

FCC SAR TEST REPORT

For

Interglobe Connection Corp

7500 NW 25th Street 112 Miami, Florida 33122 USA

Product Name : Mobile Phone

Model No. : MINI R150

FCC ID : 2AC7INSOLE-R150

Date of Receipt : 15th Jan. 2016

Date of Test : 17th Jan. 2016

Issued Date : 19th Jan. 2016

Report No. : TS201601005

Report Version : V1.0

Issue By

Shenzhen Sunway Communication CO.,LTD Testing Center
1/F, BuildingA, SDG Info Port, KefengRoad, Hi-Tech Park, Nanshan District,
Shenzhen , Guangdong, China 518104,

Note: The test results relate only to the samples tested. This report shall not be reproduced in full, without the written approval of SUNWAY Testing Center.

TABLE OF CONTENS

1. Statement of Compliance.....	4
2. SAR Evaluation compliance	5
3. General Information:	6
3.1 EUT Description:	6
3.2 Test Environment:	7
4. SAR Measurement System:	8
4.1 Dasy4 System Description:	8
5. System Components:.....	9
6. Tissue Simulating Liquid	11
6.1 The composition of the tissue simulating liquid:	11
6.2 Tissue Calibration Result:.....	11
7. SAR System Validation	15
7.1 Validation System:.....	15
7.2 Validation Dipoles:.....	15
7.3 Validation Result:	16
8. SAR Evaluation Procedures:	17
9. SAR Exposure Limits	19
9.1 Uncontrolled Environment	19
9.2 Controlled Environment.....	19
10. Measurement Uncertainty:.....	20
11. Conducted Power Measurement:.....	22
12. Results and Test photos :	24
12.1 SAR result summary:.....	24
12.2 Repeat SAR:	25
12.3 Evaluation of Simultaneous :	25
12.3 DUT and setup photos photos.....	26
13. Equipment List:.....	29
Appendix A. System validation plots:.....	30
Appendix B. Max SAR Test plots:	34

Appendix C. Probe Calibration Data:	42
Appendix D. DAE Calibration Data:	53
Appendix E. Dipole Calibration Data:	67

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Exposure Position	Frequency Band	1g-SAR (W/kg)	Highest 1g-SAR (W/kg)
Head	GSM850	1.04	1.04
	GSM1900	0.257	
Body Worn (1cm Gap)	GSM850	0.784	0.784
	GSM1900	0.33	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

<Highest simultaneous transmission SAR>

	Position	Main antenna	Bluetooth	Max Sum
Highest SAR value for Head	Left Cheek	1.04	0.021	1.06
Highest SAR value for Body	Back	0.784	0.011	0.795

According to the above table, the maximum sum of reported SAR values for GSM and BT is **1.06W/kg (1g)**.

2. SAR Evaluation compliance

Product Name:	Mobile Phone
Brand Name:	SOLE
Model Name:	MINI R150
Applicant:	Interglobe Connection Corp
Address:	7500 NW 25th Street 112 Miami, Florida 33122 USA
Applicable Standard:	FCC 47 CFR Part 2 (2.1093) ANSI/IEEE C95.1-1992 IEEE 1528-2013 FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 FCC KDB 865664 D02 SAR Reporting v01r02 FCC KDB 447498 D01 General RF Exposure Guidance v06 FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03 FCC KDB 941225 D01 3G SAR Procedures v03r01
Test Engineer:	<i>Li.zhao</i>
Reviewed By	<i>Tomy. Lin</i>
Performed Location:	Shenzhen Sunway Communication CO.,LTD Testing Center 1/F, BuildingA, SDG Info Port, KefengRoad, Hi-Tech Park, Nanshan District, Shenzhen, Guangdong, China 518104 Tel: +86-755- 36615880 Fax: +86-755- 86525532

3. General Information:**3.1 EUT Description:**

EUT Information	
Product Name	Mobile Phone
Brand Name	SOLE
Model Name	MINI R150
Hardware Version	L08_MB_V2.1
Software Version	SOLE_R150_20151217_V01.pac
Tx Frequency	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz Bluetooth: 2402 MHz ~ 2480 MHz
Mode	GSM/GPRS Bluetooth
GSM/GPRS Transfer mode	Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network.


3.2 Test Environment:**Ambient conditions in the SAR laboratory:**

Items	Required	Actual
Temperature (°C)	18-25	22~23
Humidity (%RH)	30-70	55~65

4. SAR Measurement System:

4.1 Dasy4 System Description:

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

5. System Components:

- DASY4 Measurement Server:

Calibration: No calibration required.

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power pentium, 32MB chipdisk and 64MB RAM. The necessary circuits for communication with either the DAE4 (or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

- DATA Acquisition Electronics (DAE):

Calibration: Recommended once a year

The data acquisition electronics consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

- Dosimetric Probes:

Model: ES3DV3,

Frequency: 10MHz to 3G, Linearity: ± 0.2 dB,

Dynamic Range: 10 μ W/g to 100 mW/g

Directivity:

± 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe axis)

These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (± 2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Calibration: Recommended once a year

➤ Light Beam unit:

Calibration: No calibration required.

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm.

