

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2600V2-1012_Jul17 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	And the second s
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.2 ± 6 %	2.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL Condition		
SAR measured	250 mW input power	14.9 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	57.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.57 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.6 ± 6 %	2.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	(****	(5535

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	14.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	55.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Certificate No: D2600V2-1012_Jul17

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.8 Ω - 5.0 jΩ	
Return Loss	- 24.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.5 Ω - 5.3 jΩ	
Return Loss	- 21.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	October 30, 2007	

DASY5 Validation Report for Head TSL

Date: 20.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 37.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

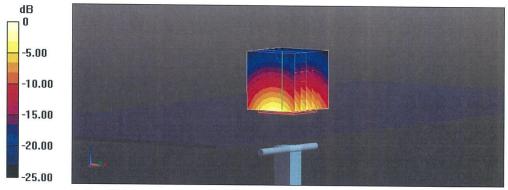
• Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96); Calibrated: 31.05.2017;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 28.03.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

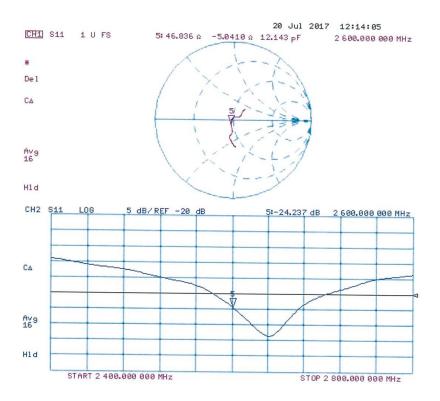

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 113.6 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 14.9 W/kg; SAR(10 g) = 6.57 W/kg

Maximum value of SAR (measured) = 25.0 W/kg



0 dB = 25.0 W/kg = 13.98 dBW/kg

Certificate No: D2600V2-1012_Jul17 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 21.07.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\epsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

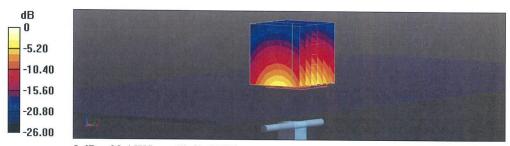
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.94, 7.94, 7.94); Calibrated: 31.05.2017;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

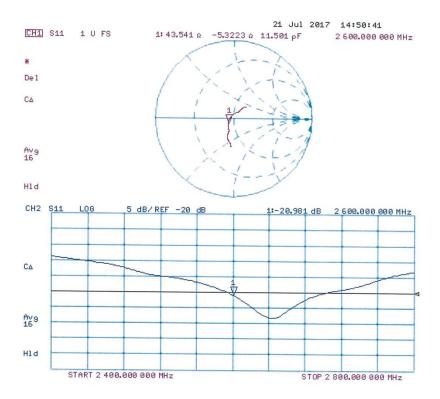
• Electronics: DAE4 Sn601; Calibrated: 28.03.2017


Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

• DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.6 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 30.1 W/kg


SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.25 W/kgMaximum value of SAR (measured) = 23.4 W/kg

0 dB = 23.4 W/kg = 13.69 dBW/kg

Impedance Measurement Plot for Body TSL

ANNEX I DAE Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

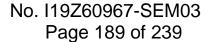
Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CTTL-BJ (Auden)


Certificate No: DAE4-1525_Oct17

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1525 QA CAL-06.v29 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) Calibration date: October 02, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 31-Aug-17 (No:21092) Aug-18 Secondary Standards ID# Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 05-Jan-17 (in house check) In house check: Jan-18 Calibrator Box V2.1 SE UMS 006 AA 1002 05-Jan-17 (in house check) In house check: Jan-18 Name Function Signature Calibrated by: Dominique Steffen Laboratory Technician Sven Kühn Approved by: Deputy Manager Issued: October 2, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1525_Oct17

Page 1 of 5

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

• DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1525_Oct17

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	405.912 ± 0.02% (k=2)	405.954 ± 0.02% (k=2)	405.400 ± 0.02% (k=2)
Low Range	3.99166 ± 1.50% (k=2)	4.00980 ± 1.50% (k=2)	3.99550 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	53.5 ° ± 1 °

