

## Table 14.22: SAR Values (LTE Band17 - Head)

|       |       |          | Amb   | ient Temp        | erature:      | 22.9 °C        | Liquid                    | Temperatur         | e: 22.5 °C         |                   |                   |               |
|-------|-------|----------|-------|------------------|---------------|----------------|---------------------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Frequ | uency |          |       | Toot             | Figure        | Conducted      | Max.                      | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.   | Mode     | Side  | Test<br>Position | Figure<br>No. | Power<br>(dBm) | tune-up<br>Power<br>(dBm) | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 709   | 23780 | 1RB_Low  | Left  | Touch            | Fig.21        | 23.91          | 24.5                      | 0.097              | 0.11               | 0.125             | 0.14              | -0.13         |
| 709   | 23780 | 1RB_Low  | Left  | Tilt             | /             | 23.91          | 24.5                      | 0.055              | 0.06               | 0.078             | 0.09              | 0.17          |
| 709   | 23780 | 1RB_Low  | Right | Touch            | /             | 23.91          | 24.5                      | 0.066              | 80.0               | 0.093             | 0.11              | -0.16         |
| 709   | 23780 | 1RB_Low  | Right | Tilt             | /             | 23.91          | 24.5                      | 0.061              | 0.07               | 0.087             | 0.10              | 0.14          |
| 709   | 23780 | 25RB_Low | Left  | Touch            | /             | 22.58          | 23.5                      | 0.064              | 80.0               | 0.091             | 0.11              | 0.16          |
| 709   | 23780 | 25RB_Low | Left  | Tilt             | /             | 22.58          | 23.5                      | 0.044              | 0.05               | 0.062             | 80.0              | 0.14          |
| 709   | 23780 | 25RB_Low | Right | Touch            | /             | 22.58          | 23.5                      | 0.056              | 0.07               | 0.081             | 0.10              | 0.15          |
| 709   | 23780 | 25RB_Low | Right | Tilt             | /             | 22.58          | 23.5                      | 0.048              | 0.06               | 0.069             | 0.09              | 0.15          |

Note1: The LTE mode is QPSK\_10MHz.

## Table 14.23: SAR Values (LTE Band17 - Body)

|       |       |          |           |         |                | · · · · · · · · · · · · · · · · · · · | Dana II            |                    |                   |                   |               |
|-------|-------|----------|-----------|---------|----------------|---------------------------------------|--------------------|--------------------|-------------------|-------------------|---------------|
|       |       |          | Ambient 7 | Tempera | ture: 22.9 °C  | Liqui                                 | d Temperat         | ure: 22.5°         | C                 |                   |               |
| Frequ | uency |          | Test      | Figure  | Conducted      | Max.<br>tune-up                       | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.   | Mode     | Position  | No.     | Power<br>(dBm) | Power<br>(dBm)                        | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 709   | 23780 | 1RB_Low  | Front     | /       | 23.91          | 24.5                                  | 0.076              | 0.09               | 0.105             | 0.12              | 0.07          |
| 709   | 23780 | 1RB_Low  | Rear      | Fig.22  | 23.91          | 24.5                                  | 0.193              | 0.22               | 0.251             | 0.29              | -0.01         |
| 709   | 23780 | 1RB_Low  | Left      | /       | 23.91          | 24.5                                  | 0.037              | 0.04               | 0.052             | 0.06              | 0.07          |
| 709   | 23780 | 1RB_Low  | Right     | /       | 23.91          | 24.5                                  | 0.024              | 0.03               | 0.035             | 0.04              | 0.06          |
| 709   | 23780 | 1RB_Low  | Bottom    | /       | 23.91          | 24.5                                  | 0.014              | 0.02               | 0.022             | 0.02              | 0.06          |
| 709   | 23780 | 25RB_Low | Front     | /       | 22.58          | 23.5                                  | 0.060              | 0.07               | 0.083             | 0.10              | 0.00          |
| 709   | 23780 | 25RB_Low | Rear      | /       | 22.58          | 23.5                                  | 0.139              | 0.17               | 0.193             | 0.24              | 0.04          |
| 709   | 23780 | 25RB_Low | Left      | /       | 22.58          | 23.5                                  | 0.030              | 0.04               | 0.043             | 0.05              | 0.04          |
| 709   | 23780 | 25RB_Low | Right     | /       | 22.58          | 23.5                                  | 0.020              | 0.02               | 0.029             | 0.04              | 0.12          |
| 709   | 23780 | 25RB_Low | Bottom    | /       | 22.58          | 23.5                                  | 0.011              | 0.01               | 0.017             | 0.02              | 0.11          |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_10MHz.



### 14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

### Table 14.24: SAR Values (GSM 850 MHz Band - Head)

|       |      |      | Am       | bient Te | mperature: 2 | 22.9 °C      | Liquid Temp | erature: 22 | .5°C     |          |       |
|-------|------|------|----------|----------|--------------|--------------|-------------|-------------|----------|----------|-------|
| Frequ | ency |      | Test     | Figure   | Conducted    | Max. tune-up | Measured    | Reported    | Measured | Reported | Power |
|       |      | Side |          | J        | Power        | · ·          | SAR(10g)    | SAR(10g)    | SAR(1g)  | SAR(1g)  | Drift |
| MHz   | Ch.  |      | Position | No.      | (dBm)        | Power (dBm)  | (W/kg)      | (W/kg)      | (W/kg)   | (W/kg)   | (dB)  |
| 848.8 | 251  | Left | Touch    | Fig.1    | 32.84        | 33.3         | 0.305       | 0.34        | 0.409    | 0.45     | 0.12  |

### Table 14.25: SAR Values (GSM 850 MHz Band - Body)

|       |       |            | Ambie    | ent Temp | erature: 22. | 9°C Liq      | uid Tempera | ture: 22.5°0 |          |          |       |
|-------|-------|------------|----------|----------|--------------|--------------|-------------|--------------|----------|----------|-------|
| Frequ | encv  | Mode       | Test     | Figure   | Conducted    | Max. tune-up | Measured    | Reported     | Measured | Reported | Power |
|       | · · , | (number of |          |          | Power        |              | SAR(10g)    | SAR(10g)     | SAR(1g)  | SAR(1g)  | Drift |
| MHz   | Ch.   | timeslots) | Position | No.      | (dBm)        | Power (dBm)  | (W/kg)      | (W/kg)       | (W/kg)   | (W/kg)   | (dB)  |
| 848.8 | 251   | GPRS (2)   | Rear     | Fig.2    | 30.34        | 30.5         | 0.615       | 0.64         | 0.815    | 0.85     | 0.02  |

Note1: The distance between the EUT and the phantom bottom is 10mm.

## Table 14.26: SAR Values (GSM 1900 MHz Band - Head)

|        |      |      | Am       | bient Te | mperature: 2   | 22.9 °C      | Liquid Temp        | erature: 22        | .5°C              |                   |               |
|--------|------|------|----------|----------|----------------|--------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Freque | ency | 0:4- | Test     | Figure   | Conducted      | Max. tune-up | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz    | Ch.  | Side | Position | No.      | Power<br>(dBm) | Power (dBm)  | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 1880   | 661  | Left | Touch    | Fig.3    | 29.77          | 30.3         | 0.132              | 0.15               | 0.216             | 0.24              | 0.04          |

### Table 14.27: SAR Values (GSM 1900 MHz Band - Body)

|                                      |             |              | Ambier | nt Tempe | erature: 22.9 | )°C Liqu     | ıid Tempera | ture: 22.5°0 | C        |          |       |
|--------------------------------------|-------------|--------------|--------|----------|---------------|--------------|-------------|--------------|----------|----------|-------|
| Frequ                                | encv        | Mode         | Test   | Eiguro   | Conducted     | May tung up  | Measured    | Reported     | Measured | Reported | Power |
|                                      | · · · · · · | (number of   |        | Figure   | Power         | Max. tune-up | SAR(10g)    | SAR(10g)     | SAR(1g)  | SAR(1g)  | Drift |
| MHz                                  | Ch.         | Position No. |        | (dBm)    | Power (dBm)   | (W/kg)       | (W/kg)      | (W/kg)       | (W/kg)   | (dB)     |       |
| 1850.2 512 GPRS (4) Rear Fig.4 26.17 |             |              |        |          |               | 27           | 0.387       | 0.47         | 0.614    | 0.74     | 0.01  |

Note1: The distance between the EUT and the phantom bottom is 10mm.

### Table 14.28: SAR Values (WCDMA 850 MHz Band - Head)

|                                   |       |      | Aml      | oient Ter | mperature: 2   | 22.9 °C L    | iquid Temp         | erature: 22        | .5°C              |                   |               |
|-----------------------------------|-------|------|----------|-----------|----------------|--------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Frequ                             | uency |      | Test     | Figure    | Conducted      | Max. tune-up | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz                               | Ch.   | Side | Position | No.       | Power<br>(dBm) | Power (dBm)  | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 826.4 4132 Left Touch Fig.5 23.09 |       |      |          | 24        | 0.381          | 0.47         | 0.506              | 0.62               | 0.04              |                   |               |

### Table 14.29: SAR Values (WCDMA 850 MHz Band - Body)

|           |      |            | Ambien | t Temperatu | re: 22.9 °C   | Liquid Te | mperature: | 22.5°C   |          |       |
|-----------|------|------------|--------|-------------|---------------|-----------|------------|----------|----------|-------|
| Frequency |      | Test       | Figure | Conducted   | Max. tune-up  | Measured  | Reported   | Measured | Reported | Power |
|           |      | Position   | No.    | Power       | Power (dBm)   | SAR(10g)  | SAR(10g)   | SAR(1g)  | SAR(1g)  | Drift |
| MHz       | Ch.  | 1 03111011 | INO.   | (dBm)       | Tower (dBill) | (W/kg)    | (W/kg)     | (W/kg)   | (W/kg)   | (dB)  |
| 826.4     | 4132 | Rear       | Fig.6  | 23.09       | 24            | 0.594     | 0.73       | 0.793    | 0.98     | -0.01 |

Note1: The distance between the EUT and the phantom bottom is 10mm.



