

14.3 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 14.3-1: SAR Values (GSM 850 MHz Band - Head)

			Am	bient Tem	perature: 22	2.4°C Lie	quid Temper	ature: 22.2°	C)C		
Frequence Ch.	uency MHz	Side	Test Position	Figure No./Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
251	848.8	Right	Touch	Fig.1	32.07	33.8	0.216	0.32	0.283	0.42	0.02

Table 14.3-2: SAR Values (GSM 850 MHz Band - Body)

			Ambie	ent Temper	ature: 22.4 $^{\circ}$	C Liq	uid Tempera	ture: 22.2°0	C		
Fred	quency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	(number of timeslots)	Position	No./Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
251	848.8	GPRS (4)	Rear	Fig.2	28.62	30	0.385	0.53	0.531	0.73	-0.18

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.3-3: SAR Values (GSM 1900 MHz Band - Head)

			Ambie	nt Tempera	ature: 22.4°C	C Lic	quid Tempe	rature: 22.2	o°C		
Free	quency		Toot	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Test Position	Figure No./Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
810	1909.8	Left	Touch	Fig.3	29.04	30.3	0.135	0.18	0.222	0.30	0.09

Table 14.3-4: SAR Values (GSM 1900 MHz Band - Body)

			Ambier	nt Tempe	erature: 22.4	⊦°C Liqu	id Tempera	ture: 22.2°0	7		
Fre	quency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		(number of	Position	No./N	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	timeslots)	Position	ote	(dBm)	Power (dbill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
810	1909.8	GPRS (4)	Front	Fig.4	25.71	26.5	0.386	0.46	0.676	0.81	-0.16

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.3-5: SAR Values (WCDMA 850 MHz Band - Head)

			Ambi	ent Tempe	rature: 22.4 $^{\circ}$	C Li	quid Tempe	erature: 22.2	2°C		
Frequ	uency		T4	5 ;	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Test Position	Figure No./Note	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
4233	846.6	Right	Touch	Fig.5	23.29	24.5	0.173	0.23	0.226	0.30	0.14

Table 14.3-6: SAR Values (WCDMA 850 MHz Band - Body)

			Ambient	Temperatui	re: 22.4 °C	Liquid Ter	nperature:	22.2°C		
Freq	uencv	Toot	Figure	Conducted	May tupe up	Measured	Reported	Measured	Reported	Power
Frequency	Test Position	No./N	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
Ch.	MHz	Position	ote	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
4233	846.6	Rear	Fig.6	23.29	24.5	0.225	0.30	0.309	0.41	0.08

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.3-7: SAR Values (WCDMA 1700 MHz Band - Head)

			Ambier	nt Tempera	ture: 22.4°C	Lic	quid Tempe	rature: 22.2	°C		
Fred	quency		Toot	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Test Position	Figure No./Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1637	1732.4	Left	Touch	Fig.7	22.60	24	0.213	0.29	0.333	0.46	0.05

Table 14.3-8: SAR Values (WCDMA 1700 MHz Band - Body)

		А	mbient To	emperature	e: 22.4 °C	Liquid Ter	mperature:	22.2°C		
Fred	Frequency Test Figure Conducte Max. tu		May tung up	Measured	Reported	Measured	Reported	Power		
	I		No./Not	d Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
Ch.	MHz	Position	е	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1637	1732.4	Rear	Fig.8	22.60	24	0.283	0.39	0.419	0.58	-0.14

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-9: SAR Values(WCDMA 1900 MHz Band - Head)

			Ambien	t Tempera	ture: 22.4 °C	Lic	quid Tempei	ature: 22.2	°C		
Fred	quency		Toot	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Side	Test Position	Figure No./Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
9800	1880	Left	Touch	Fig.9	23.16	24	0.365	0.44	0.597	0.72	0.15

Table 14.3-10: SAR Values (WCDMA 1900 MHz Band - Body)

					1 141400 (110		= = 44			
		A	mbient T	emperature	e: 22.4 °C	Liquid Ter	nperature:	22.2°C		
Fred	guency	Toot	Figure	Conducte	May tung up	Measured	Reported	Measured	Reported	Power
Frequency Te	Position	No./Not	d Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
Ch.	MHz	FUSITION	е	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
9800	1880	Front	Fig.10	23.16	24	0.493	0.60	0.872	1.06	-0.06

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.3-11: SAR Values (LTE Band2 - Head)

			Amb	ient Temp	oerature	22.4°C	Liquid Temperature: 22.2°C					
Frequ	ency			T4	Figure	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Test Position	No./ Note	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
18900	1880	1RB_Low	Left	Touch	Fig.11	23.49	24	0.331	0.37	0.540	0.61	0.10

Note1: The LTE mode is QPSK_20MHz.

Table 14.3-12: SAR Values (LTE Band2 - Body)

			Ambient	Tempera	ature: 22.4°C	C Liqui	id Tempera	ture: 22.2°0	7		
Frequ		Mode	Test Position	Figure No./	Conducted Power	Max. tune-up Power	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
Ch.	MHz		1 00111011	Note	(dBm)	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
18900	1880	1RB_Low	Front	Fig.12	23.49	24	0.498	0.56	0.881	0.99	0.05

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.3-13: SAR Values(LTE Band4 - Head)

			Ambie	nt Tempei	ature: 22	2.4 °C	Liquid	Temperatur	e: 22.2°C			
Frequ	uency MHz	Mode	Side	Test Position	Figure No./ Note	Conduct ed Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Powe r Drift (dB)
20300	1745	1RB_Low	Left	Touch	Fig.13	23.59	24	0.176	0.19	0.275	0.30	0.07

Note1: The LTE mode is QPSK_20MHz.

Table 14.3-14: SAR Values (LTE Band4 - Body)

		F	Ambient Te	emperatur	e: 22.4 °C	Liquid	d Temperat	ure: 22.2°C			
Frequ	uency MHz	Mode	Test Position	Figure No./Note	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
20300	1745	1RB_Low	Rear	Fig.14	23.59	24	0.313	0.34	0.461	0.51	-0.13

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_20MHz.

Table 14.3-15: SAR Values (LTE Band5 - Head)

			Amb	ient Tem	oerature	: 22.4°C	Liquid	Temperatur	e: 22.2°C			
Frequ	ency			To et	Fig	Conducted	Max.	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Side	Test Position	Figure No.	Power (dBm)	tune-up Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
20600	844	1RB_Mid	Right	Touch	Fig.15	23.47	24	0.163	0.18	0.212	0.24	-0.01

Note1: The LTE mode is QPSK_10MHz.

Table 14.3-16: SAR Values (LTE Band5 - Body)

			Ambient 7	Tempera	nture: 22.5°C	Liqui	d Tempera	ture: 22.0°0	2		
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Mode	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
20600	844	1RB_Mid	Rear	Fig.16	23.47	24	0.172	0.19	0.279	0.32	0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.3-17: SAR Values (LTE Band7 - Head)

			Amb	ient Ten	nperatur	e: 22.4°C	Liquid 7	Temperature	e: 22.2°C			
Fregu	iencv			Test	Figure	Conducte	Max.tune-u	Measured	Reported	Measured	Reported	Powe
Frequency		Mode	Side	Positi	No./	d Power	p Power	SAR(10g)	SAR(10g	SAR(1g)	SAR(1g)	r Drift
Ch.	MHz			on	Note	(dBm)	(dBm)	(W/kg))(W/kg)	(W/kg)	(W/kg)	(dB)
21350	2560	1RB_High	Left	Touch	Fig.17	23.43	24	0.430	0.49	0.822	0.94	0.01

Note1: The LTE mode is QPSK_20MHz.

Table 14.3-18: SAR Values (LTE Band7 - Body)

			Ambient	Tempera	ature: 22.4 °	°C Liquio	d Temperat	ure: 22.2°C			
Frequ	iency	Mode	Test	Figure No./	Conducte d Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
Ch.	MHz	Mode	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
21350	2560	1RB_High	Rear	Fig.18	23.43	24	0.500	0.57	0.939	1.07	0.09

Note1: The distance between the EUT and the phantom bottom is 10mm. Note2: The LTE mode is QPSK_20MHz.

Table 14.3-19: SAR Values (LTE Band12 - Head)

			Amb	ient Tempe	erature: 2	22.4 °C	Liquid	Temperatu	re: 22.2°C			
Frequ	iency	Mode	Side	Test Position	Figure No./	Conduct ed Power	Max. tune-up Power	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
Ch.	MHz				Note	(dBm)	(dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
23060	704	1RB_Low	Left	Touch	Fig.19	23.44	24	0.084	0.10	0.104	0.12	0.02

Note1: The LTE mode is QPSK_10MHz.

Table 14.3-20: SAR Values (LTE Band12 - Body)

		F	Ambient Te	mperatu	ıre: 22.4°C	Liqui	id Tempera	ture: 22.2°0	C		
Freque	ency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MHz	Wiode	Position	No./N ote	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23060	704	1RB_Low	Rear	Fig.20	23.44	24	0.201	0.23	0.255	0.29	0.02

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

Table 14.3-21: SAR Values (LTE Band13 - Head)

			Am	bient Tempe	rature: 22	.4 °C	Liquid	Temperatur	e: 22.2°C			
Freque	ency MHz	Mode	Side	Test Position	Figure No./ Note	Condu cted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Powe r Drift (dB)
23230	782	1RB_High	Left	Touch	Fig.21	23.13	24	0.091	0.11	0.117	0.14	-0.04

Note1: The LTE mode is QPSK_10MHz.

