

CTC || advanced
member of RWTÜV group

Bundesnetzagentur

TEST REPORT

Test report no.: 1-1053/20-03-06-B

BNetza-CAB-02/21-102

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10

66117 Saarbruecken / Germany

Phone: + 49 681 5 98 - 0

Fax: + 49 681 5 98 - 9075

Internet: <https://www.ctcadvanced.com>

e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

SBO Hearing A/S

Kongebakken 9

2765 Smørum / DENMARK

Phone: +45 39 17 71 00

Contact: Thomas Primdahl Hoffmann

e-mail: thpm@demant.com

Manufacturer

SBO Hearing A/S

Kongebakken 9

2765 Smørum / DENMARK

Test standard/s

FCC - Title 47 CFR Part 15

FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

RSS - 210 Issue 10

Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment

RSS - Gen Issue 5 incl. Amendment 1 & 2

Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item:

Radio module for hearing aids

Model name:

PA_AU5_MBTE_M

FCC ID:

2ACAHAU5MBTEM

ISED certification number:

11936A-AU5MBTEM

Frequency:

3.84 MHz

Technology tested:

Proprietary

Antenna:

Integrated antenna

Power supply:

1.4 V DC by battery

Temperature range:

0°C to +40°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

p.o.

Christoph Schneider
Lab Manager
Radio Communications

Test performed:

Tobias Wittenmeier
Testing Manager
Radio Communications

1 Table of contents

1	Table of contents	2
2	General information	3
2.1	Notes and disclaimer	3
2.2	Application details	3
2.3	Test laboratories sub-contracted	3
3	Test standard/s, references and accreditations	4
4	Reporting statements of conformity – decision rule	5
5	Test environment	6
6	Test item	6
6.1	General description	6
6.2	Additional information	6
7	Description of the test setup	7
7.1	Shielded semi anechoic chamber	8
7.2	Shielded fully anechoic chamber	9
7.3	RF measurements	10
8	Sequence of testing	11
8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	11
8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	12
9	Measurement uncertainty	13
10	Summary of measurement results	14
11	Additional comments	15
12	Measurement results	16
12.1	Field strength of the fundamental	16
12.2	Emission bandwidth (6 dB bandwidth)	17
12.3	Occupied bandwidth (99% bandwidth)	18
12.4	Field strength of the harmonics and spurious	19
13	Observations	22
14	Glossary	23
15	Document history	24
16	Accreditation Certificate – D-PL-12076-01-04	24
17	Accreditation Certificate – D-PL-12076-01-05	25

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-1053/20-03-06-A and dated 2021-10-27

2.2 Application details

Date of receipt of order: 2021-09-08

Date of receipt of test item: 2021-09-28

Start of test: 2021-09-30

End of test: 2021-10-01

Person(s) present during the test: -/-

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

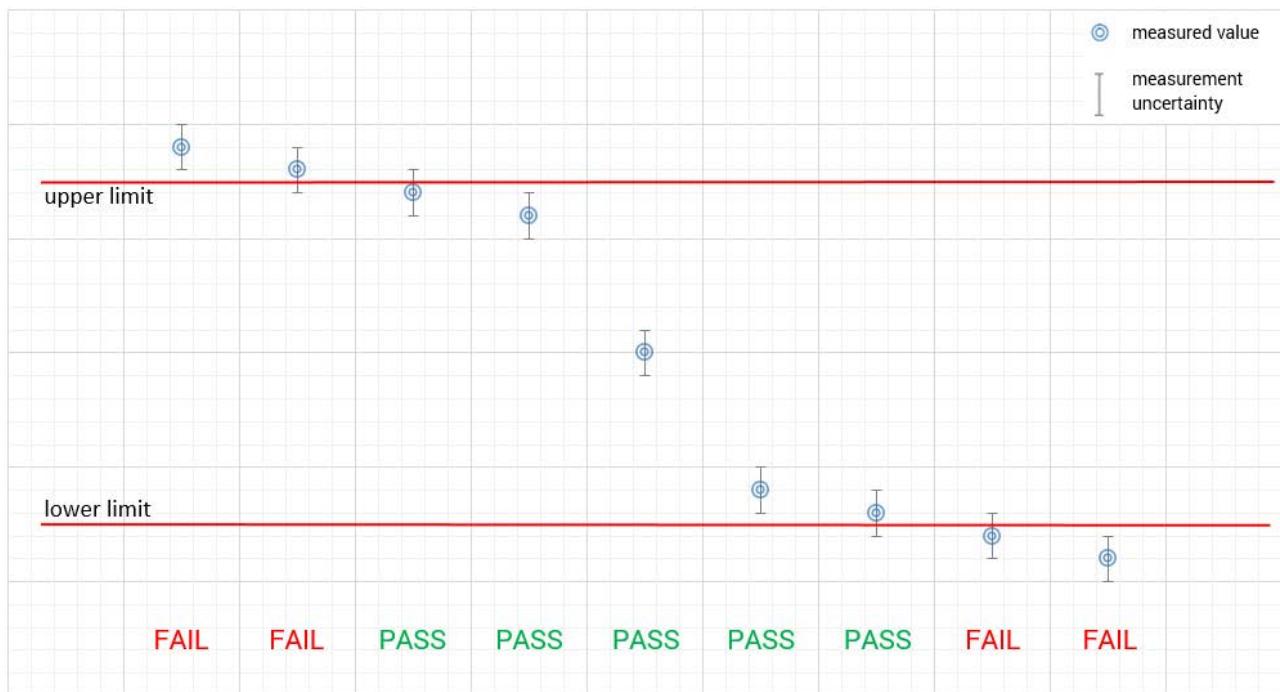
2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 10	December 2019	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf	
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	

