

Phantom and set-up										
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	Measurement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	$\begin{array}{cc} Fast & SAR \\ z\text{-}Approximation \end{array}$	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8
	Test sample related									

15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
	Phantom and set-up									
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c' =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
Expanded uncertainty (confidence interval of 95 %)		ı	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 26, 2016	One year	
02	Power meter	NRVD	102196	March 02, 2016	One yeer	
03	Power sensor	NRV-Z5	100596	March 03, 2016	One year	
04	Signal Generator	E4438C	MY49071430	February 01, 2016	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 30, 2016	One year	
07	BTS	CMW500	129942	March 03, 2016	One year	
08	E-field Probe	SPEAG EX3DV4	7307	February19, 2016	One year	
09	DAE	SPEAG DAE4	1331	January 21, 2016	One year	
10	Dipole Validation Kit	SPEAG D750V3	1017	July20, 2016	One year	
11	Dipole Validation Kit	SPEAG D835V2	4d069	July20, 2016	One year	
12	Dipole Validation Kit	SPEAG D1750V2	1003	July21, 2016	One year	
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July28, 2016	One year	
14	Dipole Validation Kit	SPEAG D2450V2	853	July25, 2016	One year	

END OF REPORT BODY

ANNEX A Graph Results

850 Right Cheek High

Date: 2016-10-30

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.956$ mho/m; $\epsilon r = 40.652$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN7307 ConvF(10.01, 10.01, 10.01)

Area Scan (61x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.540 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.749 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.682 W/kg

SAR(1 g) = 0.452 W/kg; SAR(10 g) = 0.293 W/kg

Maximum value of SAR (measured) = 0.533 W/kg

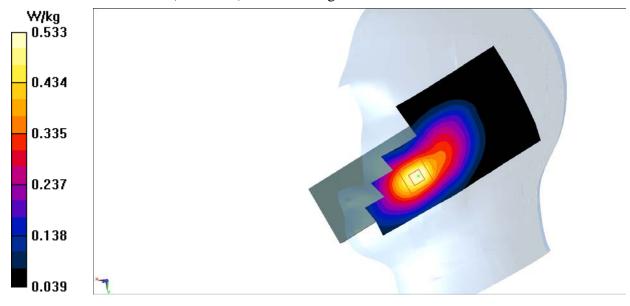


Fig.1 850MHz

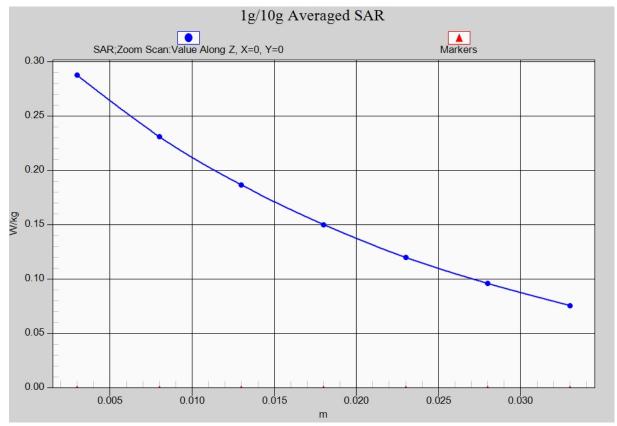


Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Rear High Fold

Date: 2016-10-30

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 1.023$ mho/m; $\epsilon r = 54.125$; $\rho = 1.023$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 - SN7307 ConvF(9.83, 9.83, 9.83)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.823 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.76 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.666 W/kg; SAR(10 g) = 0.406 W/kg

Maximum value of SAR (measured) = 0.761 W/kg

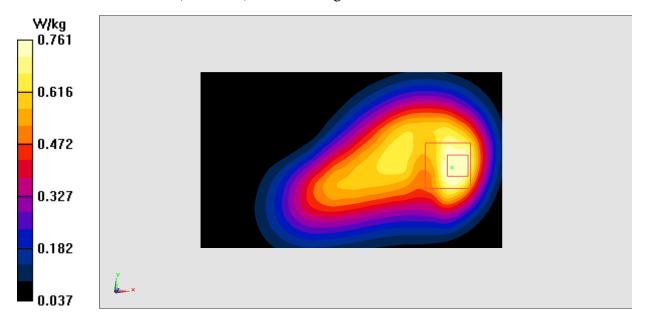


Fig.2 850 MHz

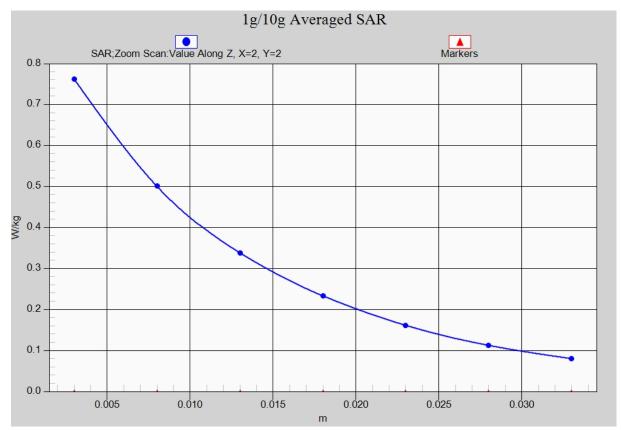


Fig. 2-1 Z-Scan at power reference point (850 MHz)

1900 Left Cheek Middle

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.262 \text{ mho/m}$; $\epsilon r = 39.393$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN7307 ConvF(8.10, 8.10, 8.10)

Area Scan (61x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.211 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.645 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.264 W/kg

SAR(1 g) = 0.180 W/kg; SAR(10 g) = 0.115 W/kgMaximum value of SAR (measured) = 0.207 W/kg

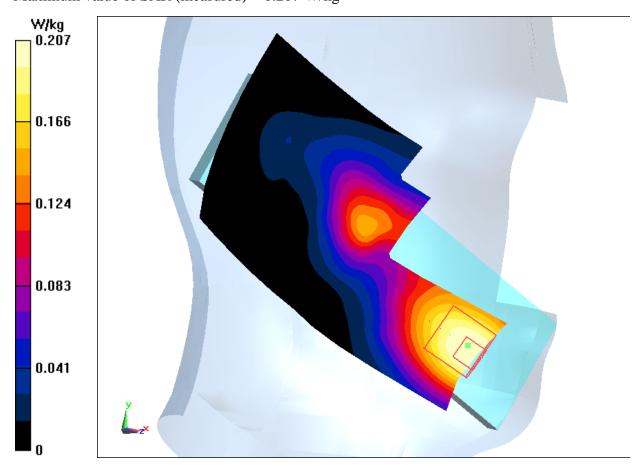


Fig.3 1900 MHz

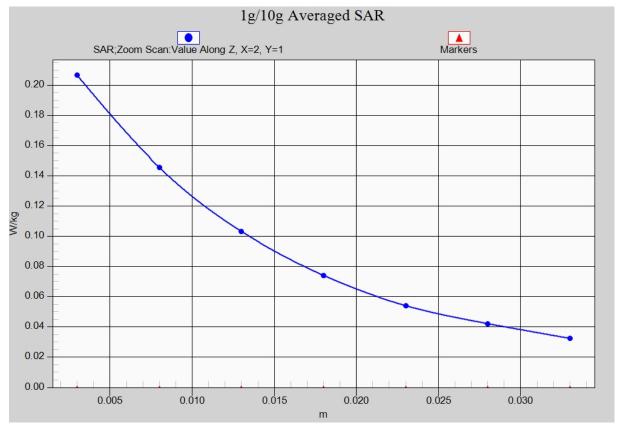


Fig. 3-1 Z-Scan at power reference point (1900 MHz)

1900 Body Rear Low Fold - AP OFF

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.376$ mho/m; $\epsilon r = 54.474$; $\rho = 1.376$ mho/m; $\epsilon r = 54.474$; $\epsilon r = 54.474$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 - SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (91x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.550 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.12 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.660 W/kg

SAR(1 g) = 0.440 W/kg; SAR(10 g) = 0.276 W/kg

Maximum value of SAR (measured) = 0.516 W/kg

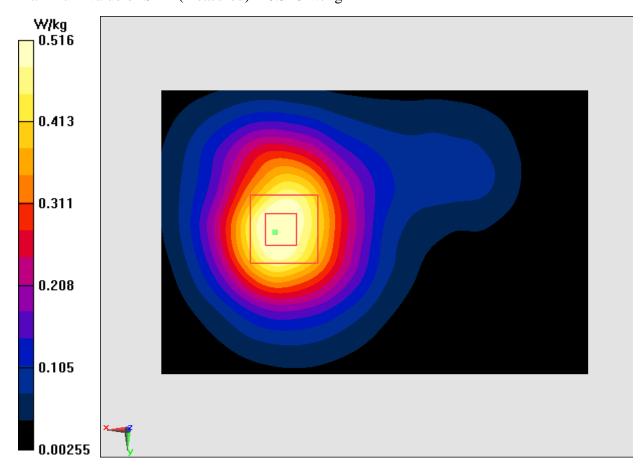


Fig.4 1900 MHz

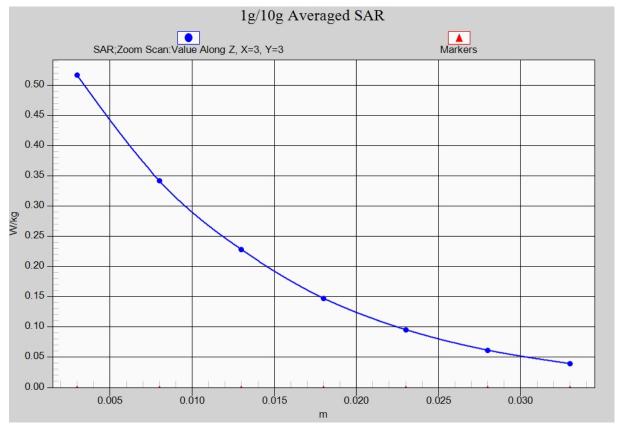


Fig. 4-1 Z-Scan at power reference point (1900 MHz)