Table 14.3-22: SAR Values (LTE Band13 - Body)

		A	Ambient Te	mperatu	re: 22.4 °C	Liqui	d Temperat	ture: 22.2°0	C		
Freque	ncy	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
Ch.	MH z	Widde	Test Position	No./N ote	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
23230	782	1RB_ High	Rear	Fig.22	23.13	24	0.244	0.30	0.310	0.38	0.07

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK_10MHz.

14.4 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial test</u> <u>position</u> procedure.

Head Evaluation

Table 14.4-1: SAR Values(WLAN - Head)—802.11b (Fast SAR)

			Amb	ient Ten	nperature: 2	2.4 °C L	iquid Tempe	erature: 22.	2°C		
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side	Position	No./	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz			POSITION	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2437	6	Left	Touch	/	18.24	19	0.152	0.18	0.257	0.31	0.04
2437	6	Left	Tilt	/	18.24	19	0.164	0.20	0.299	0.36	-0.02
2437	6	Right	Touch	/	18.24	19	0.355	0.42	0.711	0.85	-0.08
2437	6	Right	Tilt	/	18.24	19	0.267	0.32	0.575	0.68	0.15
2437	6	Right	Touch	B2	18.24	19	0.337	0.40	0.645	0.77	-0.02

As shown above table, the <u>initial test position</u> for head is "Right Touch". So the head SAR of WLAN is presented as below:

Table 14.4-2: SAR Values(WLAN - Head)— 802.11b (Full SAR)

			Amb	oient Ten	nperature: 2	2.4°C L	iquid Tempe	erature: 22.	2°C		
Frequ	Frequency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	1	Side		No./	Power	•	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz		Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)	
2437	6	Right	Touch	Fig.23	18.24	19	0.320	0.38	0.653	0.78	-0.08
2437	6	Right	Tilt	/	18.24	19	0.231	0.28	0.522	0.62	0.15

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.4-3: SAR Values (WLAN - Head) – 802.11b (Scaled Reported SAR)

		Ambier	nt Temperat	ure: 22.4 °C	4°C Liquid Temperature: 22.2°C				
Freque	ency	Side	Test	Actual duty	maximum	Reported SAR	Scaled reported SAR		
MHz	Ch.	0.00	Position	factor	duty factor	(1g)(W/kg)	(1g)(W/kg)		
2437 6		Right	Touch	98.14%	100%	0.78	0.79		

SAR is not required for OFDM because the 802.11b adjusted SAR \leq 1.2 W/kg.

Body Evaluation

Table 14.4-4: SAR Values(WLAN - Body) – 802.11b (Fast SAR)

		Α	mbient T	emperature	22.4 °C	Liquid Temperature: 22.2°C					
Freque	ency	Test	Figure No./	Conducted	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)(Power Drift	
MHz	Ch.	Position	Note	(dBm)	Power (dBm) Power (dBm)		(W/kg)	(W/kg)	W/kg)	(dB)	
2437	6	Front	/	18.24	19	0.061	0.07	0.110	0.13	0.00	
2437	6	Rear	/	18.24	19	0.064	80.0	0.142	0.17	-0.12	
2437	6	Left	/	18.24	19	0.028	0.03	0.054	0.06	0.14	
2437	6	Тор	/	18.24	19	0.033	0.04	0.063	0.07	0.12	
2437	6	Rear	B2	18.24	19	0.056	0.07	0.114	0.14	-0.05	

As shown above table, the <u>initial test position</u> for body is "Front". So the body SAR of WLAN is presented as below:

Table 14.4-5: SAR Values(WLAN - Body)— 802.11b (Full SAR)

		Α	mbient T	emperature:	22.4 °C	Liquid Temperature: 22.2°C				
Freque	Frequency Test Figure Conducted		May tung up	Measured	Reported	Measured	Reported	Power		
	ı		No./	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.	Position	Note	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
2437	6	Rear	Fig.24	18.24	19	0.064	0.08	0.132	0.16	-0.12

Note1: When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest estimated 1-g SAR conditions determined by area scans, on the highest maximum output power channel, until the <u>reported</u> SAR is \leq 0.8 W/kg.

Note2: For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

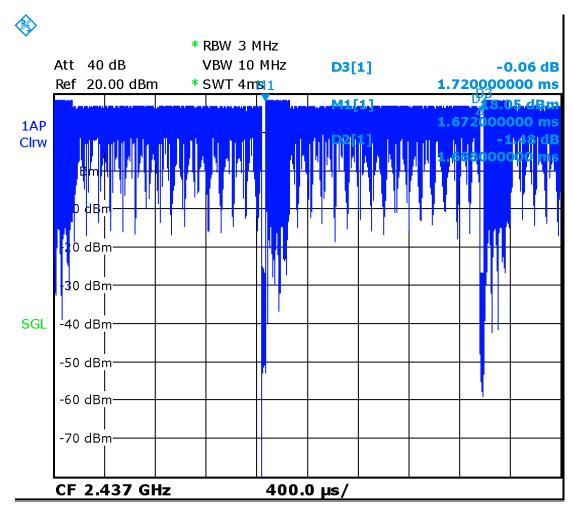

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. The scaled reported SAR is presented as below.

Table 14.4-6: SAR Values (WLAN - Body) – 802.11b (Scaled Reported SAR)

		Ambient Ter	mperature: 22.4	↓°C Liqui	d Temperature: 22	.2°C
Freque	ency	Test	Actual duty	maximum duty	Reported SAR	Scaled reported SAR
MHz	Ch.	Position	factor	factor	(1g)(W/kg)	(1g)(W/kg)
2437	6	Rear	98.14%	100%	0.16	0.16

SAR is not required for OFDM because the 802.11b adjusted SAR ≤ 1.2 W/kg.

Picture 14.1 Duty factor plot

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body W1900 (1g)

Fred	luency	Toot	Specing	Original	First	The	Second
Ch.	Ch. MHz	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
9800	1880	Front	10	0.872	0.866	1.01	1

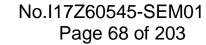
Table 15.2: SAR Measurement Variability for Body LTE B2 (1g)

Frequ	ency		Toot	Specing	Original	First	The	Second
Ch.	MHz	Mode	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
18900	1880	1RB_Low	Front	10	0.881	0.876	1.01	1

Table 15.3: SAR Measurement Variability for Head LTE B7 (1g)

Frequ	ency			Test	Original	First	The	Second
Ch.	MHz	Mode	Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
21350	2560	1RB_High	Left	Touch	0.822	0.813	1.01	1

Table 15.4: SAR Measurement Variability for Body LTE B7 (1g)


Frequency			Toot	Spacing	Original	First	The	Second
Ch.	Ch. MHz	Mode	Test Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
21350	2560	1RB_High	Rear	10	0.939	0.923	1.02	1

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.	<u> 1 Measurement Ui</u>	icei la	inity for No	rmai SAK	iests	(SUUI	VITZ~	ЗСП	iz)					
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree				
			value	Distribution		1g	10g	Unc.	Unc.	of				
								(1g)	(10g)	freedom				
Mea	surement system													
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞				
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞				
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞				
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞				
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞				
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8				
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞				
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞				
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞				
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8				
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞				
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8				
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞				
			Test	sample relate	d									
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71				
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5				
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞				
			Phan	tom and set-u	p	I.	I.	I.	l.					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞				
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞				
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43				
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8				
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521				

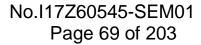
Liquid permittivity

20

(Combined standard uncertainty	<i>u</i> ' _c =	$=\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					9.55	9.43	257
_	anded uncertainty fidence interval of	1	$u_e = 2u_c$					19.1	18.9	
16.	2 Measurement U	ncerta	inty for No	rmal SAR	Tests	(3~6	GHz)			
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Mea	surement system									
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample relate	d					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
		I.	Phan	tom and set-u	ıp		ul		l .	
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
		_			_			_		

1.4

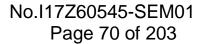
1.7


 $\sqrt{3}$

0.6

0.49

R


5.0

	(target)									
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
(con	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					21.4	21.1	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)											
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
			value	Distribution		1g	10g	Unc.	Unc.	of	
								(1g)	(10g)	freedom	
Mea	surement system										
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞	
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞	
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞	
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞	
			Test	sample relate	d						
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5	
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
Phantom and set-up											
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞	

19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
Expanded uncertainty (confidence interval of 95 %)		l	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree	
INO.	Error Description	Type	value	Distribution	DIV.	` ′	10g	Unc.	Unc.	of	
			value	Distribution		1g	Tog				
Maa	(1g) (10g) freedom										
	Measurement system										
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞	
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8	
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞	
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8	
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8	
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞	
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8	
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8	
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8	
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8	
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8	
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8	
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8	
Test sample related											
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71	
16	Device holder	A	3.4	N	1	1	1	3.4	3.4	5	

©Copyright. All rights reserved by CTTL.