ISED Testing Laboratory Recognized Listing Number: DE0001
 FCC designation number: DE0002



4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

measured value, measurement uncertainty, verdict

5 Test environment

Temperature	: T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content	: 55 %	
Barometric pressure	: 1021 hpa	
Power supply	: V _{nom} V _{max} V _{min}	1.4 V DC by zinc air battery No tests under extreme conditions required. No tests under extreme conditions required.

6 Test item

6.1 General description

Kind of test item	: Radio module for hearing aids
Model name	: PA_AU5_MBTE_M
HMN	: -/
PMN	: PA_AU5_MBTE_M
HVIN	: PA_AU5_MBTE_M
FVIN	: -/
S/N serial number	: 66922744
Hardware status	: Final LAB
Software status	: SR1512_rel_5.3_12.0_b1
Firmware status	: -/
Frequency	: 3.84 MHz
Type of radio transmission	: Modulated carrier
Use of frequency spectrum	: Modulated carrier
Type of modulation	: MSK
Number of channels	: 1
Antenna	: Integrated antenna
Power supply	: 1.4 V DC by battery
Temperature range	: 0°C to +40°C

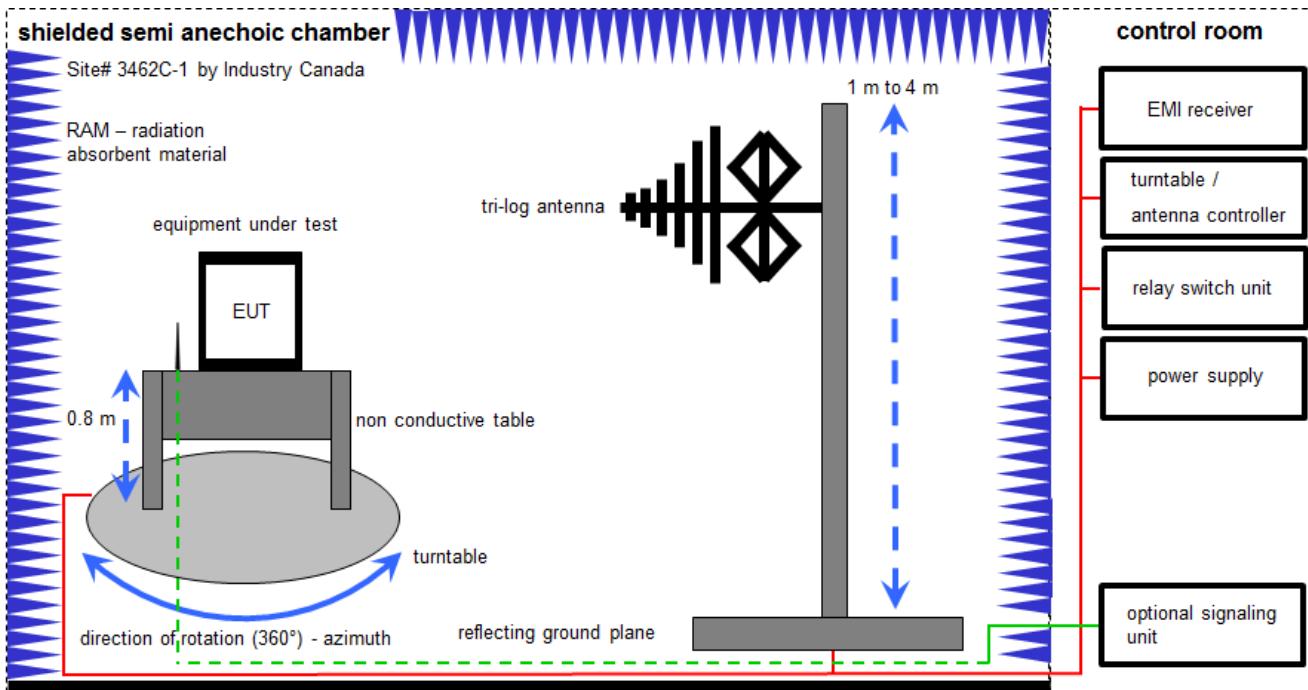
6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-1053/20-03-01_AnnexA
 1-1053/20-03-01_AnnexB
 1-1053/20-03-01_AnnexF

