

cetecom
advanced

TEST REPORT

Test report no.: 1-8190-24-01-12_TR1-R01

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany

Phone: + 49 681 5 98 - 0

Fax: + 49 681 5 98 - 9075

Internet: <https://cetecomadvanced.com>

e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS).

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number:

D-PL-12047-01-00.

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

SBO Hearing A/S

Kongebakken 9
2765 Smørum / DENMARK

Phone: +45 39 17 71 00

Contact: Per Klaus Nielsen

e-mail: pkni@sbohearing.com

Manufacturer

SBO Hearing A/S

Kongebakken 9
2765 Smørum / DENMARK

FCC - Title 47 CFR Part 15

FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

RSS - 210 Issue 11

Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment

RSS - Gen Issue 5 incl. Amendment 1 & 2

Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Hearing Aid amplifier module

Model name: CL_AU5_BTEMPP

FCC ID: 2ACAH-AU5BTEMPP

ISED certification number: 11936A-AU5BTEMPP

Frequency: 3.84 MHz

Technology tested: proprietary

Antenna: Integrated antenna

Power supply: 3.35 V to 4.35 V DC, by internal Li-Ion battery

Temperature range: 0°C to +40°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Christoph Schneider
Lab Manager
Radio Labs

Test performed:

Hans-Joachim Wolsdorfer
Lab Manager
Radio Labs

1 Table of contents

1	Table of contents	2
2	General information	3
2.1	Notes and disclaimer	3
2.2	Application details	3
2.3	Test laboratories sub-contracted	3
3	Test standard/s, references and accreditations	4
4	Reporting statements of conformity – decision rule	5
5	Test environment	6
6	Test item	6
6.1	General description	6
6.2	Additional information	6
7	Description of the test setup	7
7.1	Shielded semi anechoic chamber	8
7.2	Shielded fully anechoic chamber	10
7.3	Conducted measurements	11
8	Sequence of testing	12
8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	13
9	Measurement uncertainty	14
10	Summary of measurement results	15
11	Additional comments	16
12	Measurement results	17
12.1	Field strength of the fundamental	17
12.2	Emission bandwidth (6 dB bandwidth)	19
12.3	Occupied bandwidth (99% bandwidth)	21
12.4	Field strength of the harmonics and spurious	23
13	Glossary	27
14	Annex A - Declaration of Equality	28
15	Document history	30

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2025-03-05
Date of receipt of test item:	2025-04-07
Start of test:*	2025-05-12
End of test:*	2025-05-15
Person(s) present during the test:	-/-

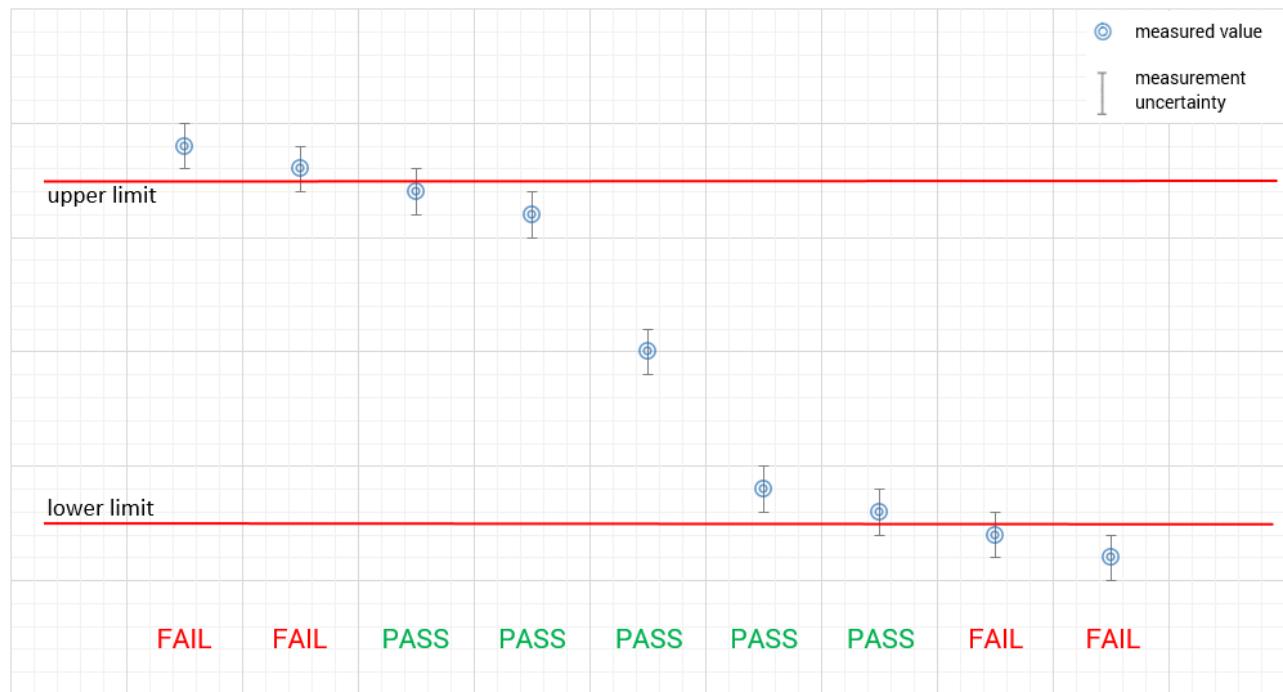
*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 11	25.06.2024	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus


Guidance	Version	Description
ANSI C63.4a-2017	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2020	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

measured value, measurement uncertainty, verdict

5 Test environment

Temperature :	T_{nom} T_{max} T_{min}	+22 °C during room temperature tests +40 °C during high temperature tests 0 °C during low temperature tests Testing under extreme temperature conditions not required.
Relative humidity content :		55 %
Barometric pressure :		1021 hpa
Power supply :	V_{nom} V_{max} V_{min}	3.85 V DC, by internal Li-Ion battery 4.35 V 3.35 V Testing under extreme voltage conditions not required.

6 Test item

6.1 General description

Kind of test item :	Hearing Aid amplifier module
Model name :	CL_AU5_BTEMPP, see chapter 14, Annex A: DoE for additional products
HMN :	-/-
PMN :	CL_AU5_BTEMPP
HVIN :	CL_AU5_BTEMPP
FVIN :	-/-
S/N serial number :	BK7H8R
Hardware status :	FL C05
Software status :	SR3313_rel_7.3_13.0_b1
Firmware status :	-/-
Frequency band :	3.84 MHz
Type of radio transmission :	
Use of frequency spectrum :	modulated carrier
Type of modulation :	MSK
Number of channels :	1
Antenna :	Integrated antenna
Power supply :	3.35 V to 4.35 V DC, by internal Li-Ion battery
Temperature range :	0°C to +40°C

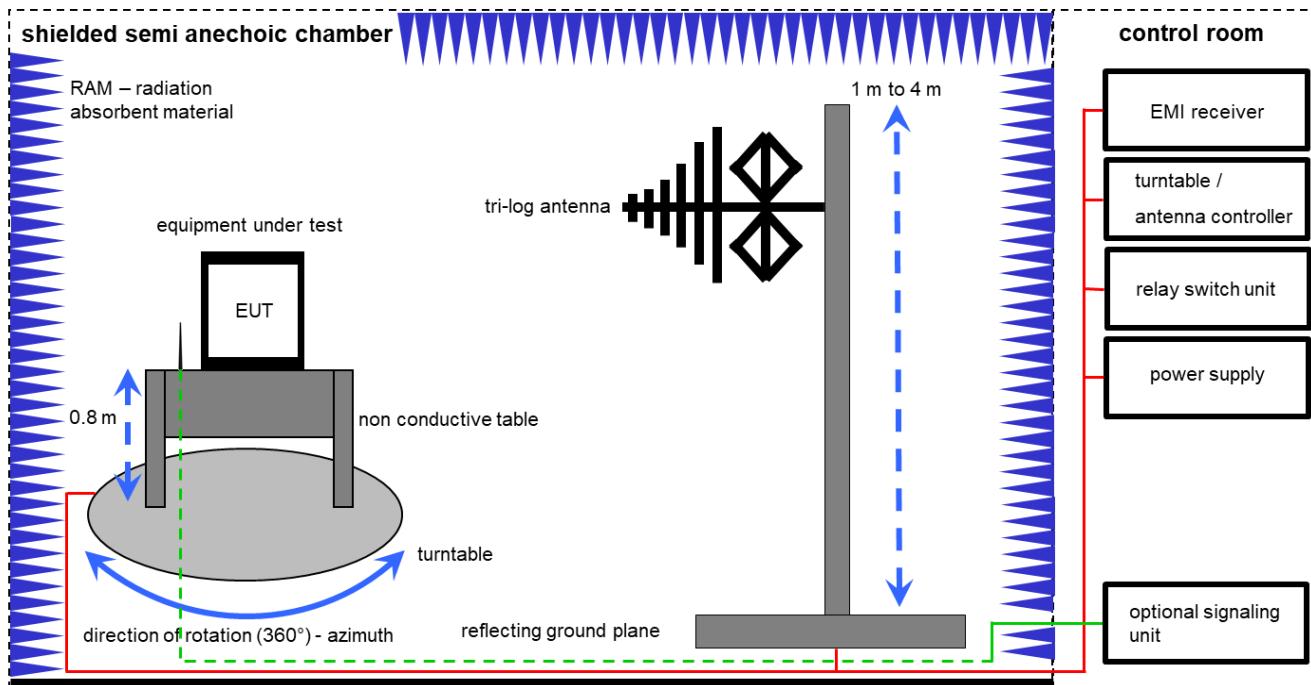
6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-8190-24-01-01_TR1-A101-R01
1-8190-24-01-01_TR1-A102-R01
1-8190-24-01-01_TR1-A103-R01