	uncertainty									
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
	Phantom and set-up									
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		$u_c' =$	$= \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
(conf	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 13, 2017	One year	
02	Power meter	NRVD	102083	Comtombo 22 2040	0.000	
03	Power sensor	NRV-Z5	100595	September 22,2016	One year	
04	Signal Generator	E4438C	MY49071430	January 13,2017	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Re	quested	
06	BTS	E5515C	MY50263375	January 16, 2017	One year	
07	BTS	CMW500	159890	November 25, 2016	One year	
08	E-field Probe	SPEAG EX3DV4	3846	January 13,2017	One year	
09	DAE	SPEAG DAE4	1331	January 19, 2017	One year	
10	Dipole Validation Kit	SPEAG D750V3	1017	July 20,2016	One year	
11	Dipole Validation Kit	SPEAG D835V2	4d069	July 20,2016	One year	
12	Dipole Validation Kit	SPEAG D1750V2	1003	July 21,2016	One year	
13	Dipole Validation Kit	SPEAG D1900V2	5d101	July 28,2016	One year	
14	Dipole Validation Kit	SPEAG D2450V2	853	July 25,2016	One year	
15	Dipole Validation Kit	SPEAG D2600V2	1012	July 25,2016	One year	

END OF REPORT BODY

ANNEX A Graph Results

850 Right Cheek High

Date: 2017-4-19

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.896$ mho/m; $\epsilon r = 41.06$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 – SN3846 ConvF(9.33, 9.33, 9.33)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.309 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.290 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.358 W/kg

SAR(1 g) = 0.283 W/kg; SAR(10 g) = 0.216 W/kg

Maximum value of SAR (measured) = 0.306 W/kg

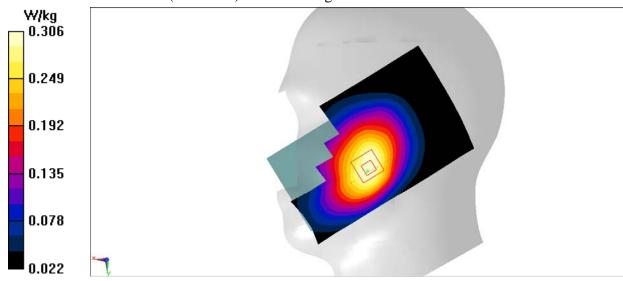


Fig.1 850MHz

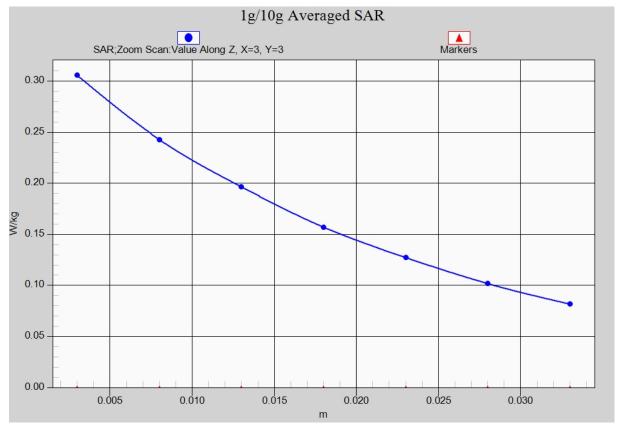


Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Rear High

Date: 2017-4-19

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.982$ mho/m; $\epsilon r = 54.25$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN3846 ConvF(9.52, 9.52, 9.52)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.610 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.18 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.734 W/kg

SAR(1 g) = 0.531 W/kg; SAR(10 g) = 0.385 W/kg

Maximum value of SAR (measured) = 0.592 W/kg

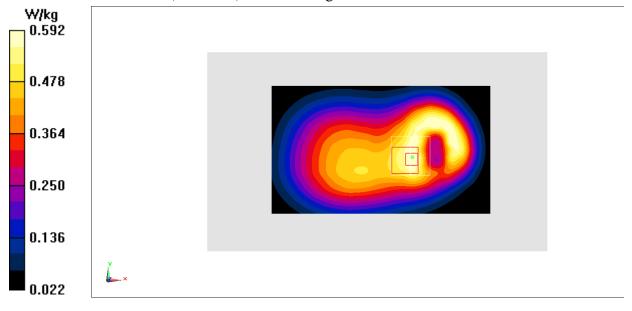


Fig.2 850 MHz

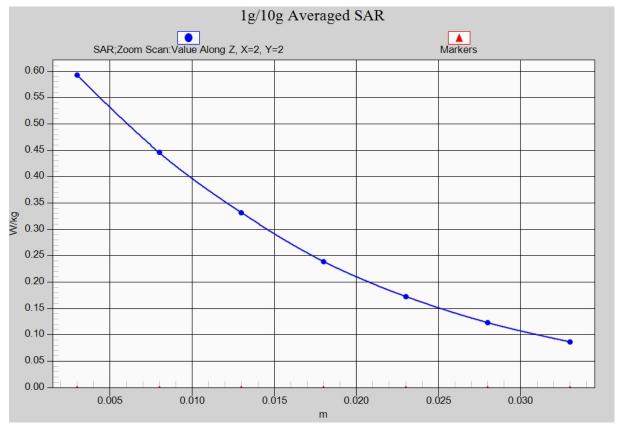


Fig. 2-1 Z-Scan at power reference point (850 MHz)

1900 Left Cheek High

Date: 2017-4-21

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.396 \text{ mho/m}$; $\epsilon r = 41.05$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4– SN3846 ConvF(7.89, 7.89, 7.89)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.258 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.190 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.350 W/kg

SAR(1 g) = 0.222 W/kg; SAR(10 g) = 0.135 W/kg

Maximum value of SAR (measured) = 0.264 W/kg

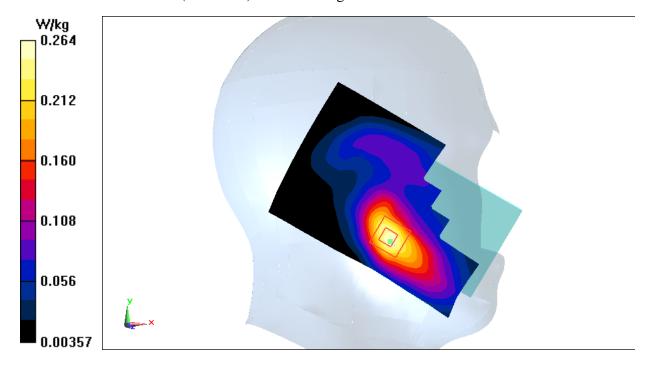


Fig.3 1900 MHz

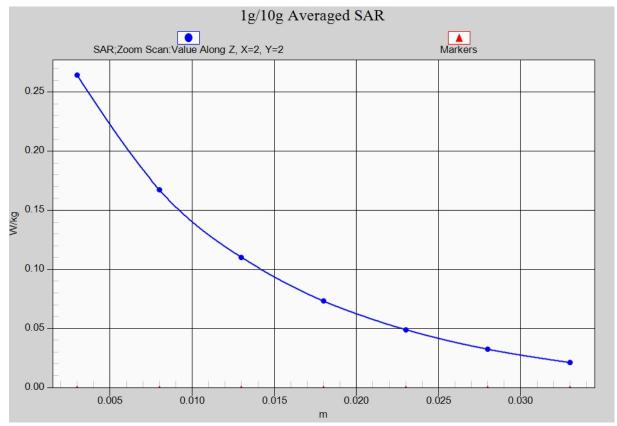


Fig. 3-1 Z-Scan at power reference point (1900 MHz)

1900 Body Front High

Date: 2017-4-21

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.563 \text{ mho/m}$; $\epsilon r = 52.42$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:2

Probe: EX3DV4- SN3846 ConvF(7.57, 7.57, 7.57)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.821 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.46 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.676 W/kg; SAR(10 g) = 0.386 W/kg

Maximum value of SAR (measured) = 0.833 W/kg

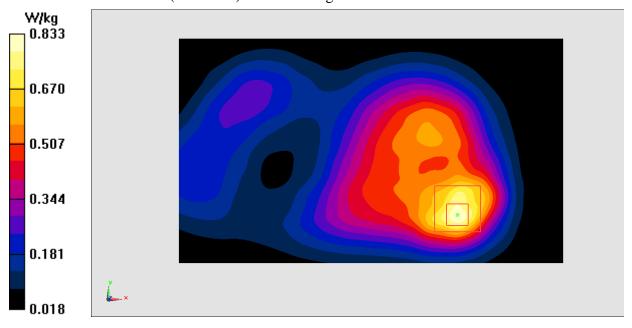


Fig.4 1900 MHz

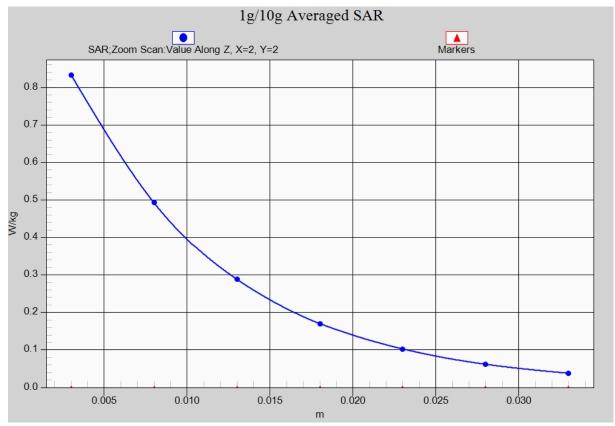


Fig. 4-1 Z-Scan at power reference point (1900 MHz)

WCDMA 850 Right Cheek High

Date: 2017-4-19

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.893$ mho/m; $\epsilon r = 41.065$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3846 ConvF(9.33, 9.33, 9.33)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.245 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.505 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.285 W/kg