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X + Inj	out	200030.95	-2.42	-0.00
Channel X + Inp	out	20004.11	-0.05	-0.00
Channel X - Inp	ut	-20003.75	2.02	-0.01
Channel Y + Inp	out	200031.20	-2.23	-0.00
Channel Y + Inp	out	20001.46	-2.74	-0.01
Channel Y - Inp	ut	-20005.92	-0.05	0.00
Channel Z + Inp	out	200032.03	-1.05	-0.00
Channel Z + Inp	out	20001.94	-2.11	-0.01
Channel Z - Inp	ut	-20006.15	-0.20	0.00

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2000.66	0.19	0.01
Channel X	+ Input	200.40	-0.18	-0.09
Channel X	- Input	-198.67	0.81	-0.40
Channel Y	+ Input	2000.90	0.48	0.02
Channel Y	+ Input	199.98	-0.58	-0.29
Channel Y	- Input	-200.18	-0.62	0.31
Channel Z	+ Input	2000.68	0.32	0.02
Channel Z	+ Input	199.07	-1.45	-0.72
Channel Z	- Input	-201.14	-1.52	0.76

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	18.32	16.76
	- 200	-15.73	-17.08
Channel Y	200	-20.47	-20.86
	- 200	20.66	20.31
Channel Z	200	13.43	13.46
-	- 200	-15.65	-15.97

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

_	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	0.08	-3.66
Channel Y	200	7.12		1.80
Channel Z	200	10.44	4.52	

Certificate No: DAE4-1525_Oct17

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15817	15005
Channel Y	16329	14457
Channel Z	15576	15478

5. Input Offset Measurement

DÅSY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.63	-0.54	2.27	0.51
Channel Y	-2.07	-3.42	-1.02	0.49
Channel Z	-0.89	-2.38	0.83	0.54

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	•
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

ANNEX J SPOT CHECK

J.1 Dielectric Performance and System Validation

Table J.1-1: Targets for tissue simulating liquid

Frequency(MHz)	Liquid Type	Conductivity(σ)	± 5% Range	Permittivity(ε)	± 5% Range
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2600	Body	2.16	2.05~2.27	52.5	49.9~55.1

Table J.1-2: Dielectric Performance of Head Tissue Simulating Liquid

Measurement Date (yyyy-mm-dd)	Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2019-6-17	Head	2450 MHz	39.55	0.89	1.771	-1.61
2019-6-6	Body	1900 MHz	53.15	-0.28	1.54	1.32
2019-6-6	Body	2600 MHz	51.66	-1.60	2.143	-0.79

Table J.1-3: System Validation of Head

Measurement		Target value (W/kg)		Measured	value(W/kg)	Deviation	
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2019-6-17	2450 MHz	24.2	51.7	24.5	52.1	1.24%	0.77%

Table J.1-4: System Validation of Body

Measurement		Target value (W/kg)		Measured value(W/kg)		Deviation	
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2019-6-6	1900 MHz	21.4	40.4	21.35	40.17	-0.23%	-0.57%
2019-6-6	2600 MHz	24.5	54.1	25.23	54.75	2.98%	1.20%

J.2 Conducted power of selected case

Table J.2-1: The conducted Power for WIFI

Band	Channel	Frequency	Measured Power (dBm)
WLAN2450	6	2437 MHz	15.51
WCDMA1900	9662	1872.4 MHz	23.01
WCDMA1900	9800	1880 MHz	23.18
WCDMA1900	9938	1907.6MHz	23.09
LTEBand2	18700	1860 MHz	23.11
LTEBand7	21350	2560 MHz	22.01