1900 Body Rear Low Unfold - AP ON

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.376$ mho/m; $\epsilon r = 54.474$; $\rho = 1.376$ mho/m; $\epsilon r = 54.474$; $\epsilon r = 54.474$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2.67

Probe: EX3DV4 - SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.791 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.04 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.639 W/kg; SAR(10 g) = 0.390 W/kg

Maximum value of SAR (measured) = 0.755 W/kg

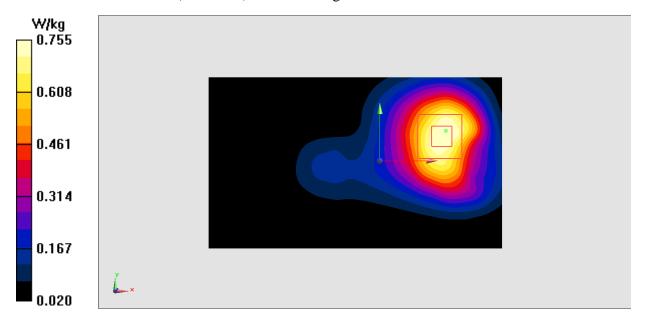


Fig.5 1900 MHz

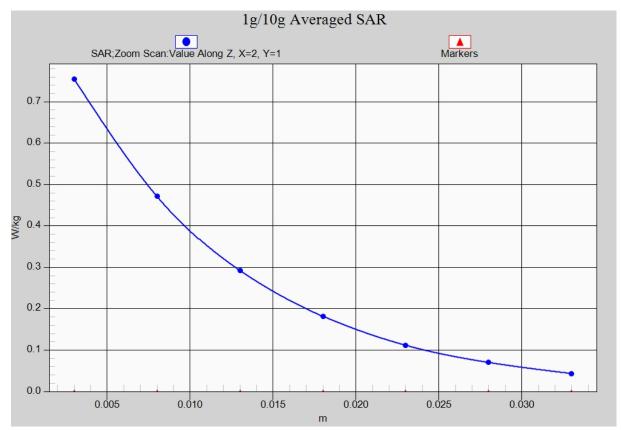


Fig. 5-1 Z-Scan at power reference point (1900 MHz)

WCDMA 850 Right Cheek Low

Date: 2016-10-30

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.94$ mho/m; $\epsilon r = 41.029$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(10.01, 10.01, 10.01)

Area Scan (61x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.481 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.742 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.625 W/kg

SAR(1 g) = 0.399 W/kg; SAR(10 g) = 0.255 W/kg

Maximum value of SAR (measured) = 0.476 W/kg

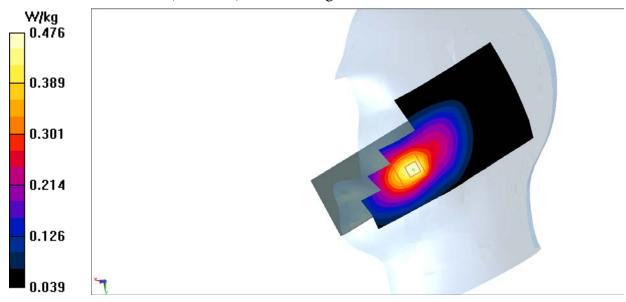


Fig.6 WCDMA 850

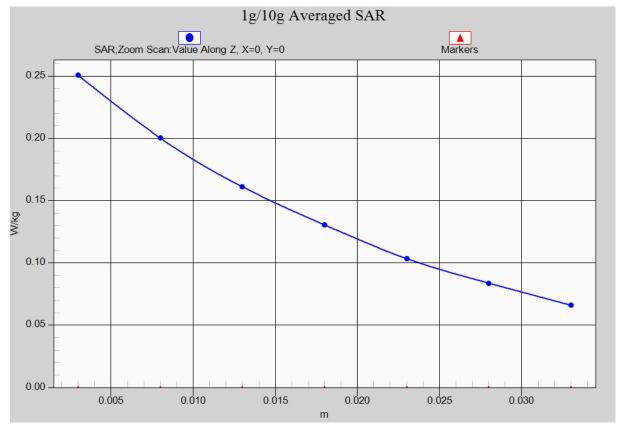


Fig. 6-1 Z-Scan at power reference point (850 MHz)

WCDMA 850 Body Rear Middle Fold

Date: 2016-10-30

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.952$ mho/m; $\epsilon r = 54.263$; $\rho = 0.952$ mho/m; $\epsilon r = 54.263$; $\epsilon = 0.952$ mho/m; $\epsilon r = 0.9$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(9.83, 9.83, 9.83)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.707 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.19 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.948 W/kg

SAR(1 g) = 0.582 W/kg; SAR(10 g) = 0.362 W/kg

Maximum value of SAR (measured) = 0.712 W/kg

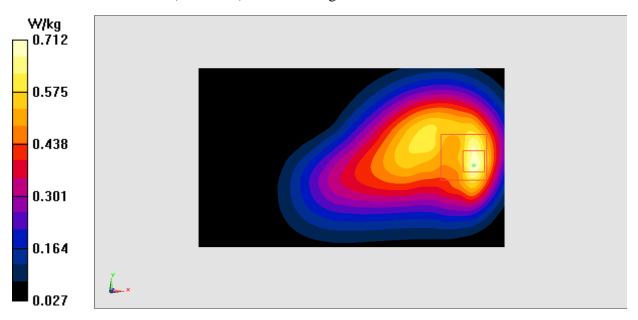


Fig.7 WCDMA 850

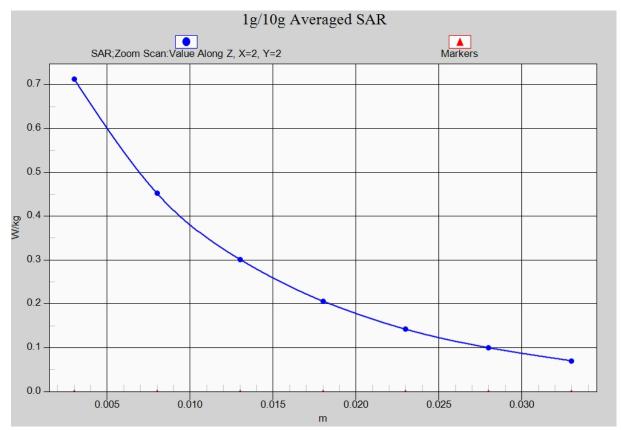


Fig. 7-1 Z-Scan at power reference point (WCDMA850)

WCDMA 1700 Left Cheek High

Date: 2016-11-3

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1752.6 MHz; $\sigma = 1.548$ mho/m; $\epsilon r = 40.644$; $\rho = 1.548$ mho/m; $\epsilon r = 40.644$; $\epsilon r = 40.644$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(8.37, 8.37, 8.37)

Area Scan (61x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.450 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.748 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.525 W/kg

SAR(1 g) = 0.367 W/kg; SAR(10 g) = 0.254 W/kg

Maximum value of SAR (measured) = 0.420 W/kg

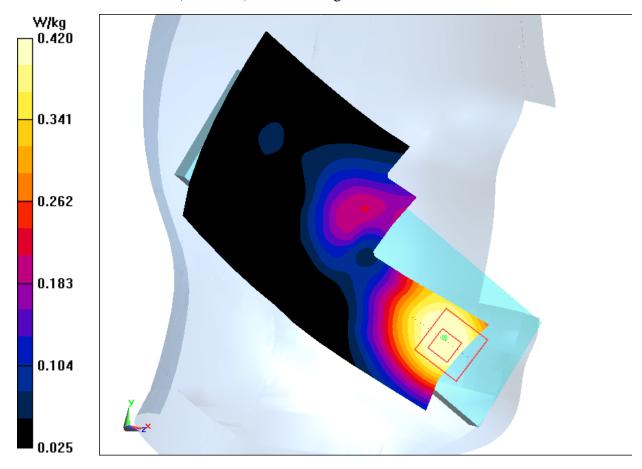


Fig.8 WCDMA1700

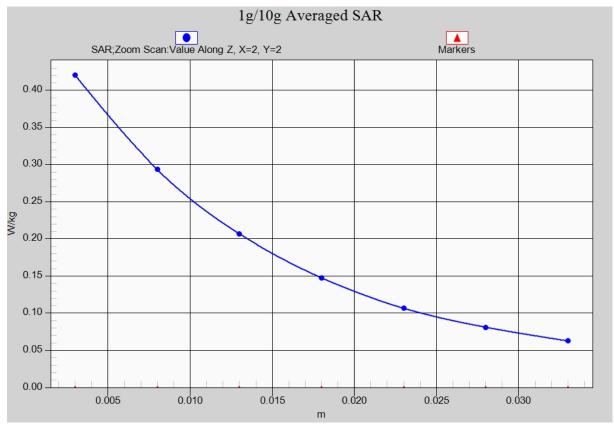


Fig. 8-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Rear Middle Unfold -AP OFF