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).


In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlk!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

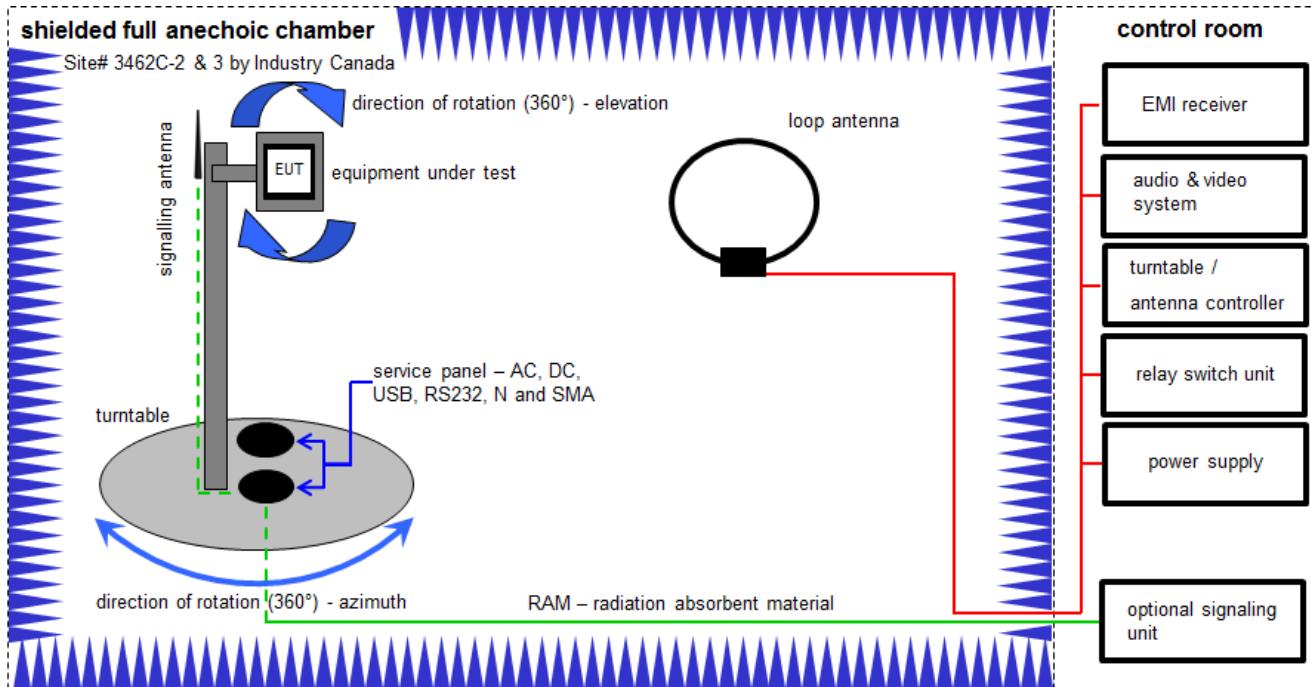
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS [dB μ V/m] = 12.35 [dB μ V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB μ V/m] (35.69 μ V/m)

Equipment table:

No.	Lab / Item	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	A	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	A	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	A	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	A	Turntable Interface-Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	19.02.2021	18.02.2023
7	A	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	16.12.2020	15.12.2021