7 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

7.1 Shielded semi anechoic chamber

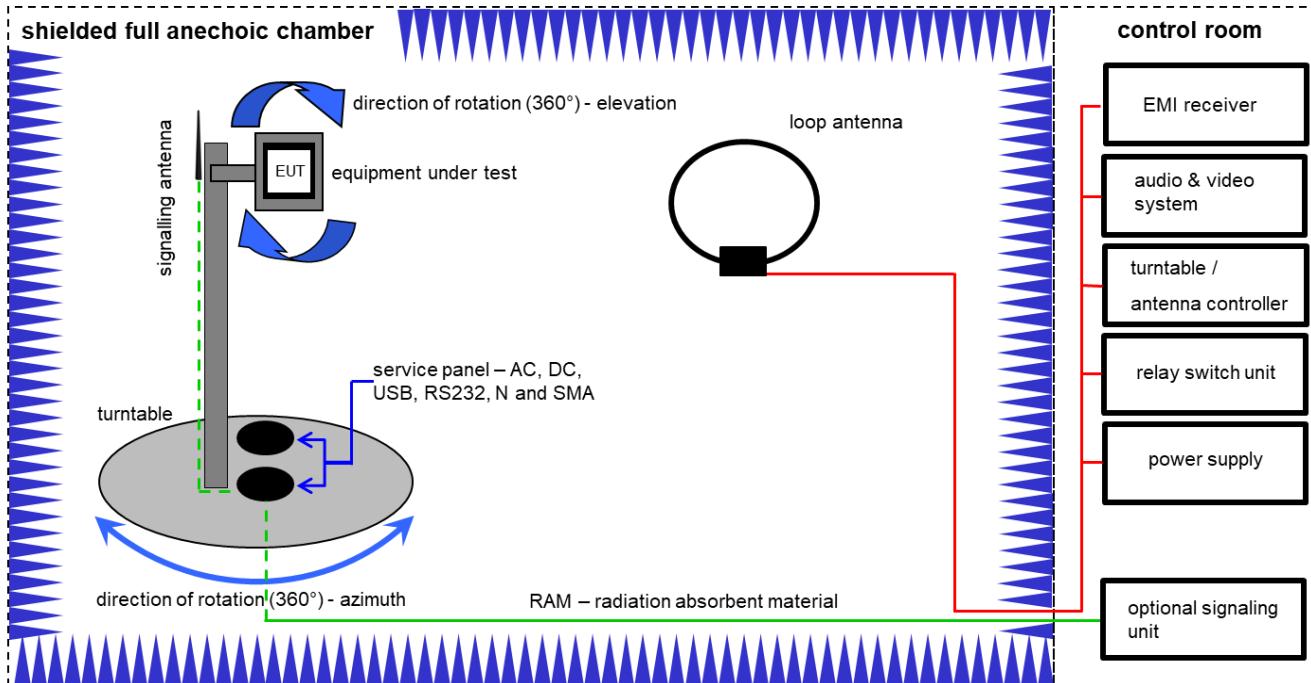
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

$$\text{FS [dB}\mu\text{V/m]} = 12.35 \text{ [dB}\mu\text{V/m]} + 1.90 \text{ [dB]} + 16.80 \text{ [dB/m]} = 31.05 \text{ [dB}\mu\text{V/m]} (35.69 \mu\text{V/m})$$

Equipment table:

No.	Setup	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	A	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
3	A	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	A	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	A	Turntable Interface-Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	31.01.2024	30.01.2026
7	A	Turntable	2089-4.0	EMCO	-/-	300004394	ne	-/-	-/-
8	A	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
9	A	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	06.12.2024	31.12.2025