➤ SAM Twin Phantom:

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left hand
- Right hand
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

➤ Device Holder for SAM Twin Phantom:

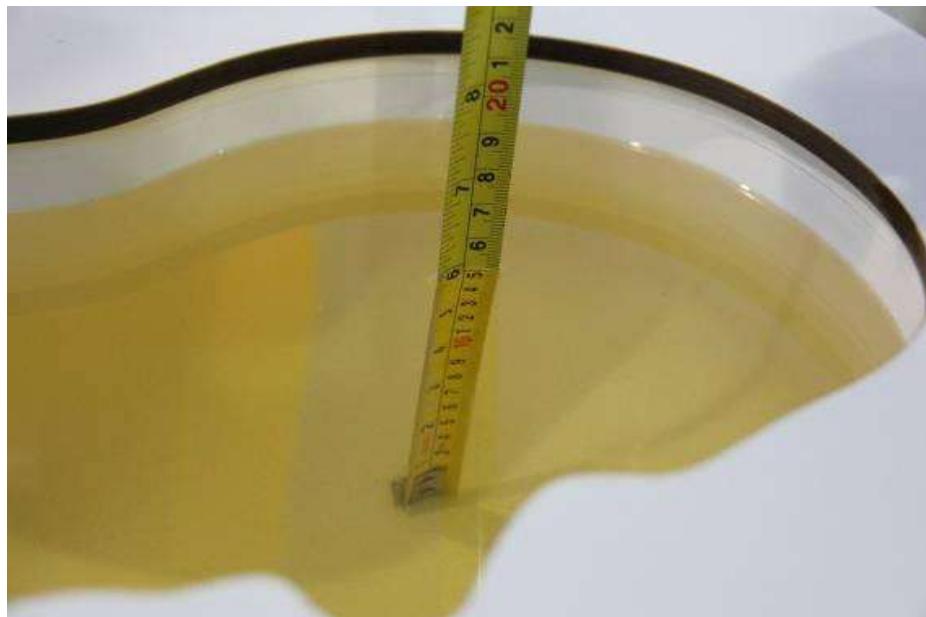
The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity " $\epsilon_r = 3$ " and loss tangent " $\tan \delta = 0.02$ ". The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

6. Tissue Simulating Liquid

6.1 The composition of the tissue simulating liquid:

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.


Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (ϵ_r)
For Head								
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800,1900,2000	55.2	0	0	0.3	0	44.5	1.40	40.0
For Body								
900	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800,1900,2000	70.2	0	0	0.4	0	29.4	1.52	53.3

6.2 Tissue Calibration Result:

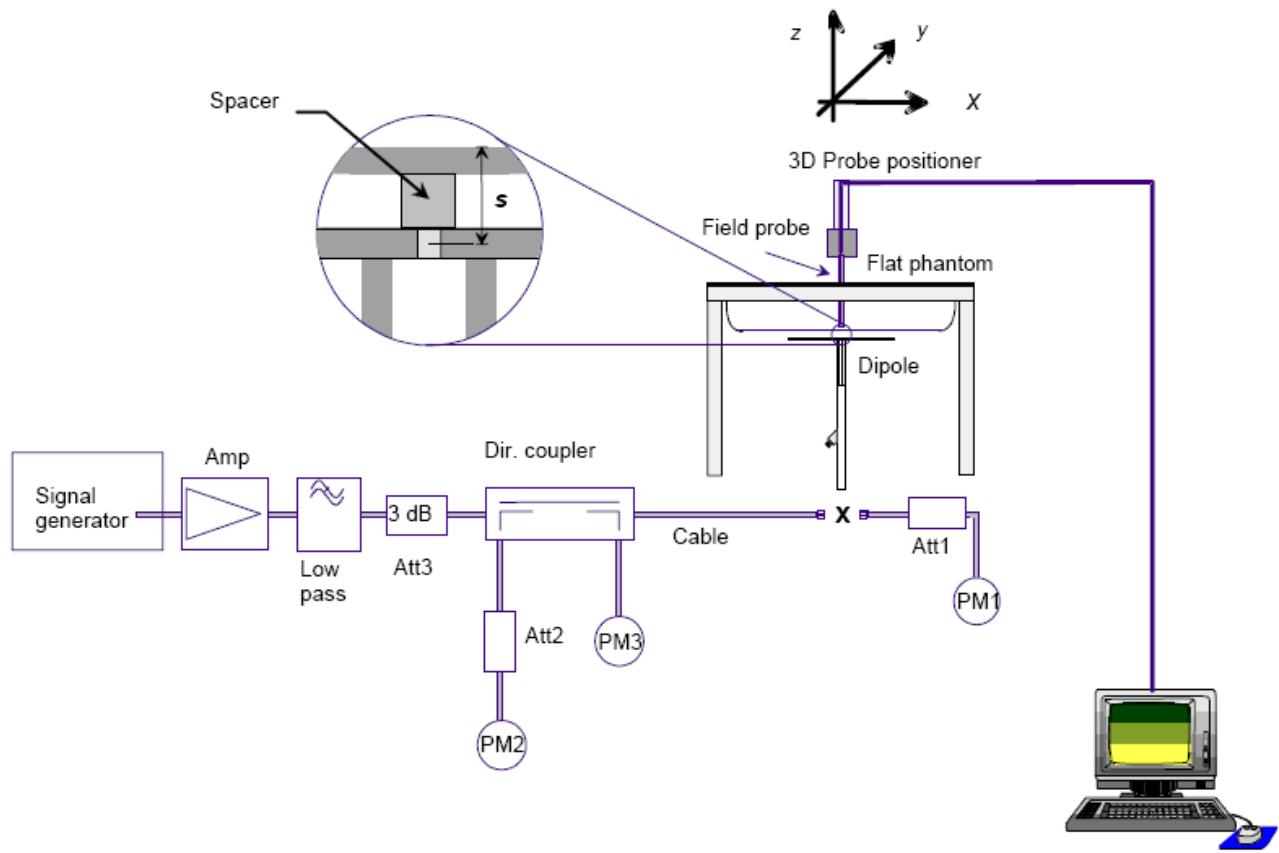
Frequency (MHz)	Description	Dielectric Parameters		Tissue Temp. ($^{\circ}$ C)	Date
		Permittivity (ϵ_r)	Conductivity (σ)		
900 (Head)	Reference	$41.50 \pm 5\%$ (39.425~43.574)	$0.97 \pm 5\%$ (0.9215~1.0185)	NA	2016/01/17
	Measurement	42.15	0.982	22.7	
1900 (Head)	Reference	$40.00 \pm 5\%$ (38.00~42.00)	$1.40 \pm 5\%$ (1.33~1.47)	NA	2016/01/17
	Measurement	40.5	1.47	22.6	