### Table 14.30: SAR Values (WCDMA 1700 MHz Band - Head)

|        |      |      | Aml        | oient Ter | mperature: 2 | 22.9 °C L      | iquid Temp | erature: 22 | .5°C     |          |       |
|--------|------|------|------------|-----------|--------------|----------------|------------|-------------|----------|----------|-------|
| Freque | ency |      | Test       | Figure    | Conducted    | Max. tune-up   | Measured   | Reported    | Measured | Reported | Power |
|        |      | Side | Position   | No.       | Power        | Power (dBm)    | SAR(10g)   | SAR(10g)    | SAR(1g)  | SAR(1g)  | Drift |
| MHz    | Ch.  |      | 1 03111011 | 140.      | (dBm)        | 1 ower (dbill) | (W/kg)     | (W/kg)      | (W/kg)   | (W/kg)   | (dB)  |
| 1752.6 | 1513 | Left | Touch      | Fig.7     | 22.92        | 23.5           | 0.282      | 0.32        | 0.451    | 0.52     | 0.14  |

### Table 14.31: SAR Values (WCDMA 1700 MHz Band - Body)

|        |      | А        | mbient | Temperature    | e: 22.9 °C   | Liquid Tem         | perature: 2        | 2.5°C             |                   |               |
|--------|------|----------|--------|----------------|--------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Freque | ency | Test     | Figure | Conducted      | Max. tune-up | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz    | Ch.  | Position | No.    | Power<br>(dBm) | Power (dBm)  | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 1752.6 | 1513 | Rear     | Fig.8  | 22.92          | 23.5         | 0.504              | 0.58               | 0.860             | 0.98              | 0.01          |

Note1: The distance between the EUT and the phantom bottom is 10mm.

## Table 14.32: SAR Values (WCDMA 1900 MHz Band - Head)

|          |                                                      |      | Aml      | oient Ter | mperature: 2 | 22.9°C L    | iquid Temp | erature: 22 | .5°C     |          |       |
|----------|------------------------------------------------------|------|----------|-----------|--------------|-------------|------------|-------------|----------|----------|-------|
| Frequ    | Frequency Side Test Figure Conducted Power Max. tune |      |          |           |              | May tung up | Measured   | Reported    | Measured | Reported | Power |
| <u> </u> | <del>,</del>                                         | Side |          |           | Power        | -           | SAR(10g)   | SAR(10g)    | SAR(1g)  | SAR(1g)  | Drift |
| MHz      | Ch.                                                  |      | Position | No.       | (dBm)        | Power (dBm) | (W/kg)     | (W/kg)      | (W/kg)   | (W/kg)   | (dB)  |
| 1880     | 9400                                                 | Left | Touch    | Fig.9     | 23.11        | 23.5        | 0.190      | 0.21        | 0.295    | 0.32     | 0.19  |

## Table 14.33: SAR Values (WCDMA 1900 MHz Band - Body)

|   | Ambient Temperature: 22.9 °C  Frequency Test Figure Power (dBm)  MHz Ch. Position No. (dBm)  Ambient Temperature: 22.9 °C  Conducted Power (dBm)  Max. tune Power (dBm) |      |          |        |           | e: 22.9 °C  | Liquid Te | mperature: | 22.5°C   |          |       |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|--------|-----------|-------------|-----------|------------|----------|----------|-------|
|   | Frequ                                                                                                                                                                   | encv | Toot     | Eiguro | Conducted | May tupo up | Measured  | Reported   | Measured | Reported | Power |
|   |                                                                                                                                                                         |      |          |        | Power     | -           | SAR(10g)  | SAR(10g)   | SAR(1g)  | SAR(1g)  | Drift |
| Ν | ИHz                                                                                                                                                                     | Ch.  | Position | NO.    | (dBm)     | Power (aBm) | (W/kg)    | (W/kg)     | (W/kg)   | (W/kg)   | (dB)  |
| 1 | 880                                                                                                                                                                     | 9400 | Rear     | Fig.10 | 23.11     | 23.5        | 0.538     | 0.59       | 0.968    | 1.06     | -0.08 |

Note1: The distance between the EUT and the phantom bottom is 10mm.

### Table 14.34: SAR Values (LTE Band2 - Head)

|       |           |         |      |           |               |                | •                         |                    | ,                  |                   |                   |               |
|-------|-----------|---------|------|-----------|---------------|----------------|---------------------------|--------------------|--------------------|-------------------|-------------------|---------------|
|       |           |         | Amb  | ient Temp | erature       | : 22.9 °C      | Liquid                    | Temperatui         | e: 22.5°C          |                   |                   |               |
| Frequ | Frequency |         |      | Test      | Figure        | Conducted      | Max.                      | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.       | Mode    | Side | Position  | Figure<br>No. | Power<br>(dBm) | tune-up<br>Power<br>(dBm) | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 1860  | 18700     | 1RB_Low | Left | Touch     | Fig.11        | 22.80          | 23.5                      | 0.241              | 0.28               | 0.380             | 0.45              | 0.01          |

Note1: The LTE mode is QPSK\_20MHz.

### Table 14.35: SAR Values (LTE Band2 - Body)

|       |       |         | Ambient 7        | Tempera       | ture: 22.9°C                | Liqui                             | d Temperat                     | ture: 22.5°0                   |                               |                               |                        |
|-------|-------|---------|------------------|---------------|-----------------------------|-----------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|------------------------|
| Frequ | Ch.   | Mode    | Test<br>Position | Figure<br>No. | Conducted<br>Power<br>(dBm) | Max.<br>tune-up<br>Power<br>(dBm) | Measured<br>SAR(10g)<br>(W/kg) | Reported<br>SAR(10g)<br>(W/kg) | Measured<br>SAR(1g)<br>(W/kg) | Reported<br>SAR(1g)<br>(W/kg) | Power<br>Drift<br>(dB) |
| 1900  | 19100 | 1RB_Low | Rear             | Fig.12        | 22.78                       | 23.5                              | 0.573                          | 0.68                           | 0.998                         | 1.18                          | 0.02                   |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK 20MHz.



### Table 14.36: SAR Values (LTE Band4 - Head)

|       |       |         | Amb  | ient Temp        | perature      | : 22.9 °C      | Liquid                    | Temperatu          | e: 22.5°C          |                   |                   |               |
|-------|-------|---------|------|------------------|---------------|----------------|---------------------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Frequ | uency |         |      | To at            | F:            | Conducted      | Max.                      | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.   | Mode    | Side | Test<br>Position | Figure<br>No. | Power<br>(dBm) | tune-up<br>Power<br>(dBm) | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 1720  | 20050 | 1RB_Low | Left | Touch            | Fig.13        | 23.20          | 23.5                      | 0.236              | 0.25               | 0.372             | 0.40              | 0.12          |

Note1: The LTE mode is QPSK 20MHz.

### Table 14.37: SAR Values (LTE Band4 - Body)

|              |              |         | Ambient <sup>-</sup> | Tempera       | nture: 22.9°C               | C Liqui                           | id Tempera                     | ture: 22.5°0                   | C                             |                               |                        |
|--------------|--------------|---------|----------------------|---------------|-----------------------------|-----------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|------------------------|
| Frequ<br>MHz | uency<br>Ch. | Mode    | Test<br>Position     | Figure<br>No. | Conducted<br>Power<br>(dBm) | Max.<br>tune-up<br>Power<br>(dBm) | Measured<br>SAR(10g)<br>(W/kg) | Reported<br>SAR(10g)<br>(W/kg) | Measured<br>SAR(1g)<br>(W/kg) | Reported<br>SAR(1g)<br>(W/kg) | Power<br>Drift<br>(dB) |
| 1720         | 20050        | 1RB_Low | Rear                 | Fig.14        | 23.20                       | 23.5                              | 0.420                          | 0.45                           | 0.685                         | 0.73                          | -0.01                  |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_20MHz.

### Table 14.38: SAR Values (LTE Band5 - Head)

|       |       |         | Amb  | ient Temp        | erature:      | 22.9°C         | Liquid                    | Temperatur         | e: 22.5°C          |                   |                   |               |
|-------|-------|---------|------|------------------|---------------|----------------|---------------------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Frequ | iency |         |      | Tast             | F:            | Conducted      | Max.                      | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.   | Mode    | Side | Test<br>Position | Figure<br>No. | Power<br>(dBm) | tune-up<br>Power<br>(dBm) | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 844   | 20600 | 1RB_Mid | Left | Touch            | Fig.15        | 23.27          | 23.5                      | 0.316              | 0.33               | 0.420             | 0.44              | -0.08         |

Note1: The LTE mode is QPSK\_10MHz.

### Table 14.39: SAR Values (LTE Band5 - Body)

| _ |       |       |         |           |         |                | •               |                    |                    |                   |                   |               |
|---|-------|-------|---------|-----------|---------|----------------|-----------------|--------------------|--------------------|-------------------|-------------------|---------------|
|   |       |       |         | Ambient 7 | Tempera | nture: 22.9°C  | C Liqui         | id Temperat        | ture: 22.5°0       | 2                 |                   |               |
|   | Frequ | uency |         | Test      | Figure  | Conducted      | Max.<br>tune-up | Measured           | Reported           | Measured          | Reported          | Power         |
| ı | MHz   | Ch.   | Mode    | Position  | No.     | Power<br>(dBm) | Power<br>(dBm)  | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
|   | 844   | 20600 | 1RB_Mid | Rear      | Fig.16  | 23.27          | 23.5            | 0.585              | 0.62               | 0.779             | 0.82              | -0.02         |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_10MHz.

### Table 14.40: SAR Values (LTE Band7 - Head)

|      |           |         |       |           |               |                | - (                       |                    | /                  |                   |                   |               |
|------|-----------|---------|-------|-----------|---------------|----------------|---------------------------|--------------------|--------------------|-------------------|-------------------|---------------|
|      |           |         | Amb   | ient Temp | erature:      | 22.9°C         | Liquid                    | Temperatur         | e: 22.5 °C         |                   |                   |               |
| Freq | Frequency |         |       | Test      | Figure        | Conducted      | Max.                      | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz  | Ch.       | Mode    | Side  | Position  | Figure<br>No. | Power<br>(dBm) | tune-up<br>Power<br>(dBm) | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 2560 | 21350     | 1RB_Low | Right | Touch     | Fig.17        | 22.74          | 23.5                      | 0.445              | 0.53               | 0.821             | 0.98              | 0.12          |

Note1: The LTE mode is QPSK\_20MHz.



### Table 14.41: SAR Values (LTE Band7 - Body)

|             |       |         | Ambient 7        | Tempera       | ture: 22.9 °C               | Liqui                             | d Temperat                     | ture: 22.5°                    | 3                             |                               |                        |
|-------------|-------|---------|------------------|---------------|-----------------------------|-----------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|------------------------|
| Freq<br>MHz | Ch.   | Mode    | Test<br>Position | Figure<br>No. | Conducted<br>Power<br>(dBm) | Max.<br>tune-up<br>Power<br>(dBm) | Measured<br>SAR(10g)<br>(W/kg) | Reported<br>SAR(10g)<br>(W/kg) | Measured<br>SAR(1g)<br>(W/kg) | Reported<br>SAR(1g)<br>(W/kg) | Power<br>Drift<br>(dB) |
| 2510        | 20850 | 1RB_Low | Rear             | Fig.18        | 22.60                       | 23.5                              | 0.479                          | 0.59                           | 1.05                          | 1.29                          | 0.10                   |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_20MHz.

