

SAR TEST REPORT

No. I16Z41526-SEM01

For

TCL Communication Ltd.

GSM Quad Band Mobile phone

Model Name: 2008G

With

Hardware Version: PIO

Software Version: V1.0

FCC ID: 2ACCJB070

Issued Date: 2016-8-4

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China100191 Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email: cttl terminals@catr.cn, website: www.chinattl.com

REPORT HISTORY

Report Number	Revision	Issue Date	Description
I16Z41526-SEM01	Rev.0	2016-7-25	Initial creation of test report
I16Z41526-SEM01	Rev.1	2016-8-4	Update the table 11.2

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT	
1.3 Project Data	
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	7
3.1 APPLICANT INFORMATION	7
3.2 Manufacturer Information	7
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
4.1 ABOUT EUT	8
4.2 Internal Identification of EUT used during the test	8
4.3 Internal Identification of AE used during the test	8
5 TEST METHODOLOGY	9
5.1 APPLICABLE LIMIT REGULATIONS	9
5.2 APPLICABLE MEASUREMENT STANDARDS	9
6 SPECIFIC ABSORPTION RATE (SAR)	10
6.1 Introduction	10
6.2 SAR DEFINITION	10
7 TISSUE SIMULATING LIQUIDS	11
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	
7.2 DIELECTRIC PERFORMANCE	11
8 SYSTEM VERIFICATION	14
8.1 System Setup	14
8.2 SYSTEM VERIFICATION	15
9 MEASUREMENT PROCEDURES	16
9.1 Tests to be performed	16
9.2 GENERAL MEASUREMENT PROCEDURE	18
9.3 BLUETOOTH MEASUREMENT PROCEDURES FOR SAR	
9.4 Power Drift	19
10 AREA SCAN BASED 1-G SAR	20
10.1 REQUIREMENT OF KDB.	20
10.2 FAST SAR ALGORITHMS	20
11 CONDUCTED OUTPUT POWER	21
11.1 Manufacturing tolerance	21

	EASUREMENT RESULT	
12 SIMULT	TANEOUS TX SAR CONSIDERATIONS	23
	DUCTION	
	SMIT ANTENNA SEPARATION DISTANCES	
12.3 STANI	DALONE SAR TEST EXCLUSION CONSIDERATIONS	24
13 EVALU	ATION OF SIMULTANEOUS	25
14 SAR TE	ST RESULT	26
14.1 SAR F	RESULTS FOR FAST SAR	26
	RESULTS FOR STANDARD PROCEDURE	
15 SAR MI	EASUREMENT VARIABILITY	29
16 MEASU	REMENT UNCERTAINTY	30
16.1 MEAS	UREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)	30
16.2 MEAS	UREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)	31
16.3 MEAS	UREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)	32
16.4 MEAS	UREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz)	33
17 MAIN T	EST INSTRUMENTS	34
ANNEX A	GRAPH RESULTS	35
ANNEX B	SYSTEMVERIFICATION RESULTS	43
ANNEX C	SAR MEASUREMENT SETUP	48
ANNEX D	POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	54
ANNEX E	EQUIVALENT MEDIA RECIPES	57
ANNEX F	SYSTEM VALIDATION	58
ANNEX G	PROBE CALIBRATION CERTIFICATE	59
ANNEX H	DIPOLE CALIBRATION CERTIFICATE	70
ANNEX I	ACCREDITATION CERTIFICATE	86

1 Test Laboratory

1.1 Testing Location

Company Name:	CTTL(Shouxiang)	
Address:	No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District,	
	Beijing, P. R. China100191	

1.2 Testing Environment

Temperature:	18°C~25°C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	July 9, 2016
Testing End Date:	July 10, 2016

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for TCL Communication Ltd. GSM Quad Band Mobile phone 2008G are as follows:

Table 2.1: Highest Reported SAR (1g)

Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/Kg)	Equipment Class
Head	GSM 850	0.30	
(Separation Distance 0mm)	PCS 1900	0.95	PCE
Body-worn	GSM 850	0.63	PCE
(Separation Distance 10mm)	PCS 1900	1.41	PUE

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (Table 2.1), and the values are: 1.41W/kg (1g).

Table 2.2: The sum of reported SAR values for main antenna and BT

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Right hand, Touch cheek	0.95	0.23	1.18
Highest reported SAR value for Body	Rear	1.41	0.12	1.53

Note: Estimated SAR for Bluetooth (see the table 13.2)

According to the above tables, the highest sum of reported SAR values is **1.53 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCL Communication Ltd
Address /Post:	5F, C-Tower, No. 232, Liang Jing Road, ZhangJiang High-Tech Park,
Address / Post.	Pudong Area, Shanghai, 201203, P.R. China
Contact:	Smile. Wu
Email:	xia.wu@tcl.com
Telephone:	(0)21 51798260
Fax:	(0)21 6146 0600

3.2 Manufacturer Information

Company Name:	TCL Communication Ltd
Address /Dest:	5F, C-Tower, No. 232, Liang Jing Road, ZhangJiang High-Tech Park,
Address /Post:	Pudong Area, Shanghai, 201203, P.R. China
Contact:	Smile. Wu
Email:	xia.wu@tcl.com
Telephone:	(0)21 51798260
Fax:	(0)21 6146 0600

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	GSM Quad Band Mobile phone	
Model Name: 2008G		
Operating mode(s):	GSM 850/900/1800/1900 ,BT	
Tooted Ty Frequency	825 – 848.8 MHz (GSM 850)	
Tested Tx Frequency:	1850.2 – 1910 MHz (GSM 1900)	
GPRS Multislot Class:	12	
GPRS capability Class:	В	
Device type:	Portable device	
Antenna type:	Integrated antenna	
Accessories/Body-worn configurations:	Headset	

4.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	359297070005268	PIO	V1.0
EUT2	359297070005300	PIO	V1.0

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the EUT 1 and conducted power with the EUT 2.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	CAB1400058C1	/	BYD
AE2	Headset	CCB0050A10C7	/	JIAYIKANG

^{*}AE ID: is used to identify the test sample in the lab internally.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB447498 D01: General RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets.

KDB865664 D01SAR measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz.

KDB865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

				<u> </u>	
Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0

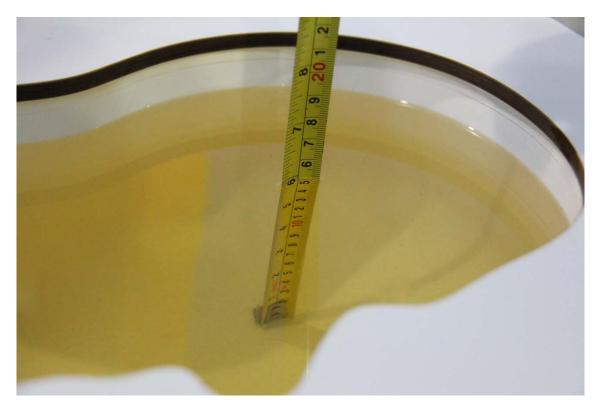
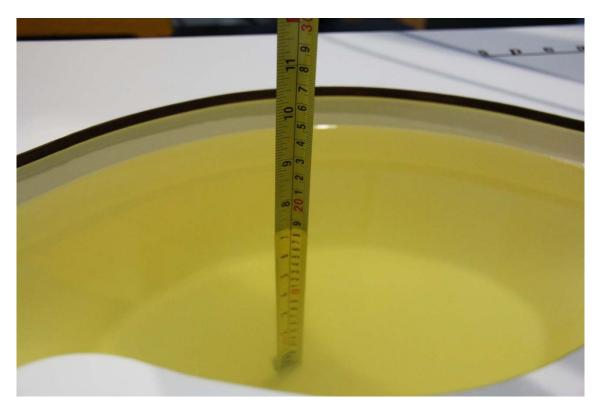

7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date (yyyy-mm-dd)	Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ (S/m)	Drift (%)
2016-7-9	Head	835 MHz	41.12	-0.92	0.921	2.33
	Body	835 MHz	56.23	1.87	0.972	0.21
2016-7-10	Head	1900 MHz	40.65	1.63	1.395	-0.36
	Body	1900 MHz	54.69	2.61	1.516	-0.26

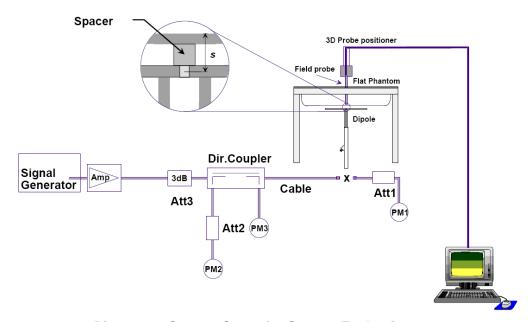
Note: The liquid temperature is 22.0 $^{\circ}\mathrm{C}$

Picture 7-1: Liquid depth in the Head Phantom (835MHz)



Picture 7-2: Liquid depth in the Flat Phantom (835MHz)

Picture 7-3: Liquid depth in the Head Phantom (1900 MHz)


Picture 7-4 Liquid depth in the Flat Phantom (1900MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

Measurement		Target val	ue (W/kg)	Measured	value(W/kg)	Devi	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2016-7-9	835 MHz	5.86	9.01	6	9.24	2.39%	2.55%
2016-7-10	1900 MHz	21.5	40.7	21.84	41.52	1.58%	2.01%

Table 8.2: System Verification of Body

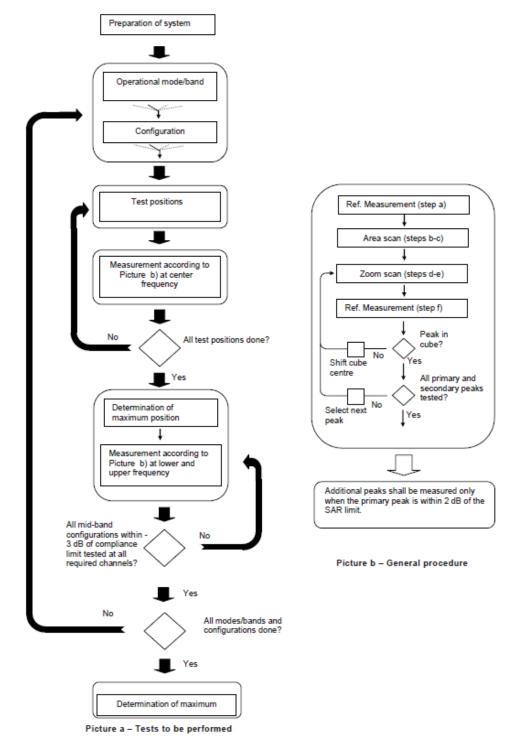
Measurement		Target val	ue (W/kg)	Measured v	value (W/kg)	Devi	ation
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2016-7-9	835 MHz	6.12	9.29	6.2	9.36	1.31%	0.75%
2016-7-10	1900 MHz	21.7	40.4	21.92	41.32	1.01%	2.28%

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:


- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1,perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle f normal at the measurem			30°±1°	20° ± 1°	
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan sp	oatial resolu	tion: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
surface	grid ∆z _{Zoom} (n>1): between subsequent points		≤ 1.5·Δa	z _{Zoom} (n-1)	
Minimum zoom scan	x, y, z	1	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 Bluetooth Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.4 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-gSAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz)and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm mare 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 Manufacturing tolerance

Table 11.1: GSM Speech

	GSM 850							
Channel	Channel 251	Channel 190	Channel 128					
Target (dBm)	32.5	32.5	32.5					
Tune-up(dBm)	33.5	33.5	33.5					
	GSN	1 1900						
Channel	Channel 810	Channel 661	Channel 512					
Target (dBm)	29	29	29					
Tune-up(dBm)	30	30	30					

Table 11.2: GPRS

		Table 11.2. Grive	,	
		GSM 850 GPRS (GM	1SK)	
	Channel	251	190	128
1 Tyolot	Target (dBm)	32.5	32.5	32.5
1 Txslot	Tune-up(dBm)	33.5	33.5	33.5
2 Txslots	Target (dBm)	30.5	30.5	30.5
2 1 XSIOIS	Tune-up(dBm)	31.5	31.5	31.5
3Txslots	Target (dBm)	28.5	28.5	28.5
31 XSIOIS	Tune-up(dBm)	29.5	29.5	29.5
4 Tyoloto	Target (dBm)	28	28	28
4 Txslots	Tune-up(dBm)	29	29	29
		GSM 1900 GPRS (GI	MSK)	
	Channel	810	661	512
1 Tyolot	Target (dBm)	30	30	30
1 Txslot	Tune-up(dBm)	31	31	31
O Tyroloto	Target (dBm)	27.5	27.5	27.5
2 Txslots	Tune-up(dBm)	28.5	28.5	28.5
OT:valata	Target (dBm)	26.5	26.5	26.5
3Txslots	Tune-up(dBm)	27.5	27.5	27.5
4 Tyolota	Target (dBm)	25.5	25.5	25.5
4 Txslots	Tune-up(dBm)	26.5	26.5	26.5

Table 11.3: Bluetooth

GFSK							
Channel	Channel 0	Channel 39	Channel 78				
Target (dBm)	6.5	6.5	6.5				
Tune-up	7.5	7.5	7.5				

11.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.5: The conducted power measurement results for GSM850/1900

GSM		Conducted Power (dBm)	
850MHz	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)
OSUMINZ	32.28	32.25	32.13
CCM		Conducted Power(dBm)	
GSM	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)
1900MHz	28.49	29.14	29.47

Table 11.6: The conducted power measurement results for GPRS

			•				
GSM 850	Measi	ured Power	(dBm)	calculation	Averaged Power (dBm)		(dBm)
GPRS (GMSK)	251	190	128		251	190	128
1 Txslot	32.22	32.20	32.09	-9.03	23.19	23.17	23.06
2 Txslots	31.25	31.22	31.14	-6.02	25.23	25.20	25.12
3Txslots	29.42	29.40	29.32	-4.26	25.16	25.14	25.06
4 Txslots	28.59	28.61	28.53	-3.01	25.58	25.60	25.52
PCS1900	Meası	red Power	(dBm)	calculation	Avera	ged Power	(dBm)
GPRS (GMSK)	810	661	512		810	661	512
1 Txslot	28.95	29.31	29.73	-9.03	19.92	20.28	20.70
2 Txslots	27.67	28.01	28.47	-6.02	21.65	21.99	22.45
3Txslots	25.30	25.68	26.15	-4.26	21.04	21.42	21.89
4 Txslots	24.34	24.71	25.18	-3.01	21.33	21.70	22.17

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) = -9.03 dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

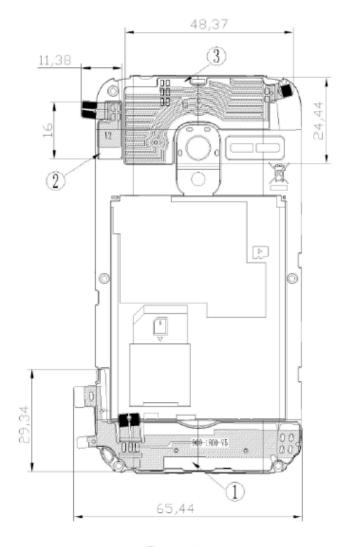
According to the conducted power as above, the body measurements are performed with 4Txslots for GSM850 and 2Txslots for PCS1900.

11.3 BT Measurement result

The output power of BT antenna is as following:

Mode	Conducted Power (dBm)				
Ivioue	Channel 0 (2402MHz)	Channel 39 (2441MHz)	Channel 78(2480MHz)		
GFSK	7.00	7.48	7.33		
EDR2M-4_DQPSK	5.89	7.14	6.18		
EDR3M-8DPSK	5.79	6.23	6.12		

¹⁾ Division Factors


12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as Bluetooth devices which may simultaneously transmit with the licensed transmitter.

For this device, the BT can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

(1): GSM antenna

(2): BT antenna

③: FM antenna

Picture 12.1 Antenna Locations

12.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Table 12.1: Standalone SAR test exclusion considerations

Band/Mode	F(GHz)	Position	SAR test exclusion	RF o	•	SAR test exclusion
			threshold(mW)	dBm	mW	
Pluotooth	2 444	Head	9.60	7.5	5.62	Yes
Bluetooth	2.441	Body	19.20	7.5	5.62	Yes

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Right hand, Touch cheek	0.95	0.23	1.18
Highest reported SAR value for Body	Rear	1.41	0.12	1.53

BT* - Estimated SAR for Bluetooth (see the table 13.2)

Table 13.2: Estimated SAR for Bluetooth

Position	F (GHz)	Distance (mm)	Upper limi	t of power *	Estimated _{1g}
Position	r (GHZ)	Distance (mm)	dBm	mW	(W/kg)
Head	2.441	5	7.5	5.62	0.23
Body	2.441	10	7.5	5.62	0.12

^{* -} Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is<1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory. It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-gSAR is the highest measured SAR in

zoom scan measurement is added when the estimated 1-gSAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or >1.2W/kg.

The calculated SAR is obtained by the following formula:

The calculated OAIX is obtained by the following formula.

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Table 14.1: Duty Cycle

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS for GSM850	1:2
GPRS for PCS1900	1:4

14.1 SAR results for Fast SAR

Table 14.1-1: SAR Values (GSM 850 MHz Band - Head)

	Ambient Temperature: 22.5 °C Liquid Temperature: 22.0 °C														
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power				
		Side	Position	No.	Power	ower Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift				
MHz	Ch.		1 03111011	140.	(dBm)	1 ower (dbill)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)				
836.6	190	Left	Touch	/	32.25	33.5	0.0934	0.12	0.135	0.18	-0.05				
836.6	190	Left	Tilt	/	32.25	33.5	0.0616	0.08	0.0898	0.12	0.01				
848.8	251	Right	Touch	Fig.1	32.28	33.5	0.170	0.23	0.226	0.30	-0.10				
836.6	190	Right	Touch	/	32.25	33.5	0.116	0.15	0.169	0.23	0.02				
824.2	128	Right	Touch	/	32.13	33.5	0.0751	0.10	0.109	0.15	0.01				
836.6	190	Right	Tilt	/	32.25	33.5	0.0727	0.10	0.105	0.14	-0.02				

Table 14.1-2: SAR Values (GSM 850 MHz Band-Body)

			An	nbient Ter	mperature: 22	.5°C Liqui	d Temperature	e: 22.0 °C			
Frequ	ency	Mode (number of	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	GPRS (4)	Front	/	28.61	29	0.161	0.18	0.233	0.25	-0.07
848.8	251	GPRS (4)	Rear	Fig.2	28.59	29	0.419	0.46	0.571	0.63	0.15
836.6	190	GPRS (4)	Rear	/	28.61	29	0.341	0.37	0.493	0.54	0.02
824.2	128	GPRS (4)	Rear	/	28.53	29	0.243	0.27	0.352	0.39	-0.06

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.1-3: SAR Values (GSM1900 MHz Band - Head)

				Ambient	Temperature:	22.5 °C L	iquid Tempera	ture: 22.0 °C	· ·		
Freque	Frequency		Test	Figure	Conducted	Max. tune-up	Measured	Reported SAR(10g)	Measured SAR(1g)	Reported	Power Drift
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	(W/kg)	(W/kg)	SAR(1g)(W/kg)	(dB)
1850.2	512	Left	Touch	/	29.47	30	0.306	0.35	0.501	0.57	-0.12
1850.2	512	Left	Tilt	/	29.47	30	0.164	0.19	0.284	0.32	0.11
1909.8	810	Right	Touch	/	28.49	30	0.373	0.53	0.605	0.86	0.08
1880	661	Right	Touch	/	29.14	30	0.442	0.54	0.709	0.86	-0.05
1850.2	512	Right	Touch	Fig.3	29.47	30	0.542	0.61	0.840	0.95	0.04
1850.2	512	Right	Tilt	/	29.47	30	0.151	0.17	0.249	0.28	-0.05

Table 14.1-4: SAR Values (GSM 1900 MHz Band-Body)

	Table 14.1-4. SAN Values (GSW 1900 WITZ Ballu-Bouy)														
			Ambient Ten	nperature	e: 22.5 °C	Liquid Te	mperature: 2	2.0 °C							
Frequency		Mode	Test	Figur	Conduc ted	Max. tune-up	Measure d	Reporte d	Measured	Reported	Power				
MHz	Ch.	(number of timeslots)	Position	e No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10 g)(W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)				
1850.2	512	GPRS (2)	Front	/	28.47	28.5	0.451	0.45	0.76	0.77	-0.07				
1909.8	810	GPRS (2)	Rear	/	27.67	28.5	0.614	0.74	1.05	1.27	-0.01				
1880	661	GPRS (2)	Rear	Fig.4	28.01	28.5	0.750	0.84	1.26	1.41	0.04				
1850.2	512	GPRS (2)	Rear	/	28.47	28.5	0.678	0.68	1.19	1.20	0.01				
1880	661	Speech	Rear CCB0050A10C7	/	29.14	30	0.547	0.67	0.924	1.13	0.00				

Note1: The distance between the EUT and the phantom bottom is 10mm.

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 14.2-1: SAR Values (GSM 850 MHz Band - Head)

				Ambient	Temperature	: 22.5 °C L	iquid Tempera	ature: 22.0 °C			
Frequ	ency	0:4-	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)
848.8	251	Right	Touch	Fig.1	32.28	33.5	0.170	0.23	0.226	0.30	-0.10

Table 14.2-2: SAR Values (GSM 850 MHz Band-Body)

			An	nbient Ter	mperature: 22	.5°C Liqui	d Temperature	e: 22.0 °C			
Frequ	encv	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	, 	(number of			Power	·	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	GPRS (4)	Rear	Fig.2	28.59	29	0.419	0.46	0.571	0.63	0.15

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.2-3: SAR Values (GSM1900 MHz Band - Head)

				Ambient	Temperature:	22.5 °C L	iquid Tempera	ture: 22.0 °C			
Freque	Frequency		Test	Eiguro	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	,	Side		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
1850.2	512	Right	Touch	Fig.3	29.47	30	0.542	0.61	0.840	0.95	0.04

Table 14.2-4: SAR Values (GSM 1900 MHz Band-Body)

			Ambi	ent Temp	erature: 22.5°	C Liquid T	emperature:	22.0°C			
Frequ	ency Ch.	Mode (number of timeslots)	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
1880	661	GPRS (2)	Rear	Fig.4	28.01	28.5	0.750	0.84	1.26	1.41	0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Head GSM1900 (1g)

Free	quency		Test	Original	First	The	Second
Ch.	MHz	Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
512	1850.2	Right	Touch	0.84	0.82	1.02	1

Table 15.2: SAR Measurement Variability for Body GSM1900 (1g)

Freq	uency	Toot	Specing	The	Second		
Ch.	MHz	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
661	1880	Rear	10	1.26	1.23	1.02	1

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

10.	1 Measurement Ui	icerta	illity for No	IIIIai SAR	16212	(SUUI	VITIZ~	JUNZ	<u>, </u>	
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test	sample related	i	•				
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

	Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.55	9.43	257			
_	nded uncertainty idence interval of	ι	$u_e = 2u_c$					19.1	18.9				
16.	16.2 Measurement Uncertainty for Normal SAR Tests (3~6GHz)												
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree			
			value	Distribution		1g	10g	Unc.	Unc.	of			
								(1g)	(10g)	freedo			
										m			
Mea	surement system			T	1	1	ı	1		T			
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞			
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞			
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞			
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞			
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞			
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞			
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞			
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞			
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8			
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8			
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8			
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞			
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞			
			Test	sample related	l								
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71			
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5			
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8			
			Phan	tom and set-uj	p								
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞			
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8			
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43			

20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	anded uncertainty fidence interval of	ı	$u_e = 2u_c$					21.4	21.1	