Date: 2016-11-3

Electronics: DAE4 Sn1331 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.421$ mho/m; $\epsilon r = 55.474$; $\rho = 1.421$ mho/m; $\epsilon r = 55.474$; $\epsilon r = 55.474$

 1000 kg/m^3

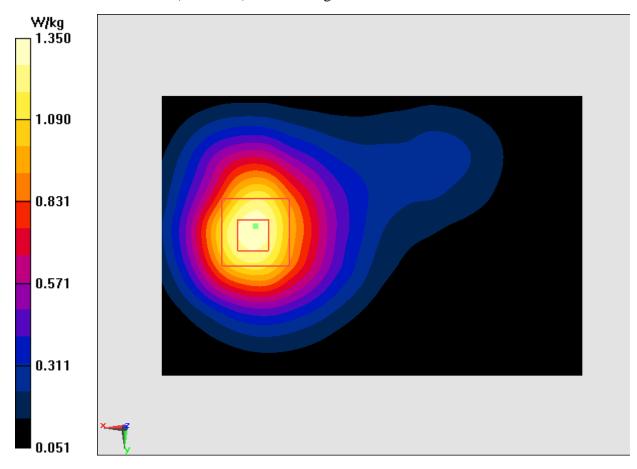
Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1732.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(8.18, 8.18, 8.18)

Area Scan (91x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.32 W/kg


Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.27 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.77 W/kg

SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.710 W/kg

Maximum value of SAR (measured) = 1.35 W/kg

Fig.9 WCDMA1700

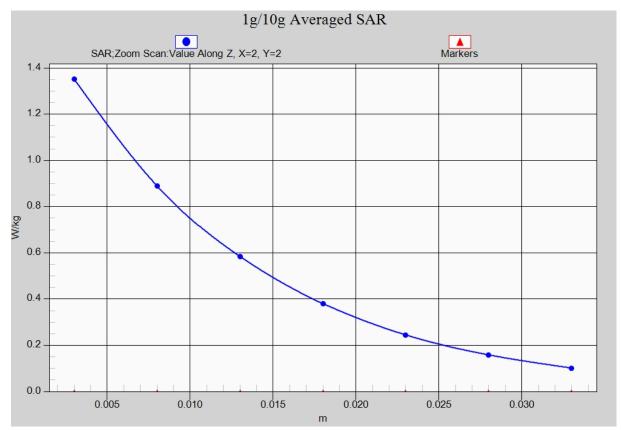


Fig. 9-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Rear Middle Unfold -AP ON

Date: 2016-11-3

Electronics: DAE4 Sn1331 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.421$ mho/m; $\epsilon r = 55.474$; $\rho = 1.421$ mho/m; $\epsilon r = 55.474$; $\epsilon r = 55.474$

 1000 kg/m^3

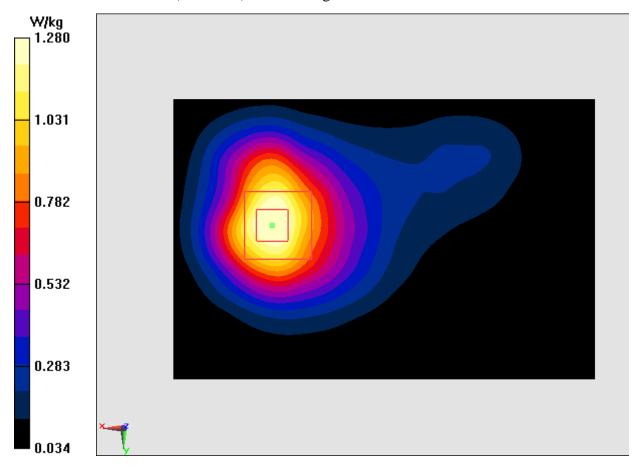
Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1732.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(8.18, 8.18, 8.18)

Area Scan (91x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.35 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.22 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.656 W/kg

Maximum value of SAR (measured) = 1.28 W/kg

Fig.10 WCDMA1700

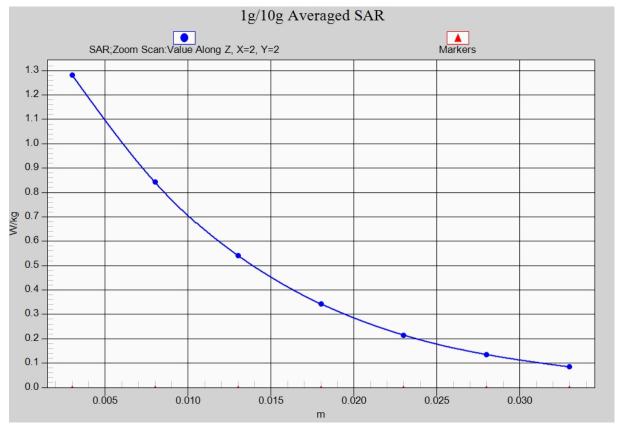


Fig. 10-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1900 Left Cheek Low

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.403$ mho/m; $\epsilon r = 39.576$; $\rho =$

 1000 kg/m^3

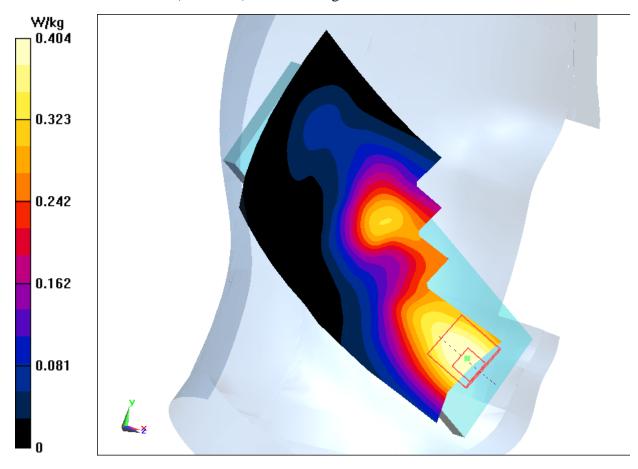
Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(8.10, 8.10, 8.10)

Area Scan (61x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.418 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.209 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.508 W/kg

SAR(1 g) = 0.352 W/kg; SAR(10 g) = 0.230 W/kg

Maximum value of SAR (measured) = 0.404 W/kg

Fig.11 WCDMA1900

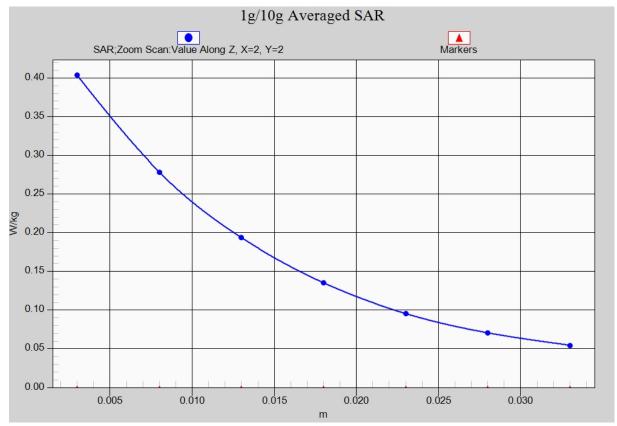


Fig. 11-1 Z-Scan at power reference point (WCDMA1900)

WCDMA 1900 Body Rear Middle Fold – AP OFF

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.547 \text{ mho/m}$; $\epsilon r = 54.555$; $\rho = 1000 \text{ kg/m}^3$

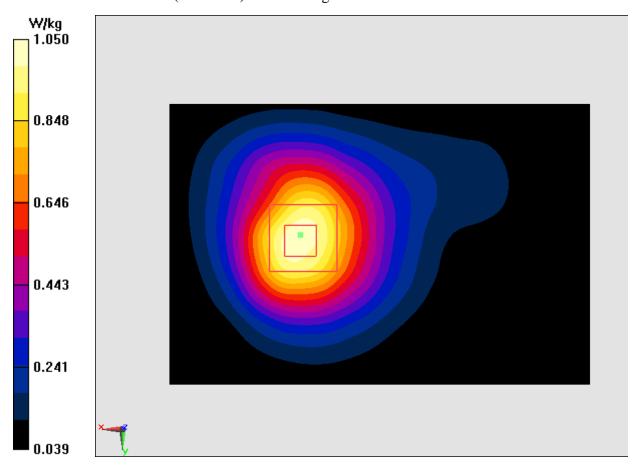
Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (91x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.02 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.54 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.895 W/kg; SAR(10 g) = 0.559 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