Frequency (MHz)	Description	Dielectric Parameters		Tissue Temp. (°C)	Date
		Permittivity (ϵ_r)	Conductivity (σ)		
900 (Body)	Reference	55.2±5% (52.44~57.96)	0.97±5% (0.9215~1.0185)	NA	2016/01/17
	Measurement	54.7	0.96	22.5	
1900 (Body)	Reference	53.3±5% (50.635~55.965)	1.52±5% (1.444~1.596)	NA	2016/01/17
	Measurement	53.6	1.53	22.5	

Liquid depth in the Head Phantom (900 MHz) (depth>15cm)

Liquid depth in the Flat Phantom (900 MHz) (depth>15cm)

Liquid depth in the Head Phantom (1900 MHz) (depth>15cm)


Liquid depth in the Body Phantom (1900 MHz) (depth>15cm)

7. SAR System Validation

7.1 Validation System:

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

7.2 Validation Dipoles:

The dipoles used is based on the IEEE-1528/EN62209-1 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE-1528/EN62209-1 and FCC Supplement C.

7.3 Validation Result:

Frequency (MHz)	Description	SAR(1g) W/Kg	SAR(10g) W/Kg	Tissue Temp. (°C)	Date
900 (Head)	Reference	10.7±10% (9.63~11.77)	6.87±10% (6.18~7.49)	NA	2016/01/17
	Measurement	10.48	6.92	22.7	
1900 (Head)	Reference	40.6±10% (36.54~44.66)	21.3±10% (19.17~23.43)	NA	2016/01/17
	Measurement	39.32	20.84	22.6	
900 (Body)	Reference	10.7±10% (9.63~11.77)	6.94±10% (6.246~7.634)	NA	2016/01/17
	Measurement	9.84	6.48	22.5	
1900 (Body)	Reference	40.1±10% (36.09~44.11)	21.3±10% (19.17~23.43)	NA	2016/01/17
	Measurement	40.8	21.64	22.5	

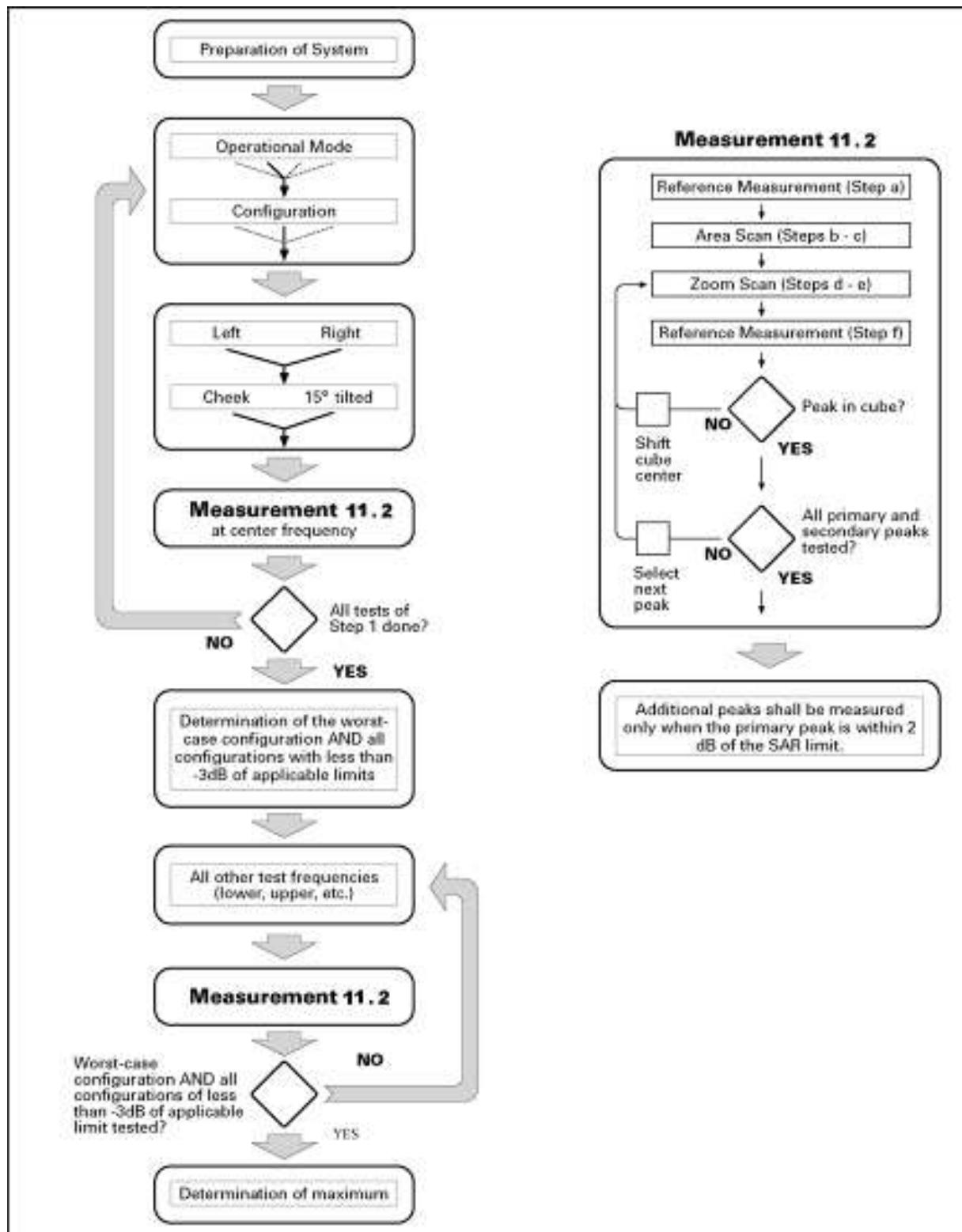
8. SAR Evaluation Procedures:

The procedure for assessing the average SAR value consists of the following steps:

➤ **Power Reference Measurement**

The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

➤ **Area Scan**


The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. The scanning area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the Area Scan's property sheet is brought-up, grid settings can be edited by a user.

➤ **Zoom Scan**

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 7 x 7 x 7 points (5mmx5mmx5mm) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

➤ **Power Drift Measurement**

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement.

9. SAR Exposure Limits

9.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

9.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

10. Measurement Uncertainty:

NO	Source	Uncert. ai (%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand. Uncert. ui (1g)	Stand. Uncert. ui (10g)	V _{eff}
1	Repeat	0.04	N	1	1	1	0.04	0.04	9
Instrument									
2	Probe calibration	7	N	2	1	1	3.5	3.5	∞
3	Axial isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
4	Hemispherical isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	∞
5	Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
7	Detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
8	Readout electronics	0.3	N	1	1	1	0.3	0.3	∞
9	Response time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
10	Integration time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
11	Ambient noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
12	Ambient reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
13	Probe positioner mech. restrictions	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
14	Probe positioning with respect to phantom shell	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
15	Max.SAR evaluation	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Test sample related									
16	Device positioning	3.8	N	1	1	1	3.8	3.8	99

17	Device holder	5.1	N	1	1	1	5.1	5.1	5
18	Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and set-up									
19	Phantom uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
20	Liquid conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
21	Liquid conductivity (meas)	2.5	N	1	0.64	0.43	1.6	1.2	∞
22	Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.5	∞
23	Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	1.5	1.2	∞
Combined standard		RSS		$U_c = \sqrt{\sum_{i=1}^n C_i^2 U_i^2}$			12.2%	11.9%	236
Expanded uncertainty (P=95%)		$U = k U_c, k=2$					24.4%	23.8%	

11. Conducted Power Measurement:

<GSM Conducted Power>

General Note:

1. Per KDB 447498 D01, the mid channel is used for SAR testing and for further SAR test reduction.
2. According to October 2013TCB Workshop, for GSM / GPRS, the number of time slots to test for SAR should correspond to the highest frame-average maximum output power configuration, considering the possibility of e.g. 3rd party VoIP operation for head and body-worn SAR testing, the EUT was set in GPRS (2Tx slot) for GSM850/GSM1900 band due to their highest frame-average power.
3. For Body Worn SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS 2 Tx slots for GSM850/GSM1900 band due to its highest frame-average power.

Band GSM850	Burst Average Power (dBm)			Frame-Average Power (dBm)		
TX Channel	128	190	251	128	190	251
Frequency (MHz)	824.2	836.6	848.8	824.2	836.6	848.8
GSM (GMSK, 1 Tx slot)	32.26	32.27	32.20	23.26	23.27	23.20
GPRS (GMSK, 1 Tx slot) – CS1	32.23	32.22	32.34	23.23	23.22	23.34
GPRS (GMSK, 2 Tx slots) – CS1	30.47	30.47	30.47	24.47	24.47	24.47
GPRS (GMSK, 3 Tx slots) – CS1	28.41	28.39	28.40	24.15	24.13	24.14
GPRS (GMSK, 4 Tx slots) – CS1	26.37	26.38	26.34	23.37	23.38	23.34
Band GSM1900	Burst Average Power (dBm)			Frame-Average Power (dBm)		
TX Channel	512	661	810	512	661	810
Frequency (MHz)	1850.2	1880	1909.8	1850.2	1880	1909.8
GSM (GMSK, 1 Tx slot)	29.30	28.98	28.79	20.30	19.98	19.79
GPRS (GMSK, 1 Tx slot) – CS1	29.10	28.75	28.58	20.10	19.75	19.58
GPRS (GMSK, 2 Tx slots) – CS1	26.86	26.68	26.56	20.86	20.68	20.56
GPRS (GMSK, 3 Tx slots) – CS1	25.11	24.86	24.84	20.85	20.60	20.58
GPRS (GMSK, 4 Tx slots) – CS1	22.87	22.73	22.65	19.87	19.73	19.65

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB

Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB

Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

<Bluetooth Conducted Power>

Mode Band	Max.Average power(dBm)
2.4GHz Bluetooth	-3.72

Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0 \text{ for 1-g SAR and } \leq 7.5 \text{ for 10-g extremity SAR}$

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Bluetooth Max Turn up Power (dBm)	Separation Distance (mm)	Frequency (GHz)	exclusion thresholds
-3	0	2.48	0.16

Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.16 which is ≤ 3 , SAR testing is not required.