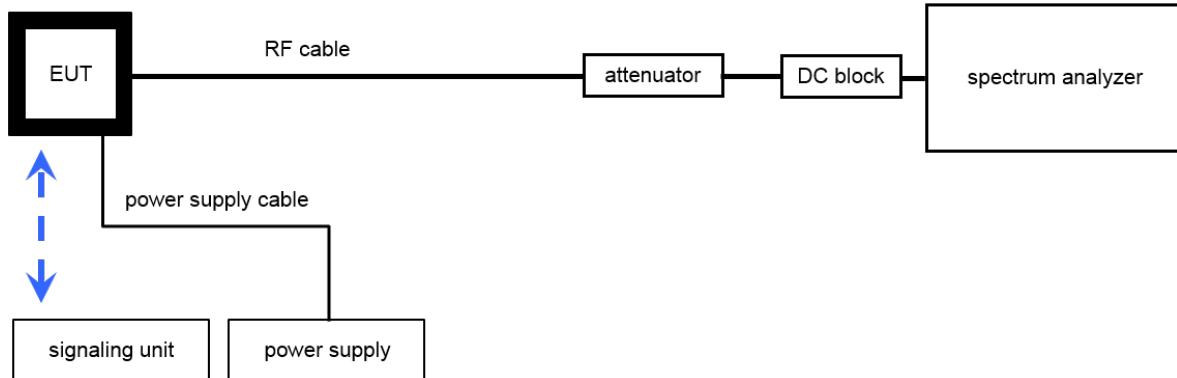
7.2 Shielded fully anechoic chamber

Measurement distance: loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)

Equipment table:

No.	Lab / Item	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	EMI Test Receiver 20Hz- 26.5GHz	ESU26	R&S	100037	300003555	k	11.12.2020	10.12.2021
2	A	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
3	A	NEXIO EMV-Software	BAT EMC V3.20.06	EMCO		300004682	ne	-/-	-/-
4	A	PC	ExOne	F+W		300004703	ne	-/-	-/-
5	A	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
6	A	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
7	A	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	13.06.2021	12.06.2023

7.3 RF measurements

Conducted measurements normal conditions

OP = AV + CA
 (OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:
 OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Loop Antenna		ZEG TS Steinfurt		400001208	ev	-/-	-/-
2	A	RF Cable BNC	RG58	Huber & Suhner		400001209	ev	-/-	-/-
3	A	Spectrum Analyzer	FSV30	Rohde & Schwarz	104365	300005923	k	17.10.2020	16.01.2022

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Premereasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position $\pm 45^\circ$ and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty	
Test case	Uncertainty
Occupied bandwidth	± used RBW
Field strength of the fundamental	± 3 dB
Field strength of the harmonics and spurious	± 3 dB
Receiver spurious emissions and cabinet radiations	± 3 dB
Conducted limits	± 2.6 dB

10 Summary of measurement results

<input checked="" type="checkbox"/>	No deviations from the technical specifications were ascertained
<input type="checkbox"/>	There were deviations from the technical specifications ascertained
<input type="checkbox"/>	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS Gen Issue 5 RSS 210 Issue 10	Passed	2021-11-25	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	C	NC	NA	NP	Remark
§ 15.223(a) RSS 210 Issue 10 (B.3)	Fieldstrength of Fundamental	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§ 15.223(a) RSS 210 Issue 10 (B.3)	Emission bandwidth 6 dB bandwidth	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
RSS Gen Issue 5 (6.6)	Occupied bandwidth 99 % bandwidth	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§ 15.209/ RSS Gen Issue 5 (6.13)	Fieldstrength of harmonics and spurious	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§ 15.209 RSS Gen Issue 5 (7.1)	Receiver spurious emissions (radiated)	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	Battery powered

Note: NA = Not Applicable; NP = Not Performed, C = Compliant; NC = Not compliant

11 Additional comments

Reference documents: None

Special test descriptions: We perform the radiated pre-scans in different spherical positions and consolidate the results in one result plot. The test procedure includes scans in the theta axes every 90° and in phi axes @ 0° and 90° for both polarizations vertical & horizontal or magnetic emissions.