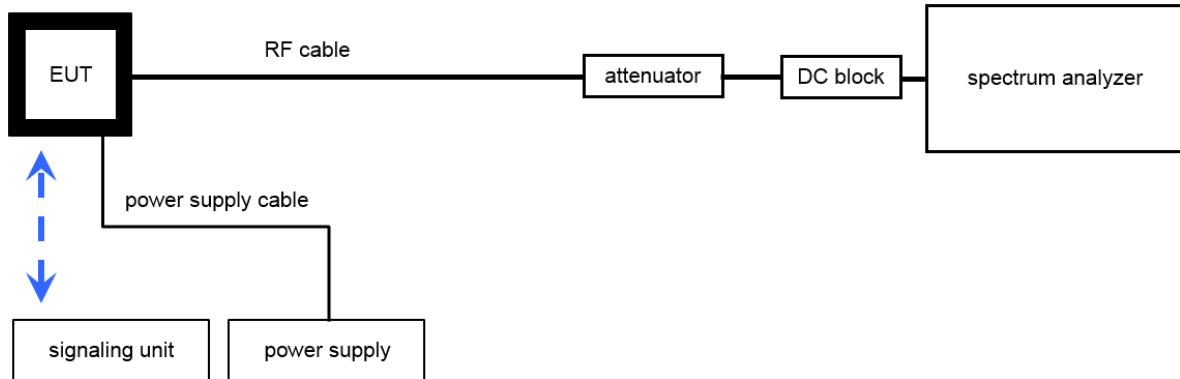
7.2 Shielded fully anechoic chamber

Measurement distance: loop antenna 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


$$\text{FS [dB}\mu\text{V/m]} = 40.0 \text{ [dB}\mu\text{V/m]} + (-35.8) \text{ [dB]} + 32.9 \text{ [dB/m]} = 37.1 \text{ [dB}\mu\text{V/m]} (71.61 \mu\text{V/m})$$

Equipment table:

No.	Setup	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	A	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2024	31.12.2025
3	A	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
4	A	NEXIO EMV- Software	BAT EMC V2022.0.32.0	Nexio		300004682	ne	-/-	-/-
5	A	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	02.08.2023	31.07.2025

7.3 Conducted measurements

Conducted measurements normal conditions

$OP = AV + CA$
 (OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:
 $OP \text{ [dBm]} = 6.0 \text{ [dBm]} + 11.7 \text{ [dB]} = 17.7 \text{ [dBm]} (58.88 \text{ mW})$

Equipment table:

No.	Setup	Equipment	Type	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Signal analyzer	FSW26	Rohde & Schwarz	101455	300004528	k	09.12.2024	31.12.2025

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) – see test details.
- EUT is set into operation.

Premereasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position $\pm 45^\circ$ and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

9 Measurement uncertainty

Measurement uncertainty	
Test case	Uncertainty
Occupied bandwidth	± used RBW
Field strength of the fundamental	± 3 dB
Field strength of the harmonics and spurious	± 3 dB
Receiver spurious emissions and cabinet radiations	± 3 dB
Conducted limits	± 2.6 dB

10 Summary of measurement results

<input checked="" type="checkbox"/>	No deviations from the technical specifications were ascertained
<input type="checkbox"/>	There were deviations from the technical specifications ascertained
<input type="checkbox"/>	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS Gen Issue 5 RSS 210 Issue 11	Passed	2025-06-12	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	C	NC	NA	NP	Remark
§ 15.223(a) RSS 210 Issue 11 (B.3)	Fieldstrength of Fundamental	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§ 15.223(a) RSS 210 Issue 11 (B.3)	Emission bandwidth 6 dB bandwidth	Nominal	Nominal	-/-	-/-	-/-	-/-	-/-
RSS Gen Issue 5 (6.6)	Occupied bandwidth 99 % bandwidth	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§ 15.209/ RSS Gen Issue 5 (6.13)	Fieldstrength of harmonics and spurious	Nominal	Nominal	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	battery powered

Note: NA = Not Applicable; NP = Not Performed, C = Compliant; NC = Not compliant

11 Additional comments

Reference documents: None

Special test descriptions: We perform the radiated pre-scans in different spherical positions and consolidate the results in one result plot. The test procedure includes scans in the theta axes every 90° and in phi axes @ 0° and 90° for both polarizations vertical & horizontal or magnetic emissions.

Configuration descriptions: Sirius_Conducted_and_Safety_Sample_Preparation

12 Measurement results

12.1 Field strength of the fundamental

Measurement:

Measurement parameter	
Detector:	average
Sweep time:	-/-
Resolution bandwidth:	10 kHz
Video bandwidth:	\geq RBW
Span:	-/-
Trace-Mode:	Max Hold
Used test setup:	See chapter 7.2A
Measurement uncertainty:	See chapter 9

Limits:

FCC	IC
The field strength of any emission within the band 1.705-10.0 MHz shall not exceed 100 microvolts/meter at a distance of 30 meters. However, if the 6 dB bandwidth of the emission is less than 10% of the center frequency, the field strength shall not exceed 15 microvolts/meter or (the bandwidth of the device in kHz) divided by (the center frequency of the device in MHz) microvolts/meter at a distance of 30 meters, whichever is the higher level	