### Table 14.42: SAR Values (LTE Band12 - Head)

|       |       |         | Amb  | ient Temp        | erature:      | 22.9°C         | Liquid                    | Temperatur         | e: 22.5 °C         |                   |                   |               |
|-------|-------|---------|------|------------------|---------------|----------------|---------------------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Frequ | uency |         |      | Toot             | Figure        | Conducted      | Max.                      | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.   | Mode    | Side | Test<br>Position | Figure<br>No. | Power<br>(dBm) | tune-up<br>Power<br>(dBm) | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 704   | 23060 | 1RB_Low | Left | Touch            | Fig.19        | 24.05          | 24.5                      | 0.100              | 0.11               | 0.126             | 0.14              | 0.05          |

Note1: The LTE mode is QPSK\_10MHz.

## Table 14.43: SAR Values (LTE Band12 - Body)

|       |       |         | Ambient 7 | Tempera | ture: 22.9 °C   | Liqui           | d Temperat           | ure: 22.5°0       | C                   | T                | Г              |
|-------|-------|---------|-----------|---------|-----------------|-----------------|----------------------|-------------------|---------------------|------------------|----------------|
| Frequ | iency | Mode    | Test      | Figure  | Conducted Power | Max.<br>tune-up | Measured<br>SAR(10g) | Reported SAR(10g) | Measured<br>SAR(1g) | Reported SAR(1g) | Power<br>Drift |
| MHz   | Ch.   |         | Position  | No.     | (dBm)           | Power<br>(dBm)  | (W/kg)               | (W/kg)            | (W/kg)              | (W/kg)           | (dB)           |
| 704   | 23060 | 1RB_Low | Rear      | Fig.20  | 24.05           | 24.5            | 0.204                | 0.23              | 0.264               | 0.29             | 0.03           |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_10MHz.

## Table 14.44: SAR Values (LTE Band17 - Head)

|       |       |         | Amb  | ient Temp        | erature:      | 22.9 °C        | Liquid                    | Temperatur         | e: 22.5 °C         |                   |                   |               |
|-------|-------|---------|------|------------------|---------------|----------------|---------------------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Frequ | uency |         |      | Toot             | Figure        | Conducted      | Max.                      | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.   | Mode    | Side | Test<br>Position | Figure<br>No. | Power<br>(dBm) | tune-up<br>Power<br>(dBm) | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 709   | 23780 | 1RB_Low | Left | Touch            | Fig.21        | 23.91          | 24.5                      | 0.097              | 0.11               | 0.125             | 0.14              | -0.13         |

Note1: The LTE mode is QPSK\_10MHz.

### Table 14.45: SAR Values (LTE Band17 - Body)

|       |       |         |           |         |                |                 |                    | 7 /                |                   |                   |               |
|-------|-------|---------|-----------|---------|----------------|-----------------|--------------------|--------------------|-------------------|-------------------|---------------|
|       |       |         | Ambient 7 | Tempera | ture: 22.9 °C  | Liqui           | d Temperat         | ture: 22.5°        |                   |                   |               |
| Frequ | uency |         | Test      | Figure  | Conducted      | Max.<br>tune-up | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.   | Mode    | Position  | No.     | Power<br>(dBm) | Power<br>(dBm)  | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 709   | 23780 | 1RB_Low | Rear      | Fig.22  | 23.91          | 24.5            | 0.193              | 0.22               | 0.251             | 0.29              | -0.01         |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_10MHz.



### 14.3 WLAN Evaluation

According to the KDB248227 D01, SAR is measured for 2.4GHz 802.11b DSSS using the <u>initial test</u> <u>position</u> procedure.

#### **Head Evaluation**

Table 14.46: SAR Values (WLAN - Head) – 802.11b 1Mbps (Fast SAR)

|           |     |       | Amb      | ient Ten | perature: 2 | 2.9 °C L     | iquid Tempe | rature: 22. | 5°C      |          |       |
|-----------|-----|-------|----------|----------|-------------|--------------|-------------|-------------|----------|----------|-------|
| Frequency |     |       | Test     | Figure   | Conducted   | Max. tune-up | Measured    | Reported    | Measured | Reported | Power |
| -         | _   | Side  |          |          | Power       | ·            | SAR(10g)    | SAR(10g)    | SAR(1g)  | SAR(1g)  | Drift |
| MHz       | Ch. |       | Position | No.      | (dBm)       | Power (dBm)  | (W/kg)      | (W/kg)      | (W/kg)   | (W/kg)   | (dB)  |
| 2412      | 1   | Left  | Touch    | /        | 15.71       | 16.5         | 0.027       | 0.03        | 0.055    | 0.07     | 0.00  |
| 2412      | 1   | Left  | Tilt     | /        | 15.71       | 16.5         | 0.025       | 0.03        | 0.054    | 0.06     | 0.05  |
| 2412      | 1   | Right | Touch    | /        | 15.71       | 16.5         | 0.010       | 0.01        | 0.019    | 0.02     | 0.07  |
| 2412      | 1   | Right | Tilt     | /        | 15.71       | 16.5         | 0.011       | 0.01        | 0.021    | 0.03     | 0.03  |

As shown above table, the <u>initial test position</u> for head is "Left Touch". So the head SAR of WLAN is presented as below:

Table 14.47: SAR Values (WLAN - Head) – 802.11b 1Mbps (Full SAR)

|        |           |      | Amb        | ient Ten | perature: 2 | 2.9°C L        | iquid Tempe | rature: 22. | 5°C     |         |       |
|--------|-----------|------|------------|----------|-------------|----------------|-------------|-------------|---------|---------|-------|
| Freque | Frequency |      | Test       | Figure   | Conducted   | Max. tune-up   | . tune-up   |             |         |         | Power |
|        | 01        | Side | Position   | No.      | Power       | Power (dBm)    | SAR(10g)    | SAR(10g)    | SAR(1g) | SAR(1g) | Drift |
| MHz    | Ch.       |      | 1 00111011 | 110.     | (dBm)       | . Gwei (dBiii) | (W/kg)      | (W/kg)      | (W/kg)  | (W/kg)  | (dB)  |
| 2412   | 1         | Left | Touch      | Fig.23   | 15.71       | 16.5           | 0.022       | 0.03        | 0.057   | 0.07    | 0.00  |

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 98.78% is achievable for WLAN in this project and the scaled reported SAR is presented as below.

Table 14.48: SAR Values (WLAN - Head) – 802.11b 1Mbps (Scaled Reported SAR)

|        |             | Ambier | nt Temperat | ure: 22.9°C | Liquid Te   | mperature: 22.5 | °C                  |  |
|--------|-------------|--------|-------------|-------------|-------------|-----------------|---------------------|--|
| Freque | Frequency   |        | Test        | Actual duty | maximum     | Reported SAR    | Scaled reported SAR |  |
| MHz    | Hz Ch. Side |        | Position    | factor      | duty factor | (1g) (W/kg)     | (1g) (W/kg)         |  |
| 2412   | 2412 1 Left |        | Touch       | 98.78%      | 100%        | 0.07            | 0.07                |  |

SAR is not required for OFDM because the 802.11b adjusted SAR ≤ 1.2 W/kg.



### **Body Evaluation**

Table 14.49: SAR Values (WLAN - Body) – 802.11b 1Mbps (Fast SAR)

|           |     | Aı       | mbient T | emperature: | 22.9 °C      | Liquid Tem | perature: 2 | 22.5 °C  |          |       |
|-----------|-----|----------|----------|-------------|--------------|------------|-------------|----------|----------|-------|
| Frequency |     | Test     | Figure   | Conducted   | Max. tune-up | Measured   | Reported    | Measured | Reported | Power |
|           |     | Position |          | Power       | •            | SAR(10g)   | SAR(10g)    | SAR(1g)  | SAR(1g)  | Drift |
| MHz       | Ch. | Position | No.      | (dBm)       | Power (dBm)  | (W/kg)     | (W/kg)      | (W/kg)   | (W/kg)   | (dB)  |
| 2412      | 1   | Front    | /        | 15.71       | 16.5         | 0.008      | 0.01        | 0.014    | 0.02     | 0.12  |
| 2412      | 1   | Rear     | /        | 15.71       | 16.5         | 0.045      | 0.05        | 0.101    | 0.12     | 0.12  |
| 2412      | 1   | Right    | /        | 15.71       | 16.5         | 0.019      | 0.02        | 0.039    | 0.05     | 0.15  |
| 2412      | 1   | Тор      | /        | 15.71       | 16.5         | 0.022      | 0.03        | 0.043    | 0.05     | 0.08  |

As shown above table, the <u>initial test position</u> for body is "Rear". So the body SAR of WLAN is presented as below:

Table 14.50: SAR Values (WLAN - Body) – 802.11b 1Mbps (Full SAR)

|           |     | Aı       | mbient T | emperature: | 22.9 °C      | Liquid Tem | perature: 2 | 22.5 °C  |          | .     |  |  |
|-----------|-----|----------|----------|-------------|--------------|------------|-------------|----------|----------|-------|--|--|
| Frequency |     | Test     | Eiguro   | Conducted   | May tung up  | Measured   | Reported    | Measured | Reported | Power |  |  |
|           | ı   |          | Figure   | Power       | Max. tune-up | SAR(10g)   | SAR(10g)    | SAR(1g)  | SAR(1g)  | Drift |  |  |
| MHz       | Ch. | Position | No.      | (dBm)       | Power (dBm)  | (W/kg)     | (W/kg)      | (W/kg)   | (W/kg)   | (dB)  |  |  |
| 2412      | 1   | Rear     | Fig.24   | 15.71       | 16.5         | 0.056      | 0.07        | 0.130    | 0.16     | 0.12  |  |  |

According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 98.78% is achievable for WLAN in this project and the scaled reported SAR is presented as below.

Table 14.51: SAR Values (WLAN - Body) – 802.11b 1Mbps (Scaled Reported SAR)

|                                                  | Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C |          |        |        |             |                     |  |  |  |  |  |
|--------------------------------------------------|----------------------------------------------------------|----------|--------|--------|-------------|---------------------|--|--|--|--|--|
| Frequency Test Actual duty maximum duty Reported |                                                          |          |        |        |             | Scaled reported SAR |  |  |  |  |  |
| MHz                                              | Ch.                                                      | Position | factor | factor | (1g) (W/kg) | (1g) (W/kg)         |  |  |  |  |  |
| 2412 1 Rear 98.78% 100% <b>0.16 0.16</b>         |                                                          |          |        |        |             |                     |  |  |  |  |  |

SAR is not required for OFDM because the 802.11b adjusted SAR  $\leq$  1.2 W/kg.