SAR(1 g) = 0.226 W/kg; SAR(10 g) = 0.173 W/kg

Maximum value of SAR (measured) = 0.245 W/kg

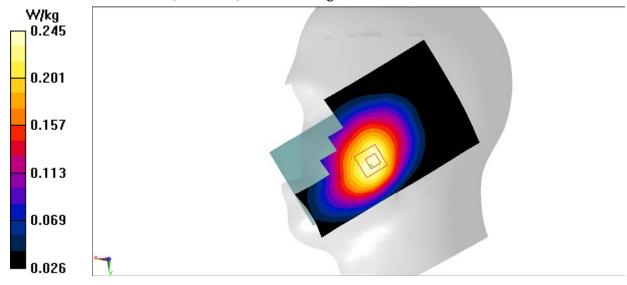


Fig.5 WCDMA 850

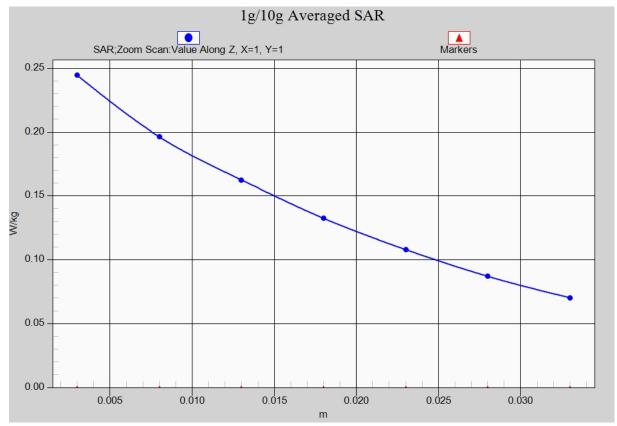


Fig. 5-1 Z-Scan at power reference point (850 MHz)

WCDMA 850 Body Rear High

Date: 2017-4-19

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.979$ mho/m; $\epsilon r = 54.256$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 – SN3846 ConvF(9.52, 9.52, 9.52)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.352 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.98 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.423 W/kg

SAR(1 g) = 0.309 W/kg; SAR(10 g) = 0.225 W/kg

Maximum value of SAR (measured) = 0.345 W/kg

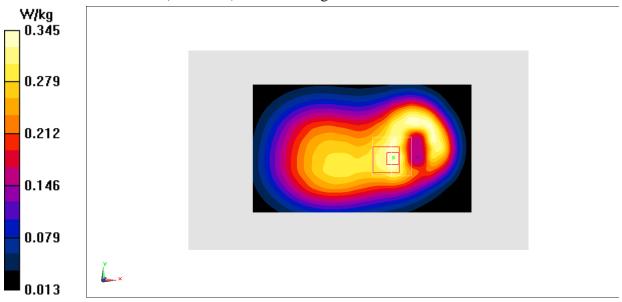


Fig.6 WCDMA 850

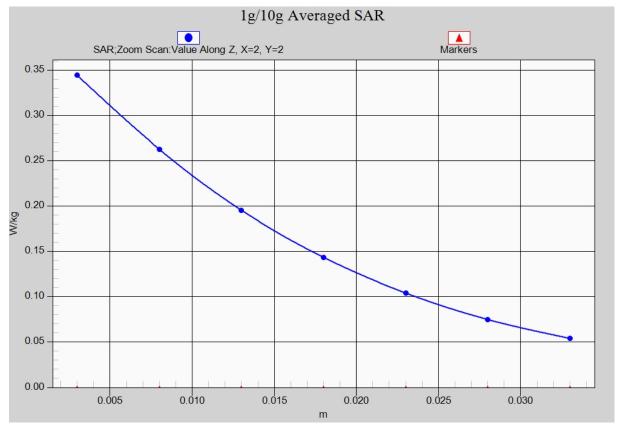


Fig. 6-1 Z-Scan at power reference point (WCDMA850)

WCDMA 1700 Left Cheek Middle

Date: 2017-4-20

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.361$ mho/m; $\epsilon r = 39.257$; $\rho = 1.361$ mho/m; $\epsilon r = 39.257$; $\epsilon = 1.361$ mho/m; $\epsilon r = 1.361$ mho/m; ϵ

 1000 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: WCDMA 1750 Frequency: 1732.4 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN3846 ConvF(8.16, 8.16, 8.16)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.379 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.518 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.483 W/kg

SAR(1 g) = 0.333 W/kg; SAR(10 g) = 0.213 W/kg

Maximum value of SAR (measured) = 0.389 W/kg

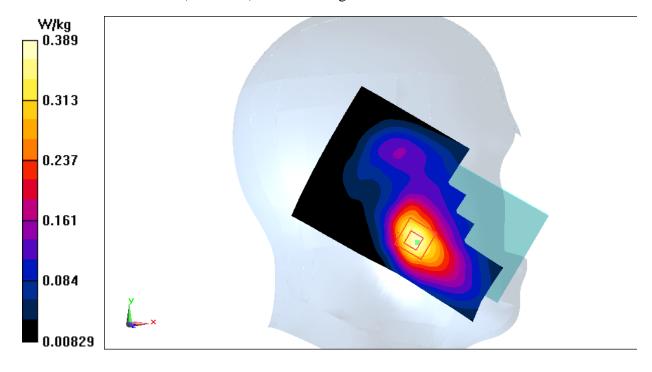


Fig.7 WCDMA1700

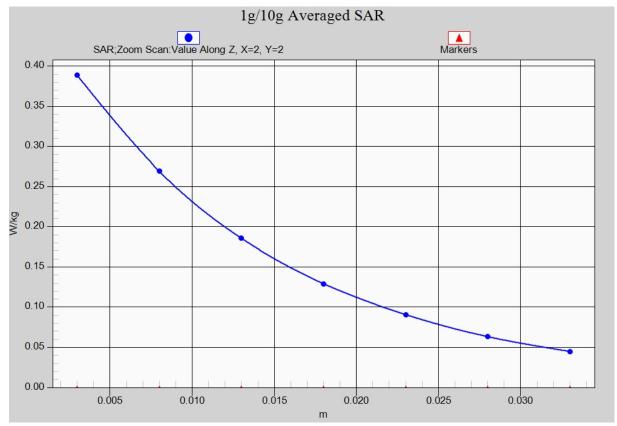


Fig. 7-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1700 Body Rear Middle

Date: 2017-4-20

Electronics: DAE4 Sn1331 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1732.4 MHz; $\sigma = 1.478$ mho/m; $\epsilon r = 52.328$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: WCDMA 1900 Frequency: 1732.4 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN3846 ConvF(7.90, 7.90, 7.90)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.475 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.34 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.419 W/kg; SAR(10 g) = 0.283 W/kg

Maximum value of SAR (measured) = 0.475 W/kg

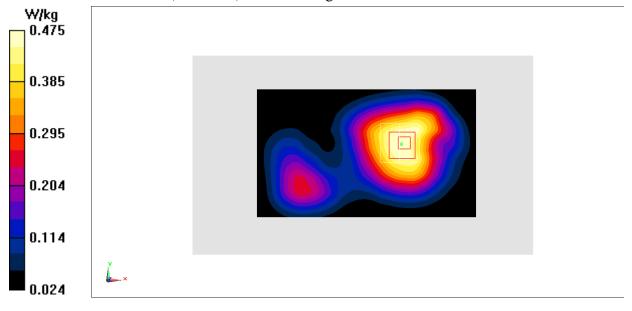


Fig.8 WCDMA1700

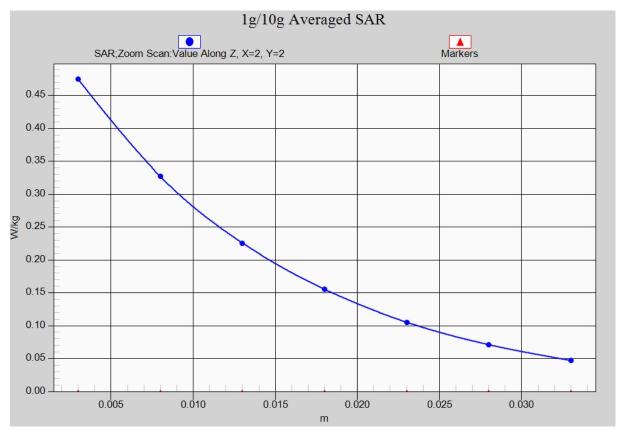


Fig. 8-1 Z-Scan at power reference point (WCDMA1700)

WCDMA 1900 Left Cheek Middle

Date: 2017-4-21

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.445 \text{ mho/m}$; $\epsilon r = 41.056$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4- SN3846 ConvF(7.89, 7.89, 7.89)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.694 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.516 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.919 W/kg

SAR(1 g) = 0.597 W/kg; SAR(10 g) = 0.365 W/kgMaximum value of SAR (measured) = 0.712 W/kg

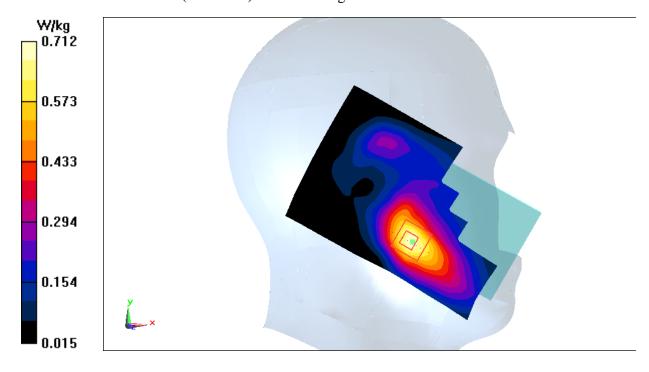


Fig.9 WCDMA1900

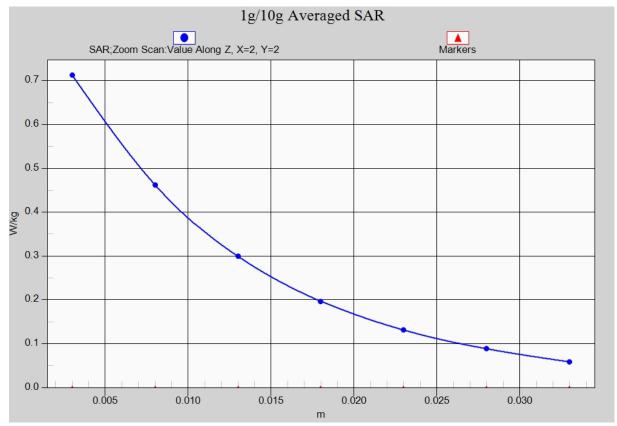


Fig. 9-1 Z-Scan at power reference point (WCDMA1900)

WCDMA 1900 Body Front Middle

Date: 2017-4-21

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.519 \text{ mho/m}$; $\epsilon r = 52.85$; $\rho = 1000 \text{ kg/m}^3$

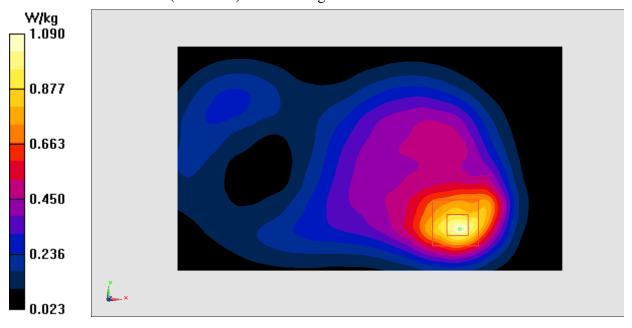
Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4- SN3846 ConvF(7.57, 7.57, 7.57)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.06 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.37 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.872 W/kg; SAR(10 g) = 0.493 W/kg

Maximum value of SAR (measured) = 1.09 W/kg

Fig.10 WCDMA1900

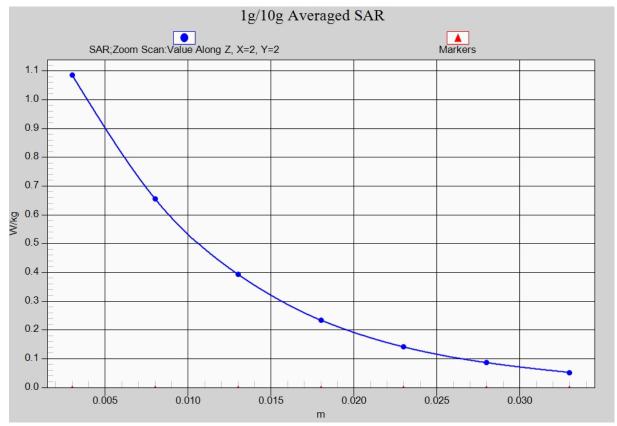


Fig. 10-1 Z-Scan at power reference point (WCDMA1900)

LTE Band2 Left Cheek Middle with QPSK_20M_1RB_Low

Date: 2017-4-21

Electronics: DAE4 Sn1331 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.478 \text{. mho/m}$; $\epsilon r = 40.134$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band2 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4- SN3846 ConvF(7.89, 7.89, 7.89)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.618 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.822 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.823 W/kg

SAR(1 g) = 0.540 W/kg; SAR(10 g) = 0.331 W/kg

Maximum value of SAR (measured) = 0.640 W/kg

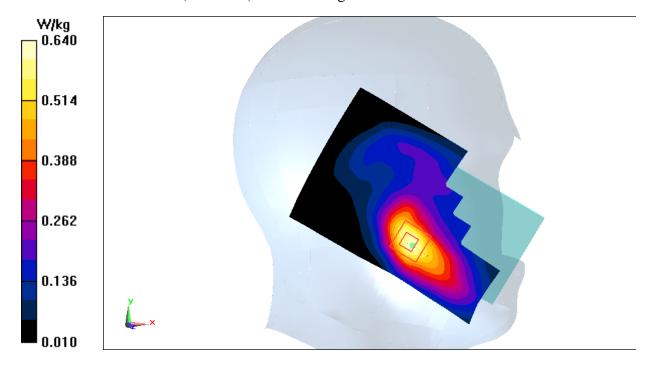


Fig.11 LTE Band2

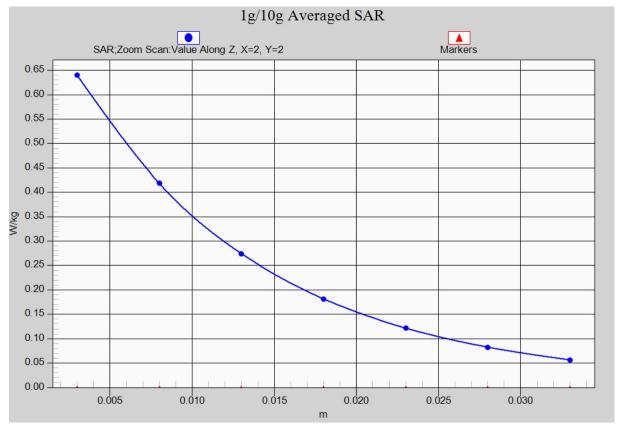


Fig. 11-1 Z-Scan at power reference point (LTE Band2)

LTE Band2 Body Front Middle with QPSK_20M_1RB_Low

Date: 2017-4-21

Electronics: DAE4 Sn1331 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.519 \text{ mho/m}$; $\epsilon r = 52.85$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band2 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4- SN3846 ConvF(7.57, 7.57, 7.57)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.05 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.95 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.881 W/kg; SAR(10 g) = 0.498 W/kg

Maximum value of SAR (measured) = 1.02 W/kg

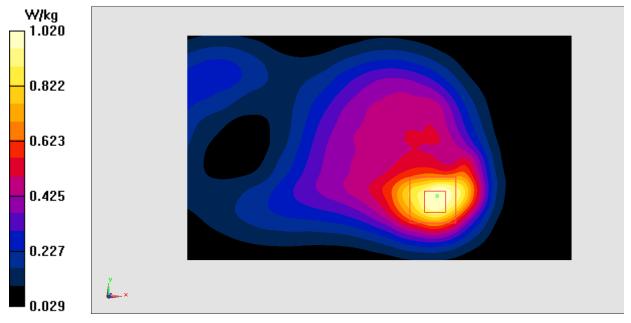


Fig.12 LTE Band2

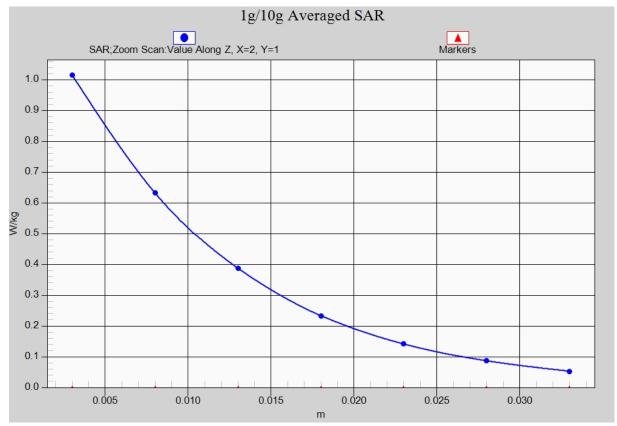


Fig. 12-1 Z-Scan at power reference point (LTE Band2)

LTE Band4 Left Cheek High with QPSK_20M_1RB_Low

Date: 2017-4-20

Electronics: DAE4 Sn1331 Medium: Head 1750 MHz

Medium parameters used f = 1745 MHz; σ = 1.364 mho/m; ϵ r = 39.117; ρ = 1000 kg/m³

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band4 Frequency: 174MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3846 ConvF(8.16, 8.16, 8.16)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.316 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.670 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.397 W/kg

SAR(1 g) = 0.275 W/kg; SAR(10 g) = 0.176 W/kg

Maximum value of SAR (measured) = 0.320 W/kg

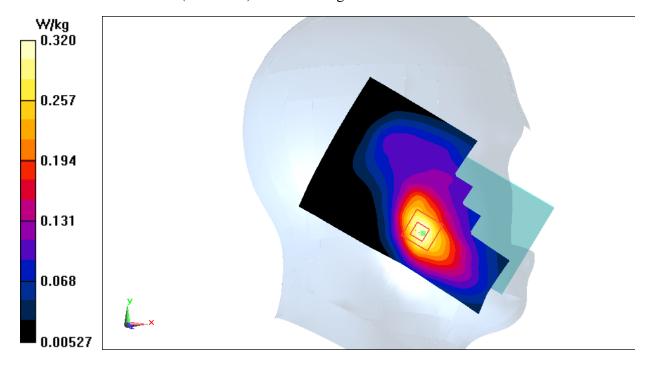


Fig.13 LTE Band4

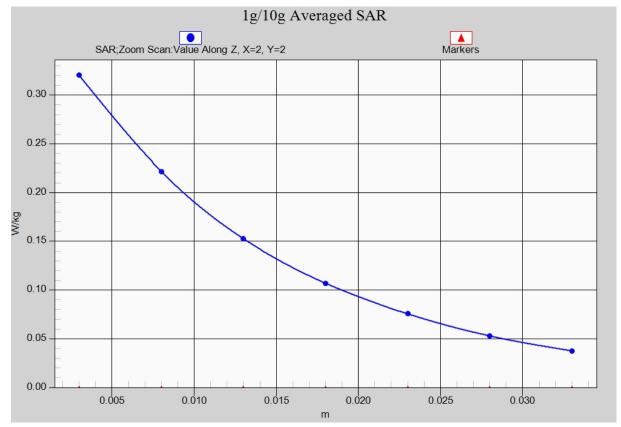


Fig. 13-1 Z-Scan at power reference point (LTE Band4)

LTE Band4 Body Rear High with QPSK_20M_1RB_Low

Date: 2017-4-20

Electronics: DAE4 Sn1331 Medium: Body 1750 MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 52.159$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band4 Frequency: 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3846 ConvF(7.90, 7.90, 7.90)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.525 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.04 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.653 W/kg

SAR(1 g) = 0.461 W/kg; SAR(10 g) = 0.313 W/kgMaximum value of SAR (massured) = 0.525 W/kg

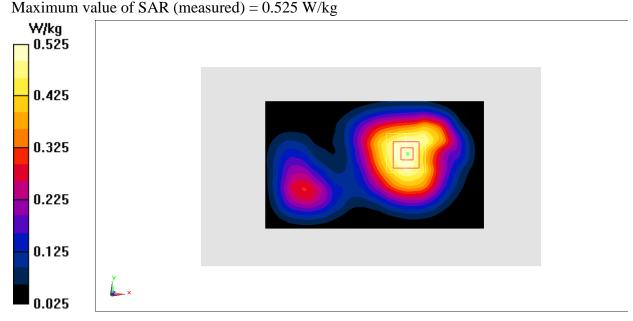


Fig.14 LTE Band4

Fig. 14-1 Z-Scan at power reference point (LTE Band4)

LTE Band5 Right Cheek High with QPSK_10M_1RB_Middle

Date: 2017-4-19

Electronics: DAE4 Sn1331 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 844 MHz; $\sigma = 0.902$ mho/m; $\epsilon r = 40.971$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band5 Frequency: 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.33, 9.33, 9.33)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.234 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.684 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.212 W/kg; SAR(10 g) = 0.163 W/kg

Maximum value of SAR (measured) = 0.230 W/kg

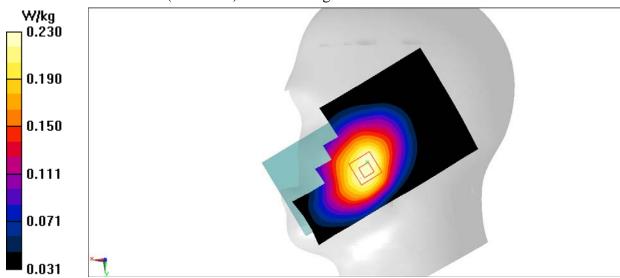


Fig.15 LTE Band5

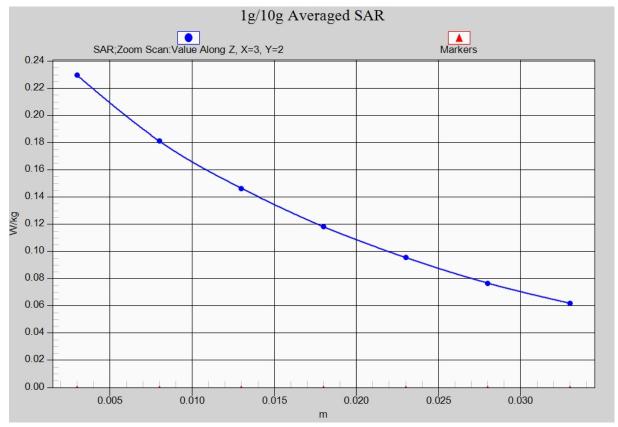


Fig. 15-1 Z-Scan at power reference point (LTE Band5)

LTE Band5 Body Rear High with QPSK_10M_1RB_Middle

Date: 2017-4-19

Electronics: DAE4 Sn1331 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 844 MHz; $\sigma = 1.034$ mho/m; $\epsilon r = 53.914$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band5 Frequency: 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.52, 9.52, 9.52)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.342 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.49 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.460 W/kg

SAR(1 g) = 0.279 W/kg; SAR(10 g) = 0.172 W/kg

Maximum value of SAR (measured) = 0.331 W/kg

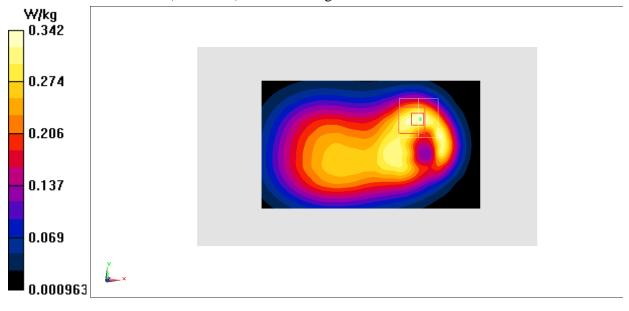


Fig.16 LTE Band5

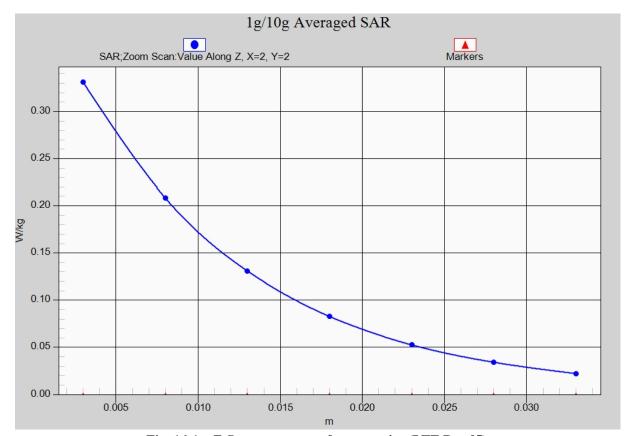


Fig. 16-1 Z-Scan at power reference point (LTE Band5)

LTE Band7 Left Cheek High with QPSK_20M_1RB_High

Date: 2017-4-22

Electronics: DAE4 Sn1331 Medium: Head2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 1.962 \text{ mho/m}$; $\epsilon r = 38.66$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band7Frequency: 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4- SN3846 ConvF(7.12, 7.12, 7.12)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.935 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.403 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.822 W/kg; SAR(10 g) = 0.430 W/kg

Maximum value of SAR (measured) = 0.951 W/kg

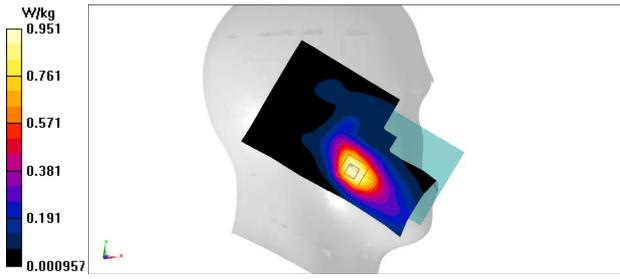


Fig.17 LTE Band7

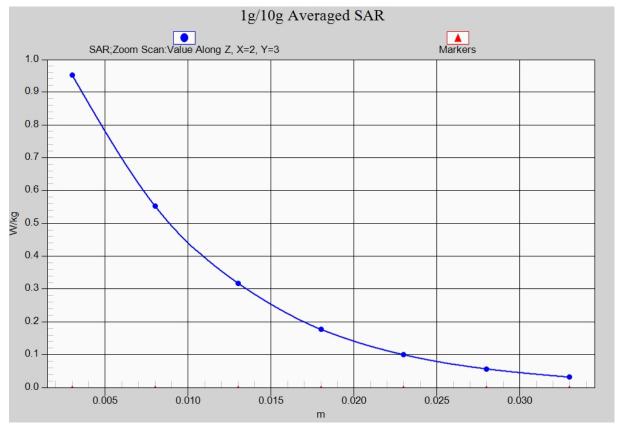


Fig. 17-1 Z-Scan at power reference point (LTE Band7)

LTE Band7 Body Rear High with QPSK_20M_1RB_High

Date: 2017-4-22

Electronics: DAE4 Sn1331 Medium: Body2600 MHz

Medium parameters used: f = 2560 MHz; $\sigma = 2.176 \text{ mho/m}$; $\epsilon r = 53.22$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band7 Frequency: 2560 MHz Duty Cycle: 1:1

Probe: EX3DV4- SN3846 ConvF(7.25, 7.25, 7.25)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.35 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.34 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.80 W/kg

SAR(1 g) = 0.939 W/kg; SAR(10 g) = 0.500 W/kg

Maximum value of SAR (measured) = 1.18 W/kg

Fig.18 LTE Band7

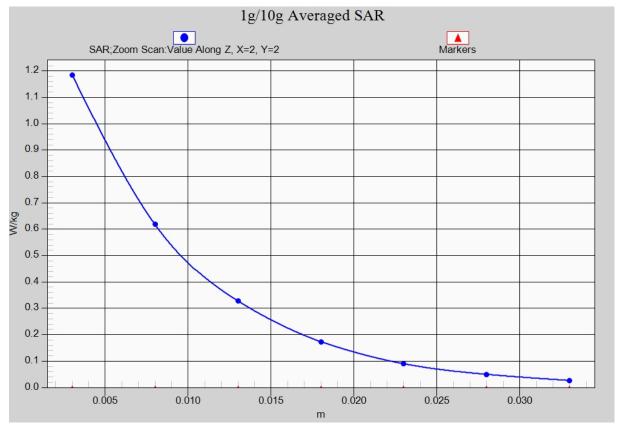


Fig. 18-1 Z-Scan at power reference point (LTE Band7)

LTE Band12 Left Cheek Low with QPSK_10M_1RB_Low

Date: 2017-4-23

Electronics: DAE4 Sn1331 Medium: Head750 MHz

Medium parameters used (interpolated): f = 704 MHz; $\sigma = 0.856$ mho/m; $\epsilon r = 42.83$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band12Frequency: 704 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN3846 ConvF(9.65, 9.65, 9.65)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.112 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.878 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.123 W/kg

SAR(1 g) = 0.104 W/kg; SAR(10 g) = 0.084 W/kg

Maximum value of SAR (measured) = 0.110 W/kg

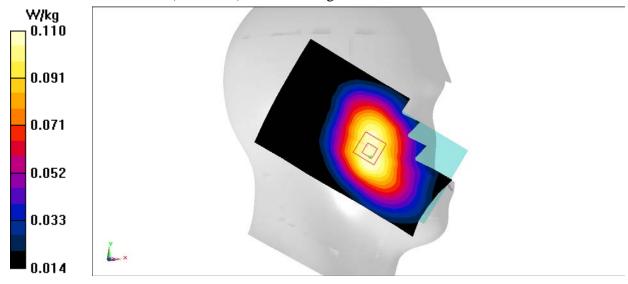


Fig.19 LTE Band12

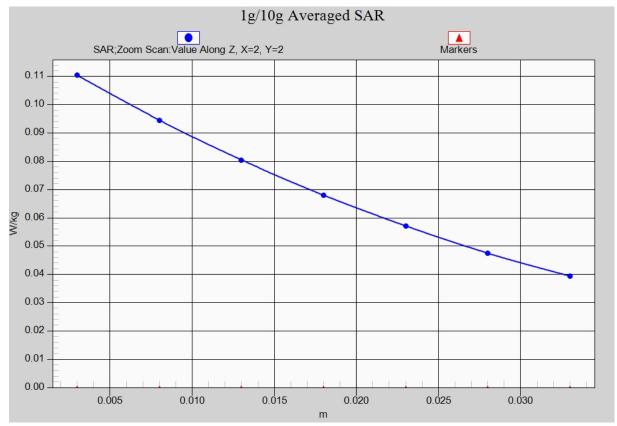


Fig. 19-1 Z-Scan at power reference point (LTE Band12)

LTE Band12 Body Rear Low with QPSK_10M_1RB_Low

Date: 2017-4-23

Electronics: DAE4 Sn1331 Medium: Body750 MHz

Medium parameters used (interpolated): f = 704 MHz; $\sigma = 0.929$ mho/m; $\epsilon r = 54.43$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band12Frequency: 704 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN3846 ConvF(9.96, 9.96, 9.96)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.277 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.39 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.316 W/kg

SAR(1 g) = 0.255 W/kg; SAR(10 g) = 0.201 W/kg

Maximum value of SAR (measured) = 0.276 W/kg

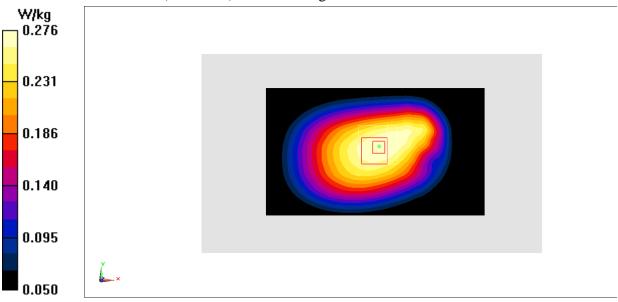


Fig.20 LTE Band12

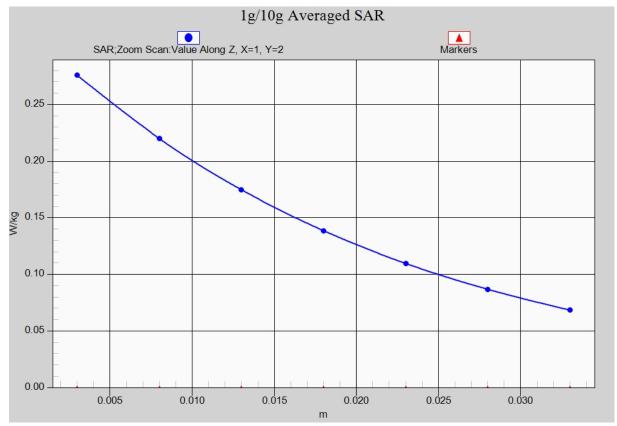


Fig. 20-1 Z-Scan at power reference point (LTE Band12)

LTE Band13 Left Cheek with QPSK_10M_1RB_High

Date: 2017-4-23

Electronics: DAE4 Sn1331 Medium: Head750 MHz

Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.899$ mho/m; $\epsilon r = 42.77$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band13Frequency: 782 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN3846 ConvF(9.65, 9.65, 9.65)

Area Scan (71x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.131 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.136 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.145 W/kg

SAR(1 g) = 0.117 W/kg; SAR(10 g) = 0.091 W/kg

Maximum value of SAR (measured) = 0.127 W/kg

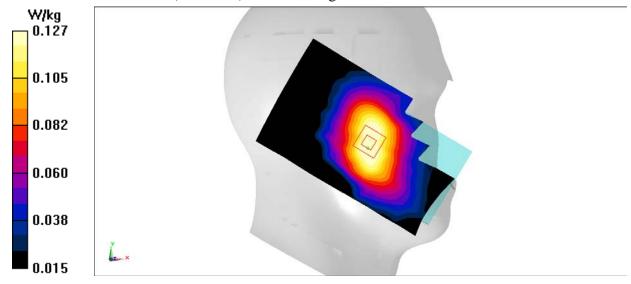


Fig.21 LTE Band13

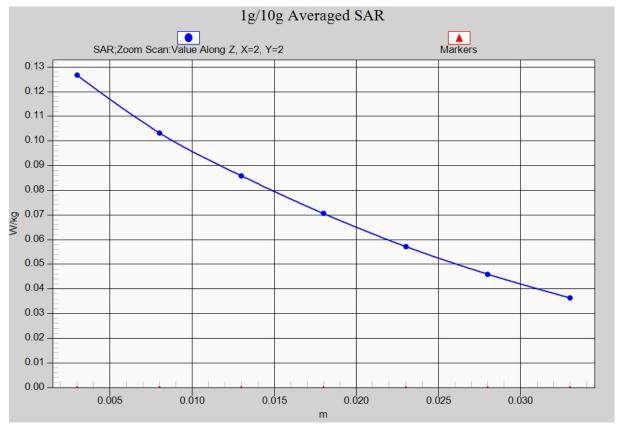


Fig. 21-1 Z-Scan at power reference point (LTE Band13)

LTE Band13 Body Rear with QPSK_10M_1RB_High

Date: 2017-4-23

Electronics: DAE4 Sn1331 Medium: Body750 MHz

Medium parameters used (interpolated): f = 782 MHz; $\sigma = 0.958$ mho/m; $\epsilon r = 54.28$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: LTE Band13Frequency: 782 MHz Duty Cycle: 1:1

Probe: EX3DV4- SN3846 ConvF(9.96, 9.96, 9.96)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.335 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.07 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.381 W/kg

SAR(1 g) = 0.310 W/kg; SAR(10 g) = 0.244 W/kg

Maximum value of SAR (measured) = 0.336 W/kg

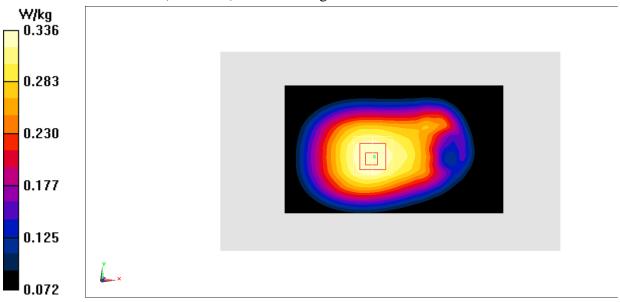


Fig.22 LTE Band13

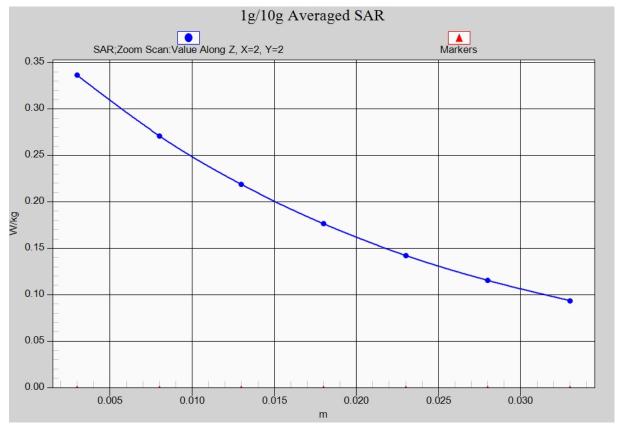


Fig. 22-1 Z-Scan at power reference point (LTE Band13)

Wifi 802.11b Right Cheek Channel 6

Date: 2017-4-24

Electronics: DAE4 Sn1331 Medium: Head 2450 MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.824$ mho/m; $\varepsilon_r = 39.25$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: WLan 2450 Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN3846 ConvF(7.22, 7.22, 7.22)

Area Scan (91x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.05 W/kg

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.56 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.653 W/kg; SAR(10 g) = 0.320 W/kg

Maximum value of SAR (measured) = 0.847 W/kg

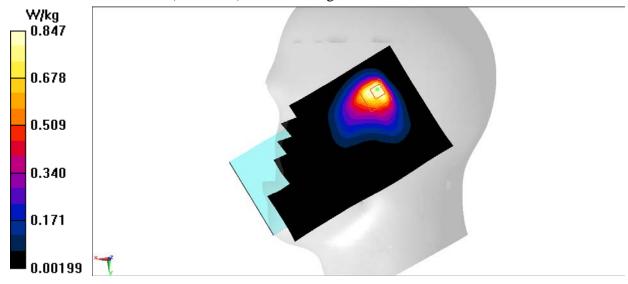


Fig.23 2450 MHz

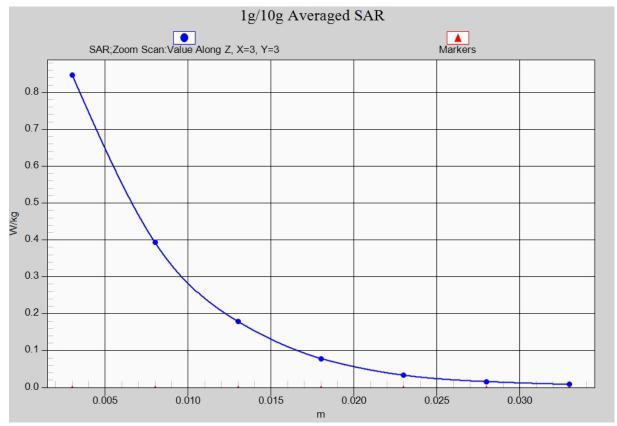


Fig. 23-1 Z-Scan at power reference point (2450 MHz)

Wifi 802.11b Body Rear Channel 6

Date: 2017-4-24

Electronics: DAE4 Sn1331 Medium: Body 2450 MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.922$ mho/m; $\varepsilon_r = 52.55$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: WLan 2450 Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3846 ConvF(7.31, 7.31, 7.31)

Area Scan (121x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.242 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.319 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.264 W/kg

SAR(1 g) = 0.132 W/kg; SAR(10 g) = 0.064 W/kg

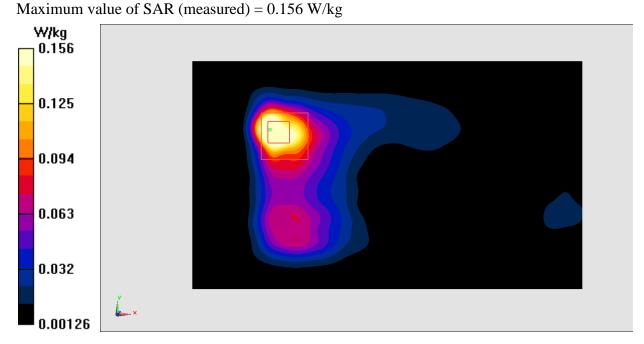


Fig.24 2450 MHz

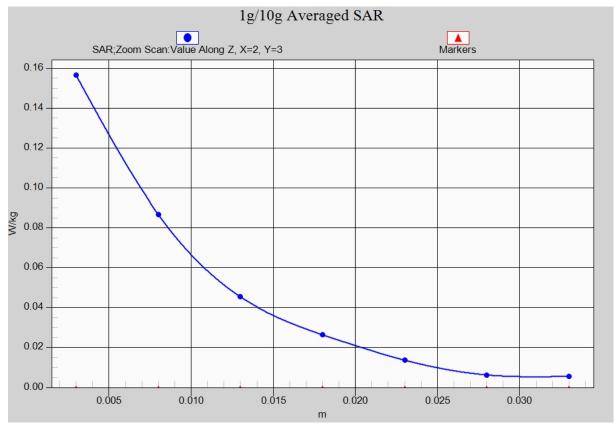


Fig. 24-1 Z-Scan at power reference point (2450 MHz)

ANNEX B System Verification Results

750MHz

Date: 2017-4-23

Electronics: DAE4 Sn1331 Medium: Head 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.886 \text{ mho/m}$; $\varepsilon_r = 42.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN3846 ConvF(9.65, 9.65, 9.65)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

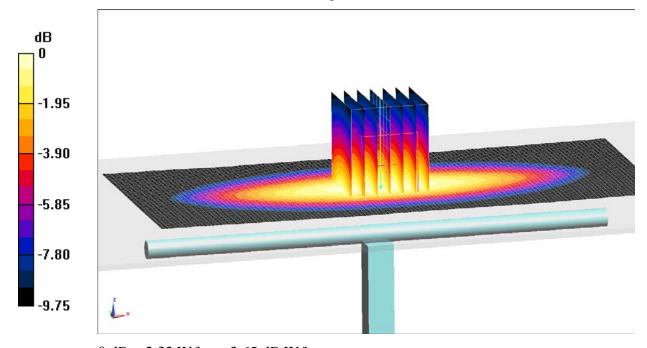
mm

Reference Value = 51.372 V/m; Power Drift = -0.08 dB

Fast SAR: SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.44 W/kg

Maximum value of SAR (interpolated) = 2.35 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 51.372 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.02 W/kg

SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.41 W/kg

Maximum value of SAR (measured) = 2.32 W/kg

0 dB = 2.32 W/kg = 3.65 dB W/kg

Fig.B.1 validation 750MHz 250mW

750MHz

Date: 2017-4-23

Electronics: DAE4 Sn1331 Medium: Body750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.942 \text{ mho/m}$; $\varepsilon_r = 54.34$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

Probe: EX3DV4– SN3846 ConvF(9.96, 9.96, 9.96)

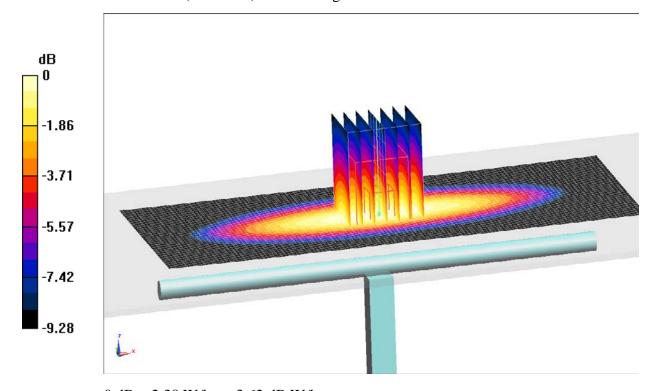
System Validation/Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 50.936 V/m; Power Drift = 0.09 dB

Fast SAR: SAR(1 g) = 2.26 W/kg; SAR(10 g) = 1.47 W/kg

Maximum value of SAR (interpolated) = 2.32 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.936 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 2.98 W/kg

SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.30 W/kg

0 dB = 2.30 W/kg = 3.62 dB W/kg

Fig.B.2 validation 750MHz 250mW

835 MHz

Date: 2017-4-19

Electronics: DAE4 Sn1331 Medium: Head835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.892$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.4°C Liquid Temperature: 22.2°C

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN3846 ConvF(9.33, 9.33, 9.33)

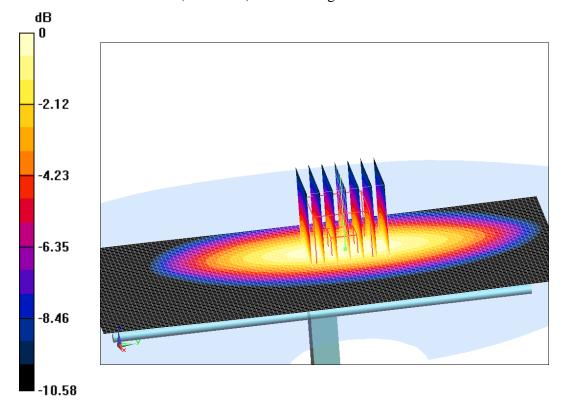
System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 59.5 V/m; Power Drift = 0.02

Fast SAR: SAR(1 g) = 2.34W/kg; SAR(10 g) = 1.52 W/kg

Maximum value of SAR (interpolated) = 3.22 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =59.5 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 2.33W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 3.37 W/kg

0 dB = 3.37W/kg = 5.28 dB W/kg

Fig.B.3 validation 835 MHz 250mW