12. Results and Test photos :

12.1 SAR result summary:

Head

Test Case of Head			Meas. Power (dBm)	Target Power (dBm)	Factor	Meas. SAR (W/kg) 1g Avg.	Scale SAR (W/kg)	Power Drift <± 0.2 dB	Plot
Band	Test Position	CH							
GSM 850	Right Cheek	Ch190	32.27	32.50	1.054	0.673	0.71	0.016	
	Right Tilt	Ch190	32.27	32.50	1.054	0.471	0.497	0.056	
	Left Cheek	Ch190	32.27	32.50	1.054	0.871	0.918	0.103	
	Left Tilt	Ch190	32.27	32.50	1.054	0.568	0.599	0.008	
	Left Cheek	Ch128	32.26	32.50	1.057	0.678	0.717	0.074	
	Left Cheek	Ch251	32.20	32.50	1.072	0.971	1.04	-0.112	#1
GSM 1900	Right Cheek	Ch661	28.98	29.50	1.127	0.134	0.151	-0.060	
	Right Tilt	Ch661	28.98	29.50	1.127	0.143	0.161	0.071	
	Left Cheek	Ch661	28.98	29.50	1.127	0.228	0.257	0.091	#2
	Left Tilt	Ch661	28.98	29.50	1.127	0.2	0.225	0.035	

Body Worn (10mm between DUT and Flat Phantom)

Test Case of Head			Meas. Power (dBm)	Target Power (dBm)	Factor	Meas. SAR (W/kg) 1g Avg.	Scale SAR (W/kg)	Power Drift <± 0.2 dB	Plot
Band	Test Position	CH							
GPRS 850(2 Tx slots)	Front	Ch190	30.47	31.00	1.130	0.481	0.543	-0.138	
	Back	Ch190	30.47	31.00	1.130	0.694	0.784	0.134	#3
GPRS 1900(2 Tx slots)	Front	Ch661	26.68	27.00	1.076	0.081	0.087	0.012	
	Back	Ch661	26.68	27.00	1.076	0.307	0.33	-0.129	#4

12.2 Repeat SAR:

Test Case of Head			Meas. Power (dBm)	Target Power (dBm)	Factor	Meas. SAR (W/kg) 1g Avg.	Scale SAR (W/kg)	Power Drift <±0.2 dB	Ratio
Band	Test Position	CH							
GSM850	Left Cheek	Ch251	32.20	32.50	1.072	0.968	1.037	-0.081	1.003

Note:

1. Per KDB 865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is $\geq 0.8\text{W/kg}$
2. Per KDB 865664 D01, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR $< 1.45\text{W/kg}$, only one repeated measurement is required.
3. The ratio is the difference in percentage between original and repeated measured SAR.
4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

12.3 Evaluation of Simultaneous :

BT* - Estimated SAR for Bluetooth

$(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm}) \cdot [\sqrt{f_{(\text{GHz})}}/x] \text{ W/kg}$ for test separation distances $\leq 50 \text{ mm}$;

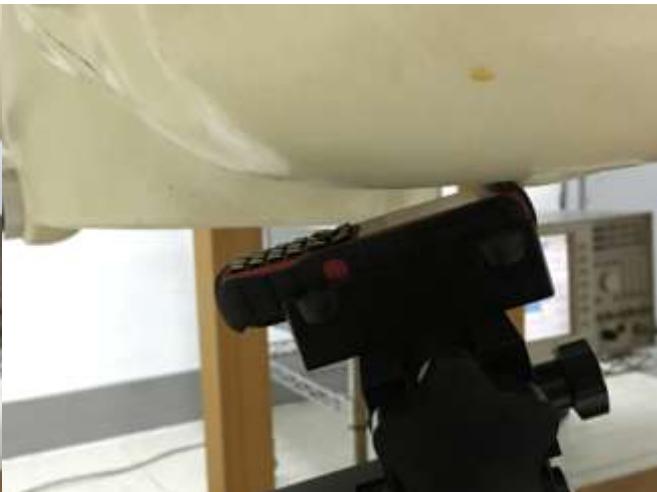
where $x = 7.5$ for 1-g SAR, and $x = 18.75$ for 10-g SAR.

Maximum Power	Exposure Position	Head	Body-worn
	Test separation	0 mm	10 mm
-3dBm	Estimated SAR (W/kg)	0.021W/kg	0.011W/kg

Conclusion:

According to the above table, the sum of reported SAR values for GSM and BT $< 1.6\text{W/kg}$. So the simultaneous transmission SAR is not required for BT transmitter.

12.4 DUT and setup photos:


Front

Back

Left Cheek

Left Tilt

Right Cheek

Right Tilt

Front of the EUT with 1 cm Gap

Back of the EUT with 1 cm Gap

13. Equipment List:

NO.	Instrument	Manufacturer	Model	S/N	Cal. Date	Cal. Due Date
1	Communication Tester	Agilent	E5515C	MY502672 64	Dec 27 th 2015	Dec 26 th 2016
2	E-field Probe	Speag	ES3DV3	3221	Jan 31th 2015	Jan 30th 2016
3	Dielectric Probe Kit	Speag	DAK	1038	N/A	N/A
4	DAE	Speag	DAE4	905	Jul 16th 2015	Jul 15th 2016
5	SAM TWIN phantom	Speag	SAM	1360/1432	N/A	N/A
6	Robot	Stabuli	TX60L	N/A	N/A	N/A
7	Device Holder	Speag	SD000H0 1HA	N/A	N/A	N/A
8	Vector Network	Agilent	E5071C	MY461076 15	Jan 6 th 2015	Jan 7 th 2016
9	Signal Generator	Agilent	E4438C	MY490722 79	Nov 27 th 2015	Nov 26 th 2016
10	Amplifier	Mini-circuit	ZHL-42W	QA098002	N/A	N/A
11	Power Meter	Agilent	N1419A	MY500015 63	Nov 27 th 2015	Nov 26 th 2016
12	Power Sensor	Agilent	N8481H	MY510200 10	Nov 27 th 2015	Nov 26 th 2016
13	Directional Coupler	Agilent	772D	MY461512 75	Nov 27 th 2015	Nov 26 th 2016
14	Directional Coupler	Agilent	778D	MY482206 07	Nov 27 th 2015	Nov 26 th 2016
15	Dipole 900MHz	Speag	D900V2	1d086	Aug 9 th 2013	Aug 8 th 2016
16	Dipole 1900MHz	Speag	D1900V2	5d194	Jan 7 th 2015	Aug 6 th 2018