## 15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 Wkg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body GSM 850 (1g)

| Freque | ency<br>Ch. | Test Position | Spacing (mm) | Original<br>SAR | First<br>Repeated   | The<br>Ratio | Second<br>Repeated SAR |
|--------|-------------|---------------|--------------|-----------------|---------------------|--------------|------------------------|
| 848.8  | 251         | Rear          | 10           | (W/kg)<br>0.815 | SAR (W/kg)<br>0.808 | 1.01         | (W/kg)<br>/            |

Table 15.2: SAR Measurement Variability for Body WCDMA 1700 (1g)

| Freque | ency | Test     | Spacing | Original      | First                  | The   | Second                 |
|--------|------|----------|---------|---------------|------------------------|-------|------------------------|
| MHz    | Ch.  | Position | (mm)    | SAR<br>(W/kg) | Repeated<br>SAR (W/kg) | Ratio | Repeated SAR<br>(W/kg) |
| 1752.6 | 1513 | Rear     | 10      | 0.860         | 0.858                  | 1.00  | 1                      |

Table 15.3: SAR Measurement Variability for Body WCDMA 1900 (1g)

| Frequ | uency | Test     | Spacing | Original      | First                  | The   | Second                 |
|-------|-------|----------|---------|---------------|------------------------|-------|------------------------|
| MHz   | Ch.   | Position | (mm)    | SAR<br>(W/kg) | Repeated<br>SAR (W/kg) | Ratio | Repeated SAR<br>(W/kg) |
| 1880  | 9400  | Rear     | 10      | 0.968         | 0.961                  | 1.01  | 1                      |

Table 15.4: SAR Measurement Variability for Body LTE Band 2 (1g)

| Freq | uency | Test     | Spacing | Original      | First                  | The   | Second                 |
|------|-------|----------|---------|---------------|------------------------|-------|------------------------|
| MHz  | Ch.   | Position | (mm)    | SAR<br>(W/kg) | Repeated<br>SAR (W/kg) | Ratio | Repeated SAR<br>(W/kg) |
| 1900 | 19100 | Rear     | 10      | 0.998         | 0.993                  | 1.01  | 1                      |



## Table 15.5: SAR Measurement Variability for Head LTE Band 7 (1g)

| Freq | uency |       | Test     | Original      | First                  | The   | Second                 |
|------|-------|-------|----------|---------------|------------------------|-------|------------------------|
| MHz  | Ch.   | Side  | Position | SAR<br>(W/kg) | Repeated<br>SAR (W/kg) | Ratio | Repeated SAR<br>(W/kg) |
| 2560 | 21350 | Right | Touch    | 0.821         | 0.818                  | 1.00  | 1                      |

### Table 15.6: SAR Measurement Variability for Body LTE Band 7 (1g)

| Freq | uency | Test     | Specing         | Original      | First                  | The   | Second                 |
|------|-------|----------|-----------------|---------------|------------------------|-------|------------------------|
| MHz  | Ch.   | Position | Spacing<br>(mm) | SAR<br>(W/kg) | Repeated<br>SAR (W/kg) | Ratio | Repeated SAR<br>(W/kg) |
| 2510 | 20850 | Rear     | 10              | 1.05          | 1.05                   | 1.00  | 1                      |



# **16 Measurement Uncertainty**

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

| 10. | 1 Measurement Ui                                | icerta | illity for No | IIIIai SAR     | 16212      | (SUUI | VITZ~ | JUNZ | <u>,                                    </u> |          |  |
|-----|-------------------------------------------------|--------|---------------|----------------|------------|-------|-------|------|----------------------------------------------|----------|--|
| No. | Error Description                               | Type   | Uncertainty   | Probably       | Div.       | (Ci)  | (Ci)  | Std. | Std.                                         | Degree   |  |
|     |                                                 |        | value         | Distribution   |            | 1g    | 10g   | Unc. | Unc.                                         | of       |  |
|     |                                                 |        |               |                |            |       |       | (1g) | (10g)                                        | freedo   |  |
|     |                                                 |        |               |                |            |       |       |      |                                              | m        |  |
| Mea | Measurement system                              |        |               |                |            |       |       |      |                                              |          |  |
| 1   | Probe calibration                               | В      | 5.5           | N              | 1          | 1     | 1     | 5.5  | 5.5                                          | ∞        |  |
| 2   | Isotropy                                        | В      | 4.7           | R              | $\sqrt{3}$ | 0.7   | 0.7   | 1.9  | 1.9                                          | ∞        |  |
| 3   | Boundary effect                                 | В      | 1.0           | R              | $\sqrt{3}$ | 1     | 1     | 0.6  | 0.6                                          | ∞        |  |
| 4   | Linearity                                       | В      | 4.7           | R              | $\sqrt{3}$ | 1     | 1     | 2.7  | 2.7                                          | ∞        |  |
| 5   | Detection limit                                 | В      | 1.0           | R              | $\sqrt{3}$ | 1     | 1     | 0.6  | 0.6                                          | ∞        |  |
| 6   | Readout electronics                             | В      | 0.3           | R              | $\sqrt{3}$ | 1     | 1     | 0.3  | 0.3                                          | ∞        |  |
| 7   | Response time                                   | В      | 0.8           | R              | $\sqrt{3}$ | 1     | 1     | 0.5  | 0.5                                          | 8        |  |
| 8   | Integration time                                | В      | 2.6           | R              | $\sqrt{3}$ | 1     | 1     | 1.5  | 1.5                                          | 8        |  |
| 9   | RF ambient conditions-noise                     | В      | 0             | R              | $\sqrt{3}$ | 1     | 1     | 0    | 0                                            | 8        |  |
| 10  | RF ambient conditions-reflection                | В      | 0             | R              | $\sqrt{3}$ | 1     | 1     | 0    | 0                                            | 8        |  |
| 11  | Probe positioned mech. restrictions             | В      | 0.4           | R              | $\sqrt{3}$ | 1     | 1     | 0.2  | 0.2                                          | 8        |  |
| 12  | Probe positioning with respect to phantom shell | В      | 2.9           | R              | $\sqrt{3}$ | 1     | 1     | 1.7  | 1.7                                          | 80       |  |
| 13  | Post-processing                                 | В      | 1.0           | R              | $\sqrt{3}$ | 1     | 1     | 0.6  | 0.6                                          | ∞        |  |
|     |                                                 |        | Test          | sample related | 1          | U.    | ı     |      |                                              |          |  |
| 14  | Test sample positioning                         | A      | 3.3           | N              | 1          | 1     | 1     | 3.3  | 3.3                                          | 71       |  |
| 15  | Device holder uncertainty                       | A      | 3.4           | N              | 1          | 1     | 1     | 3.4  | 3.4                                          | 5        |  |
| 16  | Drift of output power                           | В      | 5.0           | R              | $\sqrt{3}$ | 1     | 1     | 2.9  | 2.9                                          | 8        |  |
|     |                                                 |        | Phant         | tom and set-u  | p          |       |       |      |                                              |          |  |
| 17  | Phantom uncertainty                             | В      | 4.0           | R              | $\sqrt{3}$ | 1     | 1     | 2.3  | 2.3                                          | $\infty$ |  |
| 18  | Liquid conductivity (target)                    | В      | 5.0           | R              | $\sqrt{3}$ | 0.64  | 0.43  | 1.8  | 1.2                                          | ∞        |  |
| 19  | Liquid conductivity (meas.)                     | A      | 2.06          | N              | 1          | 0.64  | 0.43  | 1.32 | 0.89                                         | 43       |  |
| 20  | Liquid permittivity (target)                    | В      | 5.0           | R              | $\sqrt{3}$ | 0.6   | 0.49  | 1.7  | 1.4                                          | ∞        |  |
| 21  | Liquid permittivity (meas.)                     | A      | 1.6           | N              | 1          | 0.6   | 0.49  | 1.0  | 0.8                                          | 521      |  |



| (                  | Combined standard uncertainty                   | u' <sub>c</sub> = | $\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$  |                |            |      |      | 9.25 | 9.12  | 257      |
|--------------------|-------------------------------------------------|-------------------|---------------------------------------|----------------|------------|------|------|------|-------|----------|
| _                  | anded uncertainty fidence interval of           | ı                 | $u_e = 2u_c$                          |                |            |      |      | 18.5 | 18.2  |          |
| 16.                | 2 Measurement U                                 | ncerta            | inty for No                           | rmal SAR       | Tests      | (3~6 | GHz) |      |       |          |
| No.                | Error Description                               | Type              | Uncertainty                           | Probably       | Div.       | (Ci) | (Ci) | Std. | Std.  | Degree   |
|                    |                                                 |                   | value                                 | Distribution   |            | 1g   | 10g  | Unc. | Unc.  | of       |
|                    |                                                 |                   |                                       |                |            |      |      | (1g) | (10g) | freedo   |
|                    |                                                 |                   |                                       |                |            |      |      |      |       | m        |
| Mea                | surement system                                 |                   |                                       |                |            |      |      |      |       |          |
| 1                  | Probe calibration                               | В                 | 6.5                                   | N              | 1          | 1    | 1    | 6.5  | 6.5   | 8        |
| 2                  | Isotropy                                        | В                 | 4.7                                   | R              | $\sqrt{3}$ | 0.7  | 0.7  | 1.9  | 1.9   | $\infty$ |
| 3                  | Boundary effect                                 | В                 | 2.0                                   | R              | $\sqrt{3}$ | 1    | 1    | 1.2  | 1.2   | $\infty$ |
| 4                  | Linearity                                       | В                 | 4.7                                   | R              | $\sqrt{3}$ | 1    | 1    | 2.7  | 2.7   | ∞        |
| 5                  | Detection limit                                 | В                 | 1.0                                   | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |
| 6                  | Readout electronics                             | В                 | 0.3                                   | R              | $\sqrt{3}$ | 1    | 1    | 0.3  | 0.3   | ∞        |
| 7                  | Response time                                   | В                 | 0.8                                   | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | ∞        |
| 8                  | Integration time                                | В                 | 2.6                                   | R              | $\sqrt{3}$ | 1    | 1    | 1.5  | 1.5   | $\infty$ |
| 9                  | RF ambient conditions-noise                     | В                 | 0                                     | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | ∞        |
| 10                 | RF ambient conditions-reflection                | В                 | 0                                     | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | ∞        |
| 11                 | Probe positioned mech. restrictions             | В                 | 0.8                                   | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | ∞        |
| 12                 | Probe positioning with respect to phantom shell | В                 | 6.7                                   | R              | $\sqrt{3}$ | 1    | 1    | 3.9  | 3.9   | 8        |
| 13                 | Post-processing                                 | В                 | 4.0                                   | R              | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3   | $\infty$ |
|                    |                                                 |                   | Test                                  | sample related | l          |      |      |      |       |          |
| 14                 | Test sample positioning                         | A                 | 3.3                                   | N              | 1          | 1    | 1    | 3.3  | 3.3   | 71       |
| 15                 | Device holder uncertainty                       | A                 | 3.4                                   | N              | 1          | 1    | 1    | 3.4  | 3.4   | 5        |
| 16                 | Drift of output power                           | В                 | 5.0                                   | R              | $\sqrt{3}$ | 1    | 1    | 2.9  | 2.9   | ∞        |
| Phantom and set-up |                                                 |                   |                                       |                |            |      |      |      |       |          |
| 17                 | Phantom uncertainty                             | В                 | 4.0                                   | R              | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3   | $\infty$ |
| 18                 | Liquid conductivity (target)                    | В                 | 5.0                                   | R              | $\sqrt{3}$ | 0.64 | 0.43 | 1.8  | 1.2   | 8        |
| 19                 | Liquid conductivity (meas.)                     | A                 | 2.06                                  | N              | 1          | 0.64 | 0.43 | 1.32 | 0.89  | 43       |
|                    |                                                 |                   | · · · · · · · · · · · · · · · · · · · |                |            |      |      |      |       |          |



| 20 | Liquid permittivity (target)          | В           | 5.0                                  | R | $\sqrt{3}$ | 0.6 | 0.49 | 1.7  | 1.4  | ∞   |
|----|---------------------------------------|-------------|--------------------------------------|---|------------|-----|------|------|------|-----|
| 21 | Liquid permittivity (meas.)           | A           | 1.6                                  | N | 1          | 0.6 | 0.49 | 1.0  | 0.8  | 521 |
| (  | Combined standard uncertainty         | $u_c^{'} =$ | $\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$ |   |            |     |      | 10.8 | 10.7 | 257 |
| _  | anded uncertainty fidence interval of | ı           | $u_e = 2u_c$                         |   |            |     |      | 21.6 | 21.4 |     |