J.3 SAR test result for spot check

	•									
	Ambient Temperature: 22.5 °C Liquid Temperature: 22.1 °C									
Frequ	Frequency Test		Figure	Conducted		Measured	Reported	Measured	Reported	Power
	I	Test	No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch	MHz.	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
6	2437	Right check	Fig J.1	15.51	16.5	0.384	0.48	0.727	0.91	0.05
9400	1880	Bottom	/	23.18	23.5	0.575	0.62	1.06	1.14	-0.01
9262	1852.4	Bottom	Fig J.2	23.01	23.5	0.585	0.65	1.13	1.26	-0.16
9538	1907.6	Bottom	/	23.09	23.5	0.552	0.61	1.03	1.13	0.05
18700	1860	Bottom	Fig J.3	23.11	23.5	0.492	0.54	0.953	1.04	0.11
21350	2560	Bottom	Fig I.4	22.01	22.2	0.456	0.48	1.01	1.06	-0.09
9262	1852.4	Bottom	Headset1	23.01	23.5	0.561	0.63	1.082	1.21	0.08
9262	1852.4	Bottom	Headset2	23.01	23.5	0.561	0.63	1.090	1.22	0.07
9262	1852.4	Bottom	Headset3	23.01	23.5	0.559	0.63	1.113	1.25	0.06
9262	1852.4	Bottom	Headset4	23.01	23.5	0.545	0.63	1.095	1.23	-0.12

Note1: The distance between the EUT and the phantom bottom is 10mm

J.4 Reported SAR Comparison

Exposure Configuration	Technology Band	Reported SAR 1g (W/kg): spot check	Reported SAR 1g (W/kg): original
Head (Separation Distance 0mm)	WLAN2450	0.91	0.99
	WCDMA1900	1.26	1.19
Hotspot (Separation Distance 10MM)	LTEBand2	1.04	1.19
	LTEBand7	1.06	1.19

Note: The spot check results marked blue are larger than the original result.

Table J5.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 24, 2018	One year
02	Power meter	NRVD	102083	November 04 2017	One year
03	Power sensor	NRV-Z5	100542	November 01,2017	One year
04	Signal Generator	E4438C	MY49070393	January 02,2018	One Year
05	Amplifier	60S1G4	0331848	No Calibration Requested	
06	BTS	CMW500	159889	December 20, 2017	One year
07	E-field Probe	SPEAG EX3DV4	7464	September 12,2017	One year
08	DAE	SPEAG DAE4	1525	October 02, 2017	One year
09	Dipole Validation Kit	SPEAG D1900V2	5d101	July 26,2017	One year
10	Dipole Validation Kit	SPEAG D2450V2	853	July 21,2017	One year
11	Dipole Validation Kit	SPEAG D2600V2	1012	July 21,2017	One year

^{***}END OF REPORT BODY***

J.5 GRAPH RESULTS

WLAN2450_CH6 Right Cheek

Date: 6/17/2019

Electronics: DAE4 Sn1525 Medium: head 2450 MHz

Medium parameters used: f = 2437 MHz; $\sigma = 1.775$ mho/m; $\epsilon r = 38.71$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.72,7.72,7.72)

Area Scan (91x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.15 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.74 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.727 W/kg; SAR(10 g) = 0.384 W/kgMaximum value of SAR (measured) = 1.17 W/kg

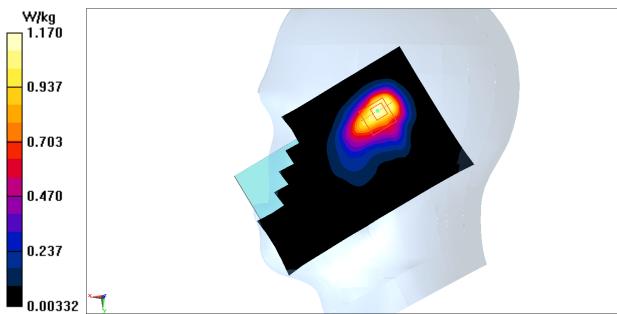


Fig J.1

WCDMA1900 _CH9262 Bottom

Date: 6/6/2019

Electronics: DAE4 Sn1525 Medium: body 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.571$ mho/m; $\epsilon r = 53.24$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.1°C, Liquid Temperature: 22.2°C

Communication System: WCDMA1900-BII 1907.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.82,7.82,7.82)

Area Scan (161x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.72 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.79 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.585 W/kgMaximum value of SAR (measured) = 1.73 W/kg