Fig.12 WCDMA1900

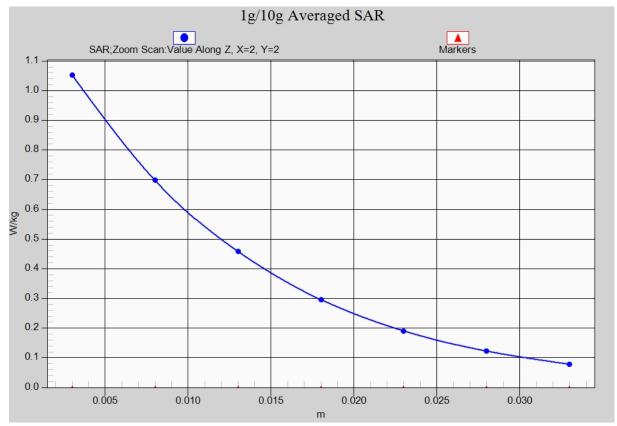


Fig. 12-1 Z-Scan at power reference point (WCDMA1900)

WCDMA 1900 Body Rear Low Unfold – AP ON

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.517$ mho/m; $\epsilon r = 54.655$; $\rho =$

 1000 kg/m^3

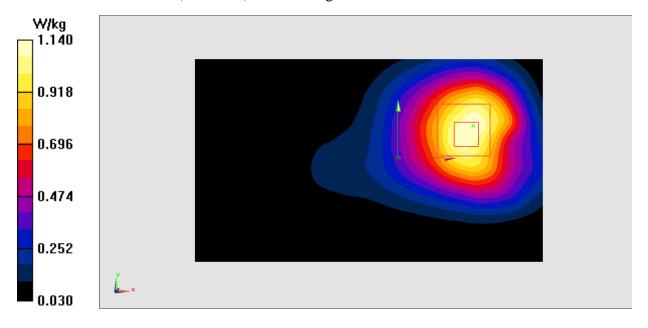
Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.14 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.62 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.54 W/kg

SAR(1 g) = 0.967 W/kg; SAR(10 g) = 0.591 W/kg

Maximum value of SAR (measured) = 1.14 W/kg

Fig.13 WCDMA1900

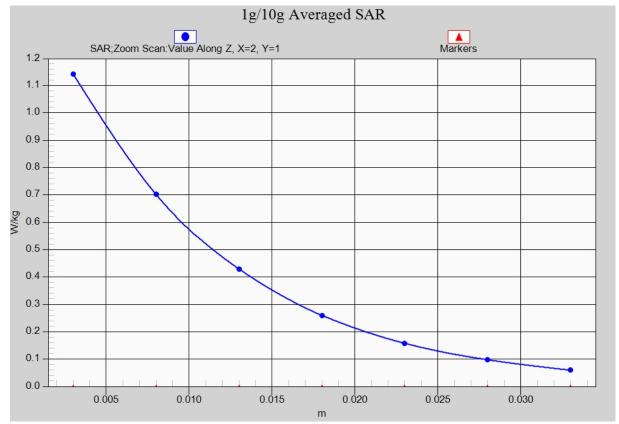


Fig. 13-1 Z-Scan at power reference point (WCDMA1900)

LTE Band2 Left Cheek Low with QPSK_20M_1RB_Middle

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1860 MHz; $\sigma = 1.372 \text{ mho/m}$; $\epsilon r = 39.66$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1860 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(8.10, 8.10, 8.10)

Area Scan (61x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.383 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.383 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.445 W/kg

SAR(1 g) = 0.310 W/kg; SAR(10 g) = 0.196 W/kg

Maximum value of SAR (measured) = 0.357 W/kg

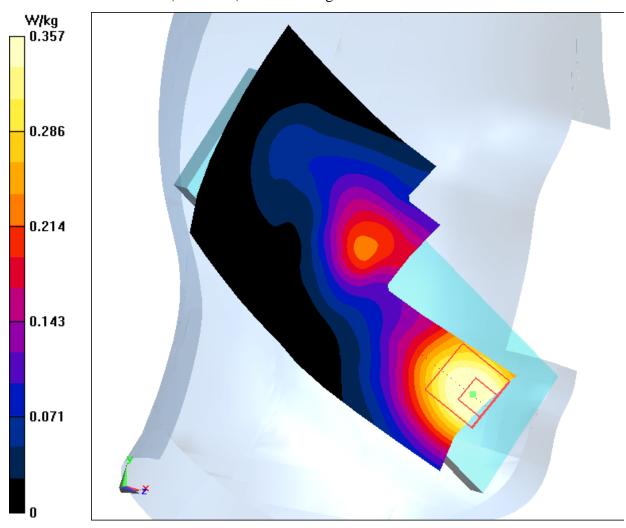


Fig.14 LTE Band2

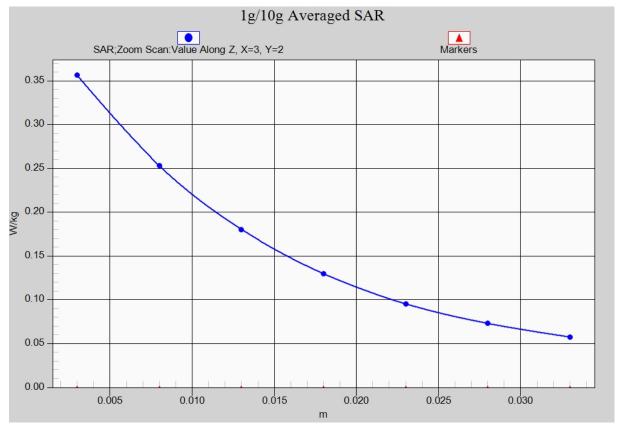


Fig. 14-1 Z-Scan at power reference point (LTE Band2)

LTE Band2 Body Rear High Fold with QPSK_20M_1RB_Low – AP OFF

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.482 \text{ mho/m}$; $\epsilon r = 54.333$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.22 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.93 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.646 W/kg

Maximum value of SAR (measured) = 1.23 W/kg

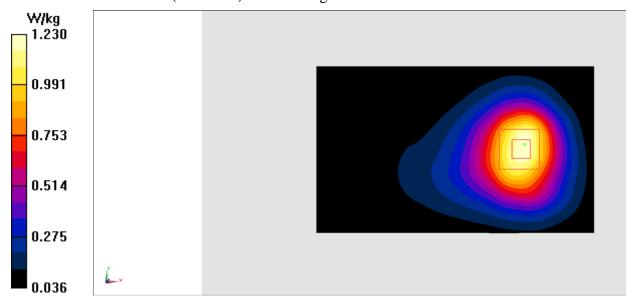


Fig.15 LTE Band2

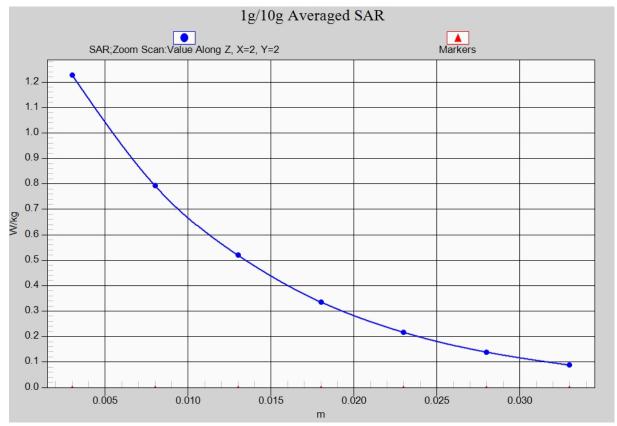


Fig. 15-1 Z-Scan at power reference point (LTE Band2)

LTE Band2 Body Rear Low Unfold with QPSK_20M_1RB_High - AP ON

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used: f = 1860 MHz; $\sigma = 1.443 \text{ mho/m}$; $\epsilon r = 54.453$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1860 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(7.67, 7.67, 7.67)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.35 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.87 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 1.1 W/kg; SAR(10 g) = 0.686 W/kg

Maximum value of SAR (measured) = 1.27 W/kg

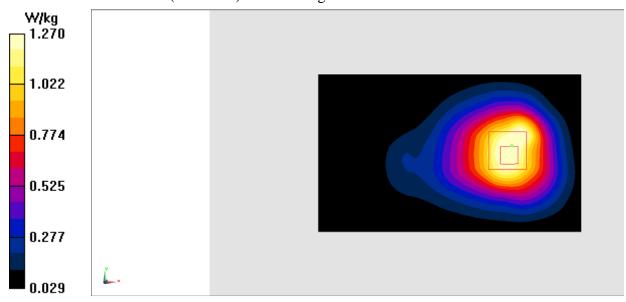


Fig.16 LTE Band2

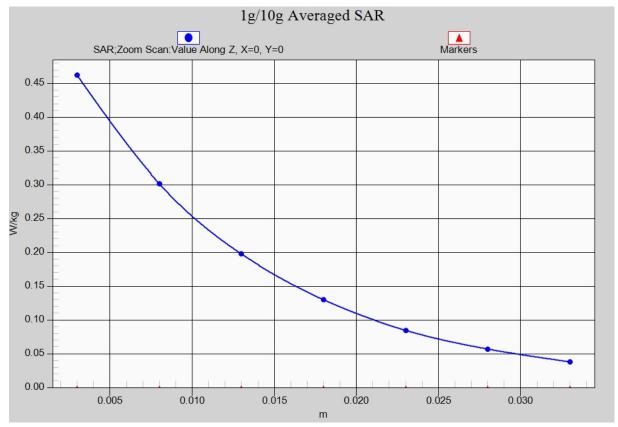


Fig. 16-1 Z-Scan at power reference point (LTE Band2)