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

| No. | Error Description                               | Type | Uncertainty | Probably       | Div.       | (Ci) | (Ci) | Std. | Std.  | Degree   |  |  |
|-----|-------------------------------------------------|------|-------------|----------------|------------|------|------|------|-------|----------|--|--|
|     |                                                 |      | value       | Distribution   |            | 1g   | 10g  | Unc. | Unc.  | of       |  |  |
|     |                                                 |      |             |                |            |      |      | (1g) | (10g) | freedo   |  |  |
|     |                                                 |      |             |                |            |      |      |      |       | m        |  |  |
| Mea | Measurement system                              |      |             |                |            |      |      |      |       |          |  |  |
| 1   | Probe calibration                               | В    | 5.5         | N              | 1          | 1    | 1    | 5.5  | 5.5   | ∞        |  |  |
| 2   | Isotropy                                        | В    | 4.7         | R              | $\sqrt{3}$ | 0.7  | 0.7  | 1.9  | 1.9   | $\infty$ |  |  |
| 3   | Boundary effect                                 | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |  |  |
| 4   | Linearity                                       | В    | 4.7         | R              | $\sqrt{3}$ | 1    | 1    | 2.7  | 2.7   | ∞        |  |  |
| 5   | Detection limit                                 | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |  |  |
| 6   | Readout electronics                             | В    | 0.3         | R              | $\sqrt{3}$ | 1    | 1    | 0.3  | 0.3   | ∞        |  |  |
| 7   | Response time                                   | В    | 0.8         | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | ∞        |  |  |
| 8   | Integration time                                | В    | 2.6         | R              | $\sqrt{3}$ | 1    | 1    | 1.5  | 1.5   | ∞        |  |  |
| 9   | RF ambient conditions-noise                     | В    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | 8        |  |  |
| 10  | RF ambient conditions-reflection                | В    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | 8        |  |  |
| 11  | Probe positioned mech. Restrictions             | В    | 0.4         | R              | $\sqrt{3}$ | 1    | 1    | 0.2  | 0.2   | ∞        |  |  |
| 12  | Probe positioning with respect to phantom shell | В    | 2.9         | R              | $\sqrt{3}$ | 1    | 1    | 1.7  | 1.7   | 8        |  |  |
| 13  | Post-processing                                 | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |  |  |
| 14  | Fast SAR z-Approximation                        | В    | 7.0         | R              | $\sqrt{3}$ | 1    | 1    | 4.0  | 4.0   | ∞        |  |  |
|     |                                                 |      | Test        | sample related | ì          |      |      |      |       |          |  |  |
| 15  | Test sample positioning                         | A    | 3.3         | N              | 1          | 1    | 1    | 3.3  | 3.3   | 71       |  |  |
| 16  | Device holder uncertainty                       | A    | 3.4         | N              | 1          | 1    | 1    | 3.4  | 3.4   | 5        |  |  |
| 17  | Drift of output power                           | В    | 5.0         | R              | $\sqrt{3}$ | 1    | 1    | 2.9  | 2.9   | ∞        |  |  |



|                                                    |                               |   | Phan                                 | tom and set-uj | p          |      |      |      |      |     |
|----------------------------------------------------|-------------------------------|---|--------------------------------------|----------------|------------|------|------|------|------|-----|
| 18                                                 | Phantom uncertainty           | В | 4.0                                  | R              | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3  | 8   |
| 19                                                 | Liquid conductivity (target)  | В | 5.0                                  | R              | $\sqrt{3}$ | 0.64 | 0.43 | 1.8  | 1.2  | ∞   |
| 20                                                 | Liquid conductivity (meas.)   | A | 2.06                                 | N              | 1          | 0.64 | 0.43 | 1.32 | 0.89 | 43  |
| 21                                                 | Liquid permittivity (target)  | В | 5.0                                  | R              | $\sqrt{3}$ | 0.6  | 0.49 | 1.7  | 1.4  | 8   |
| 22                                                 | Liquid permittivity (meas.)   | A | 1.6                                  | N              | 1          | 0.6  | 0.49 | 1.0  | 0.8  | 521 |
| (                                                  | Combined standard uncertainty |   | $\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ |                |            |      |      | 10.1 | 9.95 | 257 |
| Expanded uncertainty (confidence interval of 95 %) |                               | ı | $u_e = 2u_c$                         |                |            |      |      | 20.2 | 19.9 |     |

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

| No.  | Error Description                                                    | Type | Uncertainty | Probably       | Div.       | (Ci) | (Ci) | Std. | Std.  | Degree |  |
|------|----------------------------------------------------------------------|------|-------------|----------------|------------|------|------|------|-------|--------|--|
|      |                                                                      |      | value       | Distribution   |            | 1g   | 10g  | Unc. | Unc.  | of     |  |
|      |                                                                      |      |             |                |            |      |      | (1g) | (10g) | freedo |  |
|      |                                                                      |      |             |                |            |      |      |      |       | m      |  |
| Meas | Measurement system                                                   |      |             |                |            |      |      |      |       |        |  |
| 1    | Probe calibration                                                    | В    | 6.5         | N              | 1          | 1    | 1    | 6.5  | 6.5   | ∞      |  |
| 2    | Isotropy                                                             | В    | 4.7         | R              | $\sqrt{3}$ | 0.7  | 0.7  | 1.9  | 1.9   | ∞      |  |
| 3    | Boundary effect                                                      | В    | 2.0         | R              | $\sqrt{3}$ | 1    | 1    | 1.2  | 1.2   | ∞      |  |
| 4    | Linearity                                                            | В    | 4.7         | R              | $\sqrt{3}$ | 1    | 1    | 2.7  | 2.7   | ∞      |  |
| 5    | Detection limit                                                      | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞      |  |
| 6    | Readout electronics                                                  | В    | 0.3         | R              | $\sqrt{3}$ | 1    | 1    | 0.3  | 0.3   | ∞      |  |
| 7    | Response time                                                        | В    | 0.8         | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | ∞      |  |
| 8    | Integration time                                                     | В    | 2.6         | R              | $\sqrt{3}$ | 1    | 1    | 1.5  | 1.5   | ∞      |  |
| 9    | RF ambient conditions-noise                                          | В    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | ∞      |  |
| 10   | RF ambient conditions-reflection                                     | В    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | 8      |  |
| 11   | Probe positioned mech. Restrictions                                  | В    | 0.8         | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | 8      |  |
| 12   | Probe positioning with respect to phantom shell                      | В    | 6.7         | R              | $\sqrt{3}$ | 1    | 1    | 3.9  | 3.9   | 8      |  |
| 13   | Post-processing                                                      | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞      |  |
| 14   | $\begin{array}{cc} Fast & SAR \\ z\text{-}Approximation \end{array}$ | В    | 14.0        | R              | $\sqrt{3}$ | 1    | 1    | 8.1  | 8.1   | ∞      |  |
|      |                                                                      |      | Test s      | sample related | ì          |      |      |      |       |        |  |



| 15                                                              | Test sample positioning      | A | 3.3                                  | N | 1          | 1    | 1    | 3.3  | 3.3  | 71  |  |
|-----------------------------------------------------------------|------------------------------|---|--------------------------------------|---|------------|------|------|------|------|-----|--|
| 16                                                              | Device holder uncertainty    | A | 3.4                                  | N | 1          | 1    | 1    | 3.4  | 3.4  | 5   |  |
| 17                                                              | Drift of output power        | В | 5.0                                  | R | $\sqrt{3}$ | 1    | 1    | 2.9  | 2.9  | ∞   |  |
|                                                                 | Phantom and set-up           |   |                                      |   |            |      |      |      |      |     |  |
| 18                                                              | Phantom uncertainty          | В | 4.0                                  | R | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3  | ∞   |  |
| 19                                                              | Liquid conductivity (target) | В | 5.0                                  | R | $\sqrt{3}$ | 0.64 | 0.43 | 1.8  | 1.2  | ∞   |  |
| 20                                                              | Liquid conductivity (meas.)  | A | 2.06                                 | N | 1          | 0.64 | 0.43 | 1.32 | 0.89 | 43  |  |
| 21                                                              | Liquid permittivity (target) | В | 5.0                                  | R | $\sqrt{3}$ | 0.6  | 0.49 | 1.7  | 1.4  | 8   |  |
| 22                                                              | Liquid permittivity (meas.)  | A | 1.6                                  | N | 1          | 0.6  | 0.49 | 1.0  | 0.8  | 521 |  |
| Combined standard uncertainty $u_c =$                           |                              |   | $\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ |   |            |      |      | 13.3 | 13.2 | 257 |  |
| Expanded uncertainty (confidence interval of $u_e = 2u_c$ 95 %) |                              |   |                                      |   |            |      | 26.6 | 26.4 |      |     |  |