Appendix A. System validation plots:**DUT: Dipole 900MHz; Type: D900V2; Serial: D900V2 - SN: 1d086****Program Name: System Performance Check at 900 MHz Head**

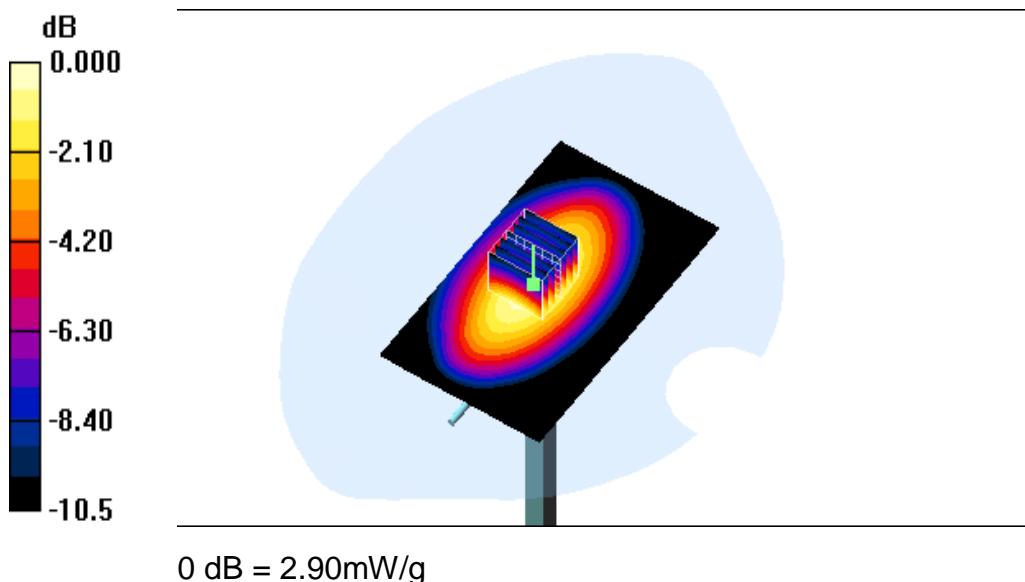
Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 900 \text{ MHz}$; $\sigma = 0.982 \text{ mho/m}$; $\epsilon_r = 42.15$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3221; ConvF(6.13, 6.13, 6.13); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


d=15mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$
Maximum value of SAR (interpolated) = 2.82 mW/g**d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid:
 $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 54.523 V/m; Power Drift = -0.01dB

Peak SAR (extrapolated) = 4.068 W/kg

SAR(1 g) = 2.62 mW/g; SAR(10 g) = 1.73 mW/g

Maximum value of SAR (measured) = 2.90 mW/g

DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d194

Program Name: System Performance Check at 1900 MHz Head

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

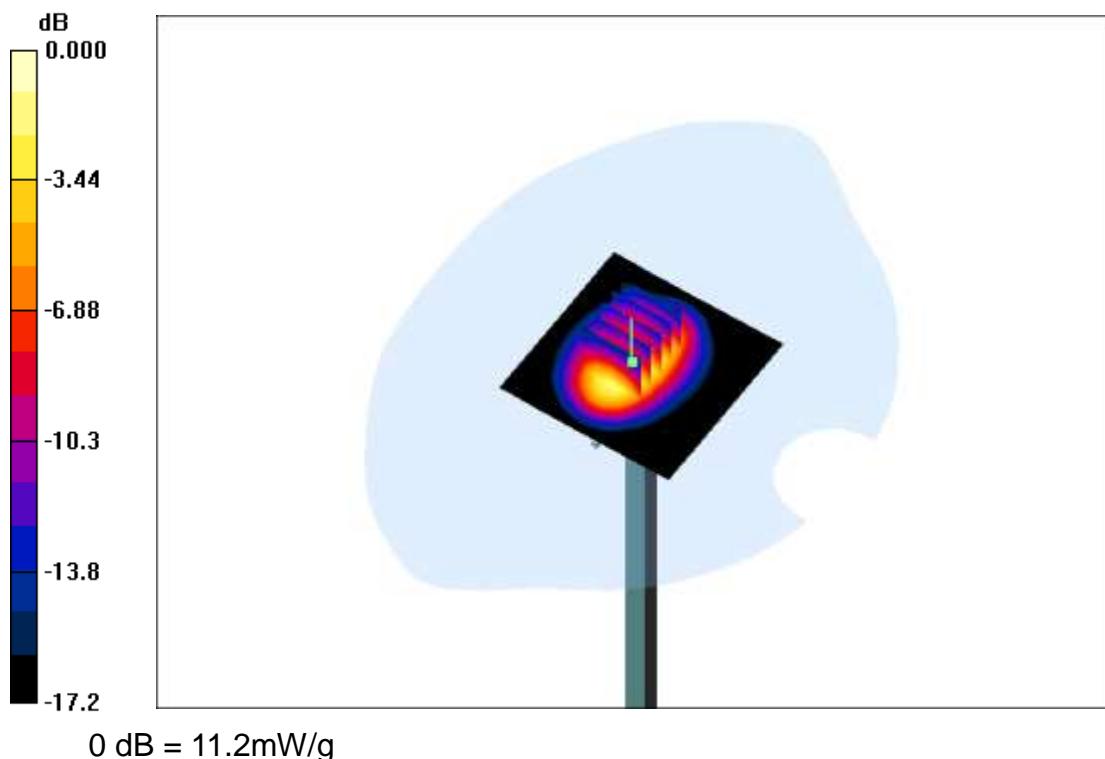
Medium parameters used: $f = 1900 \text{ MHz}$; $\sigma = 1.47 \text{ mho/m}$; $\epsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3221; ConvF(5.20, 5.20, 5.20); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (interpolated) = 11.3 mW/g


d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 80.6 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.83 mW/g; SAR(10 g) = 5.21 mW/g