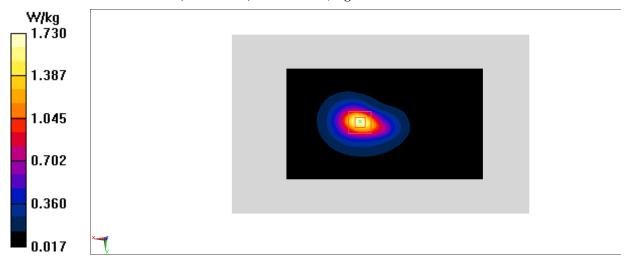


Fig J.2

LTE1900-FDD2_CH18700 Bottom

Date: 6/6/2019

Electronics: DAE4 Sn1525 Medium: body 1900 MHz

Medium parameters used: f = 1860 MHz; $\sigma = 1.525 \text{ mho/m}$; $\epsilon r = 53.21$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C, Liquid Temperature: 22.2°C

Communication System: LTE1900-FDD2 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(8.32,8.32,8.32)

Area Scan (151x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.44 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.63 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.953 W/kg; SAR(10 g) = 0.492 W/kg

Maximum value of SAR (measured) = 1.45 W/kg

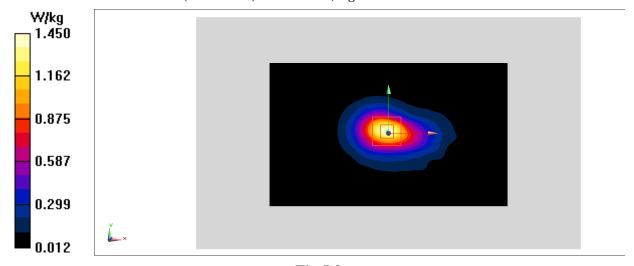


Fig J.3

LTE2500-FDD7_CH21350 Bottom

Date: 6/6/2019

Electronics: DAE4 Sn1525 Medium: body 2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 2.118 \text{ mho/m}$; $\epsilon r = 53.21$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C, Liquid Temperature: 22.2°C

Communication System: LTE2500-FDD7 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.30,7.30,7.30)

Area Scan (141x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.62 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.50 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 2.01 W/kg

SAR(1 g) = 1.01 W/kg; SAR(10 g) = 0.456 W/kgMaximum value of SAR (measured) = 1.52 W/kg

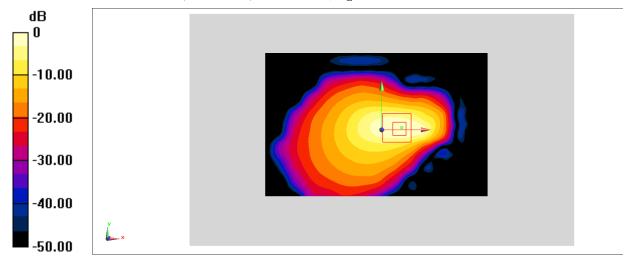


Fig J.4

J.6 ANNEX System Verification Results

2450 MHz

Date: 6/17/2019

Electronics: DAE4 Sn1525 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.771 \text{ mho/m}$; $\varepsilon_r = 39.55$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.72,7.72,7.72)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

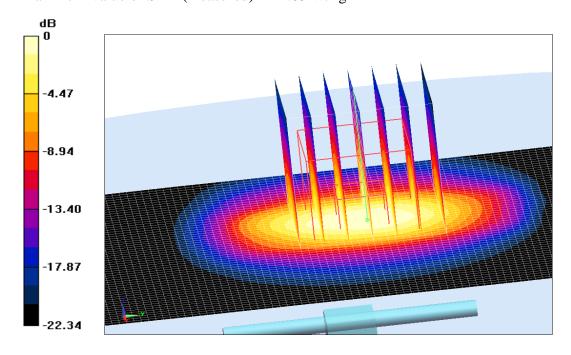
mm

Reference Value =113.68 V/m; Power Drift = 0.010 dB

Fast SAR: SAR(1 g) = 12.89 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (interpolated) = 21.4 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value =113.68 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 26.79 W/kg

SAR(1 g) = 13.18 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (measured) = 21.83 W/kg

0 dB = 21.83 W/kg = 13.39 dB W/kg

Fig J.5 validation 2450 MHz 250mW

1900 MHz

Date: 6/6/2019

Electronics: DAE4 Sn1525 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.540 \text{ mho/m}$; $\varepsilon_r = 53.15$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.82,7.82,7.82)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