## **17 MAIN TEST INSTRUMENTS**

**Table 17.1: List of Main Instruments** 

| No. | Name                  | Туре          | Serial Number | Calibration Date        | Valid Period |
|-----|-----------------------|---------------|---------------|-------------------------|--------------|
| 01  | Network analyzer      | E5071C        | MY46110673    | February 03, 2015       | One year     |
| 02  | Power meter           | NRVD          | 102196        | March 03, 2015          | One year     |
| 03  | Power sensor          | NRV-Z5        | 100596        | Watch 03, 2015          | One year     |
| 04  | Signal Generator      | E4438C        | MY49071430    | February 02, 2015       | One Year     |
| 05  | Amplifier             | 60S1G4        | 0331848       | No Calibration Requeste | ed           |
| 06  | BTS                   | E5515C        | MY50263375    | January 30, 2015        | One year     |
| 07  | BTS                   | CMW500        | 129942        | March 03, 2015          | One year     |
| 08  | E-field Probe         | SPEAG EX3DV4  | 3846          | September 24, 2014      | One year     |
| 09  | DAE                   | SPEAG DAE4    | 777           | September 17, 2014      | One year     |
| 10  | Dipole Validation Kit | SPEAG D750V3  | 1017          | August 28, 2014         | One year     |
| 11  | Dipole Validation Kit | SPEAG D835V2  | 4d069         | August 28, 2014         | One year     |
| 12  | Dipole Validation Kit | SPEAG D1750V2 | 1003          | August 18, 2014         | One year     |
| 13  | Dipole Validation Kit | SPEAG D1900V2 | 5d142         | June 23, 2015           | One year     |
| 14  | Dipole Validation Kit | SPEAG D2450V2 | 869           | June 19, 2015           | One year     |
| 15  | Dipole Validation Kit | SPEAG D2600V2 | 1012          | July 16, 2014           | Two year     |



## **ANNEX A Graph Results**

## 850 Left Cheek High

Date: 2015-7-28

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.929$  mho/m;  $\epsilon r = 41.829$ ;  $\rho =$ 

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18)

**Area Scan (61x101x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.453 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.525 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.526 W/kg

SAR(1 g) = 0.409 W/kg; SAR(10 g) = 0.305 W/kgMaximum value of SAR (measured) = 0.448 W/kg

0.367 0.286 0.205 0.124

Fig.1 850MHz



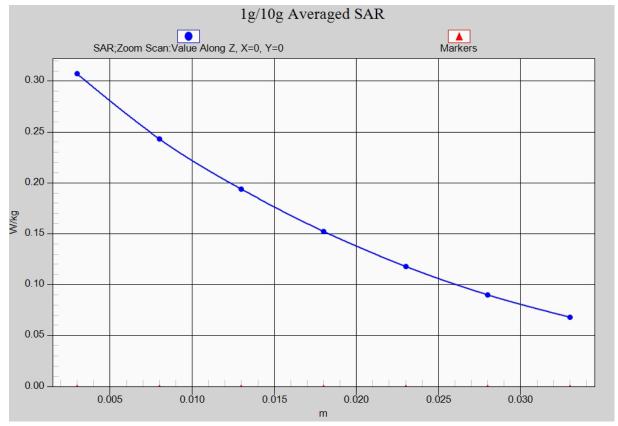



Fig. 1-1 Z-Scan at power reference point (850 MHz)



## 850 Body Rear High

Date: 2015-7-28

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz;  $\sigma = 0.987$  mho/m;  $\epsilon r = 56.171$ ;  $\rho =$ 

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:4

Probe: EX3DV4 - SN3846 ConvF(9.09, 9.09, 9.09)

**Area Scan (111x61x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.901 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.64 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.815 W/kg; SAR(10 g) = 0.615 W/kg

Maximum value of SAR (measured) = 0.944 W/kg

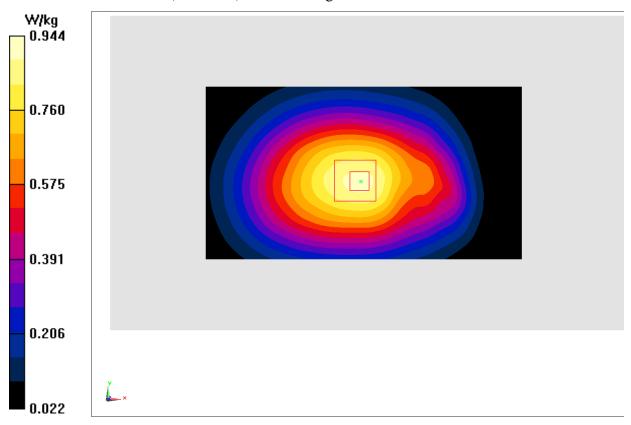



Fig.2 850 MHz



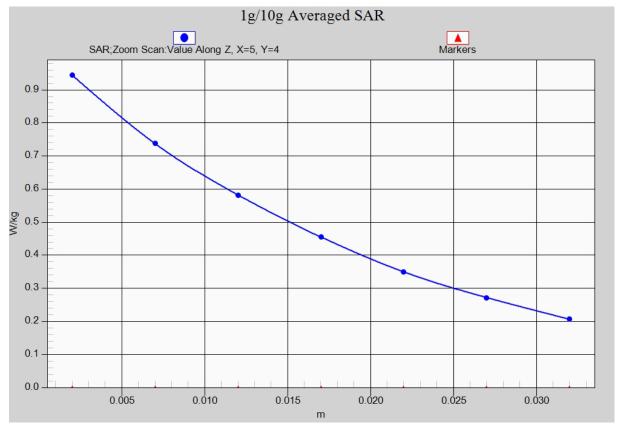



Fig. 2-1 Z-Scan at power reference point (850 MHz)



### 1900 Left Cheek Middle

Date: 2015-7-29

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters use: f = 1880 MHz;  $\sigma = 1.391 \text{ mho/m}$ ;  $\epsilon r = 40.39$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(7.26, 7.26, 7.26)

**Area Scan (71x111x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.256 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.217 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.325 W/kg

SAR(1 g) = 0.216 W/kg; SAR(10 g) = 0.132 W/kg

Maximum value of SAR (measured) = 0.277 W/kg

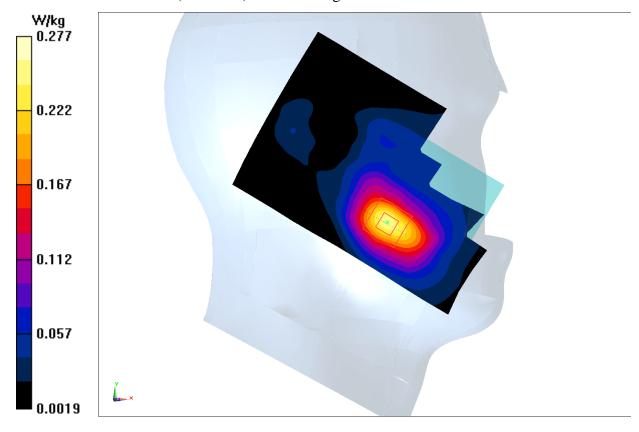



Fig.3 1900 MHz



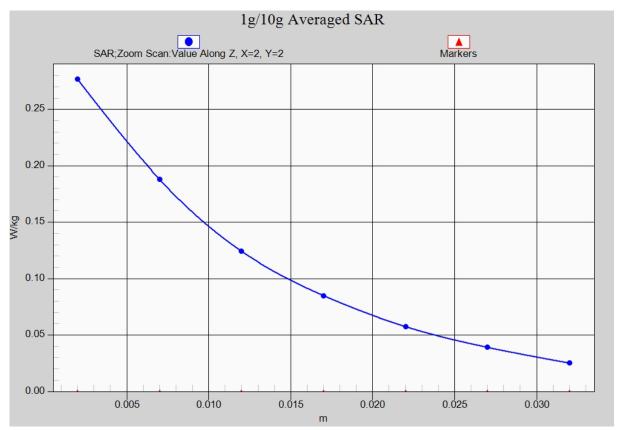



Fig. 3-1 Z-Scan at power reference point (1900 MHz)



## 1900 Body Rear Low

Date: 2015-7-29

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz;  $\sigma = 1.487$  mho/m;  $\epsilon r = 52.327$ ;  $\rho = 1.487$ 

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: GSM 1900MHz GPRS Frequency: 1850.2 MHz Duty Cycle: 1:2

Probe: EX3DV4 - SN3846 ConvF(7.15, 7.15, 7.15)

**Area Scan (121x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.735 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.75 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.932 W/kg

SAR(1 g) = 0.614 W/kg; SAR(10 g) = 0.387 W/kg

Maximum value of SAR (measured) = 0.776 W/kg

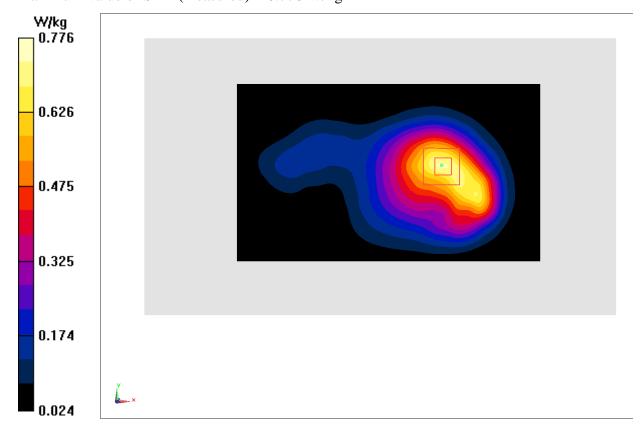



Fig.4 1900 MHz



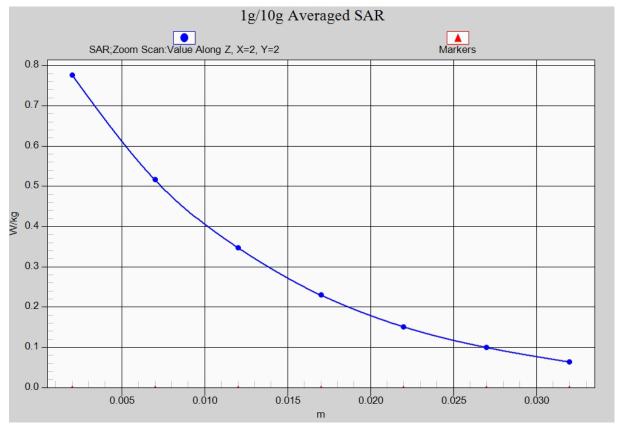



Fig.4-1 Z-Scan at power reference point (1900 MHz)



### WCDMA 850 Left Cheek Low

Date: 2015-7-28

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 826.4 MHz;  $\sigma = 0.908$  mho/m;  $\epsilon r = 42.098$ ;  $\rho =$ 

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18)

**Left/Area Scan (61x101x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.564 W/kg

**Left/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.437 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.648 W/kg