LTE Band4 Left Cheek High with QPSK_20M_1RB_Low

Date: 2016-11-3

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.397$ mho/m; $\epsilon r = 40.543$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(8.37, 8.37, 8.37)

Area Scan (61x141x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.459 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.272 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.533 W/kg

SAR(1 g) = 0.382 W/kg; SAR(10 g) = 0.262 W/kgMaximum value of SAR (measured) = 0.429 W/kg

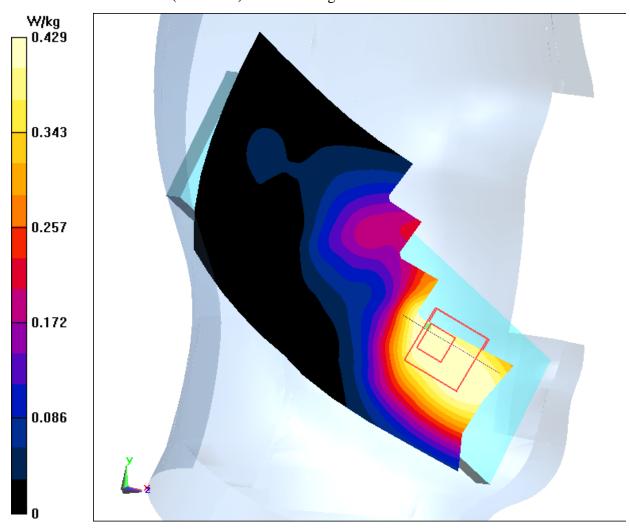


Fig.17 LTE Band4

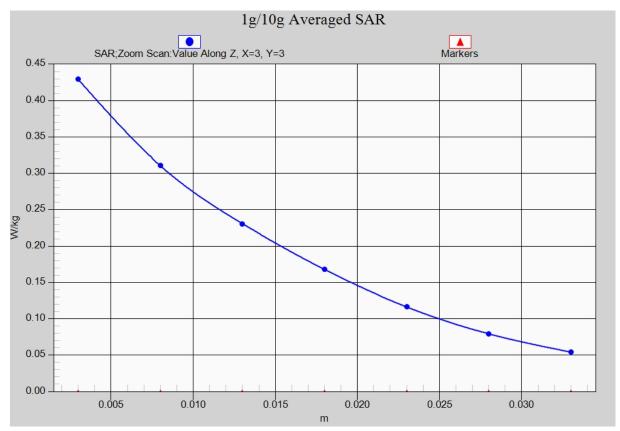


Fig. 17-1 Z-Scan at power reference point (LTE Band4)

LTE Band4 Body Rear Middle Unfold with QPSK_20M_1RB_Low -AP OFF

Date: 2016-11-3

Electronics: DAE4 Sn1331 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.533$ mho/m; $\epsilon r = 52.881$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1732.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(8.18, 8.18, 8.18)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.29 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.70 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.685 W/kg

Maximum value of SAR (measured) = 1.30 W/kg

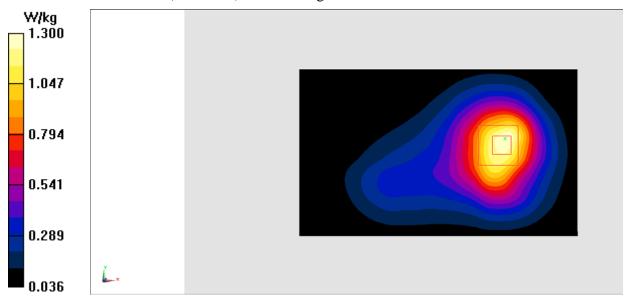


Fig.18 LTE Band4

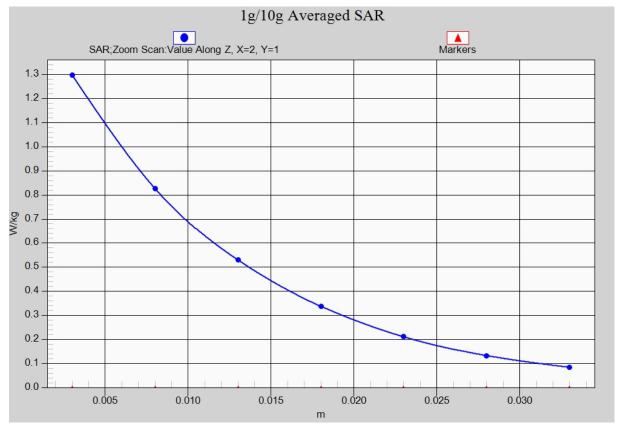


Fig. 18-1 Z-Scan at power reference point (LTE Band4)

LTE Band4 Body Rear Middle Unfold with QPSK_20M_1RB_Middle -AP ON

Date: 2016-11-3

Electronics: DAE4 Sn1331 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1732.5 MHz; $\sigma = 1.533$ mho/m; $\epsilon r = 52.881$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1732.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(8.18, 8.18, 8.18)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.37 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.94 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.650 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

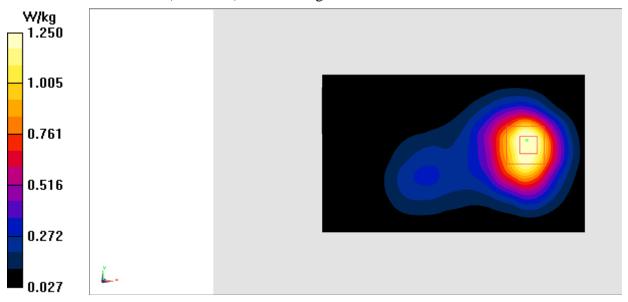


Fig.19 LTE Band4

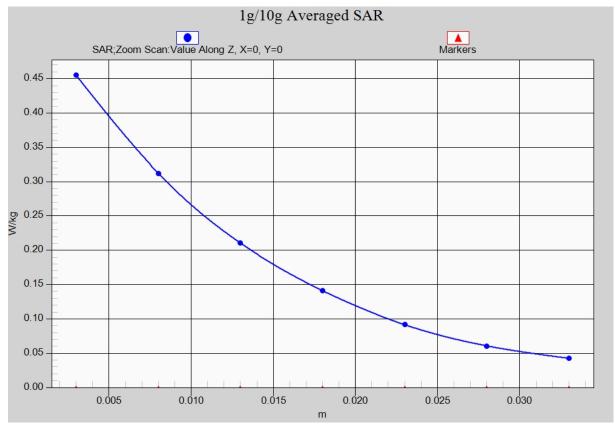


Fig. 19-1 Z-Scan at power reference point (LTE Band4)

LTE Band 12 Right Cheek High with QPSK_10M_1RB_Low

Date: 2016-11-1

Electronics: DAE4 Sn1331 Medium: Head 750 MHz

Medium parameters used (interpolated): f = 711 MHz; $\sigma = 0.821$ mho/m; $\epsilon r = 43.453$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band12 Frequency: 711 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(10.47, 10.47, 10.47)

Area Scan (61x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.497 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.266 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.641 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.258 W/kg

Maximum value of SAR (measured) = 0.455 W/kg

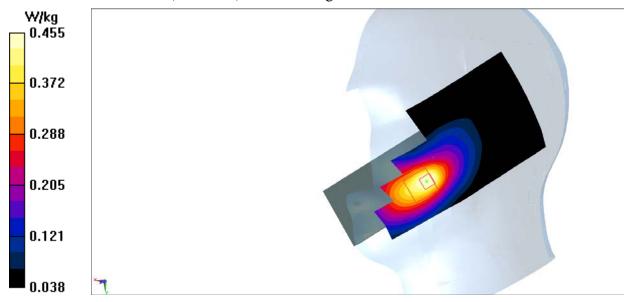


Fig.20 LTE Band 12

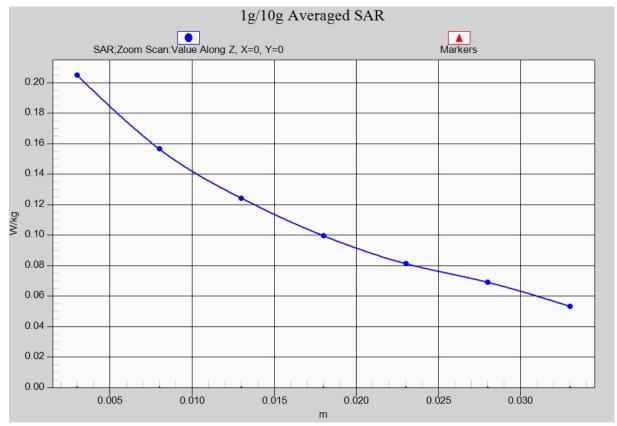


Fig. 20-1 Z-Scan at power reference point (LTE Band12)

LTE Band 12 Body Rear High Fold with QPSK_10M_1RB_Low – AP OFF

Date: 2016-11-1

Electronics: DAE4 Sn1331 Medium: Body 750 MHz

Medium parameters used (interpolated): f = 711 MHz; $\sigma = 0.841$ mho/m; $\epsilon r = 57.015$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band12 Frequency: 711 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(9.93, 9.93, 9.93)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.344 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.45 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.383 W/kg

