



# element

**TURCK Inc.**

**PD67 Handheld RFID Reader**

**FCC 15.247:2020**

**RFID Transceiver**

**Report # TURC0061.1 Rev. 1**



NVLAP LAB CODE: 200881-0



*This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.*

# CERTIFICATE OF TEST



Last Date of Test: January 23, 2020  
TURCK Inc.  
EUT: PD67 Handheld RFID Reader

## Radio Equipment Testing

### Standards

| Specification   | Method           |
|-----------------|------------------|
| FCC 15.247:2019 |                  |
| FCC 15.247:2020 | ANSI C63.10:2013 |

### Results

| Method Clause | Test Description                            | Applied | Results | Comments                             |
|---------------|---------------------------------------------|---------|---------|--------------------------------------|
| 6.2           | Powerline Conducted Emissions (Transmitter) | Yes     | Pass    |                                      |
| 6.5, 6.6      | Spurious Radiated Emissions                 | Yes     | Pass    |                                      |
| 7.5           | Duty Cycle                                  | Yes     | N/A     | Characterization of radio operation. |
| 7.8.2         | Carrier Frequency Separation                | Yes     | Pass    |                                      |
| 7.8.3         | Number of Hopping Frequencies               | Yes     | Pass    |                                      |
| 7.8.4         | Dwell Time                                  | Yes     | Pass    |                                      |
| 7.8.5         | Output Power                                | Yes     | Pass    |                                      |
| 7.8.5         | Equivalent Isotropic Radiated Power         | Yes     | Pass    |                                      |
| 7.8.6         | Band Edge Compliance                        | Yes     | Pass    |                                      |
| 7.8.6         | Band Edge Compliance - Hopping Mode         | Yes     | Pass    |                                      |
| 7.8.7         | Occupied Bandwidth                          | Yes     | Pass    |                                      |
| 7.8.8         | Spurious Conducted Emissions                | Yes     | Pass    |                                      |
| 11.10.2       | Power Spectral Density                      | No      | N/A     | Not required for FHSS devices.       |

### Deviations From Test Standards

None

### Approved By:

Eric Brandon, Department Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

# REVISION HISTORY



| Revision Number | Description                                                                                | Date<br>(yyyy-mm-dd) | Page Number |
|-----------------|--------------------------------------------------------------------------------------------|----------------------|-------------|
| 01              | Corrected typo on Output Power units                                                       | 2020-08-19           | 8           |
|                 | Updated configurations to PD67-UNI-NA-RSWBG model (indicates barcode included) for clarity | 2020-08-19           | 9           |
|                 | Added Power Settings table                                                                 | 2020-08-19           | 12          |

# ACCREDITATIONS AND AUTHORIZATIONS



## United States

**FCC** - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

**A2LA** - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

**NVLAP** - Each laboratory is accredited by NVLAP to ISO 17025

## Canada

**ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

## European Union

**European Commission** – Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

## Australia/New Zealand

**ACMA** - Recognized by ACMA as a CAB for the acceptance of test data.

## Korea

**MSIT / RRA** - Recognized by KCC's RRA as a CAB for the acceptance of test data.

## Japan

**VCCI** - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

## Taiwan

**BSMI** – Recognized by BSMI as a CAB for the acceptance of test data.

**NCC** - Recognized by NCC as a CAB for the acceptance of test data.

## Singapore

**IDA** – Recognized by IDA as a CAB for the acceptance of test data.

## Israel

**MOC** – Recognized by MOC as a CAB for the acceptance of test data.

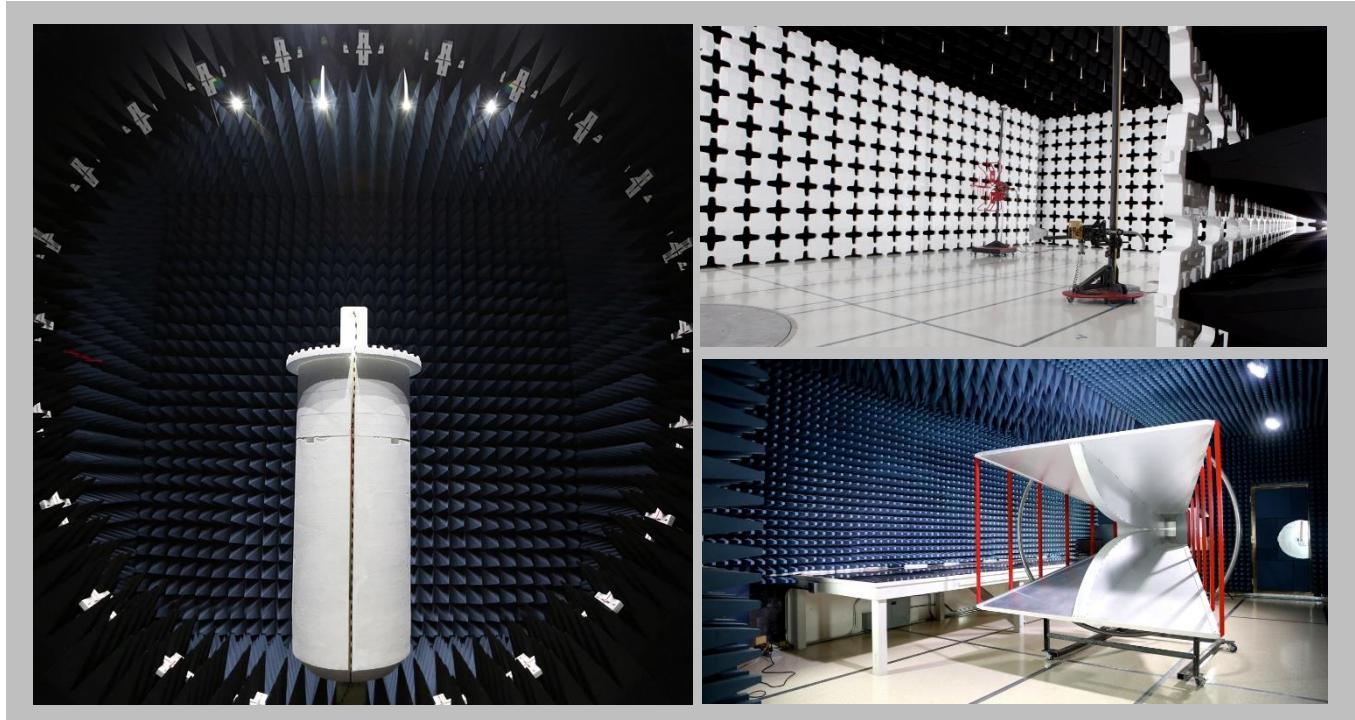
## Hong Kong

**OFCA** – Recognized by OFCA as a CAB for the acceptance of test data.

## Vietnam

**MIC** – Recognized by MIC as a CAB for the acceptance of test data.

## SCOPE


For details on the Scopes of our Accreditations, please visit:

<https://www.nwemc.com/emc-testing-accreditations>

# FACILITIES



|                                                                                       |                                                                                                       |                                                                                                       |                                                                                        |                                                                                               |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <b>California</b><br>Labs OC01-17<br>41 Tesla<br>Irvine, CA 92618<br>(949) 861-8918   | <b>Minnesota</b><br>Labs MN01-10<br>9349 W Broadway Ave.<br>Brooklyn Park, MN 55445<br>(612) 638-5136 | <b>Oregon</b><br>Labs EV01-12<br>6775 NE Evergreen Pkwy #400<br>Hillsboro, OR 97124<br>(503) 844-4066 | <b>Texas</b><br>Labs TX01-09<br>3801 E Plano Pkwy<br>Plano, TX 75074<br>(469) 304-5255 | <b>Washington</b><br>Labs NC01-05<br>19201 120th Ave NE<br>Bothell, WA 98011<br>(425)984-6600 |
| <b>NVLAP</b>                                                                          |                                                                                                       |                                                                                                       |                                                                                        |                                                                                               |
| NVLAP Lab Code: 200676-0                                                              | NVLAP Lab Code: 200881-0                                                                              | NVLAP Lab Code: 200630-0                                                                              | NVLAP Lab Code: 201049-0                                                               | NVLAP Lab Code: 200629-0                                                                      |
| <b>Innovation, Science and Economic Development Canada</b>                            |                                                                                                       |                                                                                                       |                                                                                        |                                                                                               |
| 2834B-1, 2834B-3                                                                      | 2834E-1, 2834E-3                                                                                      | 2834D-1                                                                                               | 2834G-1                                                                                | 2834F-1                                                                                       |
| <b>BSMI</b>                                                                           |                                                                                                       |                                                                                                       |                                                                                        |                                                                                               |
| SL2-IN-E-1154R                                                                        | SL2-IN-E-1152R                                                                                        | SL2-IN-E-1017                                                                                         | SL2-IN-E-1158R                                                                         | SL2-IN-E-1153R                                                                                |
| <b>VCCI</b>                                                                           |                                                                                                       |                                                                                                       |                                                                                        |                                                                                               |
| A-0029                                                                                | A-0109                                                                                                | A-0108                                                                                                | A-0201                                                                                 | A-0110                                                                                        |
| <b>Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA</b> |                                                                                                       |                                                                                                       |                                                                                        |                                                                                               |
| US0158                                                                                | US0175                                                                                                | US0017                                                                                                | US0191                                                                                 | US0157                                                                                        |

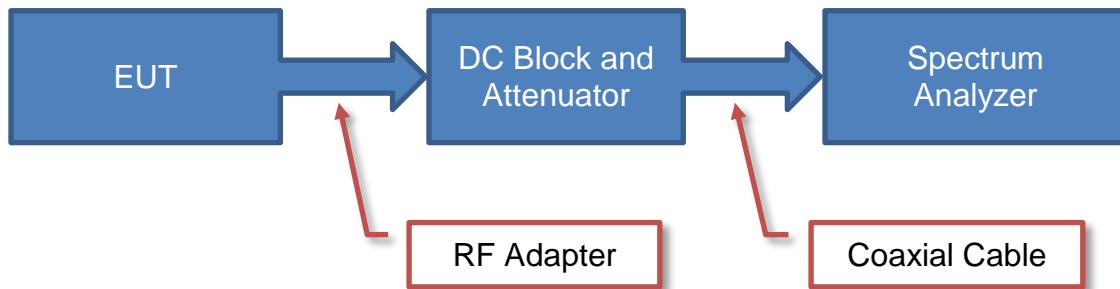


# MEASUREMENT UNCERTAINTY



## Measurement Uncertainty

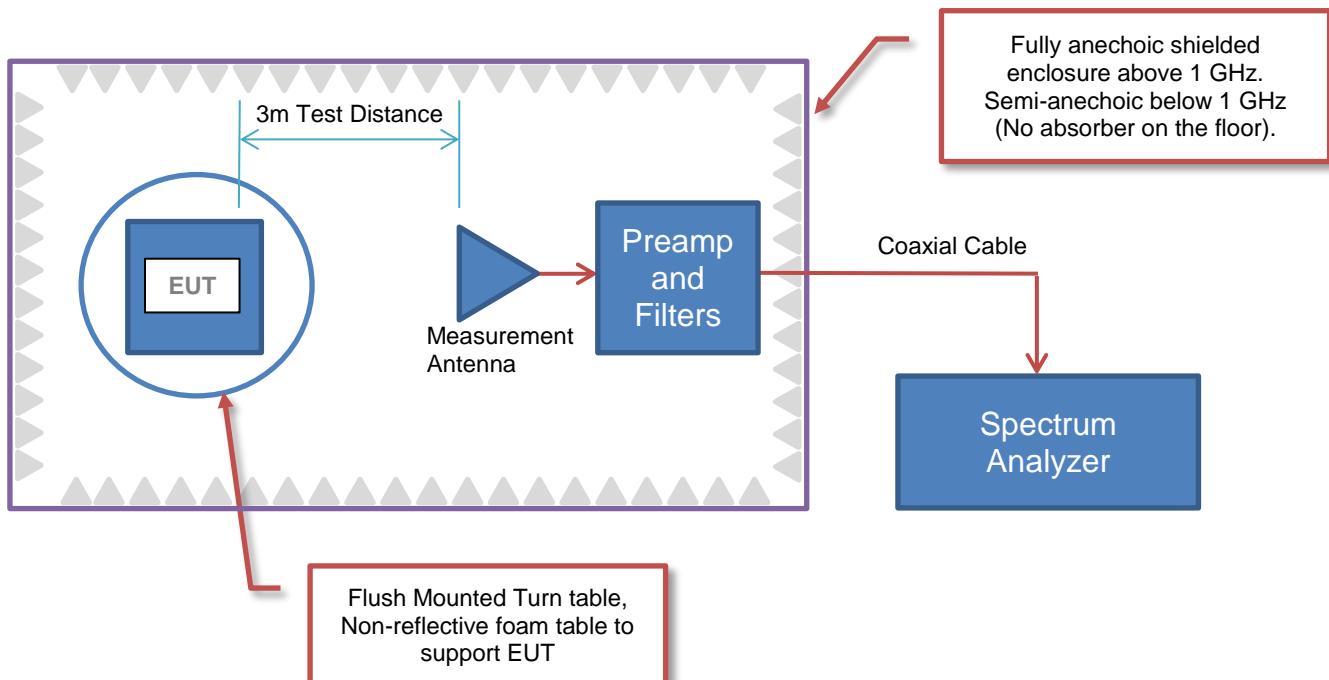
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

| Test                                  | + MU    | - MU     |
|---------------------------------------|---------|----------|
| Frequency Accuracy                    | 0.0007% | -0.0007% |
| Amplitude Accuracy (dB)               | 1.2 dB  | -1.2 dB  |
| Conducted Power (dB)                  | 1.2 dB  | -1.2 dB  |
| Radiated Power via Substitution (dB)  | 0.7 dB  | -0.7 dB  |
| Temperature (degrees C)               | 0.7°C   | -0.7°C   |
| Humidity (% RH)                       | 2.5% RH | -2.5% RH |
| Voltage (AC)                          | 1.0%    | -1.0%    |
| Voltage (DC)                          | 0.7%    | -0.7%    |
| Field Strength (dB)                   | 5.2 dB  | -5.2 dB  |
| AC Powerline Conducted Emissions (dB) | 2.4 dB  | -2.4 dB  |

# Test Setup Block Diagrams


## Antenna Port Conducted Measurements



## Near Field Test Fixture Measurements



## Spurious Radiated Emissions



# PRODUCT DESCRIPTION



## Client and Equipment Under Test (EUT) Information

|                                 |                           |
|---------------------------------|---------------------------|
| <b>Company Name:</b>            | TURCK Inc.                |
| <b>Address:</b>                 | 3000 Campus Dr            |
| <b>City, State, Zip:</b>        | Plymouth, MN 55441        |
| <b>Test Requested By:</b>       | Gabe Selinger             |
| <b>EUT:</b>                     | PD67 Handheld RFID Reader |
| <b>First Date of Test:</b>      | November 21, 2019         |
| <b>Last Date of Test:</b>       | January 23, 2020          |
| <b>Receipt Date of Samples:</b> | November 11, 2019         |
| <b>Equipment Design Stage:</b>  | Production                |
| <b>Equipment Condition:</b>     | No Damage                 |
| <b>Purchase Authorization:</b>  | Verified                  |

## Information Provided by the Party Requesting the Test

### Functional Description of the EUT:

PD67 is a battery operated, handheld device for reading HF and UHF RFID tags, as well as barcodes. It is capable of WiFi communication, and has a USB C interface for battery charging and communication. When transmitting for RFID reading, it has a max output power of about 30dBm. Its duty cycle while transmitting is NOT constant (it is calculated and adjusted every time based on factors such as tag response and reflected power). The user interfaces with the device via 3 buttons, as well as a capacitive touch LCD. The device runs Android as its operating system. The barcode scanner contains a linear LED for aiming purposes, but there is NOT a laser. The battery is Lithium Ion. The device also has GPS capability, via an internal on-board antenna.

### Testing Objective:

Seeking to demonstrate compliance under FCC 15.247 for operation in the 902-928 MHz Band.

# CONFIGURATIONS



## Configuration TURC0058- 5

| Software/Firmware Running during test |         |
|---------------------------------------|---------|
| Description                           | Version |
| Firmware                              | 1.19.6  |

| EUT                  |              |                   |               |
|----------------------|--------------|-------------------|---------------|
| Description          | Manufacturer | Model/Part Number | Serial Number |
| Handheld RFID Reader | TURCK Inc.   | PD67-UNI-NA-RSWBG | T2            |

| Peripherals in test setup boundary |              |                   |               |
|------------------------------------|--------------|-------------------|---------------|
| Description                        | Manufacturer | Model/Part Number | Serial Number |
| AC/DC power adapter                | Phihong      | AQ15A-050A        | None          |

| Cables         |        |            |         |                      |                     |
|----------------|--------|------------|---------|----------------------|---------------------|
| Cable Type     | Shield | Length (m) | Ferrite | Connection 1         | Connection 2        |
| USB-C to USB-C | Yes    | 1m         | None    | Handheld RFID Reader | AC/DC power adapter |

## Configuration TURC0058- 7

| Software/Firmware Running during test |         |
|---------------------------------------|---------|
| Description                           | Version |
| Firmware                              | 1.19.6  |

| EUT                  |              |                   |               |
|----------------------|--------------|-------------------|---------------|
| Description          | Manufacturer | Model/Part Number | Serial Number |
| Handheld RFID Reader | TURCK Inc.   | PD67-UNI-NA-RSWBG | T4            |

| Peripherals in test setup boundary |              |                   |               |
|------------------------------------|--------------|-------------------|---------------|
| Description                        | Manufacturer | Model/Part Number | Serial Number |
| AC/DC power adapter                | CUI Inc      | SWC15-55-NB       | None          |

| Cables         |        |            |         |                      |                     |
|----------------|--------|------------|---------|----------------------|---------------------|
| Cable Type     | Shield | Length (m) | Ferrite | Connection 1         | Connection 2        |
| USB-C to USB-C | Yes    | 1m         | None    | Handheld RFID Reader | AC/DC power adapter |

# CONFIGURATIONS



## Configuration TURC0061- 1

| <b>EUT</b>           |                     |  |                          |  |                      |
|----------------------|---------------------|--|--------------------------|--|----------------------|
| <b>Description</b>   | <b>Manufacturer</b> |  | <b>Model/Part Number</b> |  | <b>Serial Number</b> |
| Handheld RFID Reader | TURCK Inc.          |  | PD67-UNI-NA-RSWBG        |  | T10                  |

| <b>Peripherals in test setup boundary</b> |                     |  |                          |  |                      |
|-------------------------------------------|---------------------|--|--------------------------|--|----------------------|
| <b>Description</b>                        | <b>Manufacturer</b> |  | <b>Model/Part Number</b> |  | <b>Serial Number</b> |
| Power Supply (RFID Reader)                | CUI Inc.            |  | SWC15-S5-NB              |  | N/A                  |

| <b>Cables</b>     |               |                   |                |                            |                      |
|-------------------|---------------|-------------------|----------------|----------------------------|----------------------|
| <b>Cable Type</b> | <b>Shield</b> | <b>Length (m)</b> | <b>Ferrite</b> | <b>Connection 1</b>        | <b>Connection 2</b>  |
| USB Cable         | Yes           | 1.8 m             | No             | Power Supply (RFID Reader) | Handheld RFID Reader |

# MODIFICATIONS



## Equipment Modifications

| Item | Date       | Test                                        | Modification                         | Note                                                                | Disposition of EUT                          |
|------|------------|---------------------------------------------|--------------------------------------|---------------------------------------------------------------------|---------------------------------------------|
| 1    | 2019-11-21 | Powerline Conducted Emissions (Transmitter) | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 2    | 2019-11-25 | Spurious Radiated Emissions                 | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 3    | 2020-01-23 | Carrier Frequency Separation                | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 4    | 2020-01-23 | Number of Hopping Frequencies               | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 5    | 2020-01-23 | Dwell Time                                  | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 6    | 2020-01-23 | Output Power                                | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 7    | 2020-01-23 | Equivalent Isotropic Radiated Power         | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 8    | 2020-01-23 | Band Edge Compliance                        | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 9    | 2020-01-23 | Band Edge Compliance - Hopping Mode         | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 10   | 2020-01-23 | Occupied Bandwidth                          | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | EUT remained at Element following the test. |
| 11   | 2020-01-23 | Spurious Conducted Emissions                | Tested as delivered to Test Station. | No EMI suppression devices were added or modified during this test. | Scheduled testing was completed.            |

# POWER SETTINGS

The EUT was tested using the power settings provided by the manufacturer:

## SETTINGS FOR ALL TESTS IN THIS REPORT

| Modulation Types                   | Position<br>(if multiple channels) | Power Setting |
|------------------------------------|------------------------------------|---------------|
| Single Data Rate / Modulation Type | Low Channel                        | 30 dBm        |
|                                    | Mid Channel                        | 30 dBm        |
|                                    | High Channel                       | 30 dBm        |

# POWERLINE CONDUCTED EMISSIONS



## TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

## TEST EQUIPMENT

| Description                      | Manufacturer      | Model            | ID   | Last Cal.  | Cal. Due   |
|----------------------------------|-------------------|------------------|------|------------|------------|
| Receiver                         | Rohde & Schwarz   | ESR7             | ARI  | 2019-07-08 | 2020-07-08 |
| Cable - Conducted Cable Assembly | Northwest EMC     | MNC, HGN, TYK    | MNCA | 2019-03-13 | 2020-03-13 |
| LISN                             | Solar Electronics | 9252-50-R-24-BNC | LIY  | 2019-03-15 | 2020-03-15 |

## MEASUREMENT UNCERTAINTY

| Description  |        |         |
|--------------|--------|---------|
| Expanded k=2 | 2.4 dB | -2.4 dB |

## CONFIGURATIONS INVESTIGATED

TURC0058-5

## MODES INVESTIGATED

Tx on Mid ch (915.25 MHz), 30 dBm output power, 100% duty cycle, full modulation

# POWERLINE CONDUCTED EMISSIONS



|                   |                               |                    |            |
|-------------------|-------------------------------|--------------------|------------|
| EUT:              | PD67 Handheld RFID Reader     | Work Order:        | TURC0058   |
| Serial Number:    | T2                            | Date:              | 2019-11-21 |
| Customer:         | TURCK Inc.                    | Temperature:       | 22.1°C     |
| Attendees:        | Gabe Selinger, Matt Wickstrom | Relative Humidity: | 31.7%      |
| Customer Project: | None                          | Bar. Pressure:     | 1017 mb    |
| Tested By:        | Andrew Rogstad                | Job Site:          | MN03       |
| Power:            | 110VAC/60Hz                   | Configuration:     | TURC0058-5 |

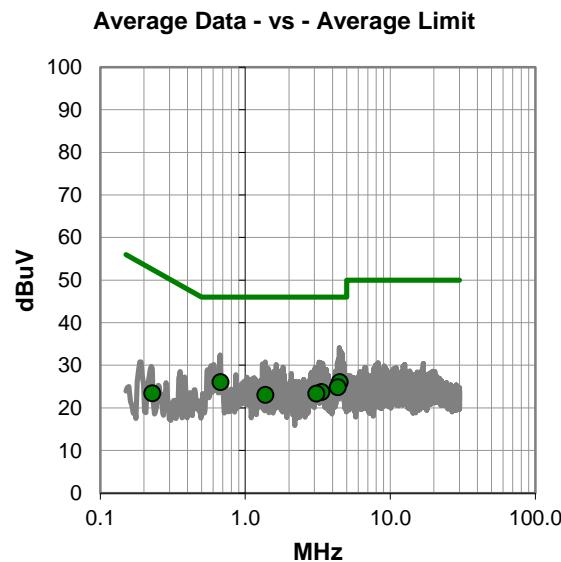
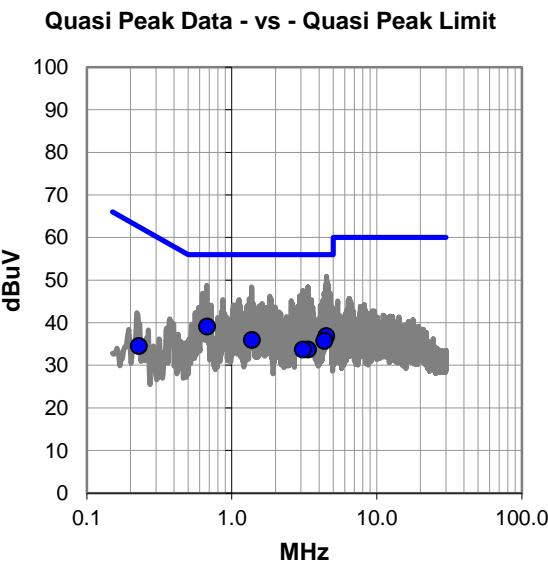
## TEST SPECIFICATIONS

|                 |                  |
|-----------------|------------------|
| Specification:  | Method:          |
| FCC 15.247:2019 | ANSI C63.10:2013 |

## TEST PARAMETERS

|        |    |       |         |                             |   |
|--------|----|-------|---------|-----------------------------|---|
| Run #: | 19 | Line: | Neutral | Add. Ext. Attenuation (dB): | 0 |
|--------|----|-------|---------|-----------------------------|---|

## COMMENTS



Firmware 1.19.6

## EUT OPERATING MODES

Tx on Mid ch (915.25 MHz), 30 dBm output power, 100% duty cycle, full modulation

## DEVIATIONS FROM TEST STANDARD

None



# POWERLINE CONDUCTED EMISSIONS



## RESULTS - Run #19

Quasi Peak Data - vs - Quasi Peak Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.677      | 18.5        | 20.6        | 39.1            | 56.0               | -16.9       |
| 4.494      | 16.1        | 20.7        | 36.8            | 56.0               | -19.2       |
| 1.375      | 15.3        | 20.6        | 35.9            | 56.0               | -20.1       |
| 4.351      | 15.0        | 20.7        | 35.7            | 56.0               | -20.3       |
| 3.355      | 12.9        | 20.8        | 33.7            | 56.0               | -22.3       |
| 3.090      | 13.0        | 20.7        | 33.7            | 56.0               | -22.3       |
| 0.228      | 13.8        | 20.7        | 34.5            | 62.5               | -28.0       |

Average Data - vs - Average Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 4.494      | 5.3         | 20.7        | 26.0            | 46.0               | -20.0       |
| 0.677      | 5.4         | 20.6        | 26.0            | 46.0               | -20.0       |
| 4.351      | 4.1         | 20.7        | 24.8            | 46.0               | -21.2       |
| 3.355      | 2.9         | 20.8        | 23.7            | 46.0               | -22.3       |
| 3.090      | 2.6         | 20.7        | 23.3            | 46.0               | -22.7       |
| 1.375      | 2.4         | 20.6        | 23.0            | 46.0               | -23.0       |
| 0.228      | 2.7         | 20.7        | 23.4            | 52.5               | -29.1       |

## CONCLUSION

Pass

Tested By

# POWERLINE CONDUCTED EMISSIONS



|                   |                               |                    |            |
|-------------------|-------------------------------|--------------------|------------|
| EUT:              | PD67 Handheld RFID Reader     | Work Order:        | TURC0058   |
| Serial Number:    | T2                            | Date:              | 2019-11-21 |
| Customer:         | TURCK Inc.                    | Temperature:       | 22.1°C     |
| Attendees:        | Gabe Selinger, Matt Wickstrom | Relative Humidity: | 31.7%      |
| Customer Project: | None                          | Bar. Pressure:     | 1017 mb    |
| Tested By:        | Andrew Rogstad                | Job Site:          | MN03       |
| Power:            | 110VAC/60Hz                   | Configuration:     | TURC0058-5 |

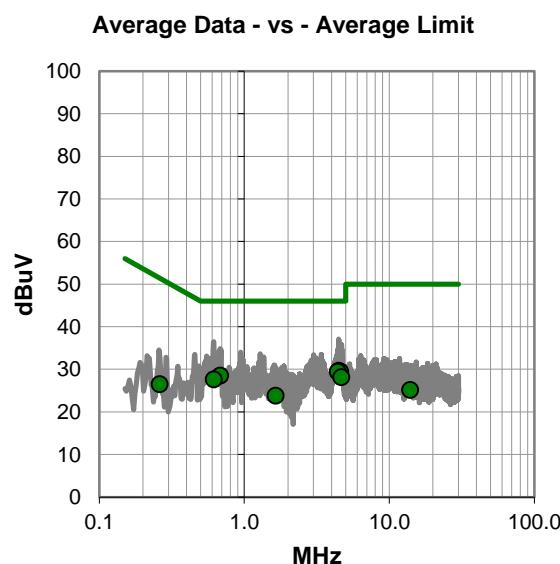
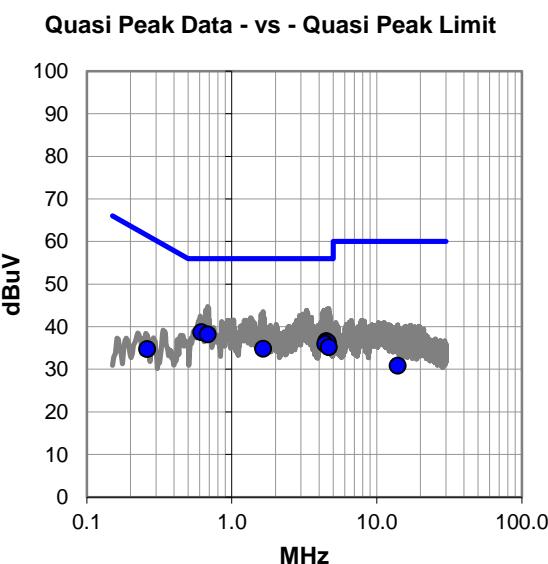
## TEST SPECIFICATIONS

|                 |                  |
|-----------------|------------------|
| Specification:  | Method:          |
| FCC 15.247:2019 | ANSI C63.10:2013 |

## TEST PARAMETERS

|        |    |       |           |                             |   |
|--------|----|-------|-----------|-----------------------------|---|
| Run #: | 20 | Line: | High Line | Add. Ext. Attenuation (dB): | 0 |
|--------|----|-------|-----------|-----------------------------|---|

## COMMENTS



Firmware 1.19.6;

## EUT OPERATING MODES

Tx on Mid ch (915.25 MHz), 30 dBm output power, 100% duty cycle, full modulation

## DEVIATIONS FROM TEST STANDARD

None



# POWERLINE CONDUCTED EMISSIONS



## RESULTS - Run #20

Quasi Peak Data - vs - Quasi Peak Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 0.617      | 18.2        | 20.5        | 38.7            | 56.0               | -17.3       |
| 0.684      | 17.6        | 20.6        | 38.2            | 56.0               | -17.8       |
| 4.489      | 15.9        | 20.7        | 36.6            | 56.0               | -19.4       |
| 4.613      | 15.6        | 20.7        | 36.3            | 56.0               | -19.7       |
| 4.418      | 15.2        | 20.7        | 35.9            | 56.0               | -20.1       |
| 4.684      | 14.5        | 20.7        | 35.2            | 56.0               | -20.8       |
| 1.648      | 14.2        | 20.6        | 34.8            | 56.0               | -21.2       |
| 0.261      | 14.0        | 20.7        | 34.7            | 61.4               | -26.7       |
| 13.946     | 9.9         | 20.9        | 30.8            | 60.0               | -29.2       |

Average Data - vs - Average Limit

| Freq (MHz) | Amp. (dBuV) | Factor (dB) | Adjusted (dBuV) | Spec. Limit (dBuV) | Margin (dB) |
|------------|-------------|-------------|-----------------|--------------------|-------------|
| 4.489      | 8.9         | 20.7        | 29.6            | 46.0               | -16.4       |
| 4.613      | 8.7         | 20.7        | 29.4            | 46.0               | -16.6       |
| 4.418      | 8.7         | 20.7        | 29.4            | 46.0               | -16.6       |
| 0.684      | 7.9         | 20.6        | 28.5            | 46.0               | -17.5       |
| 4.684      | 7.4         | 20.7        | 28.1            | 46.0               | -17.9       |
| 0.617      | 7.1         | 20.5        | 27.6            | 46.0               | -18.4       |
| 1.648      | 3.2         | 20.6        | 23.8            | 46.0               | -22.2       |
| 0.261      | 5.8         | 20.7        | 26.5            | 51.4               | -24.9       |
| 13.946     | 4.2         | 20.9        | 25.1            | 50.0               | -24.9       |

## CONCLUSION

Pass

Tested By

# SPURIOUS RADIATED EMISSIONS



PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

## MODES OF OPERATION

Transmitting on Low channel (902.75 MHz), Mid channel (915.25 MHz), and High channel (927.25 MHz), UHF RFID, 100 % duty cycle, modulated.

## POWER SETTINGS INVESTIGATED

110VAC/60Hz

## CONFIGURATIONS INVESTIGATED

TURC0058 - 7

## FREQUENCY RANGE INVESTIGATED

|                 |        |                |           |
|-----------------|--------|----------------|-----------|
| Start Frequency | 30 MHz | Stop Frequency | 12400 MHz |
|-----------------|--------|----------------|-----------|

## SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

## TEST EQUIPMENT

| Description                  | Manufacturer    | Model                          | ID  | Last Cal.   | Interval |
|------------------------------|-----------------|--------------------------------|-----|-------------|----------|
| Amplifier - Pre-Amplifier    | Miteq           | AMF-6F-08001200-30-10P         | AVV | 8-Feb-2019  | 12 mo    |
| Cable                        | ESM Cable Corp. | Standard Gain Horn Cables      | MNJ | 8-Mar-2019  | 12 mo    |
| Antenna - Standard Gain      | ETS Lindgren    | 3160-07                        | AXP | NCR         | 0 mo     |
| Amplifier - Pre-Amplifier    | Miteq           | AMF-3D-00100800-32-13P         | AVT | 8-Feb-2019  | 12 mo    |
| Cable                        | ESM Cable Corp. | Double Ridge Guide Horn Cables | MNI | 17-Sep-2019 | 12 mo    |
| Antenna - Double Ridge       | ETS-Lindgren    | 3115                           | AJQ | 16-Jan-2019 | 24 mo    |
| Amplifier - Pre-Amplifier    | Miteq           | AM-1616-1000                   | AVO | 18-Oct-2019 | 12 mo    |
| Cable                        | ESM Cable Corp. | Bilog Cables                   | MNH | 18-Oct-2019 | 12 mo    |
| Antenna - Biconilog          | Teseq           | CBL 6141B                      | AYD | 25-Jan-2018 | 24 mo    |
| Filter - Band Pass/Notch     | K&L Microwave   | 3TNF-500/1000-N/N              | HGS | 13-Jul-2019 | 12 mo    |
| Filter - Low Pass            | Micro-Tronics   | LPM50003                       | LFJ | 17-Sep-2019 | 12 mo    |
| Filter - High Pass           | Micro-Tronics   | HPM50108                       | LFM | 12-Sep-2019 | 12 mo    |
| Analyzer - Spectrum Analyzer | Keysight        | N9010A (EXA)                   | AFQ | 13-Dec-2018 | 12 mo    |

## TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These “pre-scans” are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

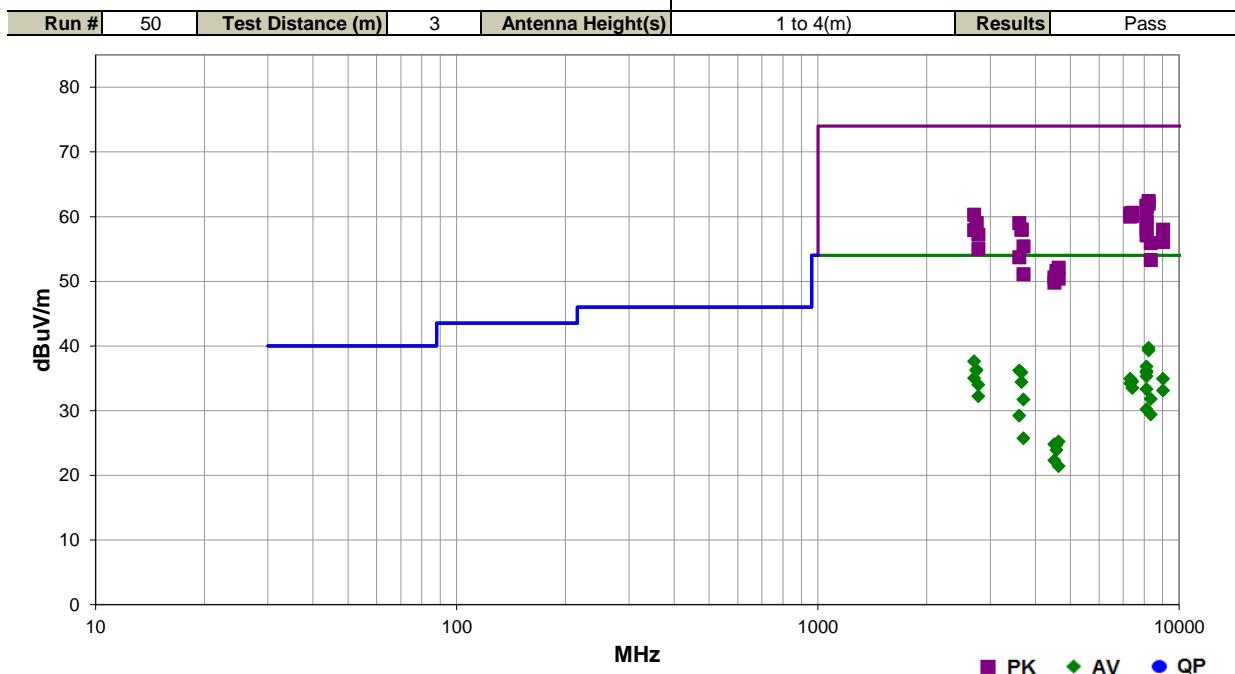
AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

# SPURIOUS RADIATED EMISSIONS




EmiR5 2019.08.15.1

PSA-ESCI 2019.05.10

|                 |                                                                                                                                                                                                                                                       |                   |             |                           |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|---------------------------|
| Work Order:     | TURC0058                                                                                                                                                                                                                                              | Date:             | 25-Nov-2019 |                           |
| Project:        | None                                                                                                                                                                                                                                                  | Temperature:      | 22.3 °C     |                           |
| Job Site:       | MN05                                                                                                                                                                                                                                                  | Humidity:         | 32% RH      |                           |
| Serial Number:  | T4                                                                                                                                                                                                                                                    | Barometric Pres.: | 1001 mbar   | Tested by: Andrew Rogstad |
| EUT:            | PD67 Handheld RFID Reader                                                                                                                                                                                                                             |                   |             |                           |
| Configuration:  | 7                                                                                                                                                                                                                                                     |                   |             |                           |
| Customer:       | TURCK Inc.                                                                                                                                                                                                                                            |                   |             |                           |
| Attendees:      | Gabe Selinger, Matt Wickstrom                                                                                                                                                                                                                         |                   |             |                           |
| EUT Power:      | 110VAC/60Hz                                                                                                                                                                                                                                           |                   |             |                           |
| Operating Mode: | Transmitting on Low channel (902.75 MHz), Mid channel (915.25 MHz), and High channel (927.25 MHz), UHF RFID, 100 % duty cycle, modulated.                                                                                                             |                   |             |                           |
| Deviations:     | None                                                                                                                                                                                                                                                  |                   |             |                           |
| Comments:       | See data comments for EUT orientation and transmit channel. A Duty Cycle Correction Factor (DCCF) of -22.2 dB was added to the average measurements. This is based on a dwell time of 7.757 ms in a 100 millisecond period in the EUT's hopping mode. |                   |             |                           |

| Test Specifications | Test Method      |
|---------------------|------------------|
| FCC 15.247:2019     | ANSI C63.10:2013 |



| Freq (MHz) | Amplitude (dBuV) | Factor (dB) | Antenna Height (meters) | Azimuth (degrees) | Duty Cycle Correction Factor (dB) | External Attenuation (dB) | Polarity/Transducer Type | Detector | Distance Adjustment (dB) | Adjusted (dBuV/m) | Spec. Limit (dBuV/m) | Compared to Spec. (dB) | Comments              |
|------------|------------------|-------------|-------------------------|-------------------|-----------------------------------|---------------------------|--------------------------|----------|--------------------------|-------------------|----------------------|------------------------|-----------------------|
| 8237.108   | 69.8             | -7.4        | 1.3                     | 252.0             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 62.4              | 74.0                 | -11.6                  | EUT vert, Mid ch.     |
| 8237.100   | 69.4             | -7.4        | 2.4                     | 264.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 62.0              | 74.0                 | -12.0                  | EUT on side, Mid ch.  |
| 8124.667   | 48.3             | 13.4        | 2.2                     | 51.0              | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 61.7              | 74.0                 | -12.3                  | EUT horz, Low ch.     |
| 8124.792   | 48.2             | 13.4        | 1.4                     | 228.9             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 61.6              | 74.0                 | -12.4                  | EUT vert, Low ch.     |
| 7418.058   | 47.3             | 13.3        | 2.6                     | 278.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 60.6              | 74.0                 | -13.4                  | EUT on side, High ch. |
| 7322.050   | 47.0             | 13.5        | 1.6                     | 247.9             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 60.5              | 74.0                 | -13.5                  | EUT vert, Mid ch.     |
| 2708.292   | 63.2             | -2.9        | 1.4                     | 207.0             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 60.3              | 74.0                 | -13.7                  | EUT vert, Low ch.     |
| 7418.025   | 46.8             | 13.3        | 1.7                     | 247.9             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 60.1              | 74.0                 | -13.9                  | EUT vert, High ch.    |
| 8124.792   | 46.6             | 13.4        | 1.3                     | 167.9             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 60.0              | 74.0                 | -14.0                  | EUT on side, Low ch.  |
| 7321.875   | 46.5             | 13.5        | 2.7                     | 278.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 60.0              | 74.0                 | -14.0                  | EUT on side, Mid ch.  |
| 8237.225   | 69.3             | -7.4        | 1.3                     | 252.0             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 39.7              | 54.0                 | -14.3                  | EUT vert, Mid ch.     |
| 8237.267   | 68.9             | -7.4        | 2.4                     | 264.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 39.3              | 54.0                 | -14.7                  | EUT on side, Mid ch.  |
| 8124.500   | 45.7             | 13.4        | 2.2                     | 108.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 59.1              | 74.0                 | -14.9                  | EUT horz, Low ch.     |
| 2745.800   | 62.0             | -3.0        | 1.6                     | 208.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 59.0              | 74.0                 | -15.0                  | EUT on side, Mid ch.  |
| 2745.733   | 62.0             | -3.0        | 1.5                     | 200.9             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 59.0              | 74.0                 | -15.0                  | EUT vert, Mid ch.     |
| 3611.042   | 58.3             | 0.7         | 2.1                     | 239.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 59.0              | 74.0                 | -15.0                  | EUT on side, Low ch.  |
| 8124.750   | 44.6             | 13.4        | 1.5                     | 196.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 58.0              | 74.0                 | -16.0                  | EUT vert, Low ch.     |
| 3661.025   | 57.2             | 0.8         | 4.0                     | 317.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 58.0              | 74.0                 | -16.0                  | EUT on side, Mid ch.  |

| Freq (MHz) | Amplitude (dBuV) | Factor (dB) | Antenna Height (meters) | Azimuth (degrees) | Duty Cycle Correction Factor (dB) | External Attenuation (dB) | Polarity/Transducer Type | Detector | Distance Adjustment (dB) | Adjusted (dBuV/m) | Spec. Limit (dBuV/m) | Compared to Spec. (dB) | Comments              |
|------------|------------------|-------------|-------------------------|-------------------|-----------------------------------|---------------------------|--------------------------|----------|--------------------------|-------------------|----------------------|------------------------|-----------------------|
| 3660.942   | 57.2             | 0.8         | 3.5                     | 263.0             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 58.0              | 74.0                 | -16.0                  | EUT vert, Mid ch.     |
| 9027.500   | 64.1             | -6.1        | 2.1                     | 246.0             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 58.0              | 74.0                 | -16.0                  | EUT vert, Low ch.     |
| 2708.250   | 60.8             | -2.9        | 1.5                     | 210.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 57.9              | 74.0                 | -16.1                  | EUT on side, Low ch.  |
| 2708.267   | 62.7             | -2.9        | 1.4                     | 207.0             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 37.6              | 54.0                 | -16.4                  | EUT vert, Low ch.     |
| 2781.617   | 59.9             | -2.7        | 1.5                     | 192.0             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 57.2              | 74.0                 | -16.8                  | EUT vert, High ch.    |
| 8124.792   | 43.7             | 13.4        | 1.0                     | 48.9              | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 57.1              | 74.0                 | -16.9                  | EUT on side, Low ch.  |
| 8124.750   | 45.6             | 13.4        | 1.4                     | 228.9             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 36.8              | 54.0                 | -17.2                  | EUT vert, Low ch.     |
| 2745.775   | 61.5             | -3.0        | 1.6                     | 208.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 36.3              | 54.0                 | -17.7                  | EUT on side, Mid ch.  |
| 3611.042   | 57.7             | 0.7         | 2.1                     | 239.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 36.2              | 54.0                 | -17.8                  | EUT on side, Low ch.  |
| 2745.783   | 61.4             | -3.0        | 1.5                     | 200.9             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 36.2              | 54.0                 | -17.8                  | EUT vert, Mid ch.     |
| 8124.667   | 44.9             | 13.4        | 2.2                     | 51.0              | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 36.1              | 54.0                 | -17.9                  | EUT horz, Low ch.     |
| 9027.542   | 62.2             | -6.1        | 1.5                     | 258.9             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 56.1              | 74.0                 | -17.9                  | EUT on side, Low ch.  |
| 8124.875   | 44.7             | 13.4        | 1.3                     | 167.9             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 35.9              | 54.0                 | -18.1                  | EUT on side, Low ch.  |
| 8345.158   | 62.8             | -6.9        | 2.0                     | 242.0             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 55.9              | 74.0                 | -18.1                  | EUT vert, High ch.    |
| 3660.950   | 57.3             | 0.8         | 3.5                     | 263.0             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 35.9              | 54.0                 | -18.1                  | EUT vert, Mid ch.     |
| 3709.067   | 54.4             | 1.0         | 2.3                     | 232.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 55.4              | 74.0                 | -18.6                  | EUT on side, High ch. |
| 8124.833   | 44.1             | 13.4        | 2.2                     | 108.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 35.3              | 54.0                 | -18.7                  | EUT horz, Low ch.     |
| 2708.250   | 60.1             | -2.9        | 1.5                     | 210.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 35.0              | 54.0                 | -19.0                  | EUT on side, Low ch.  |
| 2781.692   | 57.7             | -2.7        | 1.0                     | 211.9             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 55.0              | 74.0                 | -19.0                  | EUT on side, High ch. |
| 7322.092   | 43.6             | 13.5        | 2.7                     | 278.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 34.9              | 54.0                 | -19.1                  | EUT on side, Mid ch.  |
| 9027.508   | 63.2             | -6.1        | 2.1                     | 246.0             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 34.9              | 54.0                 | -19.1                  | EUT vert, Low ch.     |
| 7418.058   | 43.4             | 13.3        | 2.6                     | 278.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 34.5              | 54.0                 | -19.5                  | EUT on side, High ch. |
| 3661.017   | 55.8             | 0.8         | 4.0                     | 317.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 34.4              | 54.0                 | -19.6                  | EUT on side, Mid ch.  |
| 7322.025   | 42.9             | 13.5        | 1.6                     | 247.9             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 34.2              | 54.0                 | -19.8                  | EUT vert, Mid ch.     |
| 2781.750   | 58.9             | -2.7        | 1.5                     | 192.0             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 34.0              | 54.0                 | -20.0                  | EUT vert, High ch.    |
| 3610.783   | 53.0             | 0.7         | 1.5                     | 153.9             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 53.7              | 74.0                 | -20.3                  | EUT vert, Low ch.     |
| 7418.017   | 42.4             | 13.3        | 1.7                     | 247.9             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 33.5              | 54.0                 | -20.5                  | EUT vert, High ch.    |
| 8124.750   | 42.1             | 13.4        | 1.5                     | 196.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 33.3              | 54.0                 | -20.7                  | EUT vert, Low ch.     |
| 8345.158   | 60.2             | -6.9        | 1.3                     | 231.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 53.3              | 74.0                 | -20.7                  | EUT on side, High ch. |
| 9027.492   | 61.4             | -6.1        | 1.5                     | 258.9             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 33.1              | 54.0                 | -20.9                  | EUT on side, Low ch.  |
| 2781.750   | 57.1             | -2.7        | 1.0                     | 211.9             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 32.2              | 54.0                 | -21.8                  | EUT on side, High ch. |
| 4636.450   | 47.7             | 4.4         | 1.8                     | 261.9             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 52.1              | 74.0                 | -21.9                  | EUT on side, High ch. |
| 8345.267   | 60.9             | -6.9        | 2.0                     | 242.0             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 31.8              | 54.0                 | -22.2                  | EUT vert, High ch.    |
| 3709.042   | 52.9             | 1.0         | 2.3                     | 232.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 31.7              | 54.0                 | -22.3                  | EUT on side, High ch. |
| 4576.058   | 47.5             | 4.1         | 1.5                     | 204.9             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 51.6              | 74.0                 | -22.4                  | EUT on side, Mid ch.  |
| 3708.958   | 50.1             | 1.0         | 1.4                     | 236.9             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 51.1              | 74.0                 | -22.9                  | EUT vert, High ch.    |
| 4576.017   | 46.9             | 4.1         | 1.4                     | 325.0             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 51.0              | 74.0                 | -23.0                  | EUT vert, Mid ch.     |
| 4513.833   | 46.7             | 3.9         | 1.8                     | 318.0             | 0.0                               | 0.0                       | Horz                     | PK       | 0.0                      | 50.6              | 74.0                 | -23.4                  | EUT on side, Low ch.  |
| 4636.217   | 46.0             | 4.4         | 1.5                     | 319.9             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 50.4              | 74.0                 | -23.6                  | EUT vert, High ch.    |
| 8124.750   | 39.0             | 13.4        | 1.0                     | 48.9              | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 30.2              | 54.0                 | -23.8                  | EUT on side, Low ch.  |
| 4513.767   | 45.9             | 3.9         | 1.5                     | 336.0             | 0.0                               | 0.0                       | Vert                     | PK       | 0.0                      | 49.8              | 74.0                 | -24.2                  | EUT vert, Low ch.     |
| 8345.242   | 58.5             | -6.9        | 1.3                     | 231.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 29.4              | 54.0                 | -24.6                  | EUT on side, High ch. |
| 3611.000   | 50.7             | 0.7         | 1.5                     | 153.9             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 29.2              | 54.0                 | -24.8                  | EUT vert, Low ch.     |
| 3709.000   | 46.9             | 1.0         | 1.4                     | 236.9             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 25.7              | 54.0                 | -28.3                  | EUT vert, High ch.    |
| 4636.267   | 43.0             | 4.4         | 1.8                     | 261.9             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 25.2              | 54.0                 | -28.8                  | EUT on side, High ch. |
| 4513.750   | 43.1             | 3.9         | 1.8                     | 318.0             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 24.8              | 54.0                 | -29.2                  | EUT on side, Low ch.  |
| 4576.250   | 42.8             | 4.1         | 1.5                     | 204.9             | -22.2                             | 0.0                       | Horz                     | AV       | 0.0                      | 24.7              | 54.0                 | -29.3                  | EUT on side, Mid ch.  |
| 4576.325   | 42.0             | 4.1         | 1.4                     | 325.0             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 23.9              | 54.0                 | -30.1                  | EUT vert, Mid ch.     |
| 4513.783   | 40.6             | 3.9         | 1.5                     | 336.0             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 22.3              | 54.0                 | -31.7                  | EUT vert, Low ch.     |
| 4636.333   | 39.2             | 4.4         | 1.5                     | 319.9             | -22.2                             | 0.0                       | Vert                     | AV       | 0.0                      | 21.4              | 54.0                 | -32.6                  | EUT vert, High ch.    |

# DUTY CYCLE



XMIT 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Block - DC                   | Fairview Microwave | SD3379          | AMZ | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | TZP | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-19 | 13-Feb-20 |
| Cable                        | ESM Cable Corp.    | TTBJ141-KMKG-72 | MNU | 11-Apr-19 | 11-Apr-20 |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A          | AFN | 23-Dec-19 | 23-Dec-20 |
| Generator - Signal           | Agilent            | N5173B          | TIW | 5-Jul-17  | 5-Jul-20  |

## TEST DESCRIPTION

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The test software provided for operation in a fixed, single channel mode allows the EUT to operate continuously at 100% Duty Cycle.

# CARRIER FREQUENCY SEPARATION



XMIT 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Block - DC                   | Fairview Microwave | SD3379          | AMZ | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | TZP | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-19 | 13-Feb-20 |
| Cable                        | ESM Cable Corp.    | TTBJ141-KMKG-72 | MNU | 11-Apr-19 | 11-Apr-20 |
| Generator - Signal           | Agilent            | N5173B          | TIW | 5-Jul-17  | 5-Jul-20  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A          | AFN | 23-Dec-19 | 23-Dec-20 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The channel carrier frequencies in the 902-928 MHz band must be separated by 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. The EUT was operated in pseudorandom hopping mode. The spectrum was scanned across two adjacent peaks. The separation between the peaks of these channels was measured.

# CARRIER FREQUENCY SEPARATION



TbTx 2019.08.30.0

XMI 2019.08.05

|                                 |                           |           |                   |           |           |
|---------------------------------|---------------------------|-----------|-------------------|-----------|-----------|
| EUT:                            | PD67 Handheld RFID Reader |           | Work Order:       | TURC0061  |           |
| Serial Number:                  | T10                       |           | Date:             | 23-Jan-20 |           |
| Customer:                       | TURCK Inc.                |           | Temperature:      | 23 °C     |           |
| Attendees:                      | Gabe Selinger             |           | Humidity:         | 26.3% RH  |           |
| Project:                        | None                      |           | Barometric Pres.: | 1019 mbar |           |
| Tested by:                      | Andrew Rogstad            | Power:    | 120VAC/60Hz       | Job Site: | MN08      |
| TEST SPECIFICATIONS             |                           |           | Test Method       |           |           |
| FCC 15.247:2020                 |                           |           | ANSI C63.10:2013  |           |           |
| COMMENTS                        |                           |           |                   |           |           |
| None                            |                           |           |                   |           |           |
| DEVIATIONS FROM TEST STANDARD   |                           |           |                   |           |           |
| None                            |                           |           |                   |           |           |
| Configuration #                 | 1                         | Signature | <i>As Rogstad</i> | Value     | Limit (±) |
| Hopping Mode                    |                           |           | 0.5 MHz           | 87 kHz    | Results   |
| Full band (902.75 - 927.25 MHz) |                           |           | Pass              |           |           |


## CARRIER FREQUENCY SEPARATION



TbtTx 2019.08.30.0

XMit 2019.09.05

| Hopping Mode, Full band (902.75 - 927.25 MHz) |  |  |  | Value   | Limit (≥) | Results |
|-----------------------------------------------|--|--|--|---------|-----------|---------|
|                                               |  |  |  | 0.5 MHz | 87 kHz    | Pass    |



# NUMBER OF HOPPING FREQUENCIES



XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Block - DC                   | Fairview Microwave | SD3379          | AMZ | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | TZP | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-19 | 13-Feb-20 |
| Cable                        | ESM Cable Corp.    | TTBJ141-KMKG-72 | MNU | 11-Apr-19 | 11-Apr-20 |
| Generator - Signal           | Agilent            | N5173B          | TIW | 5-Jul-17  | 5-Jul-20  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A          | AFN | 23-Dec-19 | 23-Dec-20 |

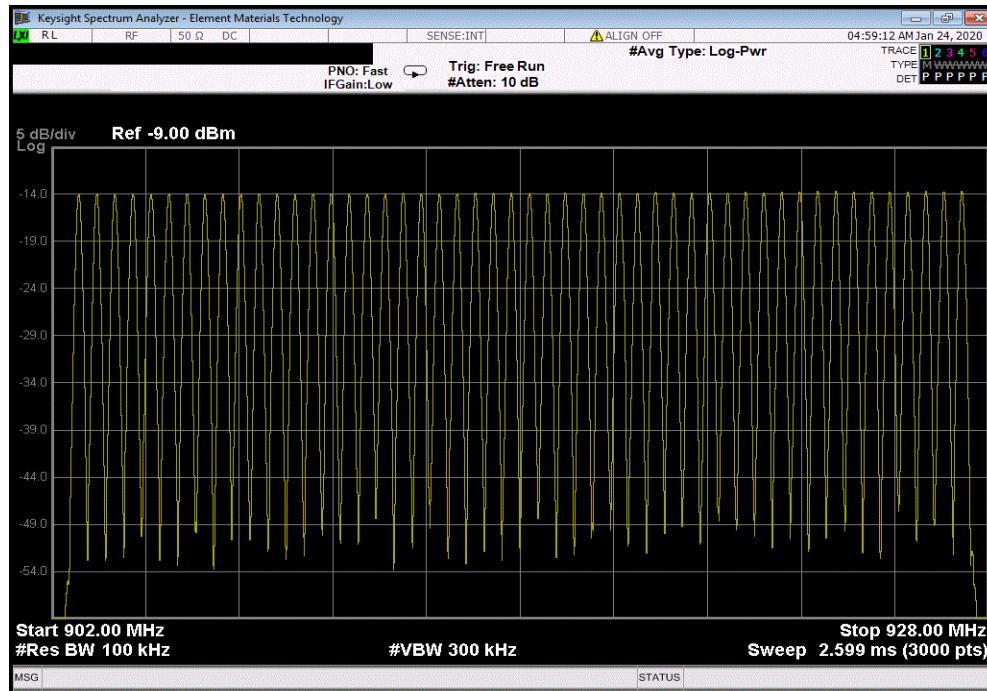
## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The number of hopping frequencies was measured across the authorized band. The hopping function of the EUT was enabled.

# NUMBER OF HOPPING FREQUENCIES



TbTx 2019.08.30.0 XMII 2019.08.05


|                               |                                 |           |                   |                    |           |  |  |
|-------------------------------|---------------------------------|-----------|-------------------|--------------------|-----------|--|--|
| EUT:                          | PD67 Handheld RFID Reader       |           | Work Order:       | TURC0061           |           |  |  |
| Serial Number:                | T10                             |           | Date:             | 23-Jan-20          |           |  |  |
| Customer:                     | TURCK Inc.                      |           | Temperature:      | 23 °C              |           |  |  |
| Attendees:                    | Gabe Selinger                   |           | Humidity:         | 26.4% RH           |           |  |  |
| Project:                      | None                            |           | Barometric Pres.: | 1019 mbar          |           |  |  |
| Tested by:                    | Andrew Rogstad                  | Power:    | 120VAC/60Hz       | Job Site:          | MN08      |  |  |
| TEST SPECIFICATIONS           | FCC 15.247:2020                 |           | Test Method       | ANSI C63.10:2013   |           |  |  |
| COMMENTS                      | None                            |           |                   |                    |           |  |  |
| DEVIATIONS FROM TEST STANDARD | None                            |           |                   |                    |           |  |  |
| Configuration #               | 1                               | Signature | <i>As Rogstad</i> | Number of Channels | Limit (≥) |  |  |
| Hopping Mode                  | Full band (902.75 - 927.25 MHz) |           | 50                | 50                 | Pass      |  |  |

# NUMBER OF HOPPING FREQUENCIES



TbtTx 2019.08.30.0 XMII 2019.09.05

| Hopping Mode, Full band (902.75 - 927.25 MHz) |    |      | Number of Channels | Limit (≥) | Results |
|-----------------------------------------------|----|------|--------------------|-----------|---------|
| 50                                            | 50 | Pass |                    |           |         |



# DWELL TIME



XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Block - DC                   | Fairview Microwave | SD3379          | AMZ | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | TZP | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-19 | 13-Feb-20 |
| Cable                        | ESM Cable Corp.    | TTBJ141-KMKM-72 | MNU | 11-Apr-19 | 11-Apr-20 |
| Generator - Signal           | Agilent            | N5173B          | TIW | 5-Jul-17  | 5-Jul-20  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A          | AFN | 23-Dec-19 | 23-Dec-20 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The average dwell time per hopping channel was measured at one hopping channel in the middle of the authorized band. The hopping function of the EUT was enabled.

The dwell time limit is based on the Number of Hopping Channels \* 400 mS. For UHF RFID this would be 50 Channels \* 400mS = 20 Sec.

On Time During 20 Sec = Pulse Width \* Average Number of Pulses \* Scale Factor

➤ Average Number of Pulses is based on 4 samples.

➤ Scale Factor = 20 Sec / Screen Capture Sweep Time = 20 Sec / 4 Sec = 5

# DWELL TIME

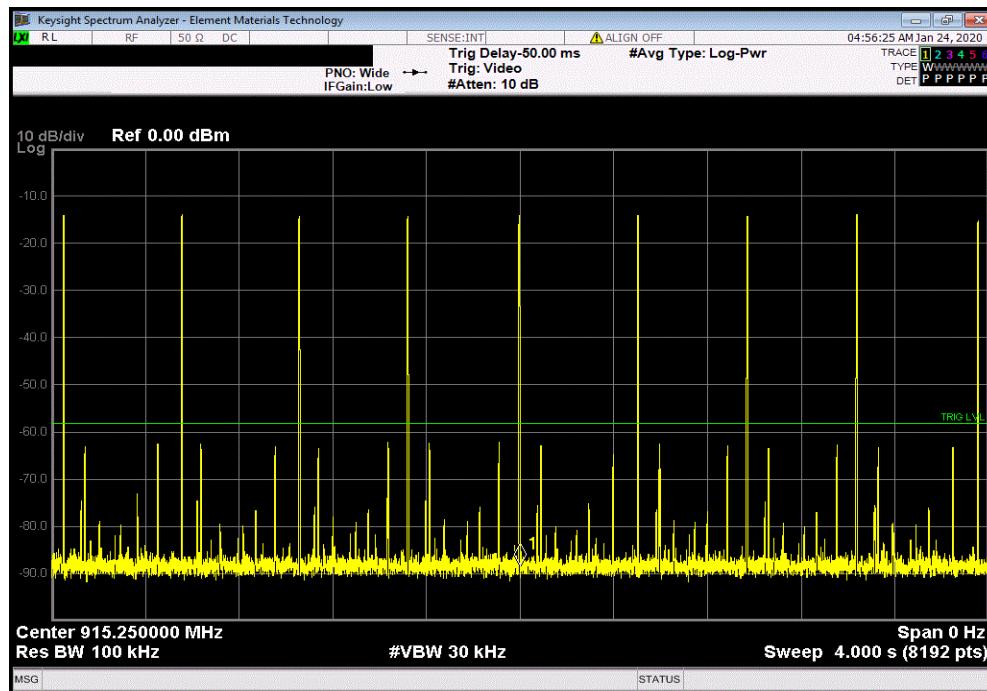


TbTx 2019.08.30.0

XMI 2019.08.05

|                                 |                           |           |                   |                  |                       |              |                          |            |         |
|---------------------------------|---------------------------|-----------|-------------------|------------------|-----------------------|--------------|--------------------------|------------|---------|
| EUT:                            | PD67 Handheld RFID Reader |           | Work Order:       | TURC0061         |                       |              |                          |            |         |
| Serial Number:                  | T10                       |           | Date:             | 23-Jan-20        |                       |              |                          |            |         |
| Customer:                       | TURCK Inc.                |           | Temperature:      | 23 °C            |                       |              |                          |            |         |
| Attendees:                      | Gabe Selinger             |           | Humidity:         | 26.4% RH         |                       |              |                          |            |         |
| Project:                        | None                      |           | Barometric Pres.: | 1019 mbar        |                       |              |                          |            |         |
| Tested by:                      | Andrew Rogstad            | Power:    | 120VAC/60Hz       |                  | Job Site:             | MN08         |                          |            |         |
| TEST SPECIFICATIONS             |                           |           | Test Method       |                  |                       |              |                          |            |         |
| FCC 15.247:2020                 |                           |           | ANSI C63.10:2013  |                  |                       |              |                          |            |         |
| COMMENTS                        |                           |           |                   |                  |                       |              |                          |            |         |
| None                            |                           |           |                   |                  |                       |              |                          |            |         |
| DEVIATIONS FROM TEST STANDARD   |                           |           |                   |                  |                       |              |                          |            |         |
| None                            |                           |           |                   |                  |                       |              |                          |            |         |
| Configuration #                 | 1                         | Signature |                   |                  |                       |              |                          |            |         |
|                                 |                           |           | Pulse Width (ms)  | Number of Pulses | Average No. of Pulses | Scale Factor | On Time (ms) During 20 s | Limit (ms) | Results |
| Hopping Mode                    |                           |           |                   |                  |                       |              |                          |            |         |
| Full band (902.75 - 927.25 MHz) |                           | 7.757     | N/A               | N/A              | N/A                   | N/A          | N/A                      | N/A        | N/A     |
| Full band (902.75 - 927.25 MHz) |                           | N/A       | 9                 | N/A              | N/A                   | N/A          | N/A                      | N/A        | N/A     |
| Full band (902.75 - 927.25 MHz) |                           | N/A       | 8                 | N/A              | N/A                   | N/A          | N/A                      | N/A        | N/A     |
| Full band (902.75 - 927.25 MHz) |                           | N/A       | 9                 | N/A              | N/A                   | N/A          | N/A                      | N/A        | N/A     |
| Full band (902.75 - 927.25 MHz) |                           | N/A       | 9                 | N/A              | N/A                   | N/A          | N/A                      | N/A        | N/A     |
| Full band (902.75 - 927.25 MHz) |                           | 7.757     | N/A               | 8.75             | 5                     | 339.37       | 400                      | Pass       |         |

# DWELL TIME

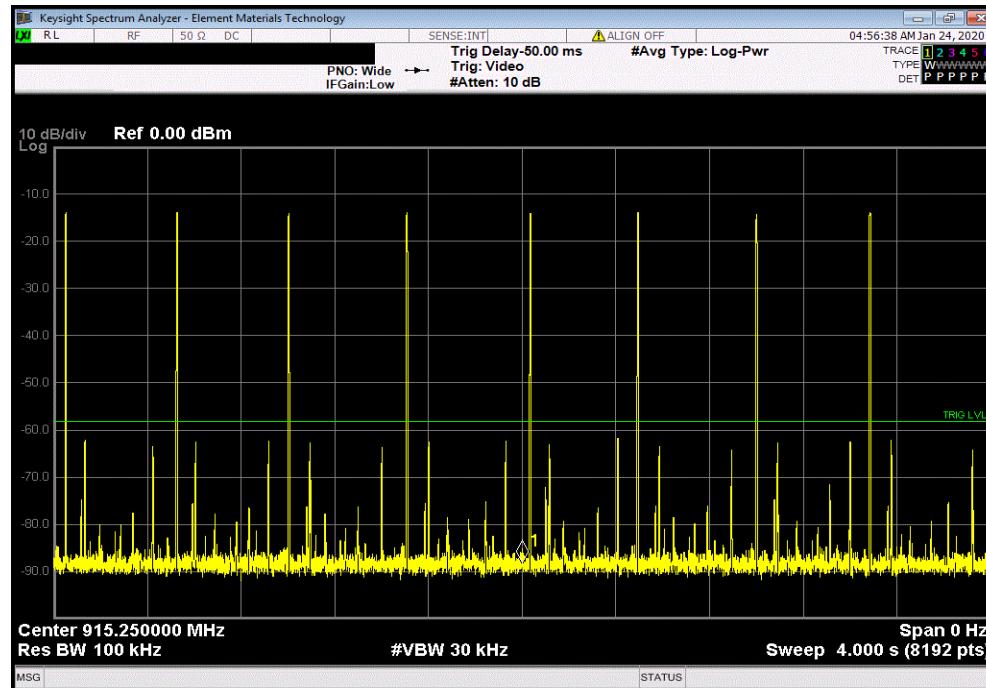



TbTx 2019.08.30.0 XMI 2019.09.05

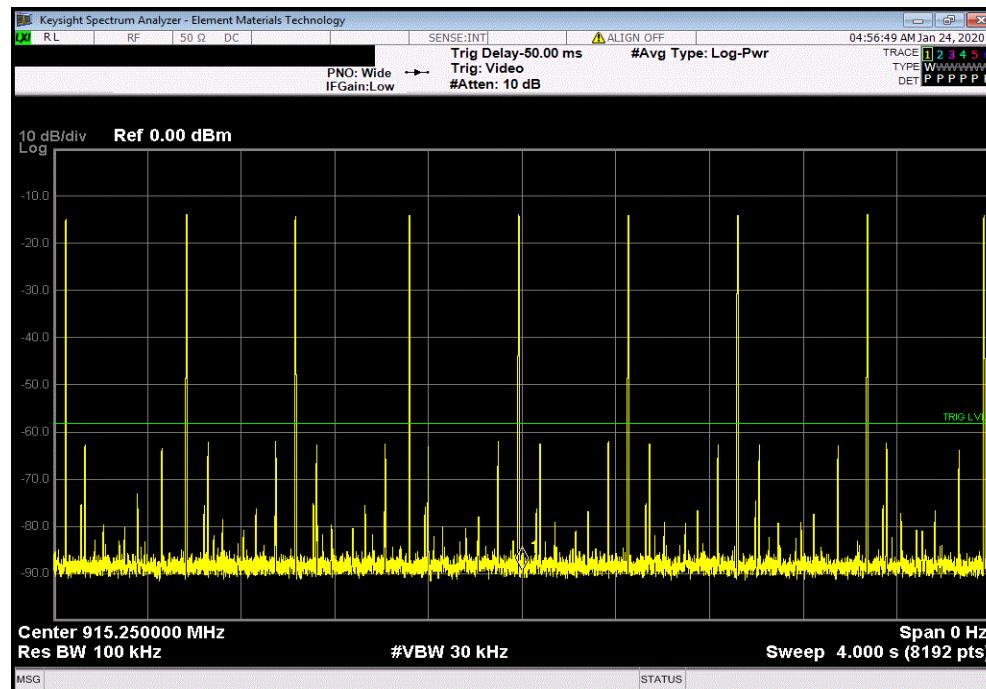
| Hopping Mode, Full band (902.75 - 927.25 MHz) |                  |                       |              |                          |            |         |
|-----------------------------------------------|------------------|-----------------------|--------------|--------------------------|------------|---------|
| Pulse Width (ms)                              | Number of Pulses | Average No. of Pulses | Scale Factor | On Time (ms) During 20 s | Limit (ms) | Results |
| 7.757                                         | N/A              | N/A                   | N/A          | N/A                      | N/A        | N/A     |



| Hopping Mode, Full band (902.75 - 927.25 MHz) |                  |                       |              |                          |            |         |
|-----------------------------------------------|------------------|-----------------------|--------------|--------------------------|------------|---------|
| Pulse Width (ms)                              | Number of Pulses | Average No. of Pulses | Scale Factor | On Time (ms) During 20 s | Limit (ms) | Results |
| N/A                                           | 9                | N/A                   | N/A          | N/A                      | N/A        | N/A     |




# DWELL TIME

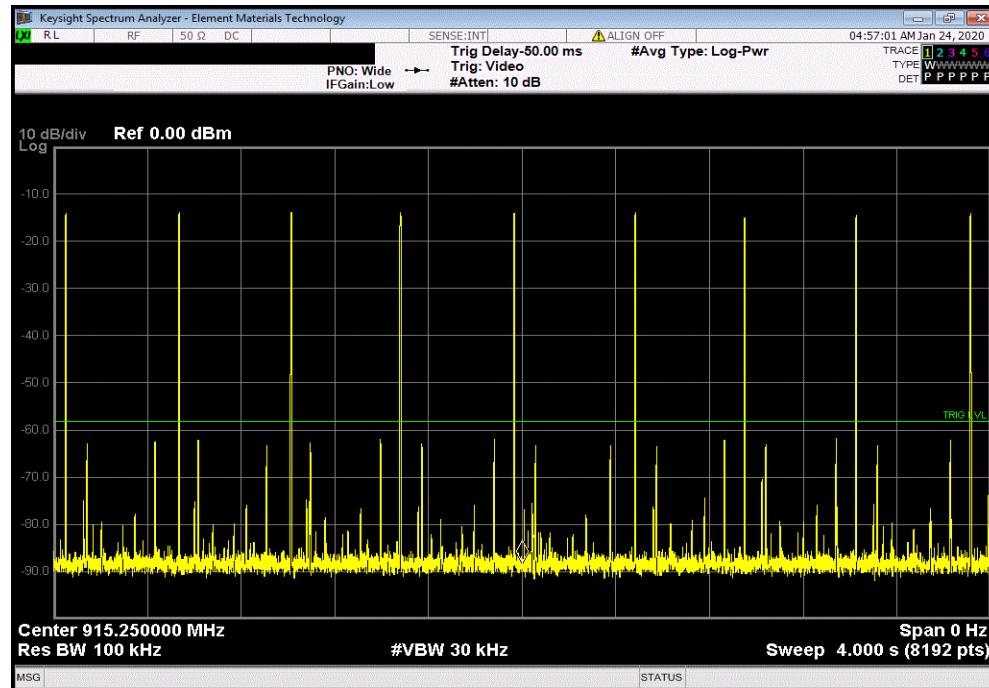



TbTx 2019.08.30.0 XMI 2019.09.05

| Hopping Mode, Full band (902.75 - 927.25 MHz) |                  |                       |              |                          |            |         |
|-----------------------------------------------|------------------|-----------------------|--------------|--------------------------|------------|---------|
| Pulse Width (ms)                              | Number of Pulses | Average No. of Pulses | Scale Factor | On Time (ms) During 20 s | Limit (ms) | Results |
| N/A                                           | 8                | N/A                   | N/A          | N/A                      | N/A        | N/A     |



| Hopping Mode, Full band (902.75 - 927.25 MHz) |                  |                       |              |                          |            |         |
|-----------------------------------------------|------------------|-----------------------|--------------|--------------------------|------------|---------|
| Pulse Width (ms)                              | Number of Pulses | Average No. of Pulses | Scale Factor | On Time (ms) During 20 s | Limit (ms) | Results |
| N/A                                           | 9                | N/A                   | N/A          | N/A                      | N/A        | N/A     |




# DWELL TIME



TbTx 2019.08.30.0 XM1 2019.09.05

| Hopping Mode, Full band (902.75 - 927.25 MHz) |                  |                       |              |                          |            |         |
|-----------------------------------------------|------------------|-----------------------|--------------|--------------------------|------------|---------|
| Pulse Width (ms)                              | Number of Pulses | Average No. of Pulses | Scale Factor | On Time (ms) During 20 s | Limit (ms) | Results |
| N/A                                           | 9                | N/A                   | N/A          | N/A                      | N/A        | N/A     |



| Hopping Mode, Full band (902.75 - 927.25 MHz) |                  |                       |              |                          |            |         |
|-----------------------------------------------|------------------|-----------------------|--------------|--------------------------|------------|---------|
| Pulse Width (ms)                              | Number of Pulses | Average No. of Pulses | Scale Factor | On Time (ms) During 20 s | Limit (ms) | Results |
| 7.757                                         | N/A              | 8.75                  | 5            | 339.37                   | 400        | Pass    |

Calculation Only

No Screen Capture Required

# OUTPUT POWER



XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Block - DC                   | Fairview Microwave | SD3379          | AMZ | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | TZP | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-19 | 13-Feb-20 |
| Cable                        | ESM Cable Corp.    | TTBJ141-KMKG-72 | MNU | 11-Apr-19 | 11-Apr-20 |
| Generator - Signal           | Agilent            | N5173B          | TIW | 5-Jul-17  | 5-Jul-20  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A          | AFN | 23-Dec-19 | 23-Dec-20 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting in a no hop mode at the data rate(s) listed in the datasheet.

The method found in ANSI C63.10:2013 Section 7.8.5 was used for a FHSS radio.

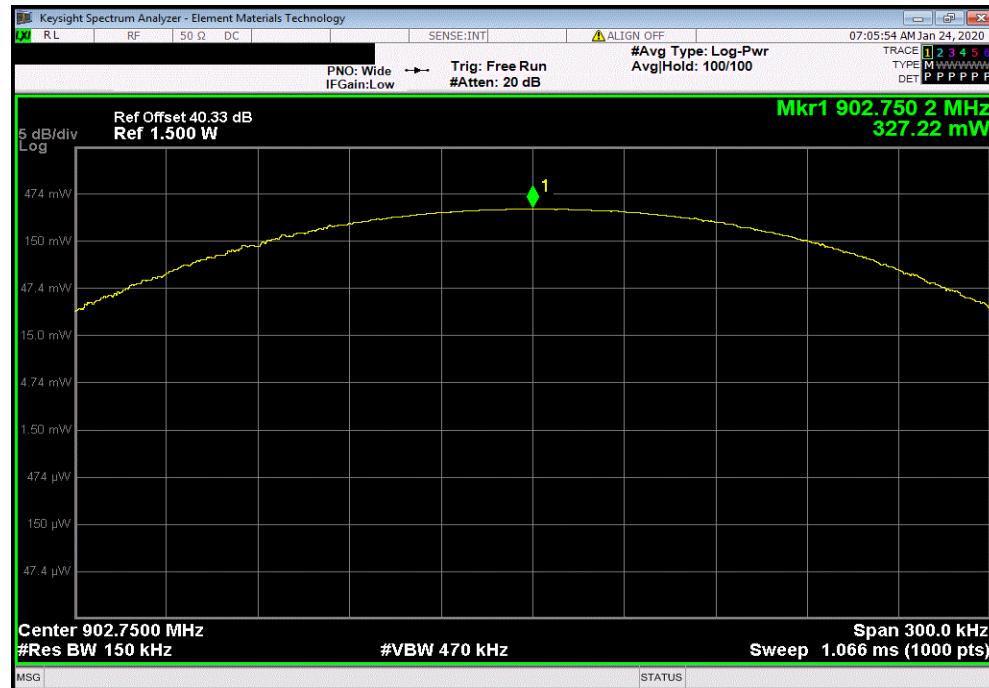
# OUTPUT POWER



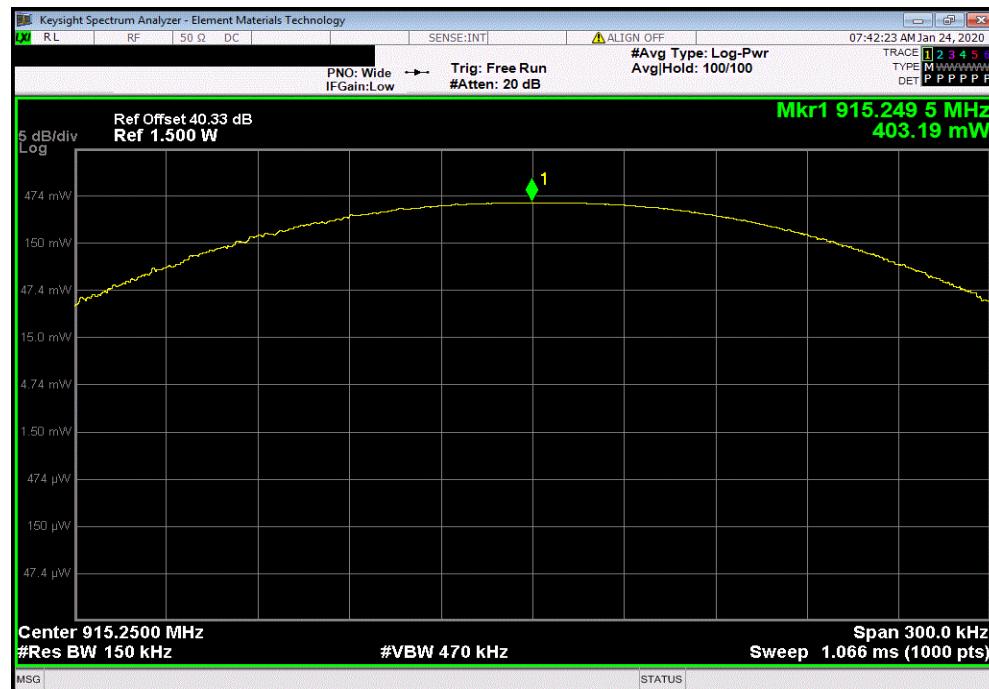
element

TbTx 2019.08.30.0

XMI 2019.08.05


|                                                                                               |                           |           |                   |           |           |      |
|-----------------------------------------------------------------------------------------------|---------------------------|-----------|-------------------|-----------|-----------|------|
| EUT:                                                                                          | PD67 Handheld RFID Reader |           | Work Order:       | TURC0061  |           |      |
| Serial Number:                                                                                | T10                       |           | Date:             | 23-Jan-20 |           |      |
| Customer:                                                                                     | TURCK Inc.                |           | Temperature:      | 22.8 °C   |           |      |
| Attendees:                                                                                    | Gabe Selinger             |           | Humidity:         | 27.1% RH  |           |      |
| Project:                                                                                      | None                      |           | Barometric Pres.: | 1019 mbar |           |      |
| Tested by:                                                                                    | Andrew Rogstad            | Power:    | 120VAC/60Hz       |           | Job Site: | MN08 |
| TEST SPECIFICATIONS                                                                           |                           |           | Test Method       |           |           |      |
| FCC 15.247:2020                                                                               |                           |           | ANSI C63.10:2013  |           |           |      |
| COMMENTS                                                                                      |                           |           |                   |           |           |      |
| Reference level offset includes the measurement cable, two 20 dB attenuators, and a DC block. |                           |           |                   |           |           |      |
| DEVIATIONS FROM TEST STANDARD                                                                 |                           |           |                   |           |           |      |
| None                                                                                          |                           |           |                   |           |           |      |
| Configuration #                                                                               | 1                         | Signature |                   |           |           |      |
|                                                                                               |                           |           | Value             | Limit (<) | Result    |      |
| UHF RFID                                                                                      |                           |           | 327.22 mW         | 1 W       | Pass      |      |
|                                                                                               |                           |           | 403.19 mW         | 1 W       | Pass      |      |
|                                                                                               |                           |           | 379.46 mW         | 1 W       | Pass      |      |

# OUTPUT POWER




TbtTx 2019.08.30.0 XMT 2019.09.05

| UHF RFID, Low channel (902.75 MHz) |  |  | Value     | Limit (≤) | Result |
|------------------------------------|--|--|-----------|-----------|--------|
|                                    |  |  | 327.22 mW | 1 W       | Pass   |



| UHF RFID, Mid channel (915.25 MHz) |  |  | Value     | Limit (≤) | Result |
|------------------------------------|--|--|-----------|-----------|--------|
|                                    |  |  | 403.19 mW | 1 W       | Pass   |



# OUTPUT POWER



TbtTx 2019.08.30.0 XMT 2019.09.05

| UHF RFID, High channel (927.25 MHz) |  |  | Value     | Limit (<) | Result |
|-------------------------------------|--|--|-----------|-----------|--------|
|                                     |  |  | 379.46 mW | 1 W       | Pass   |



# EQUIVALENT ISOTROPIC RADIATED POWER



XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Block - DC                   | Fairview Microwave | SD3379          | AMZ | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | TZP | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-19 | 13-Feb-20 |
| Cable                        | ESM Cable Corp.    | TTBJ141-KMKM-72 | MNU | 11-Apr-19 | 11-Apr-20 |
| Generator - Signal           | Agilent            | N5173B          | TIW | 5-Jul-17  | 5-Jul-20  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A          | AFN | 23-Dec-19 | 23-Dec-20 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting in a no hop mode at the data rate(s) listed in the datasheet.

The method found in ANSI C63.10:2013 Section 7.8.5 was used for a FHSS radio.

The antenna gain was added to the conducted peak output power to calculate the EIRP.

# EQUIVALENT ISOTROPIC RADIATED POWER

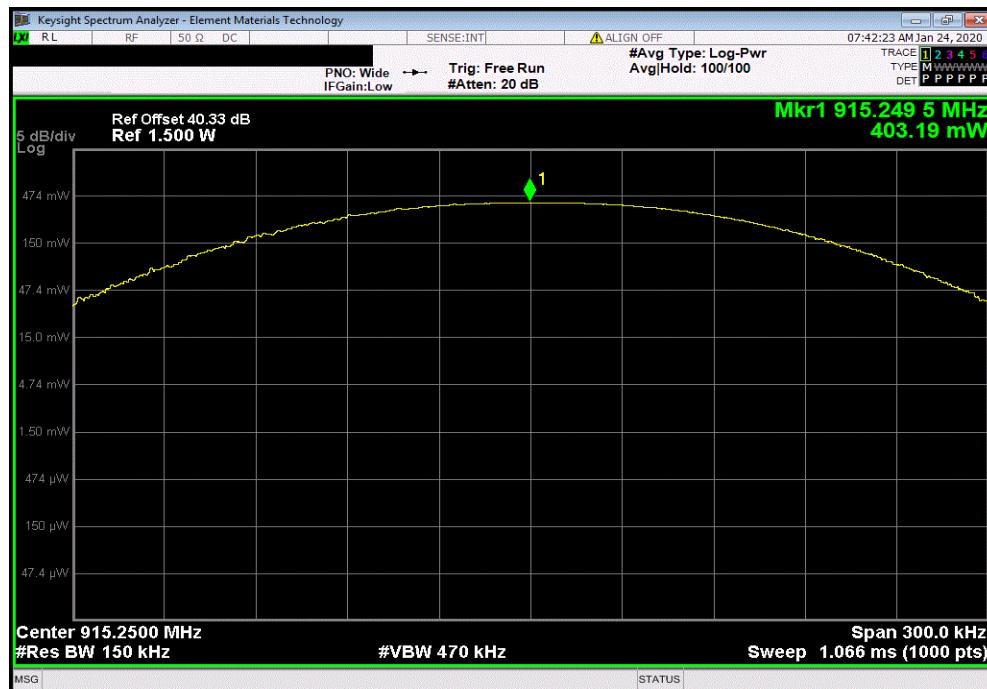


TbTx 2019.08.30.0

XMI 2019.08.05


|                               |                                                                                               |           |                   |                     |                      |                    |             |                 |        |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------|-----------|-------------------|---------------------|----------------------|--------------------|-------------|-----------------|--------|--|--|--|--|
| EUT:                          | PD67 Handheld RFID Reader                                                                     |           | Work Order:       | TURC0061            |                      |                    |             |                 |        |  |  |  |  |
| Serial Number:                | T10                                                                                           |           | Date:             | 23-Jan-20           |                      |                    |             |                 |        |  |  |  |  |
| Customer:                     | TURCK Inc.                                                                                    |           | Temperature:      | 22.8 °C             |                      |                    |             |                 |        |  |  |  |  |
| Attendees:                    | Gabe Selinger                                                                                 |           | Humidity:         | 27.1% RH            |                      |                    |             |                 |        |  |  |  |  |
| Project:                      | None                                                                                          |           | Barometric Pres.: | 1019 mbar           |                      |                    |             |                 |        |  |  |  |  |
| Tested by:                    | Andrew Rogstad                                                                                | Power:    | 120VAC/60Hz       | Job Site:           | MN08                 |                    |             |                 |        |  |  |  |  |
| TEST SPECIFICATIONS           | Test Method                                                                                   |           |                   |                     |                      |                    |             |                 |        |  |  |  |  |
| FCC 15.247:2020               | ANSI C63.10:2013                                                                              |           |                   |                     |                      |                    |             |                 |        |  |  |  |  |
| COMMENTS                      | Reference level offset includes the measurement cable, two 20 dB attenuators, and a DC block. |           |                   |                     |                      |                    |             |                 |        |  |  |  |  |
| DEVIATIONS FROM TEST STANDARD |                                                                                               |           |                   |                     |                      |                    |             |                 |        |  |  |  |  |
| None                          |                                                                                               |           |                   |                     |                      |                    |             |                 |        |  |  |  |  |
| Configuration #               | 1                                                                                             | Signature |                   | Measured Value (mW) | Measured Value (dBm) | Antenna Gain (dBi) | Value (dBm) | Limit (dBm) (-) | Result |  |  |  |  |
| UHF RFID                      |                                                                                               |           |                   |                     |                      |                    |             |                 |        |  |  |  |  |
|                               |                                                                                               |           |                   | 327.22              | 25.15                | 3                  | 28.15       | 36              | Pass   |  |  |  |  |
|                               |                                                                                               |           |                   | 403.19              | 26.06                | 3                  | 29.06       | 36              | Pass   |  |  |  |  |
|                               |                                                                                               |           |                   | 379.46              | 25.79                | 3                  | 28.79       | 36              | Pass   |  |  |  |  |

# EQUIVALENT ISOTROPIC RADIATED POWER

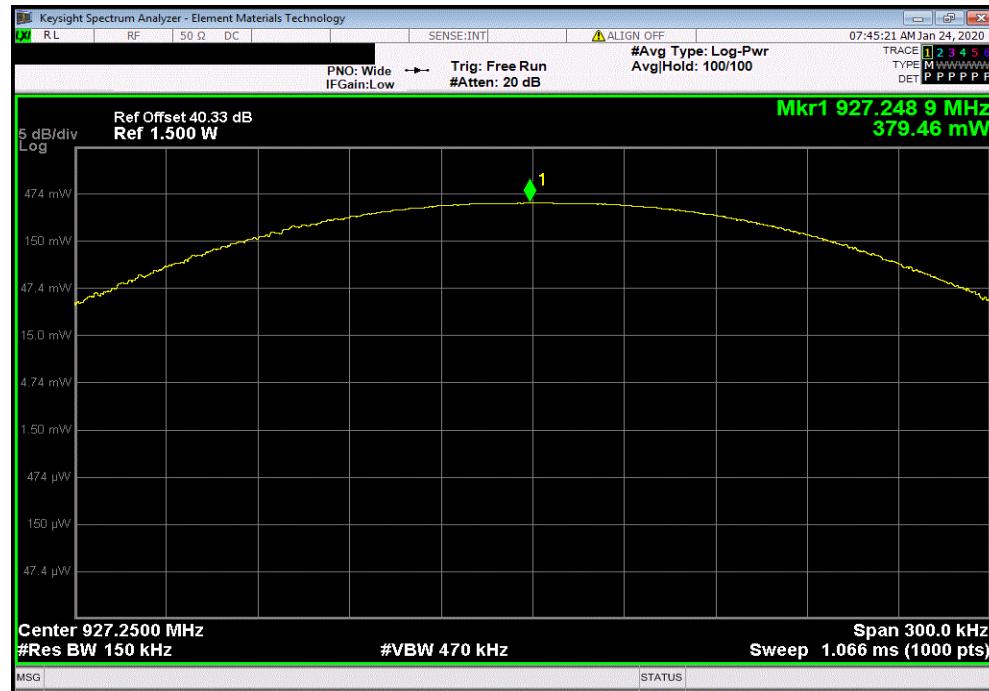



TbtTx 2019.08.30.0 XMI 2019.09.05

| UHF RFID, Low channel (902.75 MHz) |                      |                    |             |                 |        |  |
|------------------------------------|----------------------|--------------------|-------------|-----------------|--------|--|
| Measured Value (mW)                | Measured Value (dBm) | Antenna Gain (dBi) | Value (dBm) | Limit (dBm) (<) | Result |  |
| 327.22                             | 25.15                | 3                  | 28.15       | 36              | Pass   |  |



| UHF RFID, Mid channel (915.25 MHz) |                      |                    |             |                 |        |  |
|------------------------------------|----------------------|--------------------|-------------|-----------------|--------|--|
| Measured Value (mW)                | Measured Value (dBm) | Antenna Gain (dBi) | Value (dBm) | Limit (dBm) (<) | Result |  |
| 403.19                             | 26.06                | 3                  | 29.06       | 36              | Pass   |  |




# EQUIVALENT ISOTROPIC RADIATED POWER



TbtTx 2019.08.30.0 XM1 2019.09.05

| UHF RFID, High channel (927.25 MHz) |                      |                    |             |                 |        |  |
|-------------------------------------|----------------------|--------------------|-------------|-----------------|--------|--|
| Measured Value (mW)                 | Measured Value (dBm) | Antenna Gain (dBi) | Value (dBm) | Limit (dBm) (<) | Result |  |
| 379.46                              | 25.79                | 3                  | 28.79       | 36              | Pass   |  |



# BAND EDGE COMPLIANCE



XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Block - DC                   | Fairview Microwave | SD3379          | AMZ | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | TZP | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-19 | 13-Feb-20 |
| Cable                        | ESM Cable Corp.    | TTBJ141-KMKG-72 | MNU | 11-Apr-19 | 11-Apr-20 |
| Generator - Signal           | Agilent            | N5173B          | TIW | 5-Jul-17  | 5-Jul-20  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A          | AFN | 23-Dec-19 | 23-Dec-20 |

## TEST DESCRIPTION

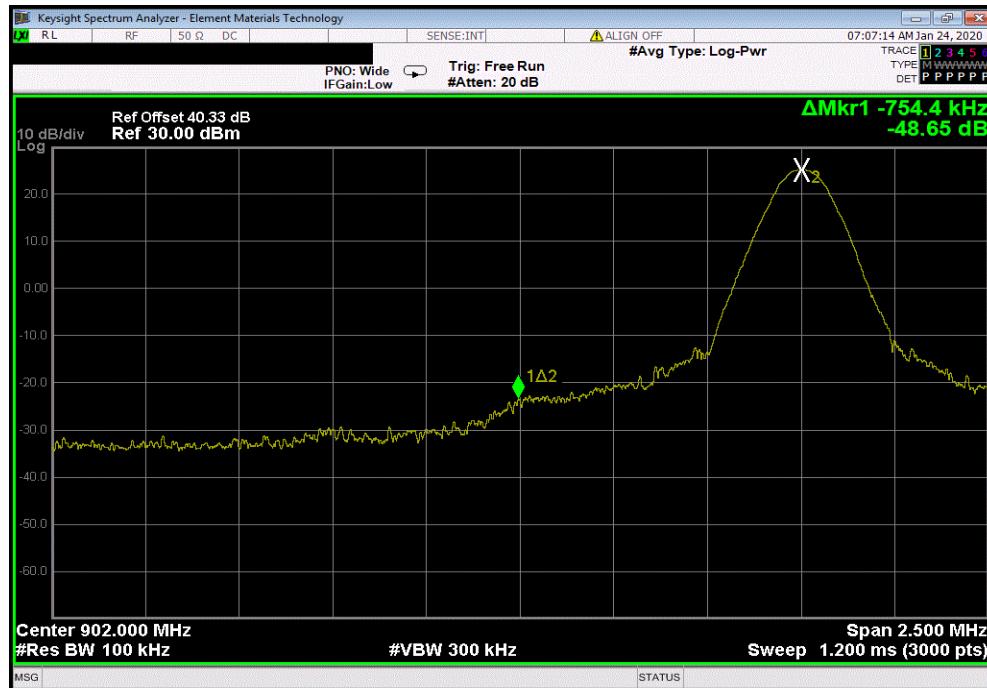
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to low and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet in a no hop mode. The channels closest to the band edges were selected.

The spectrum was scanned below the lower band edge and above the higher band edge.

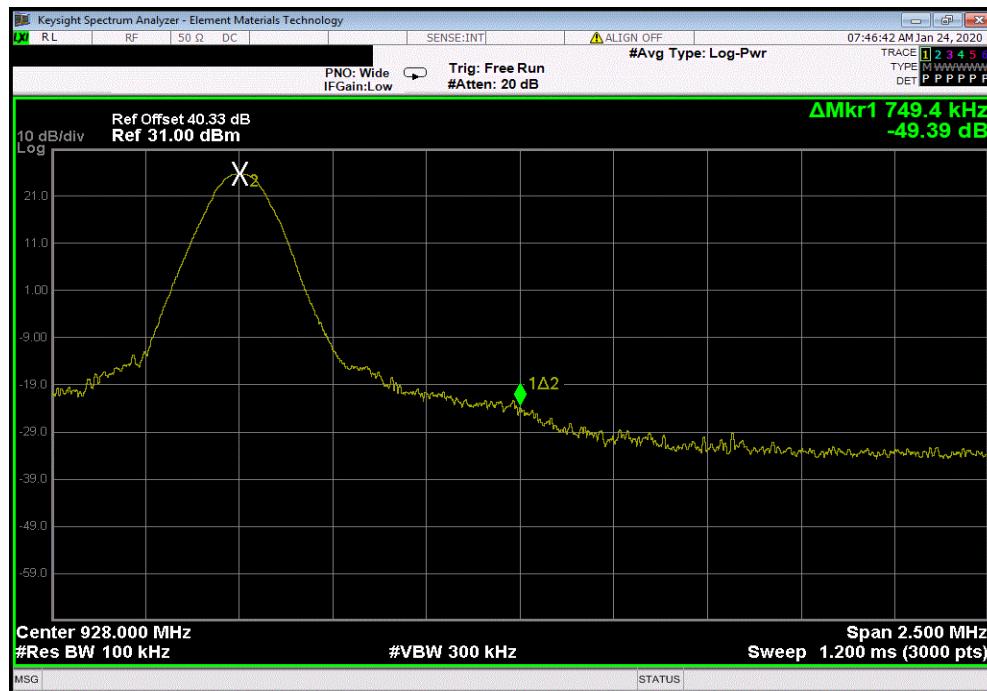
# BAND EDGE COMPLIANCE



TbTx 2019.08.30.0 XMII 2019.08.05


|                                                                                              |                           |           |                   |                  |           |      |
|----------------------------------------------------------------------------------------------|---------------------------|-----------|-------------------|------------------|-----------|------|
| EUT:                                                                                         | PD67 Handheld RFID Reader |           | Work Order:       | TURC0061         |           |      |
| Serial Number:                                                                               | T10                       |           | Date:             | 23-Jan-20        |           |      |
| Customer:                                                                                    | TURCK Inc.                |           | Temperature:      | 22.7 °C          |           |      |
| Attendees:                                                                                   | Gabe Selinger             |           | Humidity:         | 27% RH           |           |      |
| Project:                                                                                     | None                      |           | Barometric Pres.: | 1019 mbar        |           |      |
| Tested by:                                                                                   | Andrew Rogstad            | Power:    | 120VAC/60Hz       |                  | Job Site: | MN08 |
| TEST SPECIFICATIONS                                                                          |                           |           | Test Method       |                  |           |      |
| FCC 15.247:2020                                                                              |                           |           | ANSI C63.10:2013  |                  |           |      |
| COMMENTS                                                                                     |                           |           |                   |                  |           |      |
| Reference level offset includes the measurement cable, two 20 dB attenuators, and a DC block |                           |           |                   |                  |           |      |
| DEVIATIONS FROM TEST STANDARD                                                                |                           |           |                   |                  |           |      |
| None                                                                                         |                           |           |                   |                  |           |      |
| Configuration #                                                                              | 1                         | Signature |                   |                  |           |      |
|                                                                                              |                           |           | Value<br>(dBc)    | Limit<br>≤ (dBc) | Result    |      |
| UHF RFID                                                                                     |                           |           | -48.65            | -20              | Pass      |      |
|                                                                                              |                           |           | -49.39            | -20              | Pass      |      |
| Low channel (902.75 MHz)                                                                     |                           |           |                   |                  |           |      |
| High channel (927.25 MHz)                                                                    |                           |           |                   |                  |           |      |

# BAND EDGE COMPLIANCE




TbtTx 2019.08.30.0 XM1 2019.09.05

| UHF RFID, Low channel (902.75 MHz) |  |  |  | Value<br>(dBc) | Limit<br>≤ (dBc) | Result |
|------------------------------------|--|--|--|----------------|------------------|--------|
|                                    |  |  |  | -48.65         | -20              | Pass   |



| UHF RFID, High channel (927.25 MHz) |  |  |  | Value<br>(dBc) | Limit<br>≤ (dBc) | Result |
|-------------------------------------|--|--|--|----------------|------------------|--------|
|                                     |  |  |  | -49.39         | -20              | Pass   |



# BAND EDGE COMPLIANCE -HOPPING MODE



XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Block - DC                   | Fairview Microwave | SD3379          | AMZ | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | TZP | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-19 | 13-Feb-20 |
| Cable                        | ESM Cable Corp.    | TTBJ141-KMKM-72 | MNU | 11-Apr-19 | 11-Apr-20 |
| Generator - Signal           | Agilent            | N5173B          | TIW | 5-Jul-17  | 5-Jul-20  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A          | AFN | 23-Dec-19 | 23-Dec-20 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized band were measured with the EUT set to its normal pseudo-random hopping sequence. The EUT was transmitting at the data rate(s) listed in the datasheet.

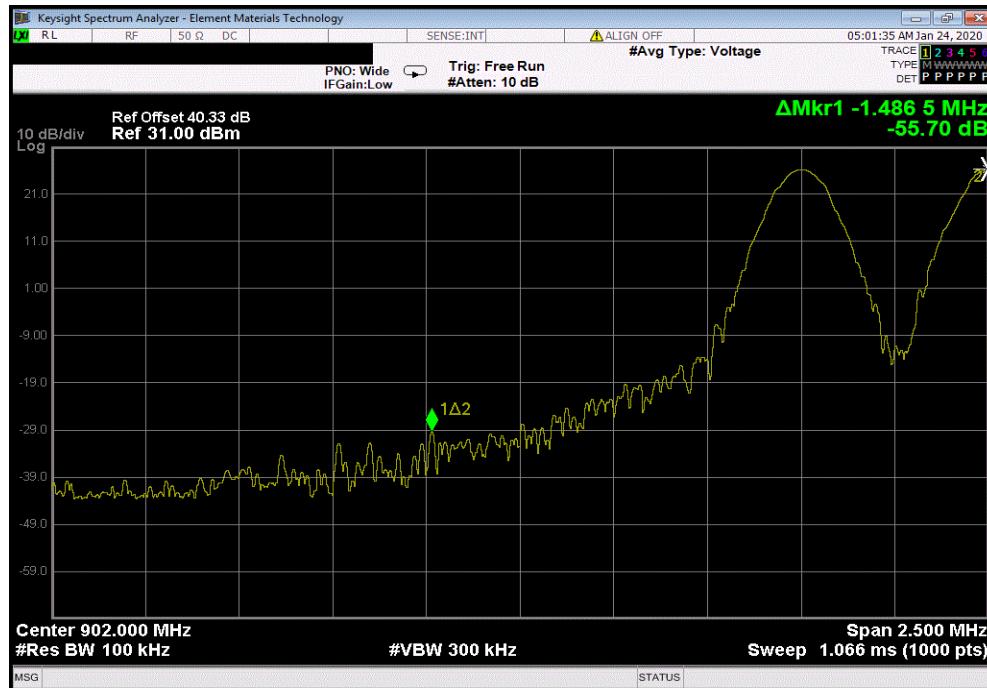
The spectrum was scanned below the lower band edge and above the higher band edge.

# BAND EDGE COMPLIANCE -HOPPING MODE

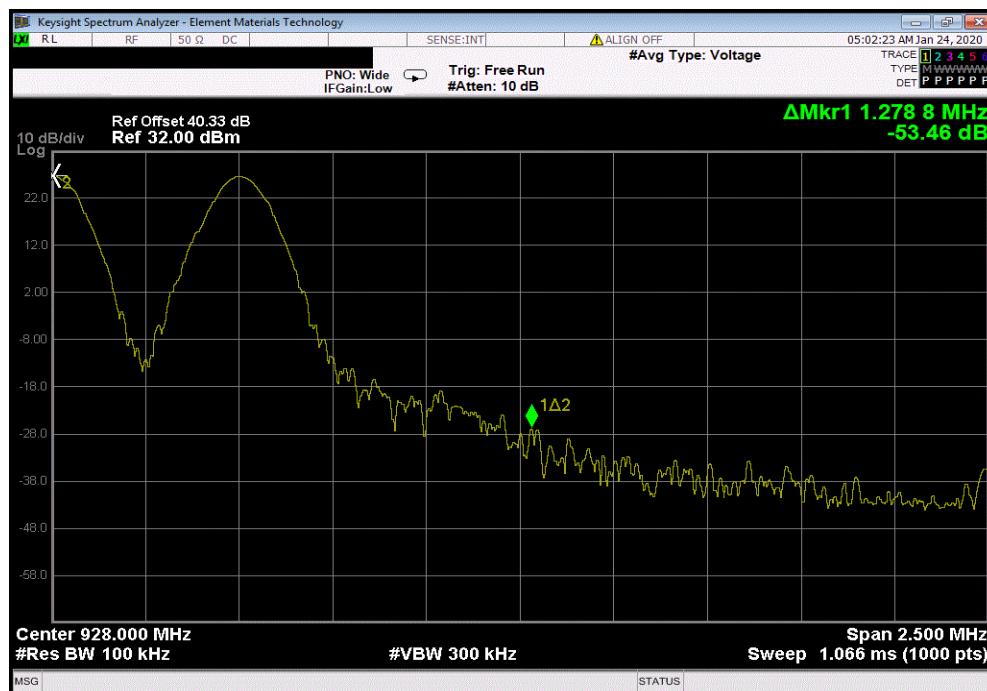


TbTx 2019.08.30.0

XMI 2019.08.05


|                                                                                              |                           |           |                                                                                   |                  |        |
|----------------------------------------------------------------------------------------------|---------------------------|-----------|-----------------------------------------------------------------------------------|------------------|--------|
| EUT:                                                                                         | PD67 Handheld RFID Reader |           | Work Order:                                                                       | TURC0061         |        |
| Serial Number:                                                                               | T10                       |           | Date:                                                                             | 23-Jan-20        |        |
| Customer:                                                                                    | TURCK Inc.                |           | Temperature:                                                                      | 23 °C            |        |
| Attendees:                                                                                   | Gabe Selinger             |           | Humidity:                                                                         | 26.7% RH         |        |
| Project:                                                                                     | None                      |           | Barometric Pres.:                                                                 | 1019 mbar        |        |
| Tested by:                                                                                   | Andrew Rogstad            | Power:    | 120VAC/60Hz                                                                       | Job Site:        | MN08   |
| TEST SPECIFICATIONS                                                                          |                           |           | Test Method                                                                       |                  |        |
| FCC 15.247:2020                                                                              |                           |           | ANSI C63.10:2013                                                                  |                  |        |
| COMMENTS                                                                                     |                           |           |                                                                                   |                  |        |
| Reference level offset includes the measurement cable, two 20 dB attenuators and a DC block. |                           |           |                                                                                   |                  |        |
| DEVIATIONS FROM TEST STANDARD                                                                |                           |           |                                                                                   |                  |        |
| None                                                                                         |                           |           |                                                                                   |                  |        |
| Configuration #                                                                              | 1                         | Signature |  |                  |        |
|                                                                                              |                           |           | Value<br>(dBc)                                                                    | Limit<br>≤ (dBc) | Result |
| Hopping Mode                                                                                 |                           |           | -55.7                                                                             | -20              | Pass   |
|                                                                                              |                           |           | -53.46                                                                            | -20              | Pass   |
| Low channel (902.75 MHz)                                                                     |                           |           |                                                                                   |                  |        |
| High channel (927.25 MHz)                                                                    |                           |           |                                                                                   |                  |        |

# BAND EDGE COMPLIANCE -HOPPING MODE




TbtTx 2019.08.30.0 XMT 2019.09.05

| Hopping Mode, Low channel (902.75 MHz) |  |  |  | Value (dBc) | Limit $\leq$ (dBc) | Result |
|----------------------------------------|--|--|--|-------------|--------------------|--------|
|                                        |  |  |  | -55.7       | -20                | Pass   |



| Hopping Mode, High channel (927.25 MHz) |  |  |  | Value (dBc) | Limit $\leq$ (dBc) | Result |
|-----------------------------------------|--|--|--|-------------|--------------------|--------|
|                                         |  |  |  | -53.46      | -20                | Pass   |



# OCCUPIED BANDWIDTH



XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Block - DC                   | Fairview Microwave | SD3379          | AMZ | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | TZP | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-19 | 13-Feb-20 |
| Cable                        | ESM Cable Corp.    | TTBJ141-KMKG-72 | MNU | 11-Apr-19 | 11-Apr-20 |
| Generator - Signal           | Agilent            | N5173B          | TIW | 5-Jul-17  | 5-Jul-20  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A          | AFN | 23-Dec-19 | 23-Dec-20 |

## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The 20 dB occupied bandwidth was measured with the EUT set to low, medium and high transmit frequencies in the band. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode.

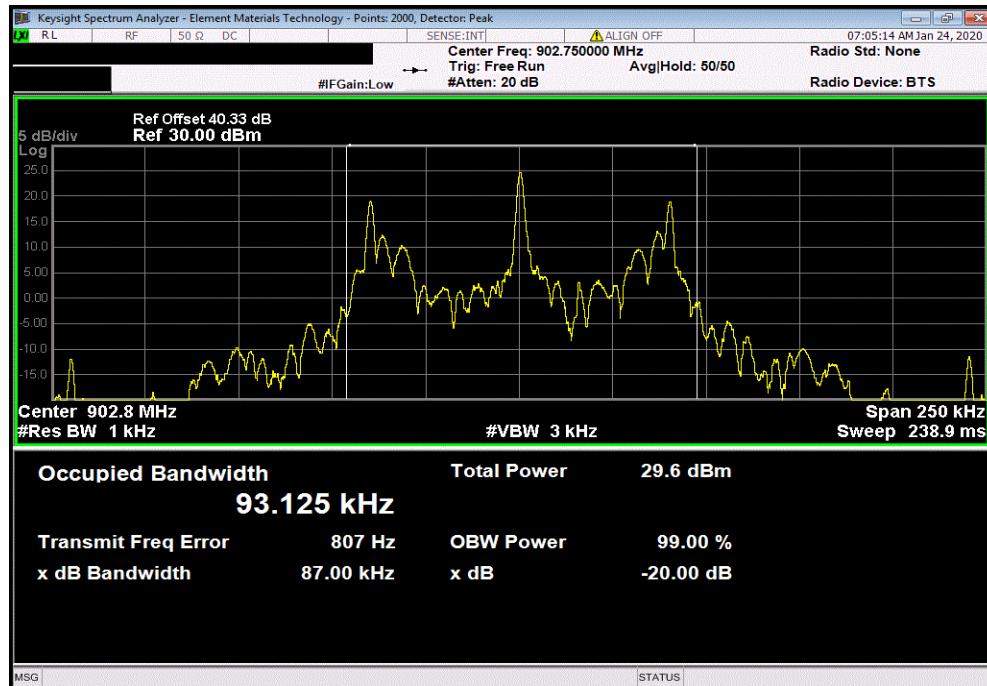
# OCCUPIED BANDWIDTH



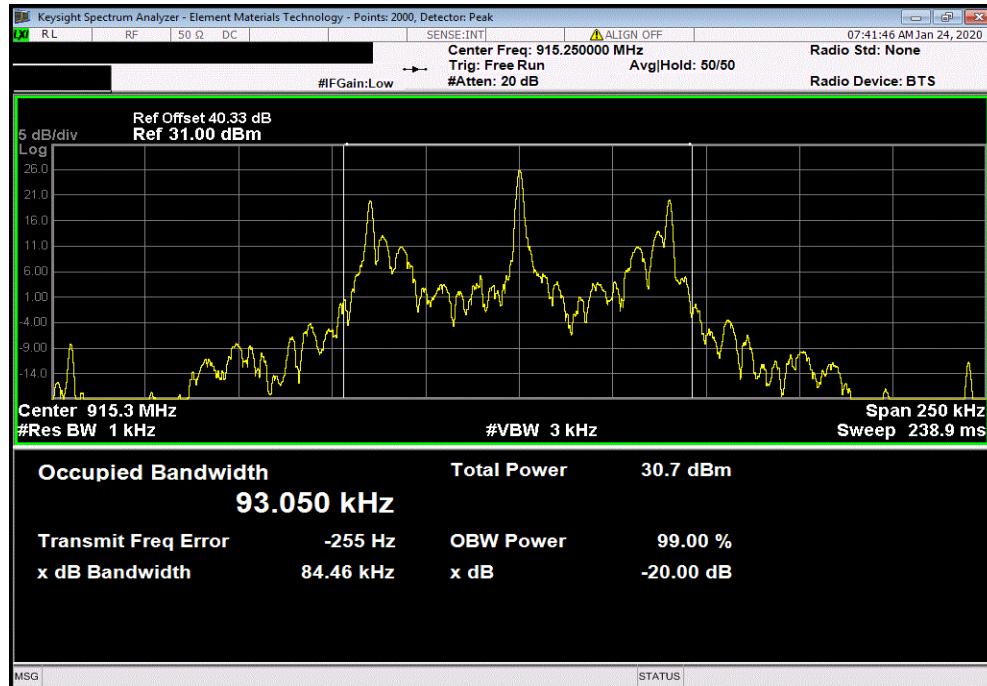
element

TbTx 2019.08.30.0

XMi 2019.08.05


|                                                                                               |                           |           |                   |            |           |      |
|-----------------------------------------------------------------------------------------------|---------------------------|-----------|-------------------|------------|-----------|------|
| EUT:                                                                                          | PD67 Handheld RFID Reader |           | Work Order:       | TURC0061   |           |      |
| Serial Number:                                                                                | T10                       |           | Date:             | 23-Jan-20  |           |      |
| Customer:                                                                                     | TURCK Inc.                |           | Temperature:      | 22.7 °C    |           |      |
| Attendees:                                                                                    | Gabe Selinger             |           | Humidity:         | 27.3% RH   |           |      |
| Project:                                                                                      | None                      |           | Barometric Pres.: | 1019 mbar  |           |      |
| Tested by:                                                                                    | Andrew Rogstad            | Power:    | 120VAC/60Hz       |            | Job Site: | MN08 |
| TEST SPECIFICATIONS                                                                           |                           |           | Test Method       |            |           |      |
| FCC 15.247:2020                                                                               |                           |           | ANSI C63.10:2013  |            |           |      |
| COMMENTS                                                                                      |                           |           |                   |            |           |      |
| Reference level offset includes the measurement cable, two 20 dB attenuators, and a DC block. |                           |           |                   |            |           |      |
| DEVIATIONS FROM TEST STANDARD                                                                 |                           |           |                   |            |           |      |
| None                                                                                          |                           |           |                   |            |           |      |
| Configuration #                                                                               | 1                         | Signature |                   |            |           |      |
|                                                                                               |                           |           | Value             | Limit (\$) | Result    |      |
| UHF RFID                                                                                      |                           |           | 87 kHz            | 250 kHz    | Pass      |      |
| Low channel (902.75 MHz)                                                                      |                           |           | 84.456 kHz        | 250 kHz    | Pass      |      |
| Mid channel (915.25 MHz)                                                                      |                           |           | 84.933 kHz        | 250 kHz    | Pass      |      |
| High channel (927.25 MHz)                                                                     |                           |           |                   |            |           |      |

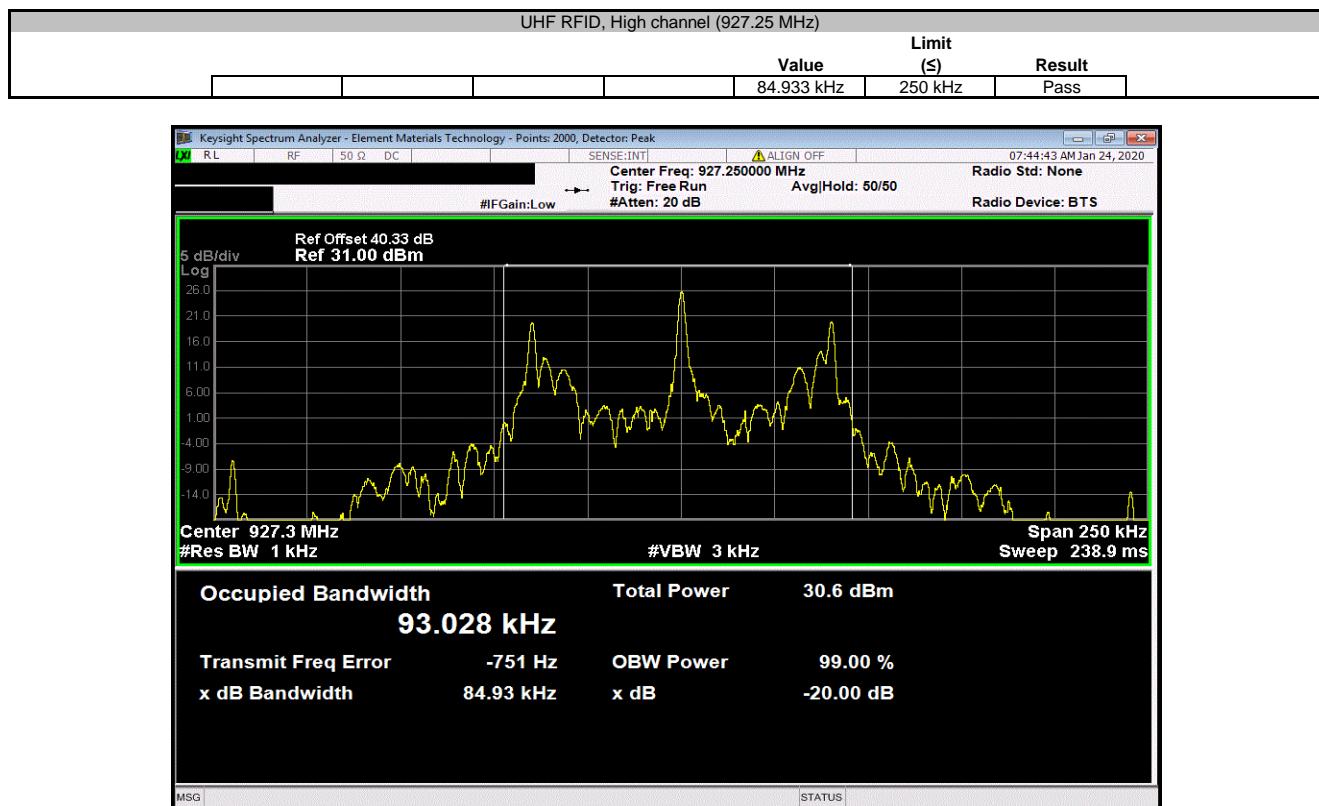
# OCCUPIED BANDWIDTH




TbtTx 2019.08.30.0 XMI 2019.09.05

| UHF RFID, Low channel (902.75 MHz) |  |  | Value  | Limit (≤) | Result |
|------------------------------------|--|--|--------|-----------|--------|
|                                    |  |  | 87 kHz | 250 kHz   | Pass   |




| UHF RFID, Mid channel (915.25 MHz) |  |  | Value      | Limit (≤) | Result |
|------------------------------------|--|--|------------|-----------|--------|
|                                    |  |  | 84.456 kHz | 250 kHz   | Pass   |



# OCCUPIED BANDWIDTH



TbtTx 2019.08.30.0 XMI 2019.09.05



# SPURIOUS CONDUCTED EMISSIONS



XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

## TEST EQUIPMENT

| Description                  | Manufacturer       | Model           | ID  | Last Cal. | Cal. Due  |
|------------------------------|--------------------|-----------------|-----|-----------|-----------|
| Block - DC                   | Fairview Microwave | SD3379          | AMZ | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | TZP | 9-Nov-19  | 9-Nov-20  |
| Attenuator                   | S.M. Electronics   | SA26B-20        | RFW | 13-Feb-19 | 13-Feb-20 |
| Cable                        | ESM Cable Corp.    | TTBJ141-KMKG-72 | MNU | 11-Apr-19 | 11-Apr-20 |
| Generator - Signal           | Agilent            | N5173B          | TIW | 5-Jul-17  | 5-Jul-20  |
| Analyzer - Spectrum Analyzer | Keysight           | N9010A          | AFN | 23-Dec-19 | 23-Dec-20 |

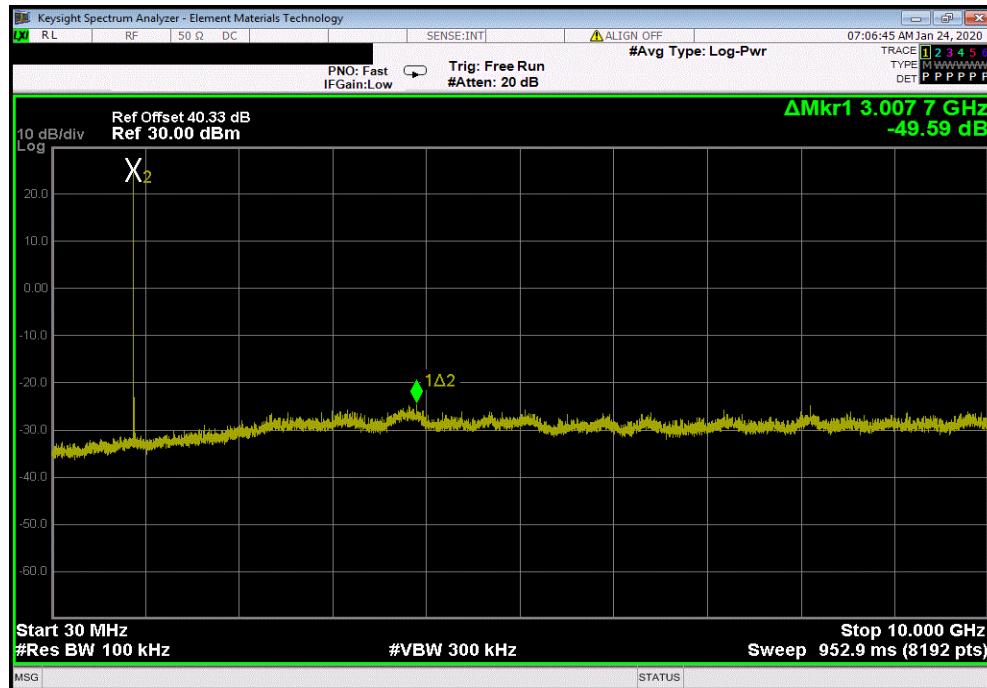
## TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet in a no-hop mode. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

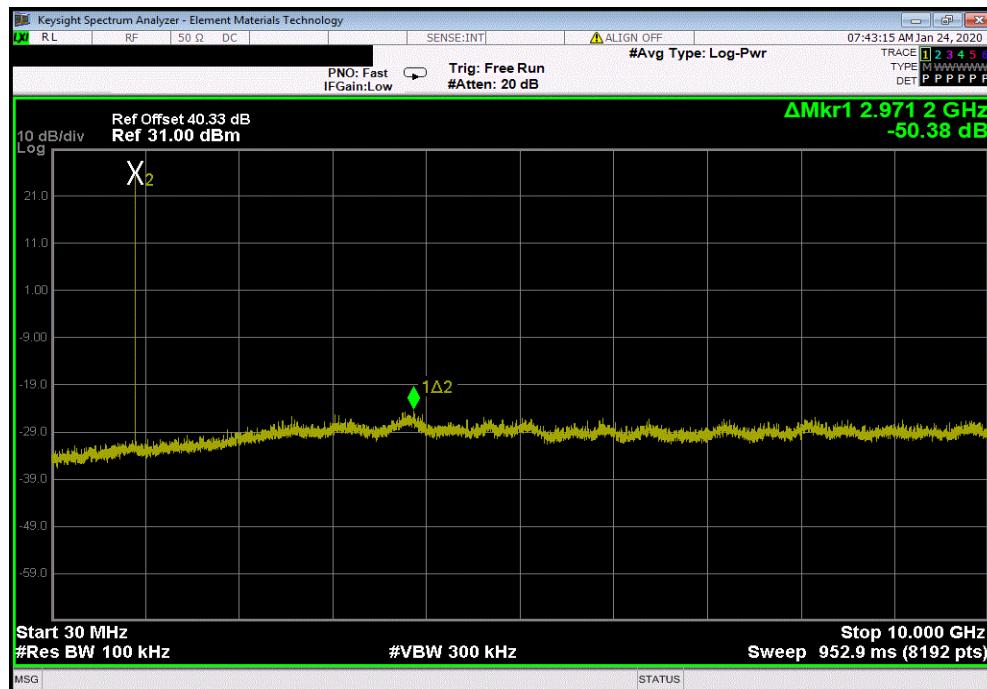
# SPURIOUS CONDUCTED EMISSIONS



TbTx 2019.08.30.0 XMII 2019.08.05


| EUT:                                                                                          | PD67 Handheld RFID Reader |           | Work Order:       | TURC0061            |                 |               |        |
|-----------------------------------------------------------------------------------------------|---------------------------|-----------|-------------------|---------------------|-----------------|---------------|--------|
| Serial Number:                                                                                | T10                       |           | Date:             | 23-Jan-20           |                 |               |        |
| Customer:                                                                                     | TURCK Inc.                |           | Temperature:      | 22.8 °C             |                 |               |        |
| Attendees:                                                                                    | Gabe Selinger             |           | Humidity:         | 27.1% RH            |                 |               |        |
| Project:                                                                                      | None                      |           | Barometric Pres.: | 1019 mbar           |                 |               |        |
| Tested by:                                                                                    | Andrew Rogstad            | Power:    | 120VAC/60Hz       |                     | Job Site:       | MN08          |        |
| TEST SPECIFICATIONS                                                                           |                           |           | Test Method       |                     |                 |               |        |
| FCC 15.247:2020                                                                               |                           |           | ANSI C63.10:2013  |                     |                 |               |        |
| COMMENTS                                                                                      |                           |           |                   |                     |                 |               |        |
| Reference level offset includes the measurement cable, two 20 dB attenuators, and a DC block. |                           |           |                   |                     |                 |               |        |
| DEVIATIONS FROM TEST STANDARD                                                                 |                           |           |                   |                     |                 |               |        |
| None                                                                                          |                           |           |                   |                     |                 |               |        |
| Configuration #                                                                               | 1                         | Signature |                   |                     |                 |               |        |
|                                                                                               |                           |           | Frequency Range   | Measured Freq (MHz) | Max Value (dBc) | Limit ≤ (dBc) | Result |
| UHF RFID                                                                                      |                           |           |                   |                     |                 |               |        |
| Low channel (902.75 MHz)                                                                      |                           |           | 30 MHz - 10 GHz   | 3007.68             | -49.59          | -20           | Pass   |
| Mid channel (915.25 MHz)                                                                      |                           |           | 30 MHz - 10 GHz   | 2971.16             | -50.38          | -20           | Pass   |
| High channel (927.25 MHz)                                                                     |                           |           | 30 MHz - 10 GHz   | 3047.84             | -49.87          | -20           | Pass   |

# SPURIOUS CONDUCTED EMISSIONS

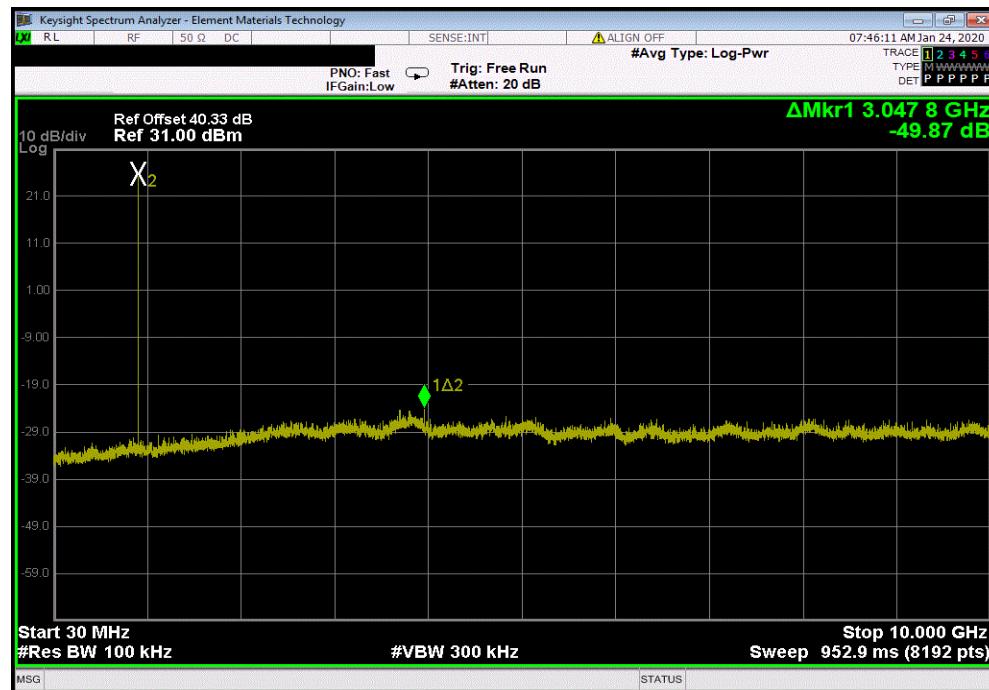



TbtTx 2019.08.30.0 XM1 2019.09.05

| UHF RFID, Low channel (902.75 MHz) |                     |                 |                    |        |
|------------------------------------|---------------------|-----------------|--------------------|--------|
| Frequency Range                    | Measured Freq (MHz) | Max Value (dBc) | Limit $\leq$ (dBc) | Result |
| 30 MHz - 10 GHz                    | 3007.68             | -49.59          | -20                | Pass   |



| UHF RFID, Mid channel (915.25 MHz) |                     |                 |                    |        |
|------------------------------------|---------------------|-----------------|--------------------|--------|
| Frequency Range                    | Measured Freq (MHz) | Max Value (dBc) | Limit $\leq$ (dBc) | Result |
| 30 MHz - 10 GHz                    | 2971.16             | -50.38          | -20                | Pass   |




# SPURIOUS CONDUCTED EMISSIONS



TbtTx 2019.08.30.0 XM1 2019.09.05

| UHF RFID, High channel (927.25 MHz) |                     |                 |                    |        |
|-------------------------------------|---------------------|-----------------|--------------------|--------|
| Frequency Range                     | Measured Freq (MHz) | Max Value (dBc) | Limit $\leq$ (dBc) | Result |
| 30 MHz - 10 GHz                     | 3047.84             | -49.87          | -20                | Pass   |