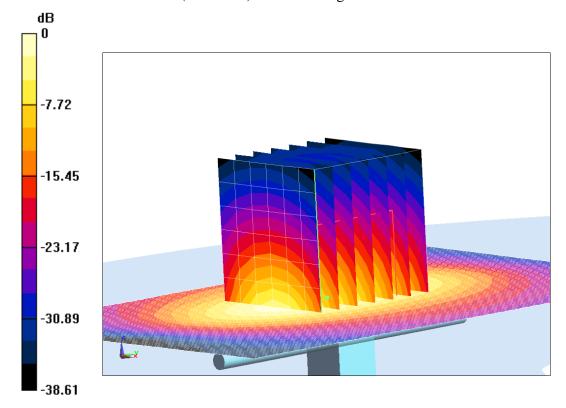
mm

Reference Value =103.41 V/m; Power Drift = 0.07 dB

Fast SAR: SAR(1 g) = 10.46 W/kg; SAR(10 g) = 5.48 W/kg

Maximum value of SAR (interpolated) = 17.78 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 103.41 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 17.91 W/kg

SAR(1 g) = 10.51 W/kg; SAR(10 g) = 5.50 W/kg

Maximum value of SAR (measured) = 14.17 W/kg

0 dB = 14.17 W/kg = 11.51 dB W/kg

Fig J.6 validation 1900 MHz 250mW

2600 MHz

Date: 6/6/2019

Electronics: DAE4 Sn1525 Medium: Body 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.143$ mho/m; $\varepsilon_r = 51.66$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2600 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7464 ConvF(7.30,7.30,7.30)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

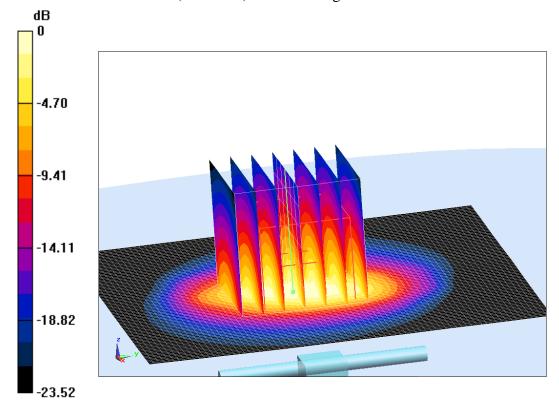
mm

Reference Value = 108.81 V/m; Power Drift = 0.09 dB

Fast SAR: SAR(1 g) = 13.90 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (interpolated) = 29.85 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value =108.81 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 30.13 W/kg

SAR(1 g) = 13.77 W/kg; SAR(10 g) = 6.13 W/kg

Maximum value of SAR (measured) = 23.93 W/kg

0 dB = 23.93 W/kg = 13.79 dB W/kg

Fig J.7 validation 2600 MHz 250mW

Table J.6-1 Comparison between area scan and zoom scan for system verification

Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2019-6-19	2450	Head	12.89	13.18	-2.20
2019-6-6	1900	Body	10.46	10.51	-0.48
2019-6-6	2600	Body	13.9	13.77	0.94

ANNEX Probe Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

Client

CTTL

Certificate No: Z18-60357

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7464

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

September 30, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NRP-Z91	101548	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe EX3DV4	SN 3846	25-Jan-18(SPEAG,No.EX3-3846_Jan18)	Jan-19
DAE4	SN 777	15-Dec-17(SPEAG, No.DAE4-777_Dec17)	Dec -18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	21-Jun-18 (CTTL, No.J18X05033)	Jun-19
Network Analyzer E5071C	MY46110673	14-Jan-18 (CTTL, No.J18X00561)	Jan -19
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	And
Reviewed by:	Lin Hao	SAR Test Engineer	州为
Approved by:	Qi Dianyuan	SAR Project Leader	203
		7	2024/31

Issued: October 09, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60357

Page 1 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z18-60357 Page 2 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Probe EX3DV4

SN: 7464

Calibrated: September 30, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z18-60357

Page 3 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7464

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.46	0.44	0.46	±10.0%
DCP(mV) ^B	100.7	101.4	99.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)	
0 CW	CW	X	0.0	0.0	1.0	0.00	169.3	±2.2%	
			Υ	0.0	0.0	1.0		163.1	
		Z	0.0	0.0	1.0		167.0		

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60357

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.