Maximum value of SAR (measured) = 11.2 mW/g

DUT: Dipole 900MHz; Type: D900V2; Serial: D900V2 - SN: 1d086

Program Name: System Performance Check at 900 MHz Body

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

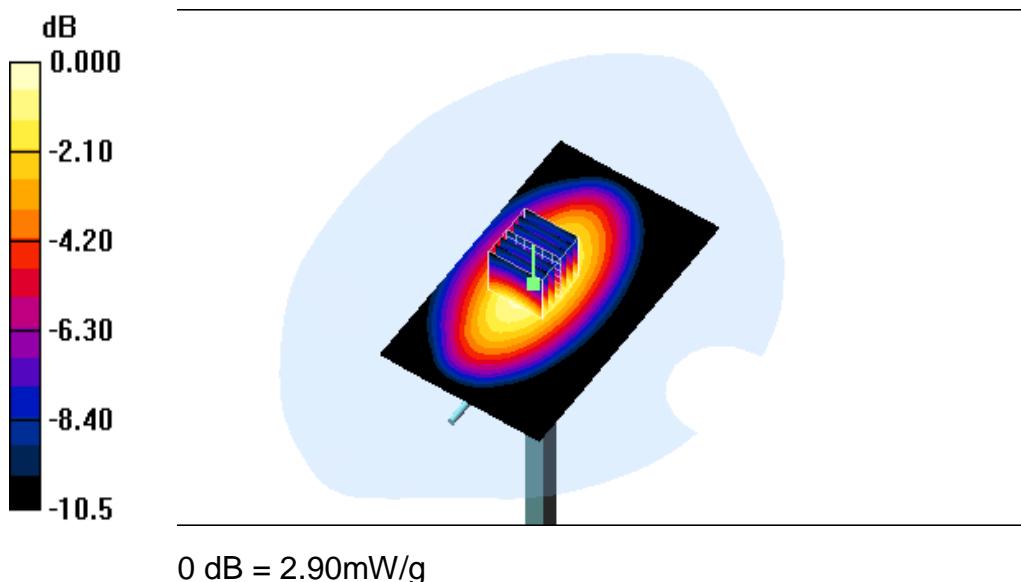
Medium parameters used: $f = 900 \text{ MHz}$; $\sigma = 0.96 \text{ mho/m}$; $\epsilon_r = 54.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3221; ConvF(6.16, 6.16, 6.16); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=15mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$
Maximum value of SAR (interpolated) = 2.72 mW/g


d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:
 $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 54.523 V/m; Power Drift = -0.01dB

Peak SAR (extrapolated) = 4.068 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.80 mW/g

DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d194**Program Name: System Performance Check at 1900 MHz Body**

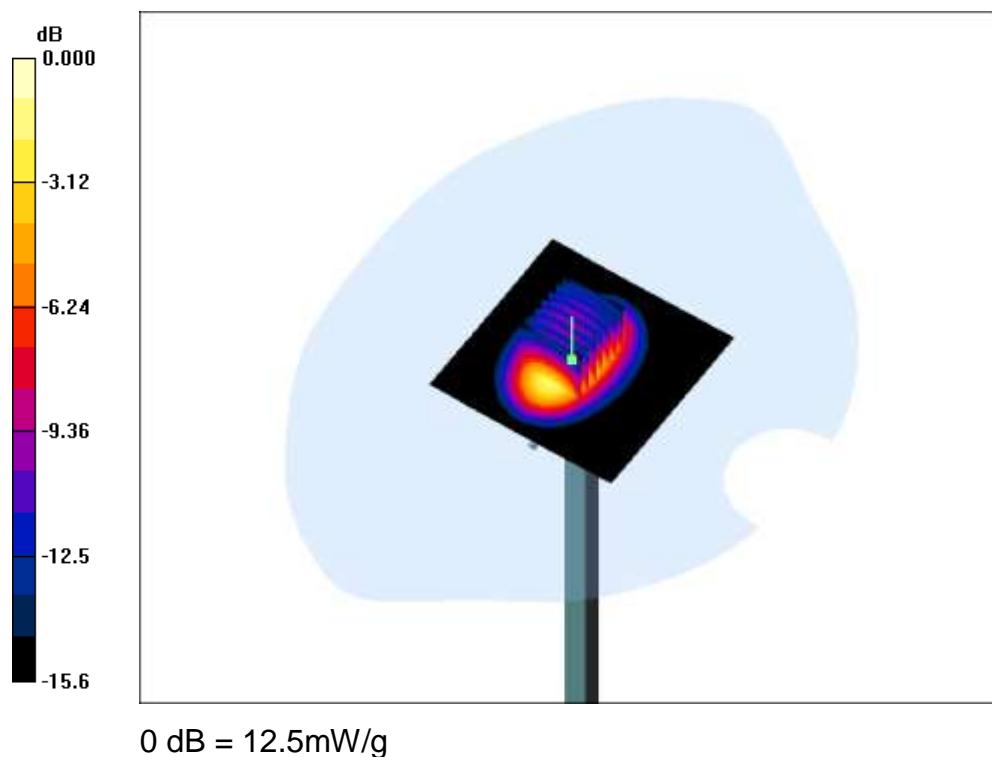
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3221; ConvF(4.79, 4.79, 4.79); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172


d=10mm, Pin=250mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (interpolated) = 12.8 mW/g**d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.9 V/m; Power Drift = 0.109 dB

Peak SAR (extrapolated) = 19.7 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.41 mW/g

Maximum value of SAR (measured) = 12.5 mW/g

Appendix B. Max SAR Test plots:**#1**

Date: 1/17/2016

Test Laboratory: SUNWAY COMMUNICATION CO.,LTD.