SAR(1 g) = 0.296 W/kg; SAR(10 g) = 0.216 W/kg

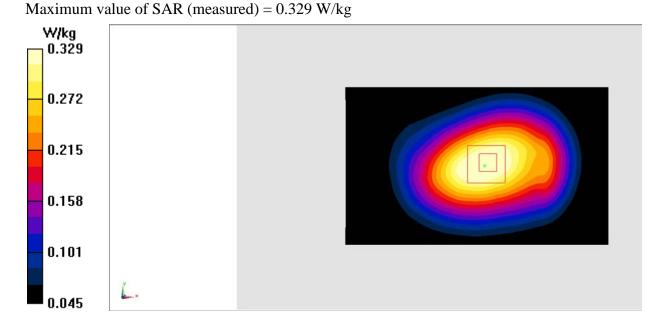


Fig.21 LTE Band 12

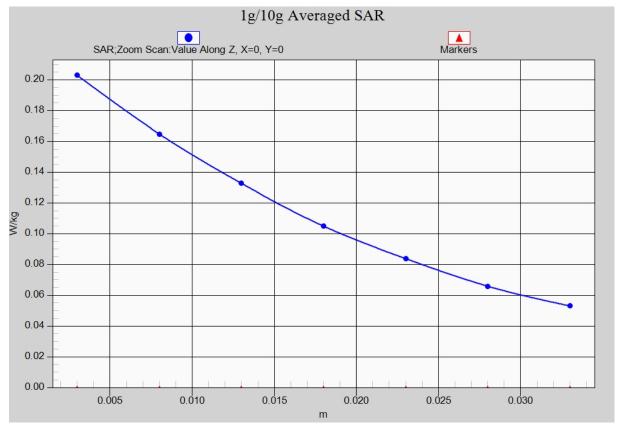


Fig.21-1 Z-Scan at power reference point (LTE Band12)

LTE Band 12 Body Rear High Fold with QPSK_10M_1RB_Low - AP ON

Date: 2016-11-1

Electronics: DAE4 Sn1331 Medium: Body 750 MHz

Medium parameters used (interpolated): f = 711 MHz; $\sigma = 0.841$ mho/m; $\epsilon r = 57.015$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band12 Frequency: 711 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(9.93, 9.93, 9.93)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.552 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.34 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.650 W/kg

SAR(1 g) = 0.509 W/kg; SAR(10 g) = 0.379 W/kg

Maximum value of SAR (measured) = 0.560 W/kg

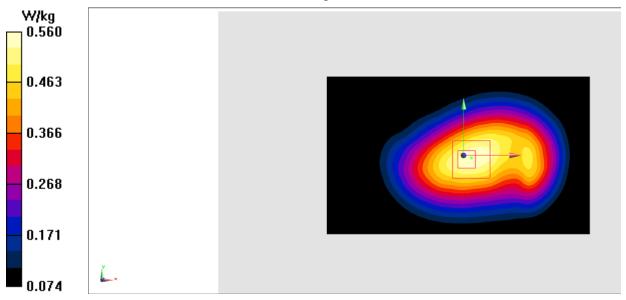


Fig.22 LTE Band 12

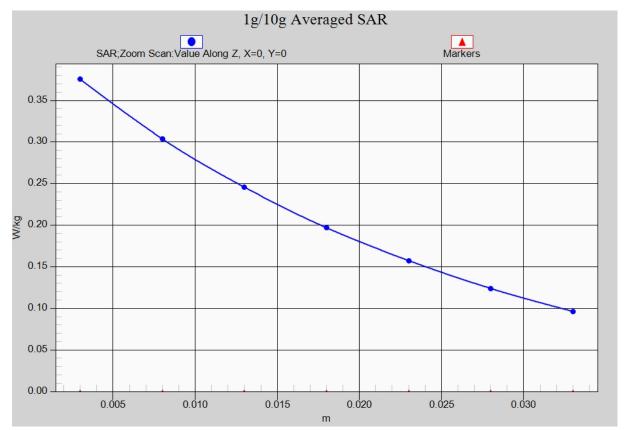


Fig.22-1 Z-Scan at power reference point (LTE Band12)

Bluetooth Right Cheek Channel 0

Date: 2016-11-5

Electronics: DAE4 Sn1331 Medium: Head 2450 MHz

Medium parameters used (interpolated): f = 2402 MHz; $\sigma = 1.825$ mho/m; $\varepsilon_r = 38.142$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: Bluetooth Frequency: 2402 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(7.36, 7.36, 7.36)

Area Scan (61x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 0.7240 V/m; Power Drift = 0.04 dB

Fast SAR: SAR(1 g) = 0.029 W/kg; SAR(10 g) = 0.015 W/kg

Maximum value of SAR (interpolated) = 0.0367 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.7240 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.0530 W/kg

SAR(1 g) = 0.028 W/kg; SAR(10 g) = 0.015 W/kg

Maximum value of SAR (measured) = 0.0338 W/kg

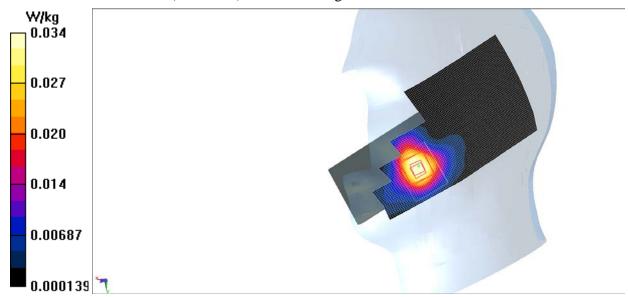


Fig.23 2450 MHz

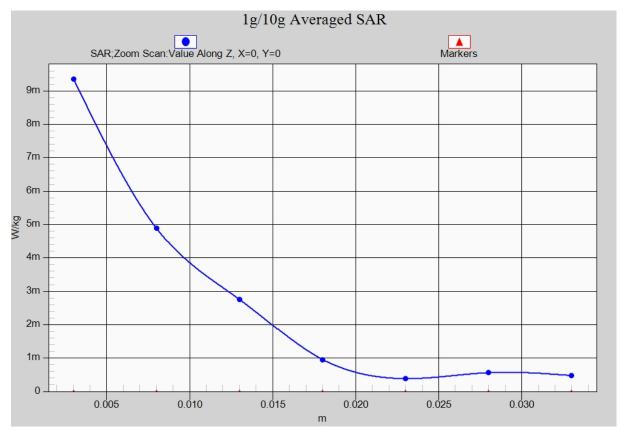


Fig. 23-1 Z-Scan at power reference point (2450 MHz)

Wifi 802.11b Right Cheek Channel 6

Date: 2016-11-5

Electronics: DAE4 Sn1331 Medium: Head 2450 MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.813$ mho/m; $\varepsilon_r = 38.022$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WLan 2450 Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(7.36, 7.36, 7.36)

Area Scan (71x181x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.349 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.841 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.597 W/kg

SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.150 W/kg

Maximum value of SAR (measured) = 0.405 W/kg

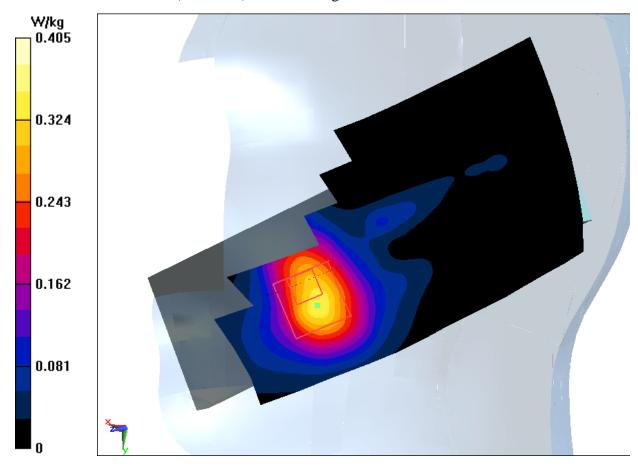


Fig.24 2450 MHz

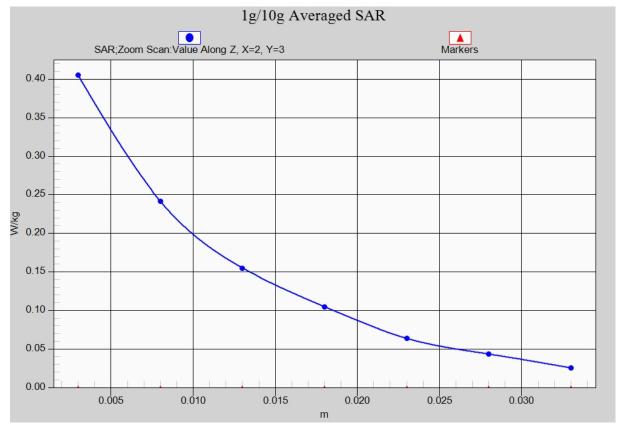


Fig. 24-1 Z-Scan at power reference point (2450 MHz)

Wifi 802.11b Body Rear Unfold Channel 6

Date: 2016-11-5

Electronics: DAE4 Sn1331 Medium: Body 2450 MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.033$ mho/m; $\varepsilon_r = 51.893$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WLan 2450 Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN7307 ConvF(7.22, 7.22, 7.22)