Recalculation:

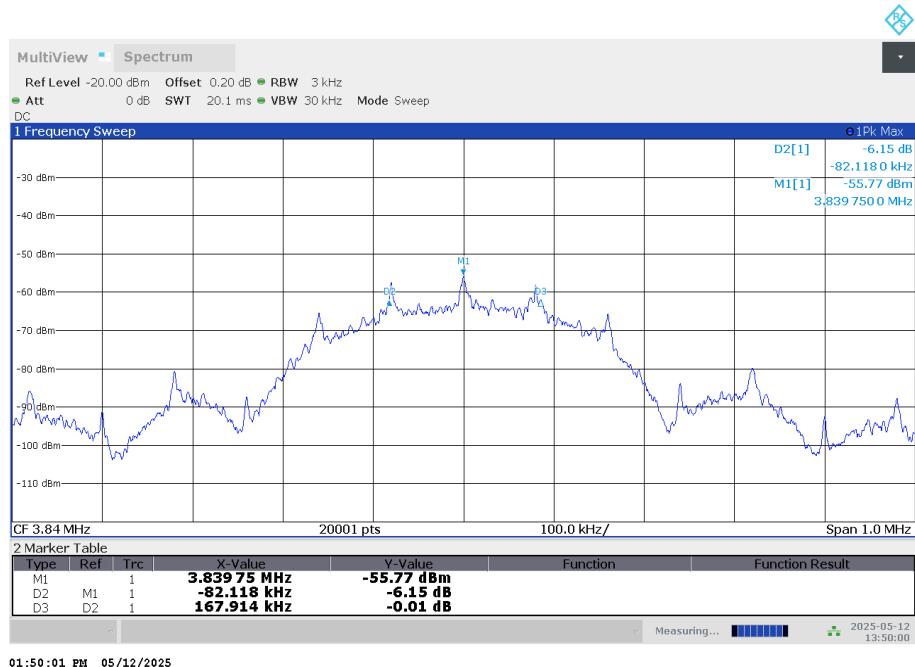
According to ANSI C63.10		
Frequency	Formula	Correction value
3.84 MHz	$FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{nearfield}}{d_{measure}} \right) - 20 \log \left(\frac{d_{limit}}{d_{nearfield}} \right)$ <p> FS_{limit} is the calculation of field strength at the limit distance, expressed in dBμV/m FS_{max} is the measured field strength, expressed in dBμV/m d_{near field} is the $\lambda/2\pi$ distance d_{measure} is the distance of the measurement point from EUT d_{limit} is the reference limit distance </p>	-32.3 dB from 3 m to 30 m

Results:

Radiated field strength		
Frequency	3.84 MHz	
Bandwidth	167.914 kHz	
Limit@ 30 m distance	$\frac{167.914}{3.84} = 43.727 \mu\text{V/m} = 32.81 \text{ dB}\mu\text{V/m}$	
Distance	@ 3 m	@ 30 m
Field strength	46.32 dB μ V/m	14.02 dB μ V/m

12.2 Emission bandwidth (6 dB bandwidth)

Measurement:


Measurement parameters	
Detector:	Peak
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth
Video bandwidth:	≥ 3x RBW
Trace mode:	Max hold
Used test setup:	See chapter 7.3A
Measurement uncertainty:	See chapter 9

Limits:

FCC
For the purposes of this Section, bandwidth is determined at the points 6 dB down from the modulated carrier

Results:

Test conditions		6 dB bandwidth
Frequency		3.84 MHz
T _{nom}	V _{nom}	167.914 kHz

Plots:**Plot 1: 6 dB bandwidth**

12.3 Occupied bandwidth (99% bandwidth)

Measurement:

Measurement parameters	
Detector:	Peak
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth
Video bandwidth:	$\geq 3 \times$ RBW
Trace mode:	Max hold
Analyser function:	99 % power function
Used test setup:	See chapter 7.3A
Measurement uncertainty:	See chapter 9

Limits:

IC
-/-

Results:

99% emission bandwidth
362.66 kHz

Plots:

Plot 1: 99% bandwidth

12.4 Field strength of the harmonics and spurious

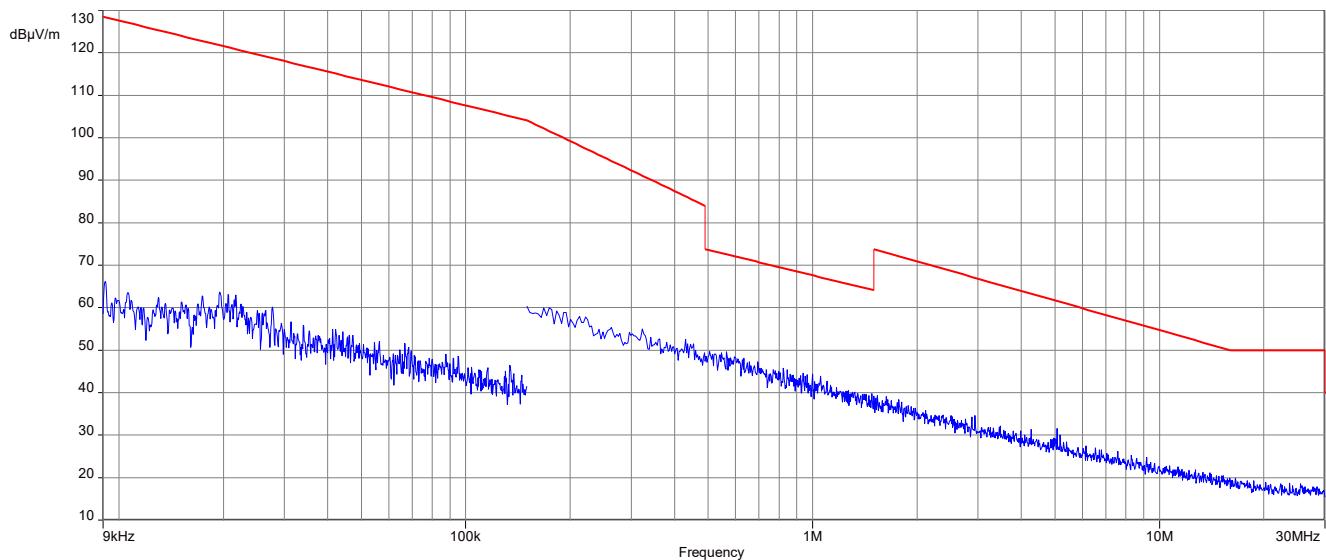
Measurement:

Measurement parameter	
Detector:	Average / Quasi Peak
Sweep time:	Auto
Resolution bandwidth:	F < 150 kHz: 200 Hz 150 kHz > F > 30 MHz: 9 kHz 9 kHz F > 30 MHz: 120 kHz
Video bandwidth:	F < 150 kHz: 1 kHz 150 kHz > F > 30 MHz: 100 kHz 9 kHz F > 30 MHz: 300 kHz
Span:	See plots!
Trace-Mode:	Max hold
Used test setup:	See chapter 7.1A, 7.2A
Measurement uncertainty:	See chapter 9

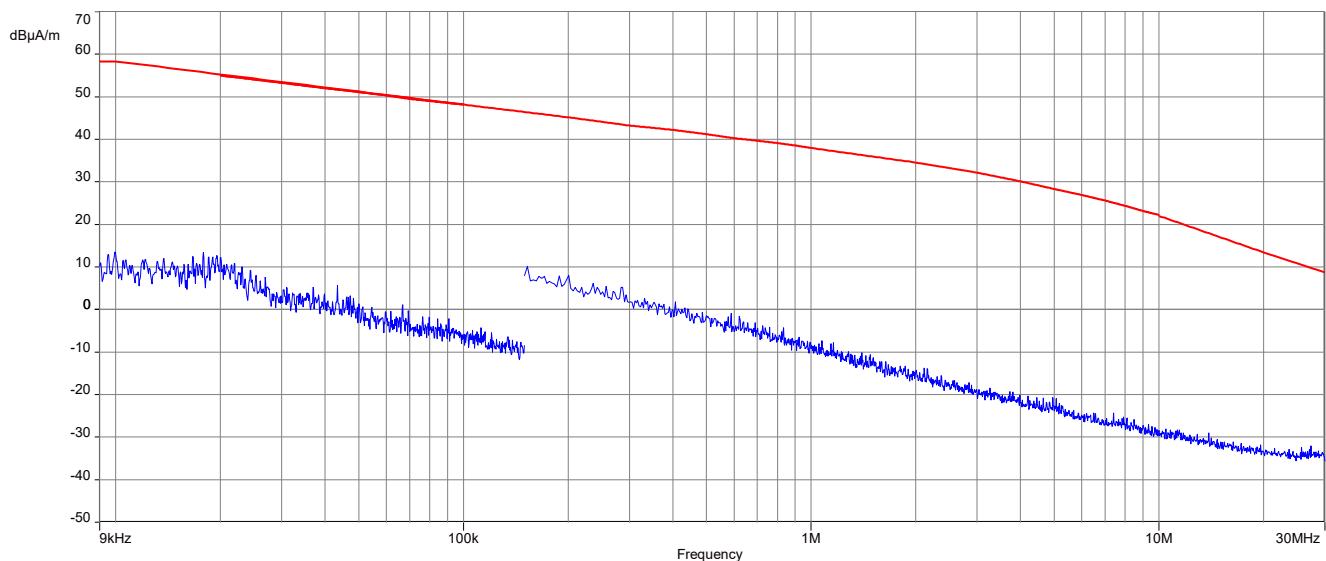
Limits:

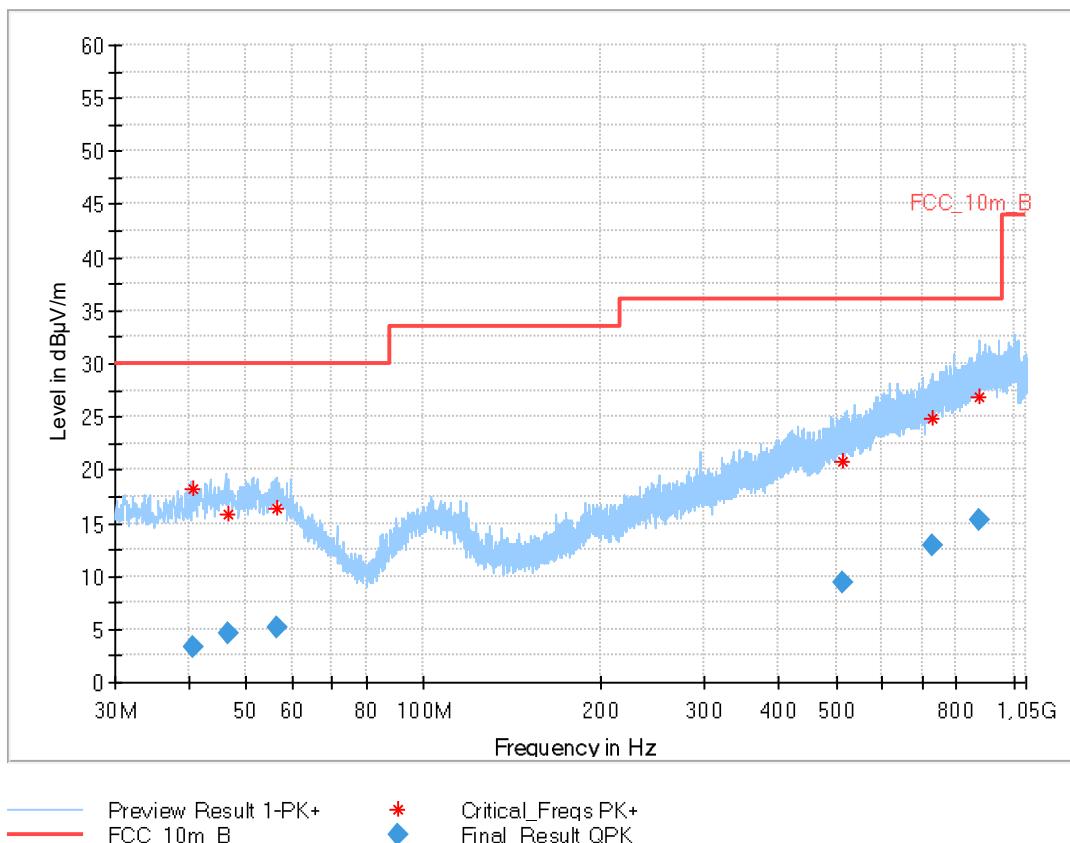
FCC		
Frequency (MHz)	Field strength (μ V/m)	Measurement distance (m)
0.009 – 0.490	2400/(F/kHz)	300
0.490 – 1.705	24000/(F/kHz)	30
1.705 – 30	30 (29.5 dB μ V/m)	30
30 – 88	100 (40 dB μ V/m)	3
88 – 216	150 (43.5 dB μ V/m)	3
216 – 960	200 (46 dB μ V/m)	3

IC		
Frequency (MHz)	Field strength (μ A/m)	Measurement distance (m)
0.009 – 0.490	6.37/F (F in kHz)	300
0.490 – 1.705	63.7/F (F in kHz)	30
1.705 – 30	0.08 (-22 dB μ A/m)	30


Result:

Detected emissions			
Frequency	Detector	Resolution bandwidth	Detected value (@ 3m)
no peaks detected			


Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)


Plots: TX mode

Plot 1: 9 kHz – 30 MHz; magnetic, FCC

Plot 2: 9 kHz – 30 MHz; magnetic, IC

Plot 3: 30 MHz – 1000 MHz, vertical and horizontal polarization

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
40.539	3.34	30.0	26.7	1000	120.0	220.0	V	295	14
46.536	4.69	30.0	25.3	1000	120.0	371.0	V	97	15
56.513	5.12	30.0	24.9	1000	120.0	200.0	H	56	16
514.410	9.39	36.0	26.6	1000	120.0	148.0	V	169	20
728.678	12.91	36.0	23.1	1000	120.0	400.0	H	254	23
874.070	15.25	36.0	20.8	1000	120.0	273.0	V	2	25

13 Glossary

AVG	Average
C	Compliant
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz
CAC	Channel availability check
CW	Clean wave
DC	Duty cycle
DFS	Dynamic frequency selection
DSSS	Dynamic sequence spread spectrum
DUT	Device under test
EN	European Standard
ETSI	European Telecommunications Standards Institute
EMC	Electromagnetic Compatibility
EUT	Equipment under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
FHSS	Frequency hopping spread spectrum
FVIN	Firmware version identification number
GNSS	Global Navigation Satellite System
GUE	GNSS User Equipment
HMN	Host marketing name
HVIN	Hardware version identification number
HW	Hardware
IC	Industry Canada
Inv. No.	Inventory number
MC	Modulated carrier
NA	Not applicable
NC	Not compliant
NOP	Non occupancy period
NP	Not performed
OBW	Occupied bandwidth
OC	Operating channel
OCW	Operating channel bandwidth
OFDM	Orthogonal frequency division multiplexing
OOB	Out of band
OP	Occupancy period
PER	Packet error rate
PMN	Product marketing name
PP	Positive peak
QP	Quasi peak
RLAN	Radio local area network
S/N or SN	Serial number
SW	Software
UUT	Unit under test
WLAN	Wireless local area network

14 Annex A - Declaration of Equality

Doc ID: DOC-10004137
Rev. No. 1

Page 1 of 1

DECLARATION OF EQUALITY

(Manufacturer's Declaration)

Manufacturer: **SBO Hearing A/S**
Kongebakken 9, DK-2765 Smørum, Denmark
Telephone: +45 39 17 71 00

Product(s):

Model(s): **Wezen 1**
Wezen 2
Wezen 3
Wezen 4
Style(s): **MNB**

We, SBO Hearing A/S, hereby declare and ensure under our sole responsibility that the above listed product(s) is/are equivalent to:

Product:

Model(s): **Aludra 1**
Aludra 2
Aludra 3
Aludra 4
Style(s): **miniBTE, MNB**

With regards to the electrical, RF, EMC, Health and safety properties and performance related to the tested product:

Aludra 1

The Wezen models listed above are equivalent to the Aludra models except for the differences stated below:

- Difference in mechanical appearance of outer molded shells and the printing.
- The model number's numerical part indicates the difference in acoustic feature settings, that are controlled by SW.

Abbreviated model names and styles are indicated in brackets.

Signed in Smørum, on behalf of SBO Hearing A/S, 2024-03-21

Per Klaus Nielsen
Principal Certification Specialist, Regulatory Affairs

Doc ID: DOC-10004136
Rev. No. 1

Page 1 of 1

DECLARATION OF EQUALITY

(Manufacturer's Declaration)

Manufacturer: SBO Hearing A/S
Kongebakken 9, DK-2765 Smørum, Denmark
Telephone: +45 39 17 71 00

Tested Product(s):

Model(s): Aludra 1, Wezen 1
Style(s)*: MNB

* The available style abbreviation formats are: miniBTE and MNB

Brand	Model	Style	Design model
Oticon	Intent 1	miniBTE	Aludra 1
Oticon	Intent 2	miniBTE	Aludra 2
Oticon	Intent 3	miniBTE	Aludra 3
Oticon	Intent 4	miniBTE	Aludra 4
Oticon	Intent DemoFlex	miniBTE	Aludra 1
Philips	HearLink 9050	MNB	Wezen 1
Philips	HearLink 7050	MNB	Wezen 2
Philips	HearLink 5050	MNB	Wezen 3
Philips	HearLink 3050	MNB	Wezen 4
Philips	HearLink 50 DemoFlex	MNB	Wezen 1
Bernafon	Encanta 400	MNB	Wezen 1
Bernafon	Encanta 300	MNB	Wezen 2
Bernafon	Encanta 200	MNB	Wezen 3
Bernafon	Encanta 100	MNB	Wezen 4
Bernafon	Encanta DemoFlex	MNB	Wezen 1

Signed in Smørum, on behalf of SBO Hearing A/S, 2025-03-21

Per Klaus Nielsen
Principal Certification Specialist, Regulatory Affairs

15 Document history

Version	Applied changes	Date of release
R01	Initial release	2025-06-12

END OF TEST REPORT