SAR(1 g) = 0.506 W/kg; SAR(10 g) = 0.381 W/kg

Maximum value of SAR (measured) = 0.559 W/kg

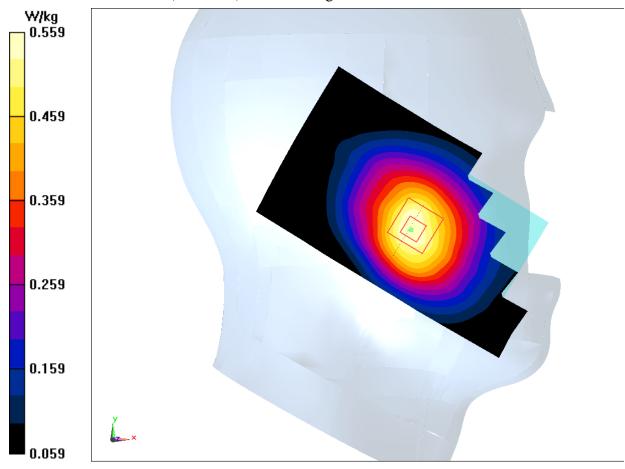



Fig.5 WCDMA 850



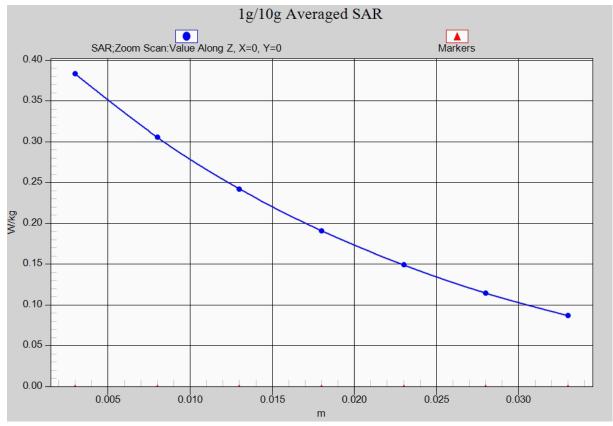



Fig. 5-1 Z-Scan at power reference point (WCDMA 850)



## WCDMA 850 Body Rear Low

Date: 2015-7-28

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 826.4 MHz;  $\sigma = 0.963$  mho/m;  $\epsilon r = 56.379$ ;  $\rho =$ 

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.09, 9.09, 9.09)

**Area Scan (121x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.917 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.98 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.793 W/kg; SAR(10 g) = 0.594 W/kg

Maximum value of SAR (measured) = 0.921 W/kg



Fig.6 WCDMA 850



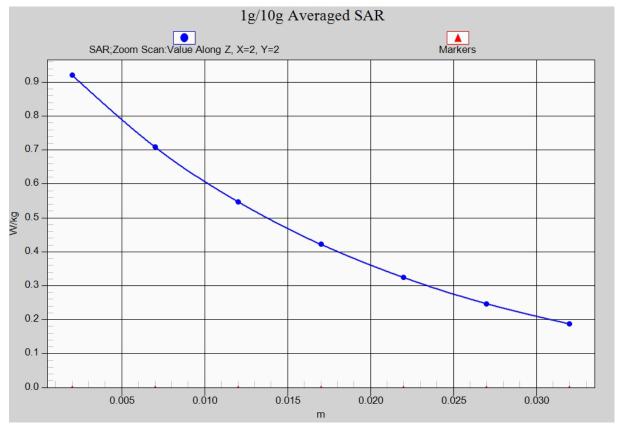



Fig. 6-1 Z-Scan at power reference point (WCDMA850)



## WCDMA 1700 Left Cheek High

Date: 2015-7-30

Electronics: DAE4 Sn777 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1752.6 MHz;  $\sigma = 1.386$  mho/m;  $\epsilon r = 40.775$ ;  $\rho = 1.386$  mho/m;  $\epsilon r = 40.775$ ;  $\epsilon r = 40.775$ 

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1700 Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.64, 7.64, 7.64)

**Area Scan (61x111x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.505 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.403 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.685 W/kg

SAR(1 g) = 0.451 W/kg; SAR(10 g) = 0.282 W/kg

Maximum value of SAR (measured) = 0.484 W/kg

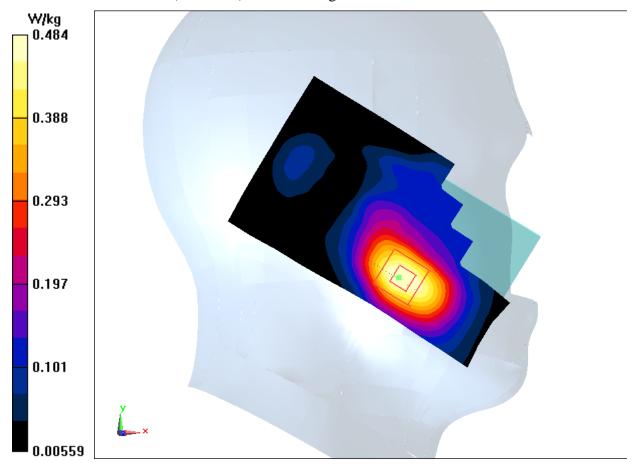



Fig.7 1700MHz



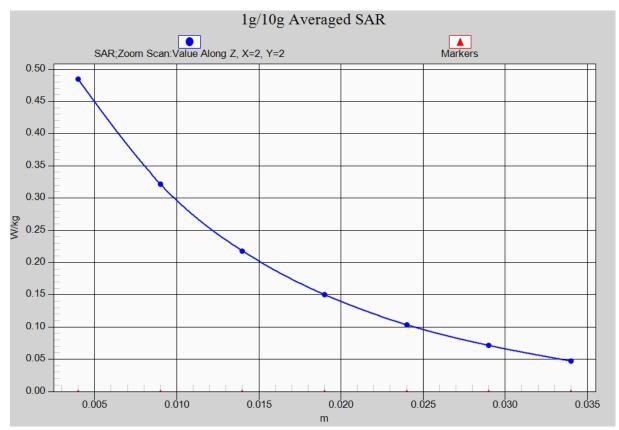



Fig. 7-1 Z-Scan at power reference point (1700 MHz)



## WCDMA 1700 Body Rear High

Date: 2015-7-30

Electronics: DAE4 Sn777 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1752.6 MHz;  $\sigma = 1.545$  mho/m;  $\epsilon r = 53.109$ ;  $\rho = 1.545$  mho/m;  $\epsilon r = 53.109$ ;  $\epsilon r = 53.109$ 

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1700 Frequency: 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.43, 7.43, 7.43)

**Area Scan (121x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.19 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.27 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.860 W/kg; SAR(10 g) = 0.504 W/kg

Maximum value of SAR (measured) = 1.16 W/kg

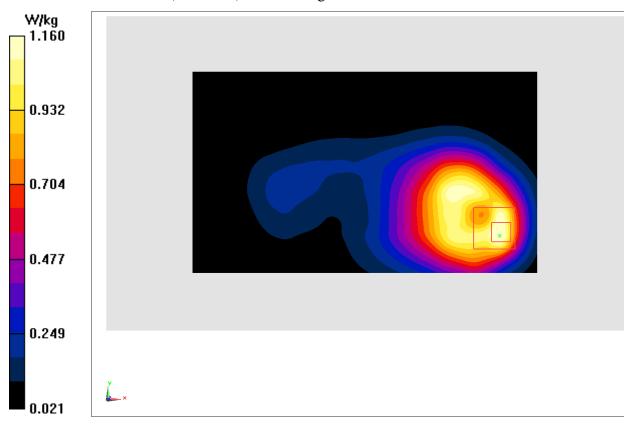



Fig.8 1700 MHz



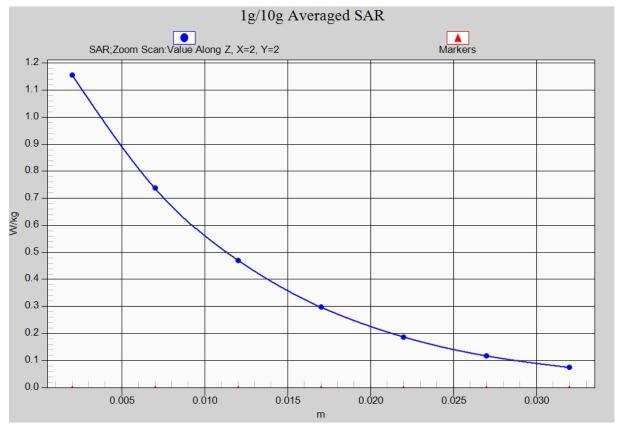



Fig. 8-1 Z-Scan at power reference point (1700 MHz)



### WCDMA 1900 Left Cheek Middle

Date: 2015-7-29

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1880 MHz;  $\sigma = 1.371 \text{ mho/m}$ ;  $\epsilon r = 40.207$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.26, 7.26, 7.26)

**Area Scan (71x111x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.354 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.365 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.435 W/kg

SAR(1 g) = 0.295 W/kg; SAR(10 g) = 0.190 W/kg

Maximum value of SAR (measured) = 0.369 W/kg

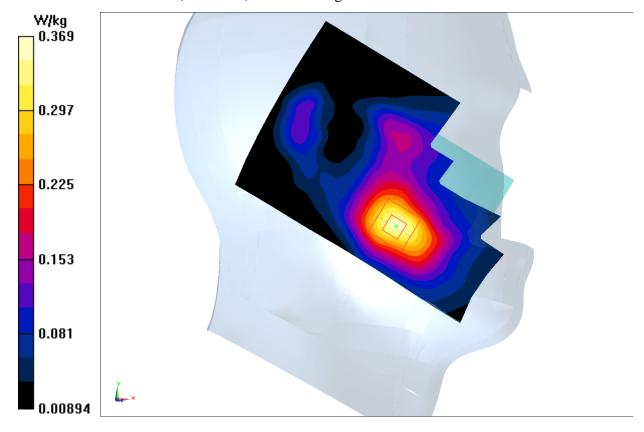



Fig.9 WCDMA1900



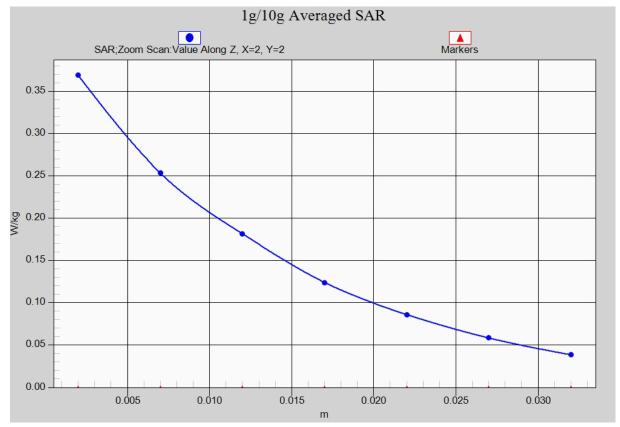



Fig. 9-1 Z-Scan at power reference point (WCDMA1900)



## WCDMA 1900 Body Rear Middle

Date: 2015-7-29

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz;  $\sigma = 1.467 \text{ mho/m}$ ;  $\epsilon r = 52.156$ ;  $\rho = 1000 \text{ kg/m}^3$ 