Area Scan (141x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.197 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.312 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.292 W/kg

SAR(1 g) = 0.160 W/kg; SAR(10 g) = 0.088 W/kg

Maximum value of SAR (measured) = 0.197 W/kg

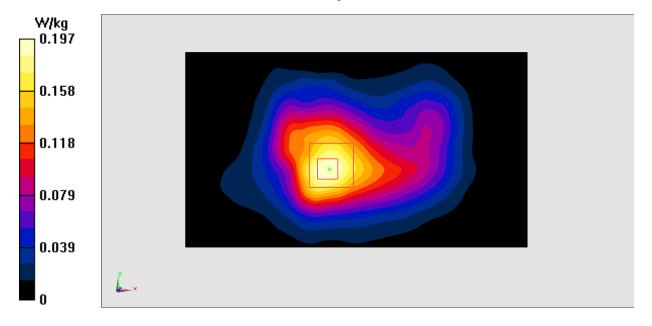


Fig.25 2450 MHz

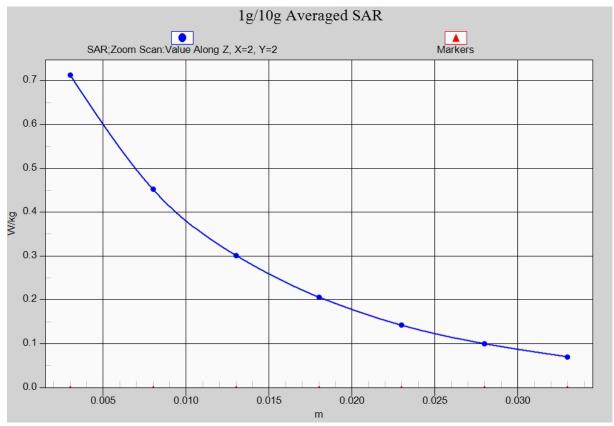


Fig. 25-1 Z-Scan at power reference point (2450 MHz)

ANNEX B SystemVerification Results

750MHz

Date: 2016-11-1

Electronics: DAE4 Sn1331 Medium: Head 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.892 \text{ mho/m}$; $\varepsilon_r = 43.28$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.47, 10.47, 10.47)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

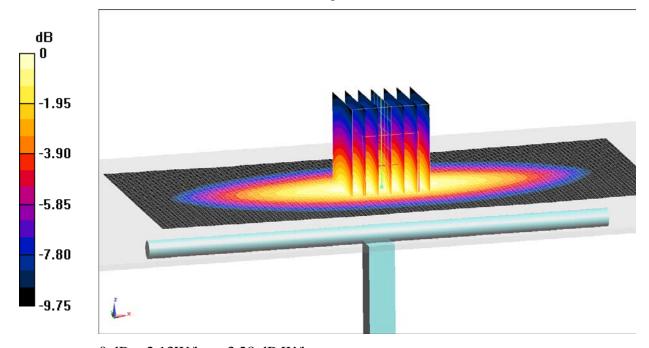
mm

Reference Value = 48.902 V/m; Power Drift = -0.08 dB

Fast SAR: SAR(1 g) = 2.06W/kg; SAR(10 g) = 1.36 W/kg

Maximum value of SAR (interpolated) = 2.17 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 48.902 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 2.81 W/kg

SAR(1 g) = 2.02W/kg; SAR(10 g) = 1.32 W/kg

Maximum value of SAR (measured) = 2.13 W/kg

0 dB = 2.13W/kg = 3.28 dB W/kg

Fig.B.1 validation 750MHz 250mW

Date: 2016-11-1

Electronics: DAE4 Sn1331 Medium: Body750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.966 \text{ mho/m}$; $\varepsilon_r = 57.08$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(9.93, 9.93, 9.93)

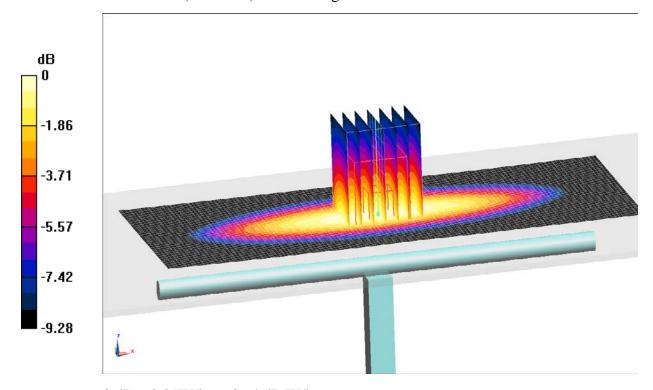
System Validation/Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 50.985 V/m; Power Drift = 0.06 dB

Fast SAR: SAR(1 g) = 2.14W/kg; SAR(10 g) = 1.41 W/kg

Maximum value of SAR (interpolated) = 2.32 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.985 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 2.99 W/kg

SAR(1 g) = 2.11W/kg; SAR(10 g) = 1.39 W/kg

Maximum value of SAR (measured) = 2.31 W/kg

0 dB = 2.31W/kg = 3.64 dB W/kg

Fig.B.2 validation 750MHz 250mW

Date: 2016-10-30

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.933$ S/m; $\varepsilon_r = 40.92$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

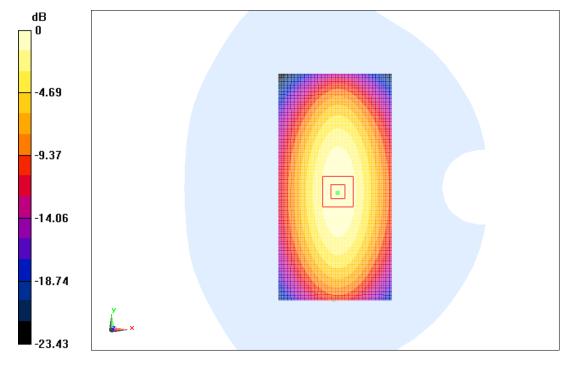
Probe: EX3DV4 – SN7307 ConvF(10.01, 10.01, 10.01)

System Validation /Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 51.574 V/m; Power Drift = 0.07 dB

Fast SAR: SAR(1 g) = 2.29 W/kg; SAR(10 g) = 1.50 W/kg

Maximum value of SAR (interpolated) = 2.52 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.574 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.52 W/kg

Maximum value of SAR (measured) = 2.55 W/kg

0 dB = 2.55 W/kg = 4.07 dBW/kg

Fig.B.3 validation 835MHz 250mW

Date: 2016-10-30

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.952$ S/m; $\varepsilon_r = 54.33$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

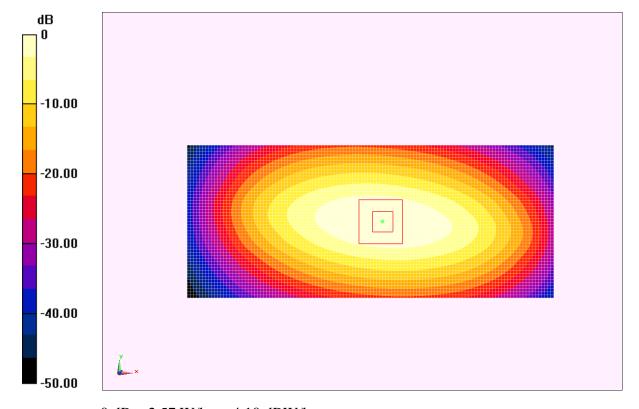
Probe: EX3DV4 – SN7307 ConvF(9.83, 9.83, 9.83)

System Validation /Area Scan (81x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 51.901 V/m; Power Drift = -0.09 dB

Fast SAR: SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.56 W/kg

Maximum value of SAR (interpolated) = 2.55 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.901 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 2.57 W/kg

0 dB = 2.57 W/kg = 4.10 dBW/kg

Fig.B.4 validation 835MHz 250mW

Date: 2016-11-3

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used: f=1750 MHz; $\sigma = 1.341$ mho/m; $\epsilon r = 40.53$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

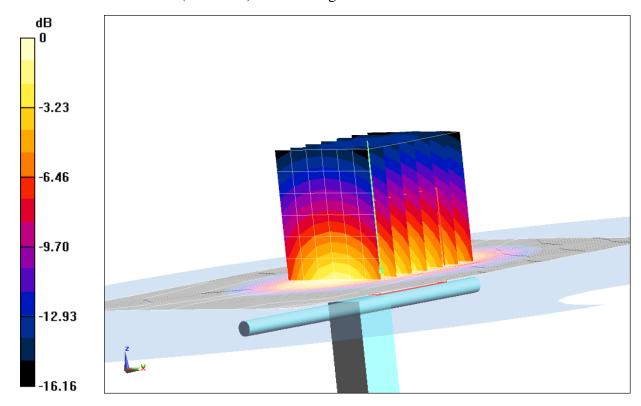
Probe: EX3DV4 – SN7307ConvF(8.37, 8.37, 8.37)

System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 88.27 V/m; Power Drift = -0.08 dB

Fast SAR: SAR(1 g) = 8.99 W/kg; SAR(10 g) = 4.74 W/kg

Maximum value of SAR (interpolated) = 9.86 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.27 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 15.46 W/kg

SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.77 W/kg

Maximum value of SAR (measured) = 9.91 W/kg

0 dB = 9.91 W/kg = 9.96 dB W/kg

Fig.B.5 validation 1750MHz 250mW

Date: 2016-11-3

Electronics: DAE4 Sn1331 Medium: Body 1750 MHz

Medium parameters used: f=1750 MHz; $\sigma = 1.512$ mho/m; $\epsilon r = 53.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

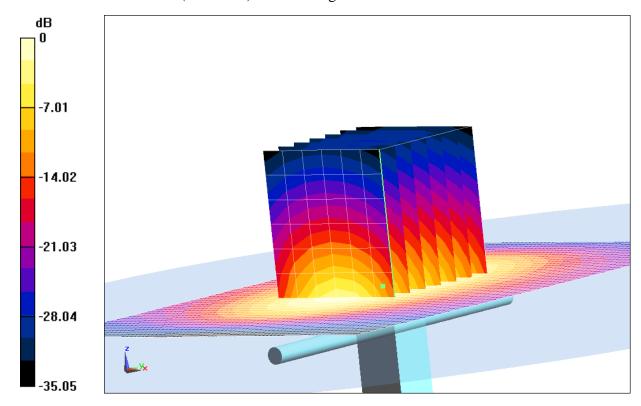
Probe: EX3DV4 – SN7307ConvF(8.18, 8.18, 8.18)

System Validation/Area Scan (81x121x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 94.892 V/m; Power Drift = -0.04 dB

Fast SAR: SAR(1 g) = 9.55 W/kg; SAR(10 g) = 5.15 W/kg

Maximum value of SAR (interpolated) = 10.4 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.892 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 15.5 W/kg

SAR(1 g) = 9.37 W/kg; SAR(10 g) = 4.98 W/kg

Maximum value of SAR (measured) = 10.2 W/kg

0 dB = 10.2W/kg = 10.09 dB W/kg

Fig.B.6 validation 1750MHz 250mW

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.416 \text{ S/m}$; $\varepsilon_r = 39.48$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

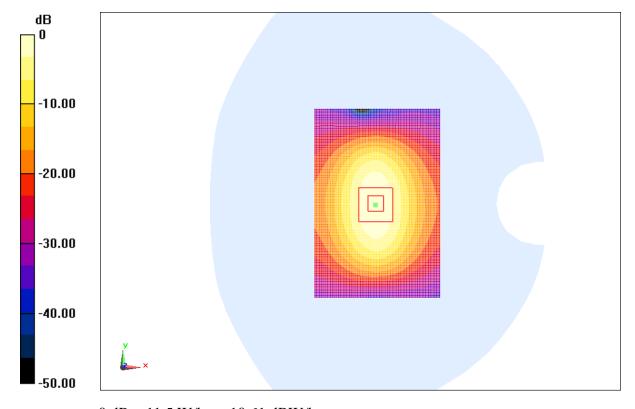
Probe: EX3DV4 - SN7307 ConvF(8.10, 8.10, 8.10)

System Validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 91.352 V/m; Power Drift = -0.05 dB

Fast SAR: SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.35 W/kg

Maximum value of SAR (interpolated) = 11.7 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.352 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 18.61 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.2 W/kg

Maximum value of SAR (measured) = 11.5 W/kg

0 dB = 11.5 W/kg = 10.61 dBW/kg

Fig.B.7 validation 1900MHz 250mW

Date: 2016-10-31

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.553 \text{ S/m}$; $\varepsilon_r = 54.35$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

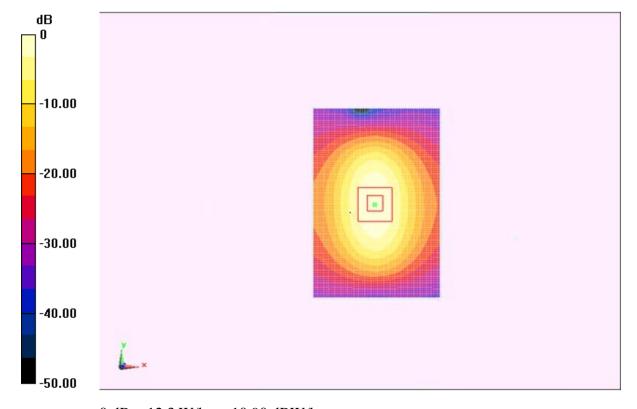
Probe: EX3DV4 – SN7307 ConvF(7.67, 7.67, 7.67)

System validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 58.557 V/m; Power Drift = 0.04 dB

Fast SAR: SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.37 W/kg

Maximum value of SAR (interpolated) = 12.4 W/kg


System validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.557 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 19.09 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.27 W/kg

Maximum value of SAR (measured) = 12.3 W/kg

0 dB = 12.3 W/kg = 10.90 dBW/kg

Fig.B.8 validation 1900MHz 250mW

Date: 2016-11-5

Electronics: DAE4 Sn1331 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.836 \text{ mho/m}$; $\varepsilon_r = 38.22$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

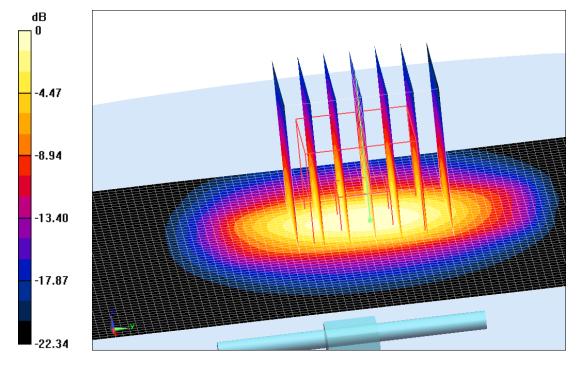
Probe: EX3DV4 – SN7307 ConvF(7.36, 7.36, 7.36)

System Validation /Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 92.513 V/m; Power Drift = -0.02 dB

SAR(1 g) = 13.7W/kg; SAR(10 g) = 6.52 W/kg

Maximum value of SAR (interpolated) = 17.1 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.513 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 27.64 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.35 W/kg

Maximum value of SAR (measured) = 16.6 W/kg

0 dB = 16.6 W/kg = 12.20 dBW/kg

Fig.B.9 validation 2450MHz 250mW

Date: 2016-11-5

Electronics: DAE4 Sn1331 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.998 \text{S/m}$; $\varepsilon_r = 51.88$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

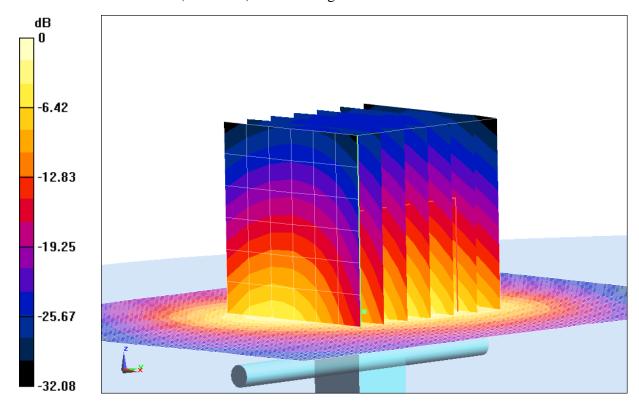
Probe: EX3DV4 – SN7307 ConvF(7.22, 7.22, 7.22)

System Validation/Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 92.188 V/m; Power Drift = 0.05 dB

SAR(1 g) = 13.1W/kg; SAR(10 g) = 6.09 W/kg

Maximum value of SAR (interpolated) = 14.5 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.188 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 24.81 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.22 W/kg

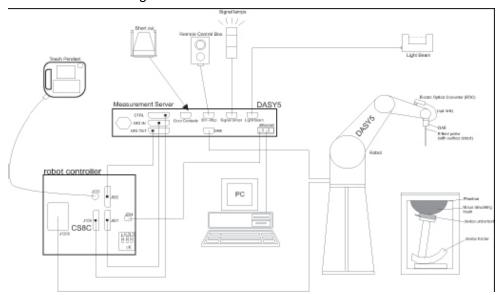
Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dB W/kg

Fig.B.10validation 2450MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.1 Comparison between area scan and zoom scan for system verification


Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2016-11-1	750	Head	2.06	2.02	1.98
	750	Body	2.14	2.11	1.42
2016-10-30	835	Head	2.29	2.32	-1.29
	835	Body	2.38	2.41	-1.24
2016-11-3	1750	Head	8.99	9.04	-0.55
	1750	Body	9.55	9.37	1.92
2016-10-31	1900	Head	10.4	10.2	1.96
	1900	Body	10.3	10.2	0.98
2016-11-5	2450	Head	13.7	13.5	1.48
	2450	Body	13.1	13.2	-0.76

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection during a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

ES3DV3, EX3DV4 Model:

10MHz — 6.0GHz(EX3DV4) Frequency Range: **10MHz** — **4GHz(ES3DV3)**

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 1 mm (2.0mm for ES3DV3) Tip-Center: Application:

Picture C.3E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

2.5 mm (3.9 mm for ES3DV3) **SAR Dosimetry Testing** Compliance tests of mobile phones Dosimetry in strong gradient fields

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed ©Copyright. All rights reserved by CTTL.

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectricmedium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = Exposure time (30 seconds),$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics (DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE