0.06   | 10.00    | 42.38 | 56.00 | -13.62 QP      |
| 11   | 5.03133 | 7.54    | 9.66   | 0.06   | 10.00    | 27.26 | 50.00 | -22.74 Average |
| 12   | 5.03123 | 25.00   | 9.66   | 0.06   | 10.00    | 44.72 | 60.00 | -15.28 QP      |

Remarks: 1. Measured = Reading + Lisn Factor + Cable Loss + AttFac.  
2. The emission levels that are 20dB below the official limit are not reported.

\*\*\*Note: Pre-scan all mode and recorded the worst case results in this report (Low Channel).

## 6. ANTENNA REQUIREMENT

### 6.1. Standard Applicable

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

### 6.2. Antenna Connected Construction

The directional gains of antenna used for transmitting is 15.0dBi(Max.), and EUT is equipped with an integral antenna and no consideration of replacement. Please see EUT photo for details.

Result: Compliance.

## 7. RADIATED EMISSION MEASUREMENT

### 7.1. Standard Applicable

1. Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.
2. 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

| Fundamental Frequency | Field Strength of fundamental (millivolts/meter) | Field Strength of harmonics (microvolts/meter) |
|-----------------------|--------------------------------------------------|------------------------------------------------|
| 902-928MHz            | 50                                               | 500                                            |
| 2400-2483.5MHz        | 50                                               | 500                                            |
| 5725-5875MHz          | 50                                               | 500                                            |
| 24.0-24.25GHz         | 250                                              | 2500                                           |

| Frequencies (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |
|-------------------|-----------------------------------|-------------------------------|
| 0.009~0.490       | 2400/F(KHz)                       | 300                           |
| 0.490~1.705       | 24000/F(KHz)                      | 30                            |
| 1.705~30.0        | 30                                | 30                            |
| 30~88             | 100                               | 3                             |
| 88~216            | 150                               | 3                             |
| 216~960           | 200                               | 3                             |
| Above 960         | 500                               | 3                             |

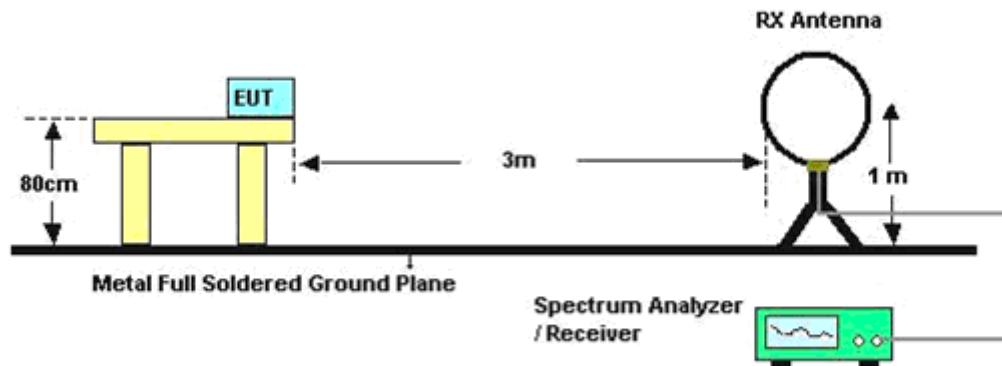
### 7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

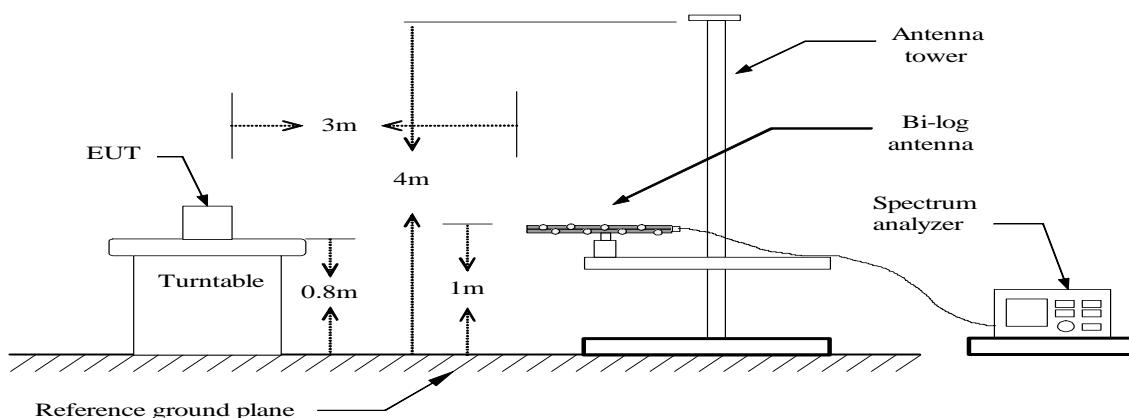
| Spectrum Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

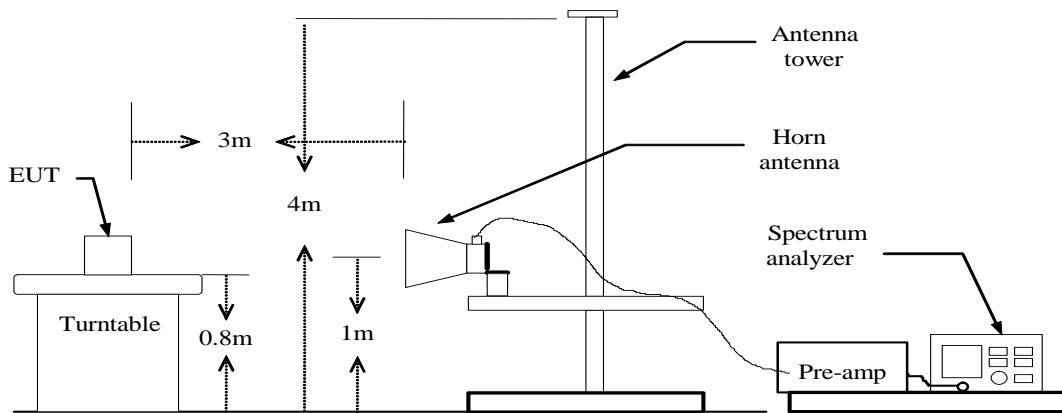
| Spectrum Parameter                        | Setting                                        |
|-------------------------------------------|------------------------------------------------|
| Attenuation                               | Auto                                           |
| Start Frequency                           | 1000 MHz                                       |
| Stop Frequency                            | 10th carrier harmonic                          |
| RB / VB (Emission in restricted band)     | 1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average |
| RB / VB (Emission in non-restricted band) | 1000KHz / 1000KHz for peak                     |

### 7.3. Test Procedure


1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

## 7.4. Test Equipment List and Details


| Equipment         | Manufacturer    | Model No. | Serial No.  | Last Cal.  | Next Cal.  |
|-------------------|-----------------|-----------|-------------|------------|------------|
| Spectrum Analyzer | Agilent         | E4407B    | MY41440754  | 2013-07-16 | 2014-07-15 |
| Test Receiver     | Rohde & Schwarz | ESCI      | 101142      | 2013-06-18 | 2014-06-17 |
| Loop antenna      | EMCO            | 6502      | 0042963     | 2013-06-18 | 2014-06-17 |
| Log per Antenna   | Schwarzbeck     | VULB9163  | 9163-470    | 2013-06-10 | 2014-06-09 |
| Horn-antenna      | ETS.LINDGREN    | 3115      | 00034771    | 2013-06-10 | 2014-06-09 |
| Horn Antenna      | SCHWARZBECK     | BBHA9170  | BBHA9170154 | 2013-06-10 | 2014-06-09 |
| Amplifier         | SCHAFFNER       | COA9231A  | 18667       | 2013-06-18 | 2014-06-17 |
| Amplifier         | Agilent         | 8449B     | 3008A02120  | 2013-07-16 | 2014-07-15 |


## 7.5. Block Diagram of Test Setup

For radiated emissions below 30MHz



For radiated emissions above 30MHz





Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1.5m.

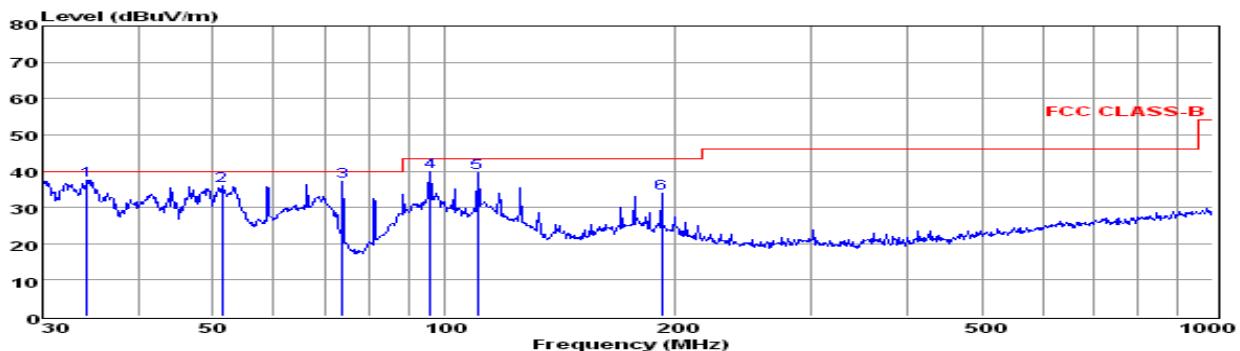
Distance extrapolation factor =  $20 \log (\text{specific distance [3m]} / \text{test distance [1.5m]})$  (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

## 7.6. Test Results

### Results of Radiated Emissions (9kHz~30MHz)

| Frequency (MHz) | Level (dBuV) | Over Limit (dB) | Over Limit (dBuV) | Remark   |
|-----------------|--------------|-----------------|-------------------|----------|
|                 |              |                 |                   | See Note |


Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor =  $40 \log (\text{specific distance} / \text{test distance})$  (dB);  
 Limit line = specific limits (dBuV) + distance extrapolation factor.

## Results of Radiated Emissions (30MHz~1000MHz)

Test Mode (Low channel: 2401MHz)



Env. / Ins:

24 °C / 56%

EUT:

RFID Reader

M/N:

ML-M2000DX

Power Rating:

AC 120V / 60Hz

Test Mode:

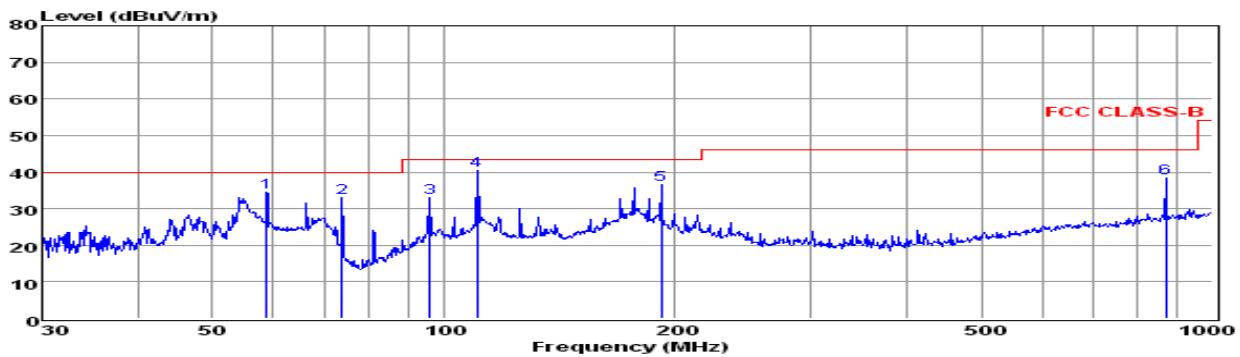
TX-Low channel

Operator:

JACKY

Memo:

VERTICAL


pol:

| Freq | Reading | CabLos | Antfac | Measured |       | Limit | Over  | Remark |
|------|---------|--------|--------|----------|-------|-------|-------|--------|
|      |         |        |        | MHz      | dBuV  | dB    | dB/m  |        |
| 1    | 34.28   | 24.73  | 0.37   | 12.30    | 37.40 | 40.00 | -2.60 | QP     |
| 2    | 51.30   | 22.11  | 0.54   | 13.19    | 35.84 | 40.00 | -4.16 | QP     |
| 3    | 73.62   | 28.71  | 0.54   | 8.04     | 37.29 | 40.00 | -2.71 | QP     |
| 4    | 95.76   | 26.35  | 0.58   | 12.89    | 39.82 | 43.50 | -3.68 | QP     |
| 5    | 110.57  | 26.80  | 0.61   | 12.15    | 39.56 | 43.50 | -3.94 | QP     |
| 6    | 191.75  | 22.56  | 0.86   | 10.56    | 33.98 | 43.50 | -9.52 | QP     |

Note: 1. All readings are Quasi-peak values.

2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported



Env. / Ins:

24 °C / 56%

EUT:

RFID Reader

M/N:

ML-M2000DX

Power Rating:

AC 120V / 60Hz

Test Mode:

TX-Low channel

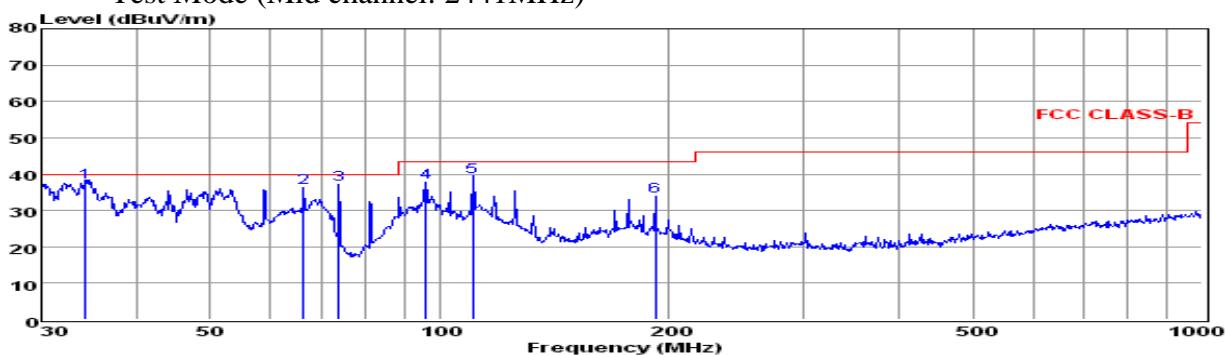
Operator:

JACKY

Memo:

HORIZONTAL

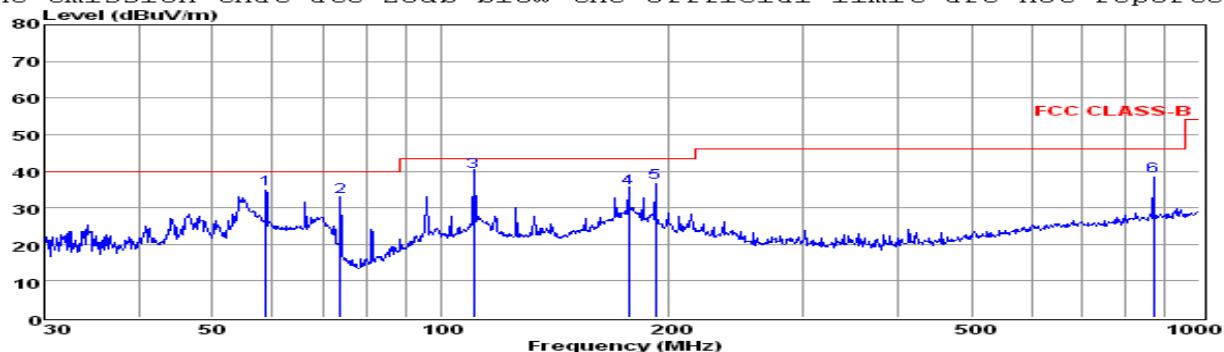
pol:


| Freq | Reading | CabLos | Antfac | Measured |       | Limit | Over   | Remark |
|------|---------|--------|--------|----------|-------|-------|--------|--------|
|      |         |        |        | MHz      | dBuV  | dB    | dB/m   |        |
| 1    | 58.82   | 21.24  | 0.49   | 12.77    | 34.50 | 40.00 | -5.50  | QP     |
| 2    | 73.62   | 24.42  | 0.54   | 8.04     | 33.00 | 40.00 | -7.00  | QP     |
| 3    | 95.76   | 19.51  | 0.58   | 12.89    | 32.98 | 43.50 | -10.52 | QP     |
| 4    | 110.57  | 27.58  | 0.61   | 12.15    | 40.34 | 43.50 | -3.16  | QP     |
| 5    | 191.75  | 25.07  | 0.86   | 10.56    | 36.49 | 43.50 | -7.01  | QP     |
| 6    | 869.13  | 15.58  | 1.87   | 20.77    | 38.22 | 46.00 | -7.78  | QP     |

Note: 1. All readings are Quasi-peak values.

2. Measured= Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offficial limit are not reported

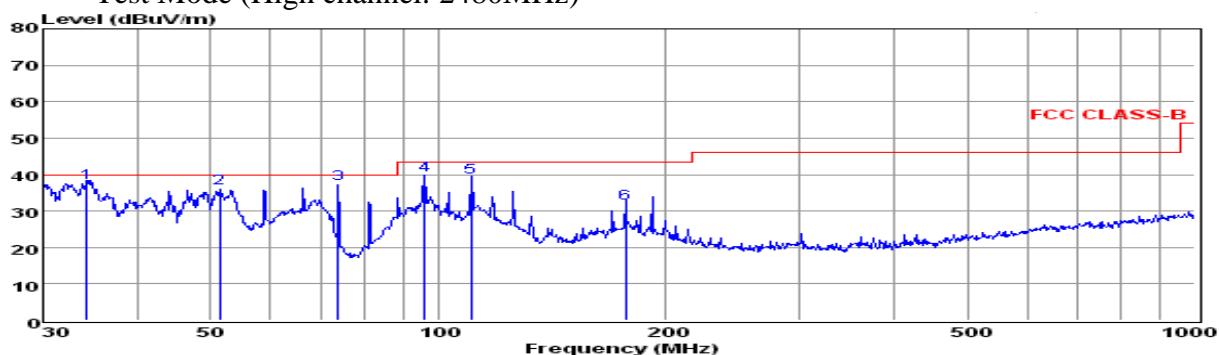

## Test Mode (Mid channel: 2441MHz)



Env. / Ins: 24 °C / 56%  
 EUT: RFID Reader  
 M/N: ML-M2000DX  
 Power Rating: AC 120V / 60Hz  
 Test Mode: TX-Middle channel  
 Operator: JACKY  
 Memo:  
 pol: VERTICAL

|   | Freq   | Reading | CabLoss | Antfac | Measured | Limit  | Over  | Remark |
|---|--------|---------|---------|--------|----------|--------|-------|--------|
|   | MHz    | dBuV    | dB      | dB/m   | dBuV/m   | dBuV/m | dB    |        |
| 1 | 34.28  | 25.21   | 0.37    | 12.30  | 37.88    | 40.00  | -2.12 | QP     |
| 2 | 66.27  | 25.57   | 0.52    | 10.19  | 36.28    | 40.00  | -3.72 | QP     |
| 3 | 73.62  | 28.63   | 0.54    | 8.04   | 37.21    | 40.00  | -2.79 | QP     |
| 4 | 95.76  | 24.28   | 0.58    | 12.89  | 37.75    | 43.50  | -5.75 | QP     |
| 5 | 110.57 | 26.62   | 0.61    | 12.15  | 39.38    | 43.50  | -4.12 | QP     |
| 6 | 191.75 | 22.45   | 0.86    | 10.56  | 33.87    | 43.50  | -9.63 | QP     |

Note: 1. All readings are Quasi-peak values.  
 2. Measured= Reading + Antenna Factor + Cable Loss  
 3. The emission that ate 20db blow the official limit are not reported




Env. / Ins: 24 °C / 56%  
 EUT: RFID Reader  
 M/N: ML-M2000DX  
 Power Rating: AC 120V / 60Hz  
 Test Mode: TX-Middle channel  
 Operator: JACKY  
 Memo:  
 pol: HORIZONTAL

|   | Freq   | Reading | CabLoss | Antfac | Measured | Limit  | Over  | Remark |
|---|--------|---------|---------|--------|----------|--------|-------|--------|
|   | MHz    | dBuV    | dB      | dB/m   | dBuV/m   | dBuV/m | dB    |        |
| 1 | 58.82  | 21.85   | 0.49    | 12.77  | 35.11    | 40.00  | -4.89 | QP     |
| 2 | 73.62  | 24.37   | 0.54    | 8.04   | 32.95    | 40.00  | -7.05 | QP     |
| 3 | 110.57 | 27.16   | 0.61    | 12.15  | 39.92    | 43.50  | -3.58 | QP     |
| 4 | 176.89 | 25.14   | 0.73    | 9.46   | 35.33    | 43.50  | -8.17 | QP     |
| 5 | 191.75 | 25.45   | 0.86    | 10.56  | 36.87    | 43.50  | -6.63 | QP     |
| 6 | 869.13 | 15.96   | 1.87    | 20.77  | 38.60    | 46.00  | -7.40 | QP     |

Note: 1. All readings are Quasi-peak values.  
 2. Measured= Reading + Antenna Factor + Cable Loss  
 3. The emission that ate 20db blow the official limit are not reported

## Test Mode (High channel: 2480MHz)



Env. / Ins:

24 °C / 56%

EUT:

RFID Reader

M/N:

ML-M2000DX

Power Rating:

AC 120V / 60Hz

Test Mode:

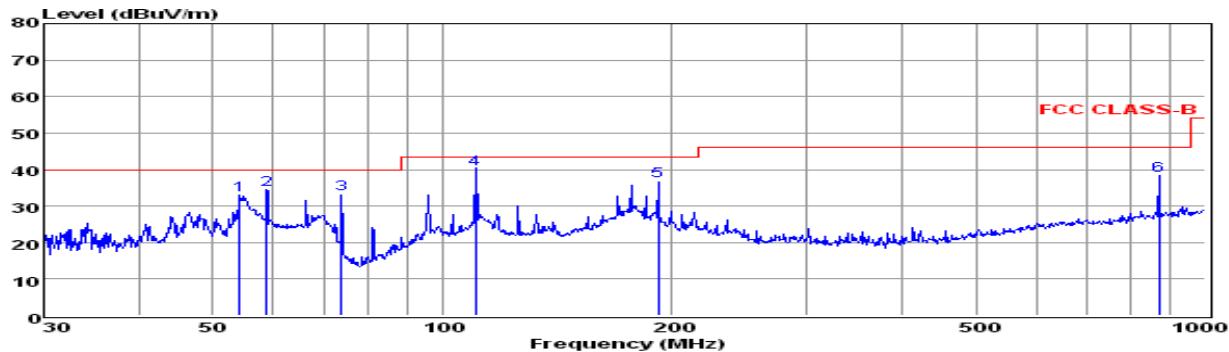
TX-High channel

Operator:

JACKY

Memo:

VERTICAL


pol:

| Freq | Reading | Cablos | Antfac | Measured | Limit  | Over  | Remark    |
|------|---------|--------|--------|----------|--------|-------|-----------|
| MHz  | dBuV    | dB     | dB/m   | dBuV/m   | dBuV/m | dB    |           |
| 1    | 34.28   | 25.20  | 0.37   | 12.30    | 37.87  | 40.00 | -2.13 QP  |
| 2    | 51.30   | 22.59  | 0.54   | 13.19    | 36.32  | 40.00 | -3.68 QP  |
| 3    | 73.62   | 28.88  | 0.54   | 8.04     | 37.46  | 40.00 | -2.54 QP  |
| 4    | 95.76   | 26.53  | 0.58   | 12.89    | 40.00  | 43.50 | -3.50 QP  |
| 5    | 110.57  | 26.59  | 0.61   | 12.15    | 39.35  | 43.50 | -4.15 QP  |
| 6    | 176.89  | 22.04  | 0.73   | 9.46     | 32.23  | 43.50 | -11.27 QP |

Note: 1. All readings are Quasi-peak values.

2. Measured = Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offfficial limit are not reported



Env. / Ins:

24 °C / 56%

EUT:

RFID Reader

M/N:

ML-M2000DX

Power Rating:

AC 120V / 60Hz

Test Mode:

TX-High channel

Operator:

JACKY

Memo:

HORIZONTAL

pol:

| Freq | Reading | Cablos | Antfac | Measured | Limit  | Over  | Remark   |
|------|---------|--------|--------|----------|--------|-------|----------|
| MHz  | dBuV    | dB     | dB/m   | dBuV/m   | dBuV/m | dB    |          |
| 1    | 54.26   | 19.63  | 0.46   | 13.05    | 33.14  | 40.00 | -6.86 QP |
| 2    | 58.82   | 21.24  | 0.49   | 12.77    | 34.50  | 40.00 | -5.50 QP |
| 3    | 73.62   | 24.77  | 0.54   | 8.04     | 33.35  | 40.00 | -6.65 QP |
| 4    | 110.57  | 27.38  | 0.61   | 12.15    | 40.14  | 43.50 | -3.36 QP |
| 5    | 191.75  | 25.41  | 0.86   | 10.56    | 36.83  | 43.50 | -6.67 QP |
| 6    | 869.13  | 15.72  | 1.87   | 20.77    | 38.36  | 46.00 | -7.64 QP |

Note: 1. All readings are Quasi-peak values.

2. Measured = Reading + Antenna Factor + Cable Loss

3. The emission that ate 20db blow the offfficial limit are not reported

**Above 1GHz****Field Strength Of Fundamental-Low channel**

| Frequency (MHz) | Pol. | Measure Result (PK, dBuV/m) | Measure Result (AVG, dBuV/m) | Peak Limit (dBuV/m) | AVG Limit (dBuV/m) | Result |
|-----------------|------|-----------------------------|------------------------------|---------------------|--------------------|--------|
| 2401            | H    | 90.36                       | 88.65                        | 114                 | 94                 | Pass   |
| 2401            | V    | 89.10                       | 88.02                        | 114                 | 94                 | Pass   |

**Field Strength Of Fundamental-Middle channel**

| Frequency (MHz) | Pol. | Measure Result (PK, dBuV/m) | Measure Result (AVG, dBuV/m) | Peak Limit (dBuV/m) | AVG Limit (dBuV/m) | Result |
|-----------------|------|-----------------------------|------------------------------|---------------------|--------------------|--------|
| 2441            | H    | 90.24                       | 88.47                        | 114                 | 94                 | Pass   |
| 2441            | V    | 89.01                       | 87.86                        | 114                 | 94                 | Pass   |

**Field Strength Of Fundamental-High channel**

| Frequency (MHz) | Pol. | Measure Result (PK, dBuV/m) | Measure Result (AVG, dBuV/m) | Peak Limit (dBuV/m) | AVG Limit (dBuV/m) | Result |
|-----------------|------|-----------------------------|------------------------------|---------------------|--------------------|--------|
| 2480            | H    | 90.11                       | 88.34                        | 114                 | 94                 | Pass   |
| 2480            | V    | 88.92                       | 87.75                        | 114                 | 94                 | Pass   |

The worst test result for Tx-Low Channel:

| Freq. MHz | Reading dBuv | Ant. Fac dB/m | Pre. Fac. dB | Cab. Loss dB | Measured dBuv/m | Limit dBuv/m | Margin dB | Remark  | Pol.       |
|-----------|--------------|---------------|--------------|--------------|-----------------|--------------|-----------|---------|------------|
| 4802.00   | 57.70        | 33.06         | 35.04        | 3.94         | 59.66           | 74           | -14.34    | Peak    | Horizontal |
| 4802.00   | 44.91        | 33.06         | 35.04        | 3.94         | 46.87           | 54           | -7.13     | Average | Horizontal |
| 4802.00   | 57.14        | 33.06         | 35.04        | 3.94         | 59.10           | 74           | -14.9     | Peak    | Vertical   |
| 4802.00   | 44.28        | 33.06         | 35.04        | 3.94         | 46.24           | 54           | -7.76     | Average | Vertical   |

The worst test result for Tx-Middle Channel:

| Freq. MHz | Reading Dbuv | Ant. Fac dB/m | Pre. Fac. dB | Cab. Loss dB | Measured dBuv/m | Limit dBuv/m | Margin dB | Remark  | Pol.       |
|-----------|--------------|---------------|--------------|--------------|-----------------|--------------|-----------|---------|------------|
| 4882.00   | 57.46        | 33.16         | 35.15        | 3.96         | 59.43           | 74           | -14.57    | Peak    | Horizontal |
| 4882.00   | 44.72        | 33.16         | 35.15        | 3.96         | 46.69           | 54           | -7.31     | Average | Horizontal |
| 4882.00   | 57.04        | 33.16         | 35.15        | 3.96         | 59.01           | 74           | -14.99    | Peak    | Vertical   |
| 4882.00   | 44.16        | 33.16         | 35.15        | 3.96         | 46.13           | 54           | -7.87     | Average | Vertical   |

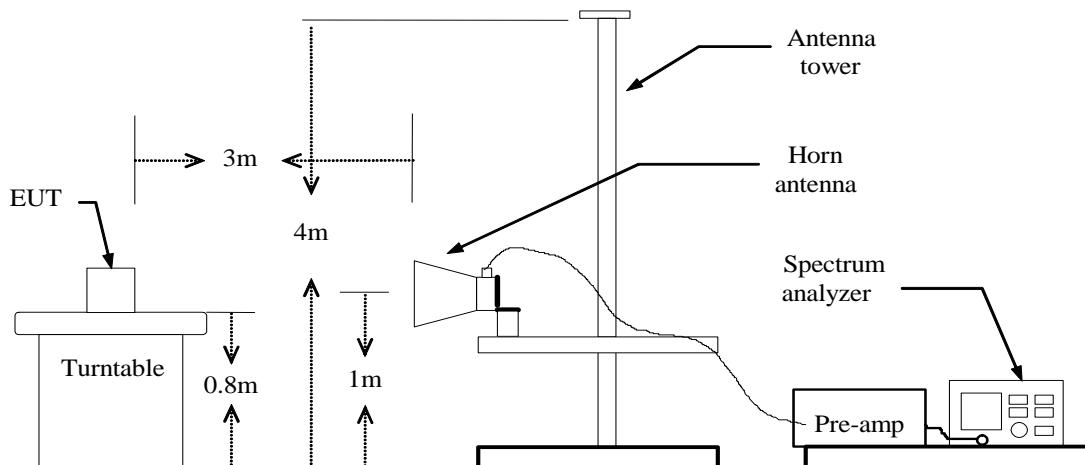
The worst test result for Tx-High Channel:

| Freq. MHz | Reading DBuv | Ant. Fac dB/m | Pre. Fac dB | Cab. Los dB | Measured dBuv/m | Limit dBuv/m | Margin dB | Remark  | Pol.       |
|-----------|--------------|---------------|-------------|-------------|-----------------|--------------|-----------|---------|------------|
| 4960.00   | 57.27        | 33.26         | 35.14       | 3.98        | 59.37           | 74           | -14.63    | Peak    | Horizontal |
| 4960.00   | 44.30        | 33.26         | 35.14       | 3.98        | 46.40           | 54           | -7.60     | Average | Horizontal |
| 4960.00   | 56.77        | 33.26         | 35.14       | 3.98        | 58.87           | 74           | -15.13    | Peak    | Vertical   |
| 4960.00   | 43.95        | 33.26         | 35.14       | 3.98        | 46.05           | 54           | -7.95     | Average | Vertical   |

**Notes:**

1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30 MHz.
2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
3. 18~25GHz at least have 20dB margin. No recording in the test report.

## 8. BANDEDGES MEASUREMENT


### 8.1. Standard Applicable

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

### 8.2. Test Equipment List and Details

| Equipment         | Manufacturer    | Model No. | Serial No.      | Last Cal.  | Next Cal.  |
|-------------------|-----------------|-----------|-----------------|------------|------------|
| Spectrum Analyzer | Agilent         | E4407B    | MY41440754      | 2013-07-16 | 2014-07-15 |
| Test Receiver     | Rohde & Schwarz | ESCI      | 101142          | 2013-06-18 | 2014-06-17 |
| Test Receiver     | Rohde & Schwarz | ESPI      | 101840          | 2013-06-18 | 2014-06-17 |
| Loop antenna      | EMCO            | 6502      | 0042963         | 2013-06-18 | 2014-06-17 |
| Log per Antenna   | Schwarzbeck     | VULB9163  | 9163-470        | 2013-06-10 | 2014-06-09 |
| Horn-antenna      | ETS.LINDGREN    | 3115      | 00034771        | 2013-06-10 | 2014-06-09 |
| Horn Antenna      | SCHWARZBECK     | BBHA9170  | BBHA917015<br>4 | 2013-06-10 | 2014-06-09 |

### 8.3. Block Diagram of Test Setup



### 8.4. Test Procedure

The EUT is placed on a turntable, which is 0.8m above the ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

Peak: RBW=VBW=1MHz / Sweep=AUTO

Repeat the procedures until the peak versus polarization are measured.

## 8.5. Test Results

Only record the worst test case as following:

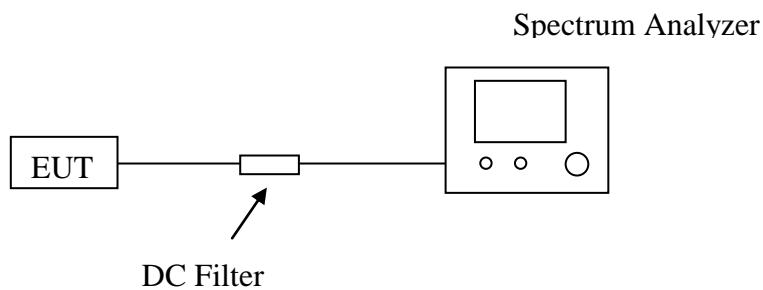
Tx-2401

| Freq. MHz | Reading Level dBuV | Ant. Fac. dB/m | Pre. Fac. dB | Cab. Loss dB | Measured dBuV/m | Limit dBuV/m | Margin dB | Remark  | Pol.       |
|-----------|--------------------|----------------|--------------|--------------|-----------------|--------------|-----------|---------|------------|
| 2390.00   | 50.05              | 32.89          | 35.16        | 3.51         | 51.29           | 74           | -22.71    | Peak    | Horizontal |
| 2390.00   | 38.21              | 32.89          | 35.16        | 3.51         | 39.45           | 54           | -14.55    | Average | Horizontal |
| 2400.00   | 51.59              | 32.92          | 35.16        | 3.54         | 52.89           | 74           | -21.11    | Peak    | Horizontal |
| 2400.00   | 39.09              | 32.92          | 35.16        | 3.54         | 40.39           | 54           | -13.61    | Average | Horizontal |
| 2390.00   | 49.87              | 32.89          | 35.16        | 3.51         | 51.11           | 74           | -22.89    | Peak    | Vertical   |
| 2390.00   | 38                 | 32.89          | 35.16        | 3.51         | 39.24           | 54           | -14.76    | Average | Vertical   |
| 2400.00   | 51.55              | 32.92          | 35.16        | 3.54         | 52.85           | 74           | -21.15    | Peak    | Vertical   |
| 2400.00   | 39                 | 32.92          | 35.16        | 3.54         | 40.30           | 54           | -13.7     | Average | Vertical   |

Tx-2480

| Freq. MHz | Reading Level dBuV | Ant. Fac. dB/m | Pre. Fac. dB | Cab. Loss dB | Measured dBuV/m | Limit dBuV/m | Margin dB | Remark  | Pol.       |
|-----------|--------------------|----------------|--------------|--------------|-----------------|--------------|-----------|---------|------------|
| 2483.50   | 51.39              | 33.06          | 35.18        | 3.60         | 52.87           | 74           | -21.13    | Peak    | Horizontal |
| 2483.50   | 39.47              | 33.06          | 35.18        | 3.60         | 40.95           | 54           | -13.05    | Average | Horizontal |
| 2483.50   | 50.24              | 33.06          | 35.18        | 3.60         | 51.72           | 74           | -22.28    | Peak    | Vertical   |
| 2483.50   | 39.14              | 33.06          | 35.18        | 3.60         | 40.62           | 54           | -13.38    | Average | Vertical   |

## 9. 20 DB BANDWIDTH MEASUREMENT


### 9.1. Standard Applicable

According to §15.215 & RSS-210.

### 9.2. Test Equipment List and Details

| Equipment         | Manufacturer | Model No. | Serial No. | Last Cal.  | Next Cal.  |
|-------------------|--------------|-----------|------------|------------|------------|
| Spectrum Analyzer | Agilent      | E4407B    | MY41440754 | 2013-07-16 | 2014-07-15 |
| DC Filter         | MPE          | 23872C    | N/A        | 2013-06-10 | 2014-06-09 |

### 9.3. Block Diagram of Test Setup



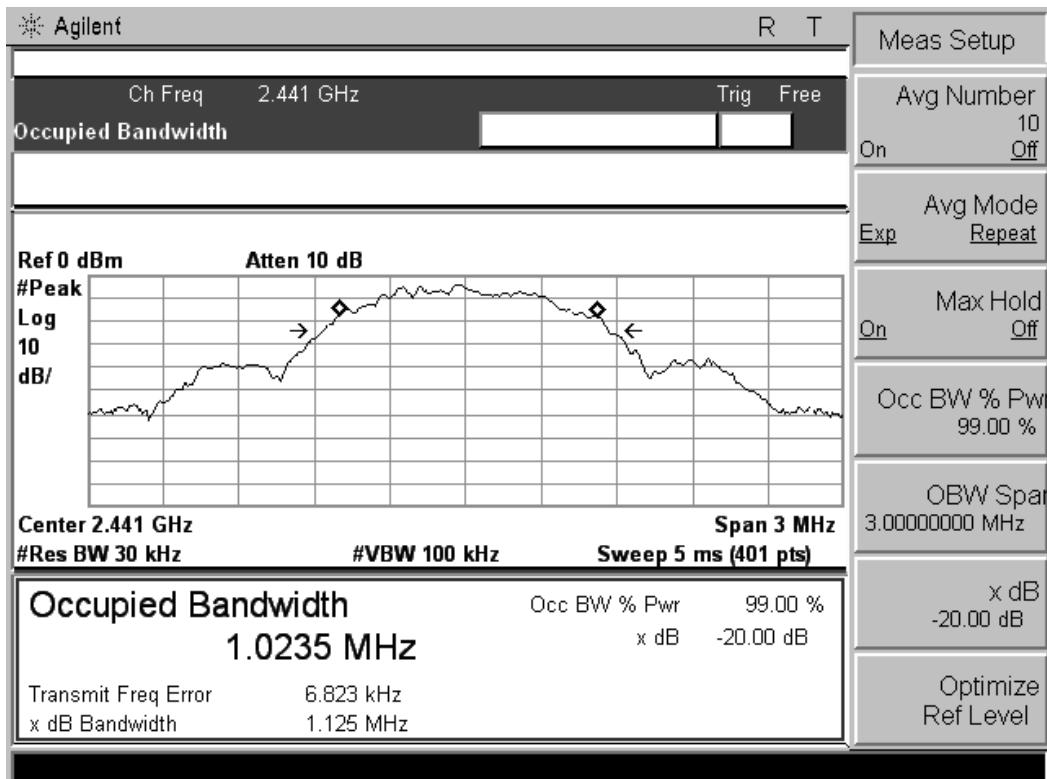
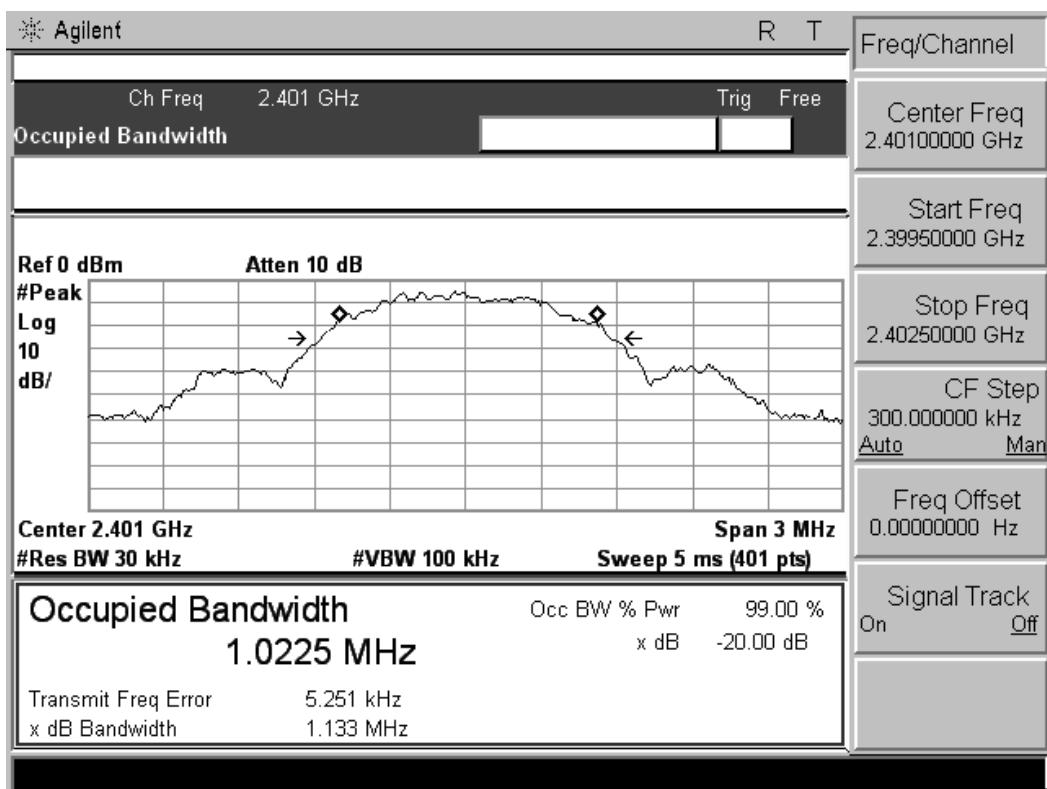
### 9.4. Test Procedure