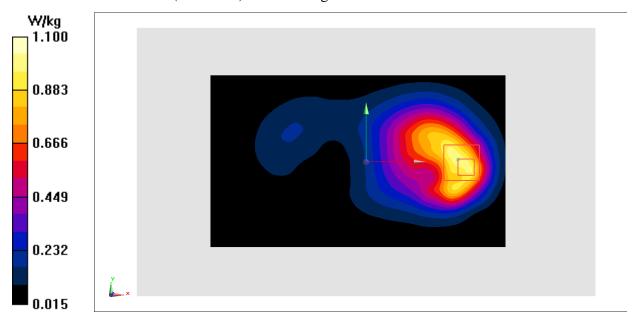
Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.15, 7.15, 7.15)

**Area Scan (121x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.999 W/kg


**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.69 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 0.968 W/kg; SAR(10 g) = 0.538 W/kg

Maximum value of SAR (measured) = 1.10 W/kg



**Fig.10 WCDMA1900** 



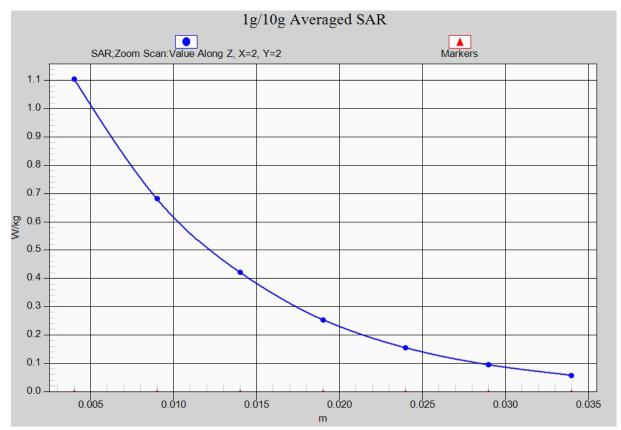



Fig. 10-1 Z-Scan at power reference point (WCDMA1900)



## LTE Band2 Left Cheek Low with QPSK\_20M\_1RB\_Low

Date: 2015-7-29

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1860 MHz;  $\sigma = 1.366 \text{ mho/m}$ ;  $\epsilon r = 39.195$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1860 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.26, 7.26, 7.26)

**Area Scan (71x111x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.469 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.529 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.551 W/kg

SAR(1 g) = 0.380 W/kg; SAR(10 g) = 0.241 W/kg

Maximum value of SAR (measured) = 0.477 W/kg

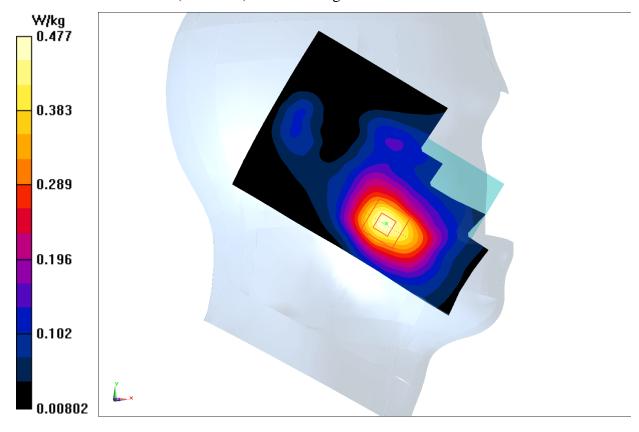



Fig.11 LTE Band2



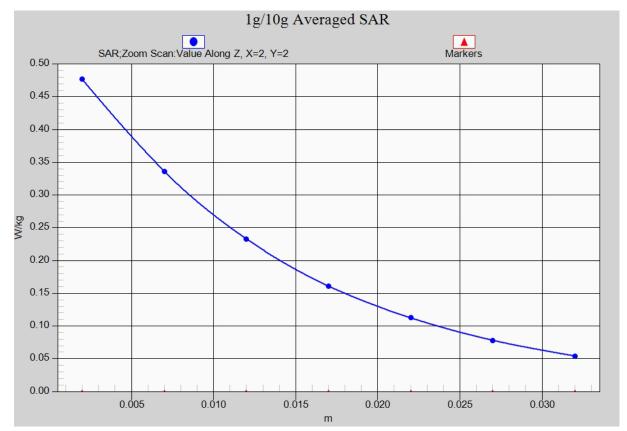



Fig. 11-1 Z-Scan at power reference point (LTE Band2)



## LTE Band2 Body Rear High with QPSK\_20M\_1RB\_Low

Date: 2015-7-29

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz;  $\sigma = 1.478 \text{ mho/m}$ ;  $\epsilon r = 52.096$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band2 Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.15, 7.15, 7.15)

**Area Scan (111x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.29 W/kg

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.31 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.998 W/kg; SAR(10 g) = 0.573 W/kg

Maximum value of SAR (measured) = 1.38 W/kg

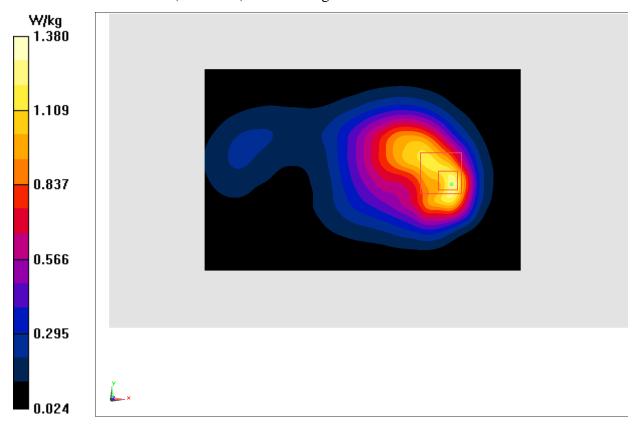



Fig.12 LTE Band2





Fig. 12-1 Z-Scan at power reference point (LTE Band2)



## LTE Band4 Left Cheek Low with QPSK\_20M\_1RB\_Low

Date: 2015-7-30

Electronics: DAE4 Sn777 Medium: Head 1750 MHz

Medium parameters used: f = 1720 MHz;  $\sigma = 1.355 \text{ mho/m}$ ;  $\epsilon r = 40.916$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.64, 7.64, 7.64)

**Area Scan (71x131x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.409 W/kg

**Zoom Scan** (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.010 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.564 W/kg

SAR(1 g) = 0.372 W/kg; SAR(10 g) = 0.236 W/kgMaximum value of SAR (measured) = 0.402 W/kg

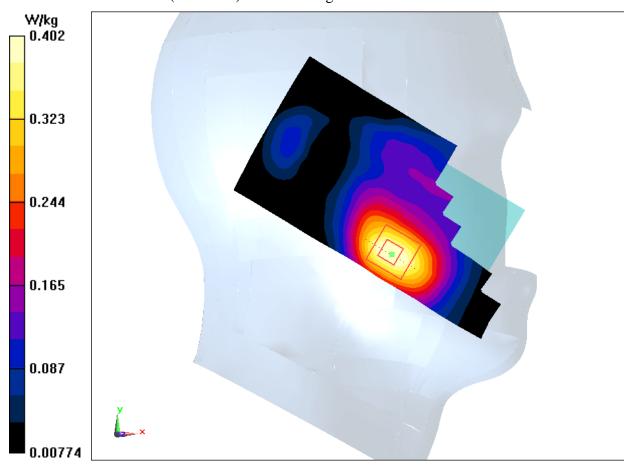



Fig.13 LTE Band4



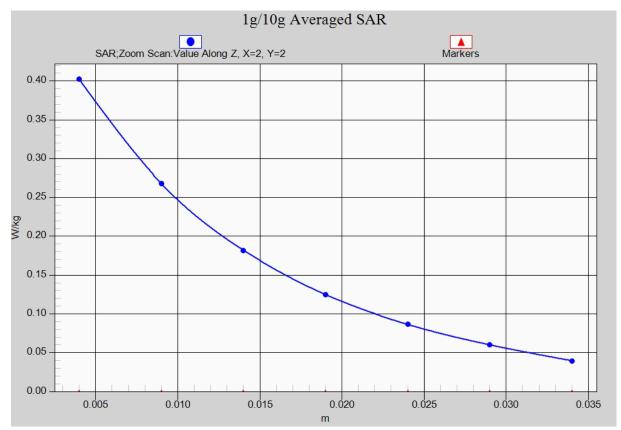



Fig. 13-1 Z-Scan at power reference point (LTE Band4)



## LTE Band4 Body Rear Low with QPSK\_20M\_1RB\_Low

Date: 2015-7-30

Electronics: DAE4 Sn777 Medium: Body 1750 MHz

Medium parameters used: f = 1720 MHz;  $\sigma = 1.478 \text{ mho/m}$ ;  $\epsilon r = 53.182$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1720 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.43, 7.43, 7.43)

**Area Scan (111x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.932 W/kg

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.94 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.685 W/kg; SAR(10 g) = 0.420 W/kg

Maximum value of SAR (measured) = 0.895 W/kg

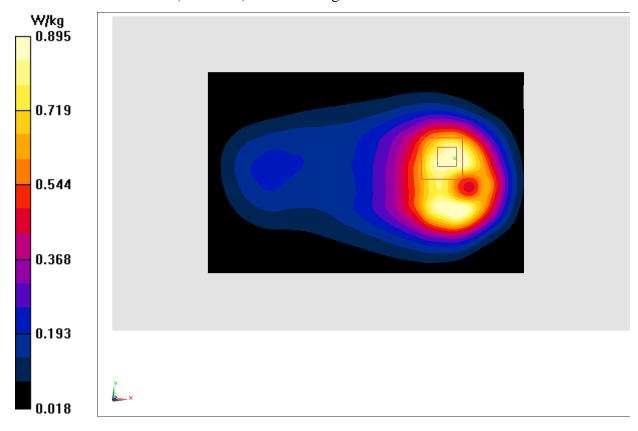



Fig.14 LTE Band4



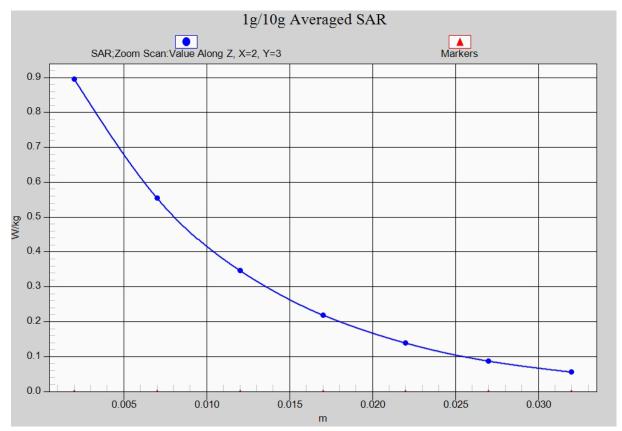



Fig. 14-1 Z-Scan at power reference point (LTE Band4)