Configuration descriptions: None

12 Measurement results

12.1 Field strength of the fundamental

Measurement:

Measurement parameter	
Detector:	Average
Sweep time:	-/-
Resolution bandwidth:	9 kHz
Video bandwidth:	\geq RBW
Span:	-/-
Trace-Mode:	Max Hold
Used test setup:	See chapter 7.2 A
Measurement uncertainty:	See chapter 9

Limits:

FCC	IC
The field strength of any emission within the band 1.705-10.0 MHz shall not exceed 100 microvolts/meter at a distance of 30 meters. However, if the bandwidth of the emission is less than 10% of the center frequency, the field strength shall not exceed 15 microvolts/meter or (the bandwidth of the device in kHz) divided by (the center frequency of the device in MHz) microvolts/meter at a distance of 30 meters, whichever is the higher level	

Recalculation:

According to ANSI C63.10		
Frequency	Formula	Correction value
3.84 MHz	$FS_{limit} = FS_{max} - 40 \log\left(\frac{d_{nearfield}}{d_{measure}}\right) - 20 \log\left(\frac{d_{limit}}{d_{nearfield}}\right)$	
	FS_{limit} is the calculation of field strength at the limit distance, expressed in $\text{dB}\mu\text{V/m}$ FS_{max} is the measured field strength, expressed in $\text{dB}\mu\text{V/m}$ $d_{nearfield}$ is the $\lambda/2\pi$ distance $d_{measure}$ is the distance of the measurement point from EUT d_{limit} is the reference limit distance	
		-32.3 dB from 3m to 30m

Results:

Test conditions		Radiated field strength / ($\text{dB}\mu\text{V/m}$)		
Frequency		3.84 MHz		
Mode		at 3 m distance	at 30 m distance	Limit at 30 m distance
T _{nom}	V _{nom}	55.5	23.2	53.6

NOTE: As the 6 dB bandwidth is less than 10% of the centre frequency, the field strength shall not exceed 15 microvolts/meter or (the bandwidth of the device in kHz) divided by (the center frequency of the device in MHz) microvolts/meter at a distance of 30 meters, whichever is the higher level. This means the limit is the higher of 15 microvolts/meter or $183.8/3.84 = 47.87$ microvolts/meter.

12.2 Emission bandwidth (6 dB bandwidth)

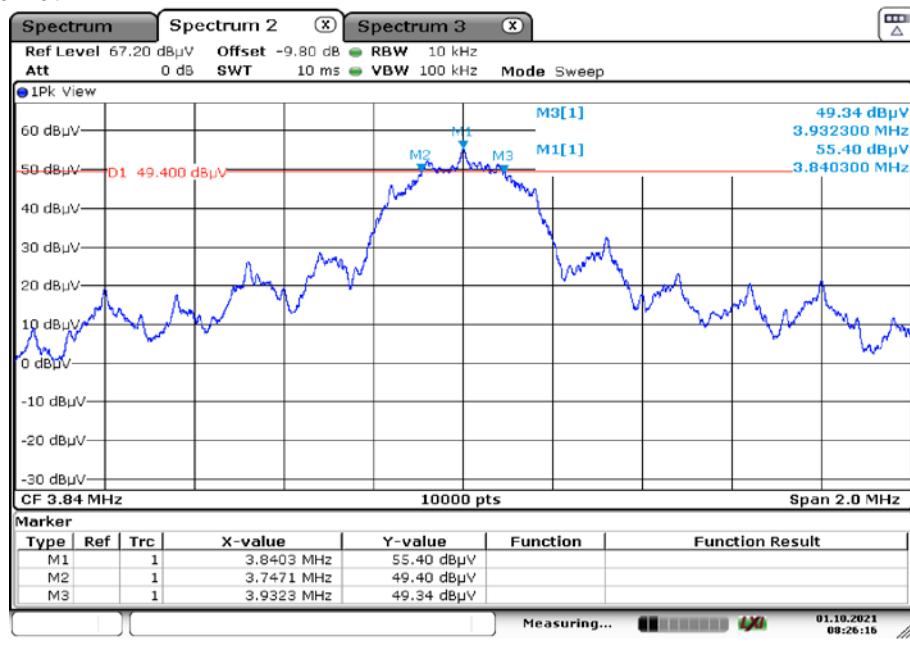
Measurement:

Measurement parameters

Detector:	Peak
Resolution bandwidth:	10 kHz
Video bandwidth:	$\geq 3 \times$ RBW
Trace mode:	Max hold
Used test setup:	See chapter 7.3A
Measurement uncertainty:	See chapter 9

Limits:

FCC


For the purposes of this Section, bandwidth is determined at the points 6 dB down from the modulated carrier

Results:

Test conditions		6 dB bandwidth
T _{nom}	V _{nom}	185.2 kHz

Plots:

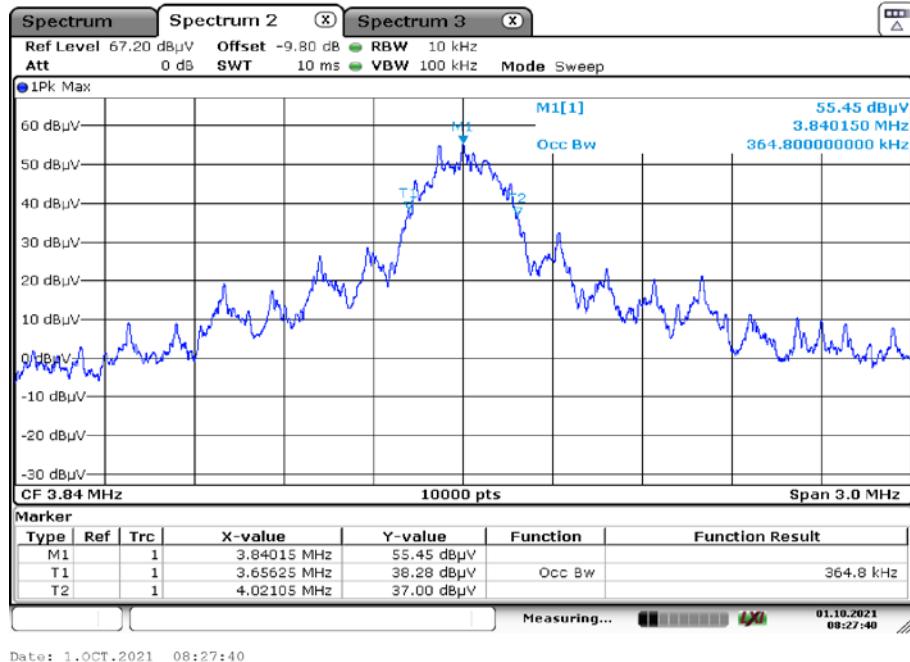
Plot 1: 6 dB bandwidth

12.3 Occupied bandwidth (99% bandwidth)

Measurement:

Measurement parameters	
Detector:	Peak
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth
Video bandwidth:	≥ 3x RBW
Trace mode:	Max hold
Analyser function:	99 % power function
Used test setup:	See chapter 7.3 A
Measurement uncertainty:	See chapter 9

Limits:


IC
-/-

Results:

Test conditions		99 % bandwidth
T _{nom}	V _{nom}	364.8 kHz

Plots:

Plot 1: 99% bandwidth

12.4 Field strength of the harmonics and spurious

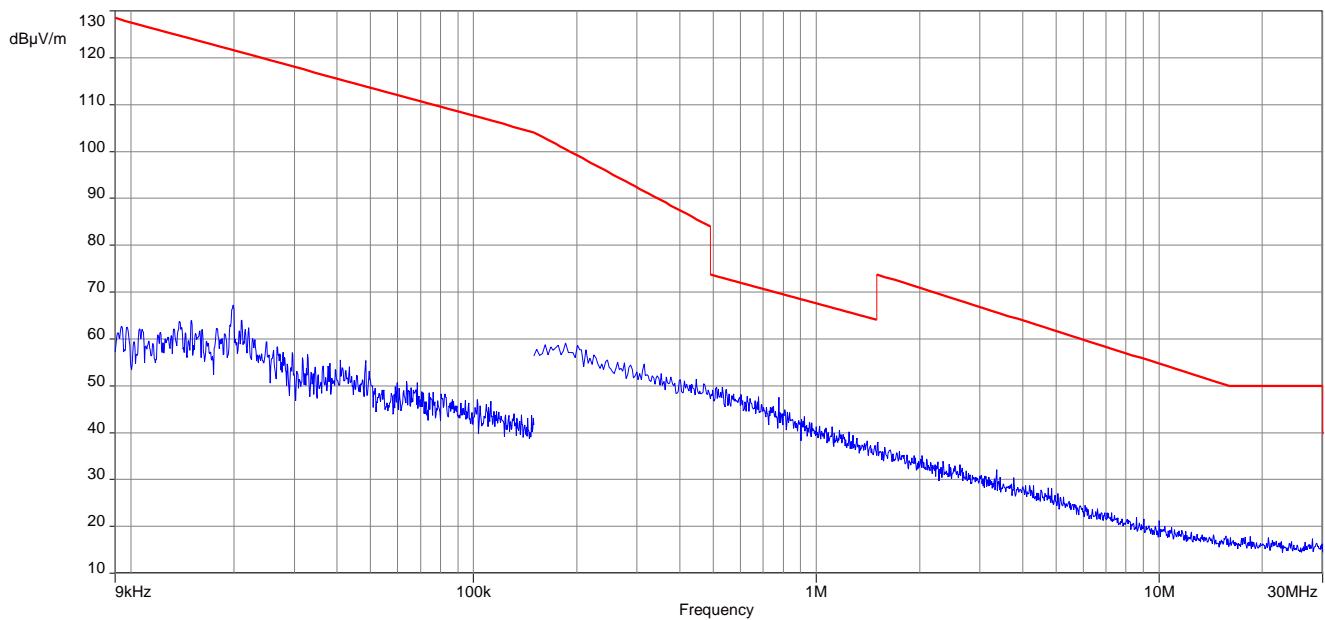
Measurement:

Measurement parameter	
Detector:	Average / Quasi Peak
Sweep time:	Auto
Resolution bandwidth:	F < 150 kHz: 200 Hz 150 kHz > F > 30 MHz: 9 kHz F > 30 MHz: 120 kHz
Video bandwidth:	F < 150 kHz: 1 kHz 150 kHz > F > 30 MHz: 100 kHz F > 30 MHz: 300 kHz
Span:	See plots!
Trace-Mode:	Max hold
Used test setup:	See chapter 7.1 A, 7.2 A
Measurement uncertainty:	See chapter 9

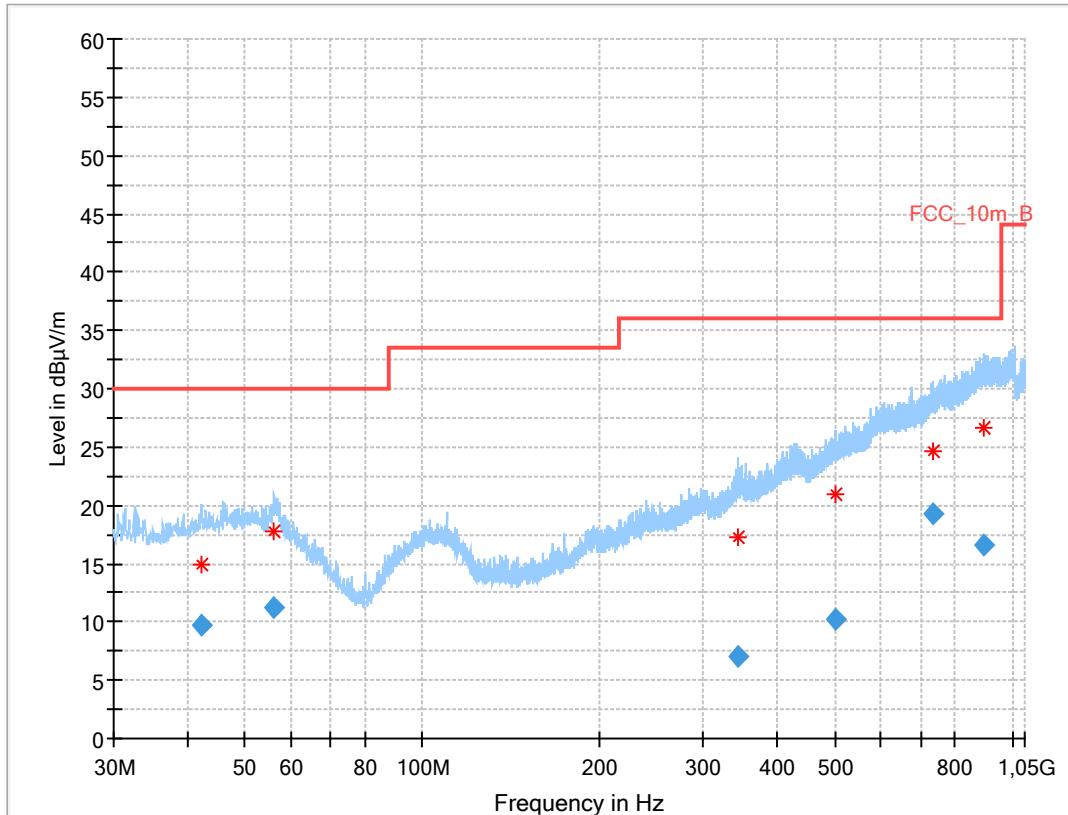
Limits:

FCC	IC	
Field strength of the harmonics and spurious.		
Frequency / (MHz)	Field strength / (μ V/m)	Measurement distance / (m)
0.0009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30 (29.5 dB μ V/m)	30
30 – 88	100 (40 dB μ V/m)	3
88 – 216	150 (43.5 dB μ V/m)	3
216 – 960	200 (46 dB μ V/m)	3

Result:


Spurious emissions				
f / (MHz)	Detector	Limit max. allowed / (dB μ V/m)	Amplitude of emission / (dB μ V/m)	Results
No peaks detected				

Result: see plots


Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

Plots: TX mode

Plot 1: 9 kHz – 30 MHz; magnetic

Plot 2: 30 MHz – 1000 MHz, vertical and horizontal polarization

Final_Result

Frequency (MHz)	QuasiPeak (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
42.126	9.79	30.0	20.2	1000	120.0	296.0	V	135	15
56.021	11.16	30.0	18.8	1000	120.0	180.0	V	93	16
343.324	6.99	36.0	29.0	1000	120.0	281.0	H	90	17
502.264	10.17	36.0	25.8	1000	120.0	200.0	V	180	20
733.667	19.20	36.0	16.8	1000	120.0	400.0	H	225	23
896.405	16.65	36.0	19.4	1000	120.0	328.0	H	141	25

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2021-10-20
-A	IC identification number corrected	2021-10-27
-B	Model name changed, editorial changes	2021-11-25

16 Accreditation Certificate – D-PL-12076-01-04

first page

last page

Deutsche Akkreditierungsstelle GmbH

Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV
Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition

Accreditation

The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory

CTC advanced GmbH
Untertürkheimer Straße 6-10, 66117 Saarbrücken

is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields:

Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards

Deutsche Akkreditierungsstelle GmbH

Office Berlin
Spittelmarkt 10
10117 Berlin

Office Frankfurt am Main
Europa-Allee 52
60327 Frankfurt am Main

Office Braunschweig
Bundesallee 100
38116 Braunschweig

The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf.

No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS.

The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I B 262/2009 and the Regulation (EC) No 785/2009 of the European Parliament and of the Council of 9 July 2009 setting out the requirements for accreditation and market surveillance relating to the activities of bodies (OIML R 126) of the European Union L 238 of 9 July 2009, p. 30). DAkkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.

The up-to-date state of membership can be retrieved from the following websites:

EA: www.european-accreditation.org
ILAC: www.ilac.org
IAF: www.iafnu

The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages.

Registration number of the certificate: D-PL-12076-01-04

by order of Prof. Ing. (FH) Alf Egner
Head of Division

Frankfurt am Main, 09.06.2020

The certificate together with its annex reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found in the database of accredited bodies of Deutsche Akkreditierungsstelle GmbH.
<https://www.dakks.de/en/content/credited-bodies-dakks>
See notes overleaf.

Note: The current certificate annex is published on the websites (link see below).

<https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04.pdf>

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04_Canada_TCEMC.pdf

17 Accreditation Certificate – D-PL-12076-01-05

first page

last page

Deutsche Akkreditierungsstelle GmbH

Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1
subsection 1 AkkStelleGBV
Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition

Accreditation

The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory
CTC advanced GmbH
Untertürkheimer Straße 6-10, 66117 Saarbrücken
is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following
fields:
Telecommunication (FCC Requirements)

The accreditation certificate shall only apply in connection with the notice of accreditation of
09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the
reverse side of the cover sheet and the following annex with a total of 05 pages.

Registration number of the certificate: D-PL-12076-01-05

Frankfurt am Main, 09.06.2020

by order Dipl.-Ing. (FH) Ralf Egner
Head of Division

Deutsche Akkreditierungsstelle GmbH

Office Berlin
Spittelmarkt 10
10117 Berlin

Office Frankfurt am Main
Europa-Allee 52
60327 Frankfurt am Main

Office Braunschweig
Bundesallee 100
38116 Braunschweig

The publication of extracts of the accreditation certificate is subject to the prior written approval by
Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate
disseminations of the cover sheet by the conformity assessment body mentioned overall.

No impression shall be made that the accreditation also extends to fields beyond the scope of
accreditation attested by DAkkS.

The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009
(Federal Law Gazette I p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of
the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating
to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 30). DAkkS is
a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for
Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation
Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.

The up-to-date state of membership can be retrieved from the following websites:
EA: www.european-accreditation.org
ILAC: www.ilac.org
IAF: www.iaf.nu

*The certificate together with its annex reflects the status at the time of the date of issue. The current status of the scope of
accreditation can be found in the database of accredited bodies of Deutsche Akkreditierungsstelle GmbH.
<https://www.dakks.de/en/content/accredited-bodies-dakks>
See notes overleaf.*

Note: The current certificate annex is published on the websites (link see below).

<https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05.pdf>

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05_TCB_USA.pdf

END OF TEST REPORT