	3 Measurement U		1	l				T -	I	
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system	ı	T	I	1	1	1	1	1	
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
			Test	sample related	l					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8

			Phant	tom and set-uj	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
(conf	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system				_			_		
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	$\begin{array}{cc} Fast & SAR \\ z\text{-}Approximation \end{array}$	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	∞
			Test s	sample related	<u> </u>					

15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-uj	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
_	inded uncertainty fidence interval of	ı	$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Network analyzer	E5071C	MY46110673	January 26, 2016	One year	
02	Power meter	NRVD	102196	March 03, 2016	One year	
03	Power sensor	NRV-Z5	100596	Watch 03, 2016	One year	
04	Signal Generator	E4438C	MY49071430	February 01, 2016	One Year	
05	Amplifier	60S1G4	0331848	No Calibration Requested		
06	BTS	E5515C	MY50263375	January 30, 2016	One year	
07	E-field Probe	SPEAG EX3DV4	3617	August 26, 2015	One year	
08	DAE	SPEAG DAE4	777	August 26, 2015	One year	
09	Dipole Validation Kit	SPEAG D835V2	4d069	July 23, 2015	One year	
10	Dipole Validation Kit	SPEAG D1900V2	5d101	July 23, 2015	One year	

^{***}END OF REPORT BODY***

ANNEX A Graph Results

850 Right Cheek High

Date: 2016-7-9

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.908 \text{ mho/m}$; $\epsilon r = 41.68$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(9.56, 9.56, 9.56)

Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.253 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.355 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.287 W/kg

SAR(1 g) = 0.226 W/kg; SAR(10 g) = 0.170 W/kg

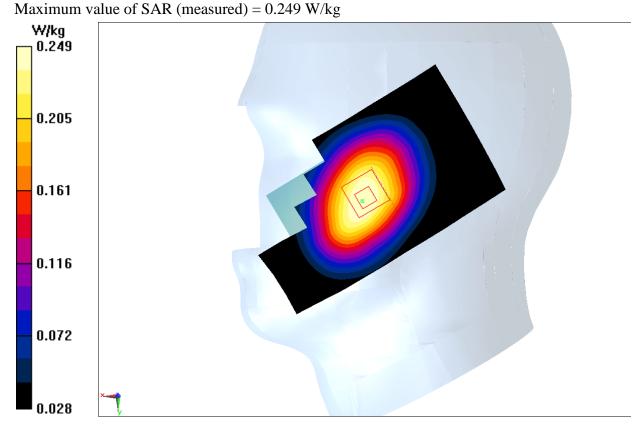


Fig.1 850MHz

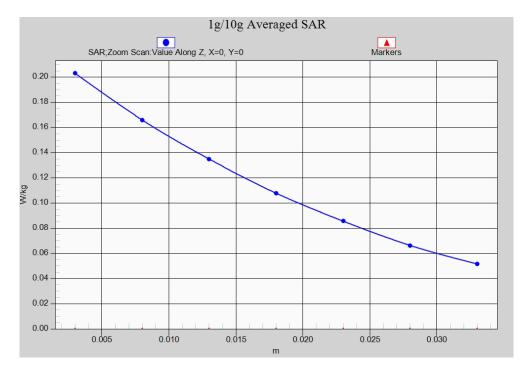


Fig. 1-1 Z-Scan at power reference point (850 MHz)

850 Body Rear High

Date: 2016-7-9

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.958$ mho/m; $\epsilon r = 56.39$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 - SN3617 ConvF(9.71, 9.71, 9.71)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.620 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.38 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.755 W/kg

SAR(1 g) = 0.571 W/kg; SAR(10 g) = 0.419 W/kg

Maximum value of SAR (measured) = 0.634 W/kg

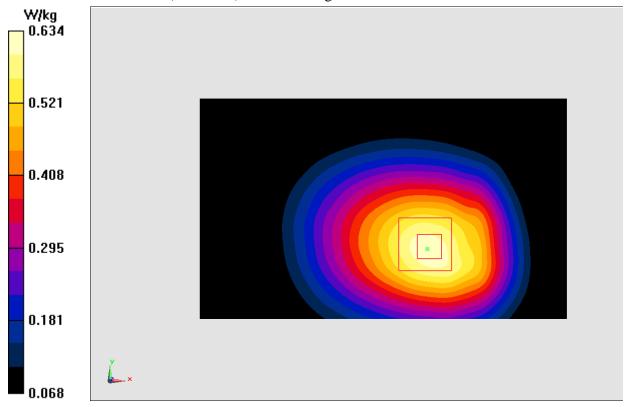


Fig.2 850 MHz

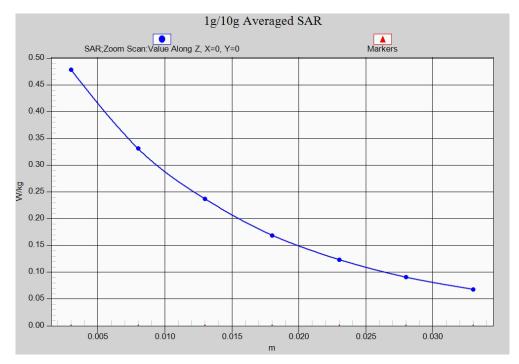


Fig. 2-1 Z-Scan at power reference point (850 MHz)

1900 Right Cheek Low

Date: 2016-7-10

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters use (interpolated): f = 1850.2 MHz; $\sigma = 1.381$ mho/m; $\epsilon r = 40.78$; $\rho =$

 1000 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.01 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.28 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.840 W/kg; SAR(10 g) = 0.542 W/kg

Maximum value of SAR (measured) = 0.969 W/kg

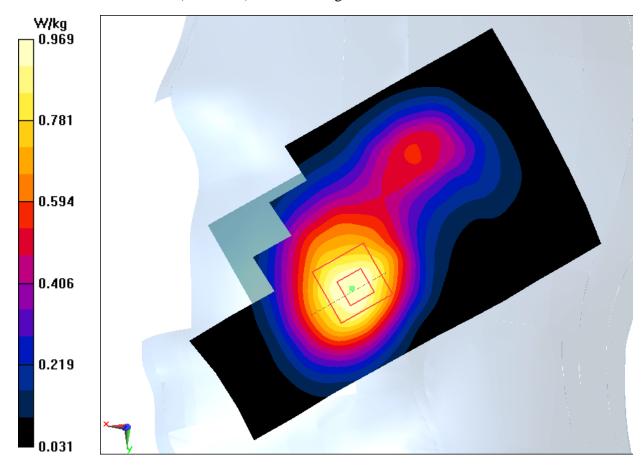


Fig.3 1900 MHz

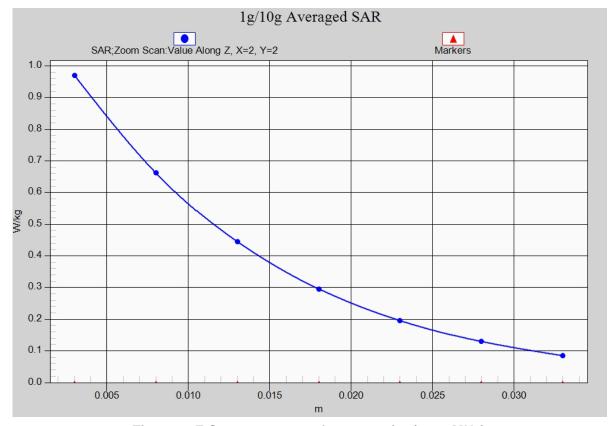


Fig. 3-1 Z-Scan at power reference point (1900 MHz)

1900 Body Rear Middle

Date: 2016-7-10

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.507$ mho/m; $\epsilon r = 54.81$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C

Communication System: GSM 1900MHz GPRS Frequency: 1880 MHz Duty Cycle: 1:4

Probe: EX3DV4 - SN3617 ConvF(7.74, 7.74, 7.74)

Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.55 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.22 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 1.26 W/kg; SAR(10 g) = 0.750 W/kg

Maximum value of SAR (measured) = 1.49 W/kg

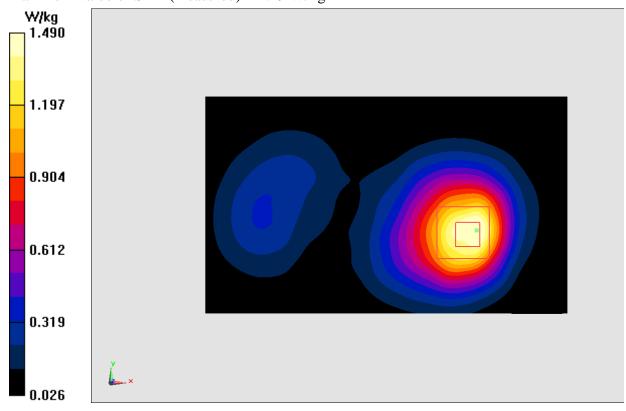


Fig.4 1900 MHz

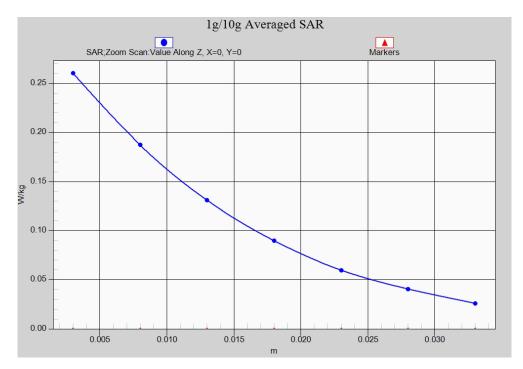


Fig.4-1 Z-Scan at power reference point (1900 MHz)

ANNEX B SystemVerification Results

835MHz

Date: 2016-7-9

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.921$ S/m; $\varepsilon_r = 41.12$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

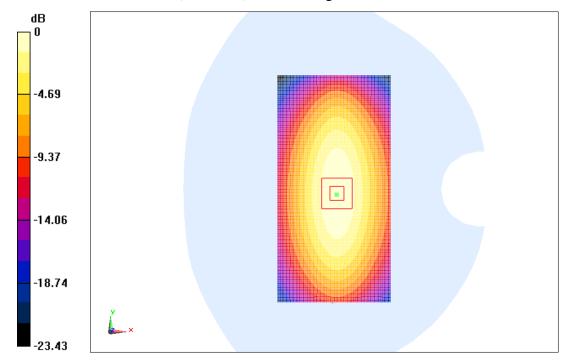
Probe: EX3DV4 – SN3617 ConvF(9.56, 9.56, 9.56)

System Validation /Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 51.281 V/m; Power Drift = 0.07 dB

Fast SAR: SAR(1 g) = 2.27 W/kg; SAR(10 g) = 1.47 W/kg

Maximum value of SAR (interpolated) = 2.50 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.281 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.50 W/kg

Maximum value of SAR (measured) = 2.53 W/kg

0 dB = 2.53 W/kg = 4.03dBW/kg

Fig.B.1 validation 835MHz 250mW

835MHz

Date: 2016-7-9

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.972$ S/m; $\varepsilon_r = 56.23$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

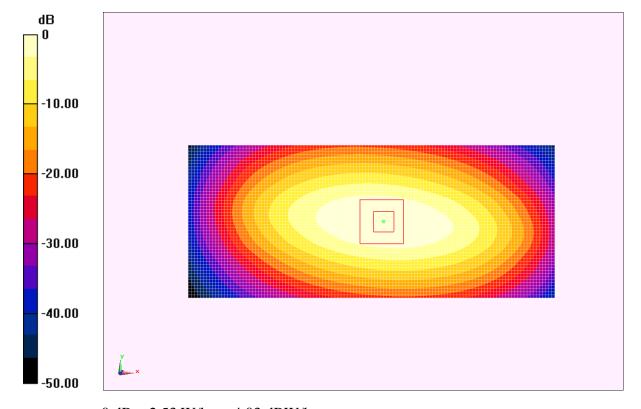
Probe: EX3DV4 – SN3617 ConvF(9.71, 9.71, 9.71)

System Validation /Area Scan (81x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 51.697 V/m; Power Drift = 0.05 dB

Fast SAR: SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.53 W/kg

Maximum value of SAR (interpolated) = 2.51 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.697 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.53 W/kg

0 dB = 2.53 W/kg = 4.03 dBW/kg

Fig.B.2 validation 835MHz 250mW

1900MHz

Date: 2016-7-10

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.395 \text{ S/m}$; $\varepsilon_r = 40.65$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

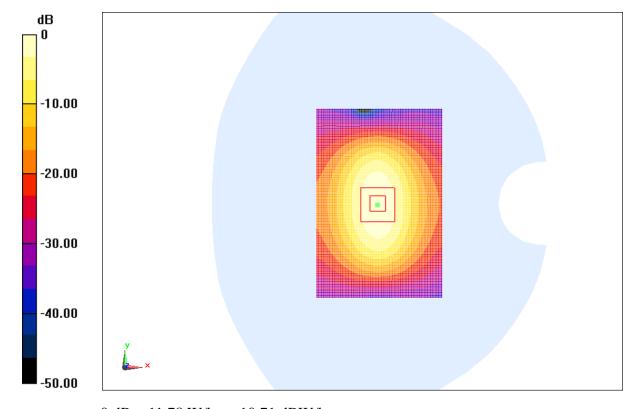
Probe: EX3DV4 - SN3617 ConvF(8.07, 8.07, 8.07)

System Validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 90.339 V/m; Power Drift = 0.05 dB

Fast SAR: SAR(1 g) = 10.58 W/kg; SAR(10 g) = 5.64 W/kg

Maximum value of SAR (interpolated) = 11.98 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.339 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 18.99 W/kg

SAR(1 g) = 10.38 W/kg; SAR(10 g) = 5.46 W/kg

Maximum value of SAR (measured) = 11.78 W/kg

0 dB = 11.78 W/kg = 10.71 dBW/kg

Fig.B.3 validation 1900MHz 250mW

1900MHz

Date: 2016-7-10

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.516 \text{ S/m}$; $\varepsilon_r = 54.69$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

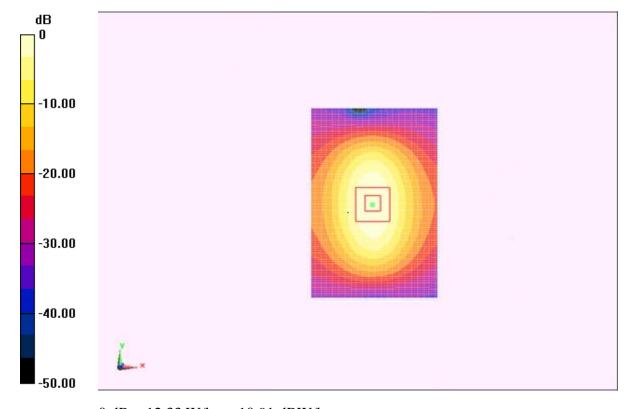
Probe: EX3DV4 – SN3617 ConvF(7.74, 7.74, 7.74)

System validation /Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 63.021 V/m; Power Drift = -0.02 dB

Fast SAR: SAR(1 g) = 10.53 W/kg; SAR(10 g) = 5.62 W/kg

Maximum value of SAR (interpolated) = 12.53 W/kg


System validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.021 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 19.35 W/kg

SAR(1 g) = 10.33 W/kg; SAR(10 g) = 5.48 W/kg

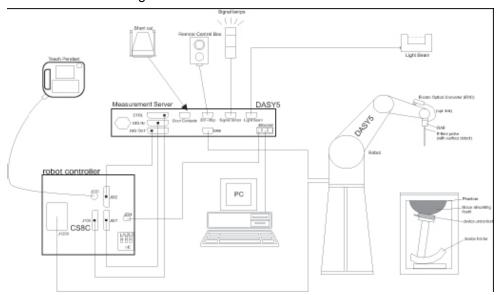
Maximum value of SAR (measured) = 12.33 W/kg

0 dB = 12.33 W/kg = 10.91 dBW/kg

Fig.B.4 validation 1900MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.1 Comparison between area scan and zoom scan for system verification


Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2016-7-9	835	Head	2.27	2.31	-1.73
	835	Body	2.31	2.34	-1.28
2016 7 10	1900	Head	10.58	10.38	1.93
2016-7-10	1900	Body	10.53	10.33	1.94

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (StäubliTX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: ES3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4

± 0.2dB(30 MHz to 4 GHz) for ES3DV3 DynamicRange: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed ©Copyright. All rights reserved by CTTL.

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = \text{Exposure time (30 seconds)},$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 4

Picture C.6 DASY 5

C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chip disk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pin out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

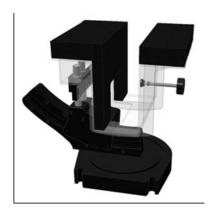
C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric


parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder

Picture C.9-2: Laptop Extension Kit

C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

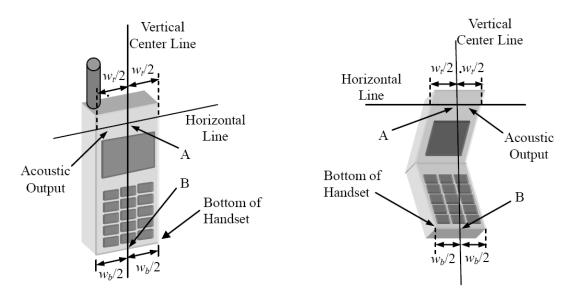
Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2±0. 2 mm

Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

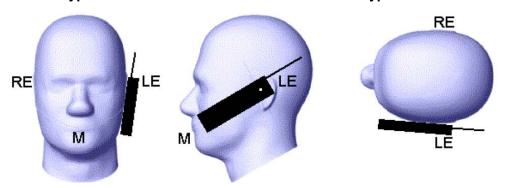
Available: Special


Picture C.10: SAM Twin Phantom

ANNEX D Position of the wireless device in relation to the phantom

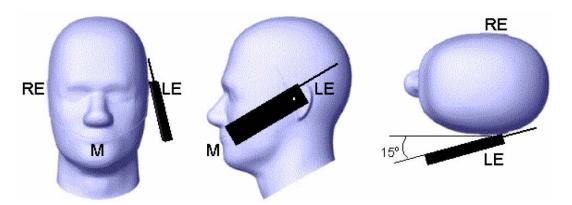
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

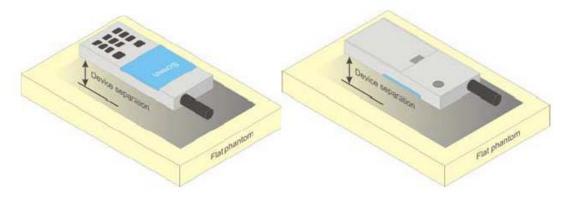
 W_b Width of the bottom of the handset

A Midpoint of the width w_i of the handset at the level of the acoustic output


B Midpoint of the width W_b of the bottom of the handset

Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

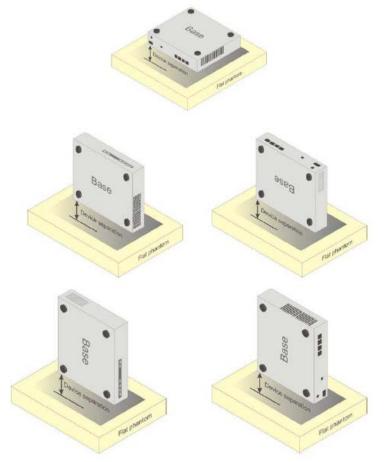
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

TableE.1: Composition of the Tissue Equivalent Matter

Frequency	835Head	925Dady	1900	1900	2450	2450	5800	5800
(MHz)	озопеац	835Body	Head	Body	Head	Body	Head	Body
Ingredients (% by	Ingredients (% by weight)							
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	\	\	\	\	\	\
Salt	1.45	1.4	0.306	0.13	0.06	0.18	\	\
Preventol	0.1	0.1	\	\	\	\	\	\
Cellulose	1.0	1.0	\	\	\	\	\	\
Glycol	,	١	44.450	20.06	44.4E	07.00	\	\
Monobutyl	\	\	44.452	29.96	41.15	27.22	\	\
Diethylenglycol	,	١	\	\	\	\	17.24	17.24
monohexylether	\	\	\	\	\	\	17.24	17.24
Triton X-100	\	\	\	\	\	\	17.24	17.24
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7	ε=35.3	ε=48.2
Parameters								
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00

ANNEX F System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation for 3617

Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3617	Head 750MHz	Sep. 5, 2015	750 MHz	OK
3617	Head 850MHz	Sep. 5, 2015	850 MHz	OK
3617	Head 900MHz	Sep. 6, 2015	900 MHz	OK
3617	Head 1450MHz	Sep. 6, 2015	1450 MHz	OK
3617	Head 1640MHz	Sep. 7, 2015	1640 MHz	OK
3617	Head 1750MHz	Sep. 7, 2015	1750 MHz	OK
3617	Head 1810MHz	Sep. 8, 2015	1810 MHz	OK
3617	Head 1900MHz	Sep. 8, 2015	1900 MHz	OK
3617	Head 2000MHz	Sep. 9, 2015	2000 MHz	OK
3617	Head 2100MHz	Sep. 9, 2015	2100 MHz	OK
3617	Head 2300MHz	Sep. 10, 2015	2300 MHz	OK
3617	Head 2450MHz	Sep. 10, 2015	2450 MHz	OK
3617	Head 2600MHz	Sep. 11, 2015	2600 MHz	OK
3617	Head 3500MHz	Sep. 11, 2015	3500 MHz	OK
3617	Head 3700MHz	Sep. 12, 2015	3700 MHz	OK
3617	Head 5200MHz	Sep. 12, 2015	5200 MHz	OK
3617	Head 5300MHz	Sep. 13, 2015	5300 MHz	OK
3617	Head 5500MHz	Sep. 13, 2015	5500 MHz	OK
3617	Head 5600MHz	Sep. 14, 2015	5600 MHz	OK
3617	Head 5800MHz	Sep. 14, 2015	5800 MHz	OK
3617	Body 750MHz	Sep. 5, 2015	750 MHz	OK
3617	Body 850MHz	Sep. 5, 2015	850 MHz	OK
3617	Body 900MHz	Sep. 6, 2015	900 MHz	OK
3617	Body 1450MHz	Sep. 6, 2015	1450 MHz	OK
3617	Body 1640MHz	Sep. 7, 2015	1640 MHz	OK
3617	Body 1750MHz	Sep. 7, 2015	1750 MHz	OK
3617	Body 1810MHz	Sep. 8, 2015	1810 MHz	OK
3617	Body 1900MHz	Sep. 8, 2015	1900 MHz	OK
3617	Body 2000MHz	Sep. 9, 2015	2000 MHz	OK
3617	Body 2100MHz	Sep. 9, 2015	2100 MHz	OK
3617	Body 2300MHz	Sep. 10, 2015	2300 MHz	OK
3617	Body 2450MHz	Sep. 10, 2015	2450 MHz	OK
3617	Body 2600MHz	Sep. 11, 2015	2600 MHz	OK
3617	Body 3500MHz	Sep. 11, 2015	3500 MHz	OK
3617	Body 3700MHz	Sep. 12, 2015	3700 MHz	OK
3617	Body 5200MHz	Sep. 12, 2015	5200 MHz	OK

ANNEX G Probe Calibration Certificate

Probe 3617 Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Calibration Equipment used (M&TE critical for calibration)

Certificate No: EX3-3617_Aug15

CALIBRATION CERTIFICATE Object EX3DV4 - SN:3617 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: August 26, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name	Function	Signature
Claudio Leubler	Laboratory Technician	Yal
Katja Pokovic	Technical Manager	ASUL-
		Issued: August 27, 2015
	Claudio Leubler Katja Pokovic	Claudio Leubler Laboratory Technician