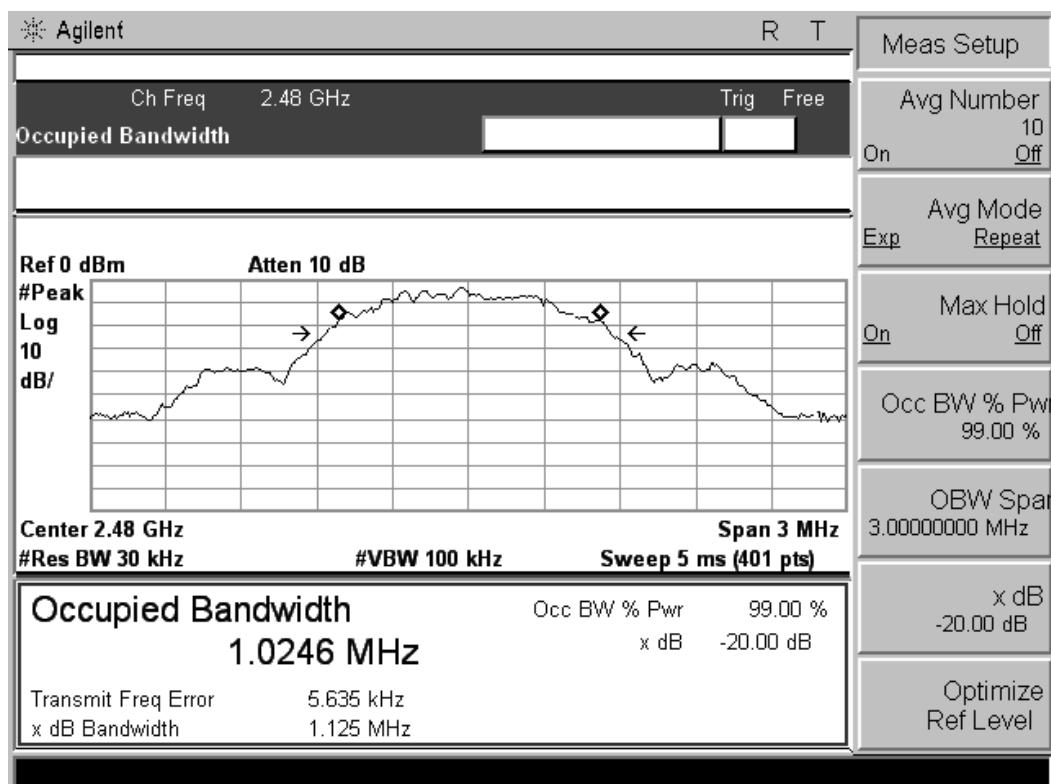
Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW  $\geq$  1% of the 20 dB bandwidth

VBW  $\geq$  RBW



Sweep = auto


Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

## 9.5. Test Results





## 10. MANUFACTURER/ APPROVAL HOLDER DECLARATION

The following identical model(s):

|    |    |    |
|----|----|----|
| -- | -- | -- |
|----|----|----|

Belong to the tested device:

Product description : RFID Reader

Model name : ML-M2000DX

Remark:No additional models were tested.

-----THE END OF REPORT-----