DUT: R150; Type: SI PIN; Serial: IMEI Number**Program Name: R150**

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $f = 849 \text{ MHz}$; $\sigma = 0.945 \text{ mho/m}$; $\epsilon_r = 42.6$; $\rho = 1000 \text{ kg/m}^3$

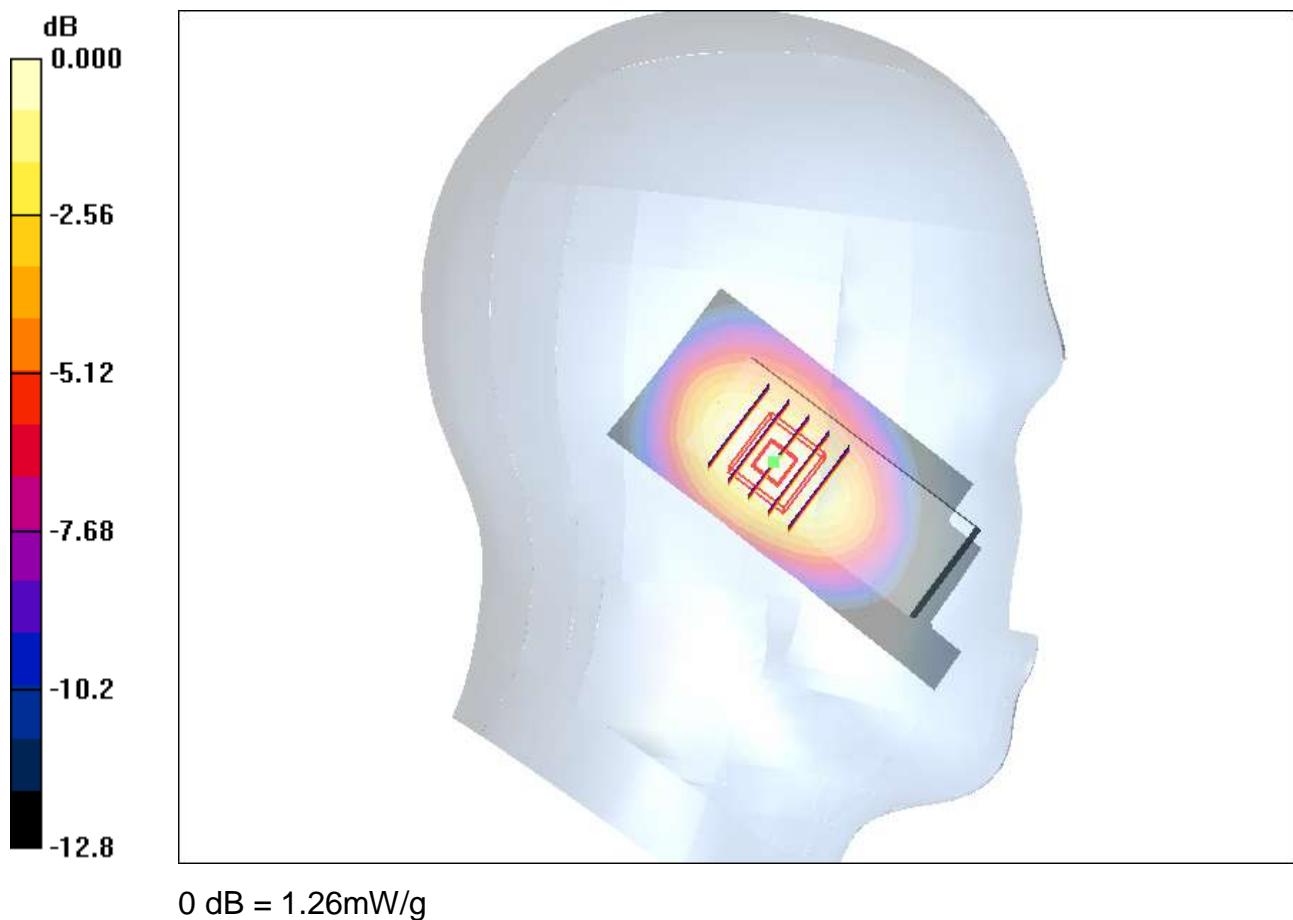
Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3221; ConvF(6.25, 6.25, 6.25); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Cheek/Area Scan (41x91x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (interpolated) = 1.25 mW/g


Left Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 28.0 V/m; Power Drift = -0.112 dB

Peak SAR (extrapolated) = 1.78 W/kg

SAR(1 g) = 0.971 mW/g; SAR(10 g) = 0.736 mW/g

Maximum value of SAR (measured) = 1.26 mW/g

#2

Date: 1/17/2016

Test Laboratory: SUNWAY COMMUNICATION CO.,LTD.

DUT: R150; Type: SI PIN; Serial: IMEI Number**Program Name: R150**

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: $f = 1880 \text{ MHz}$; $\sigma = 1.45 \text{ mho/m}$; $\epsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

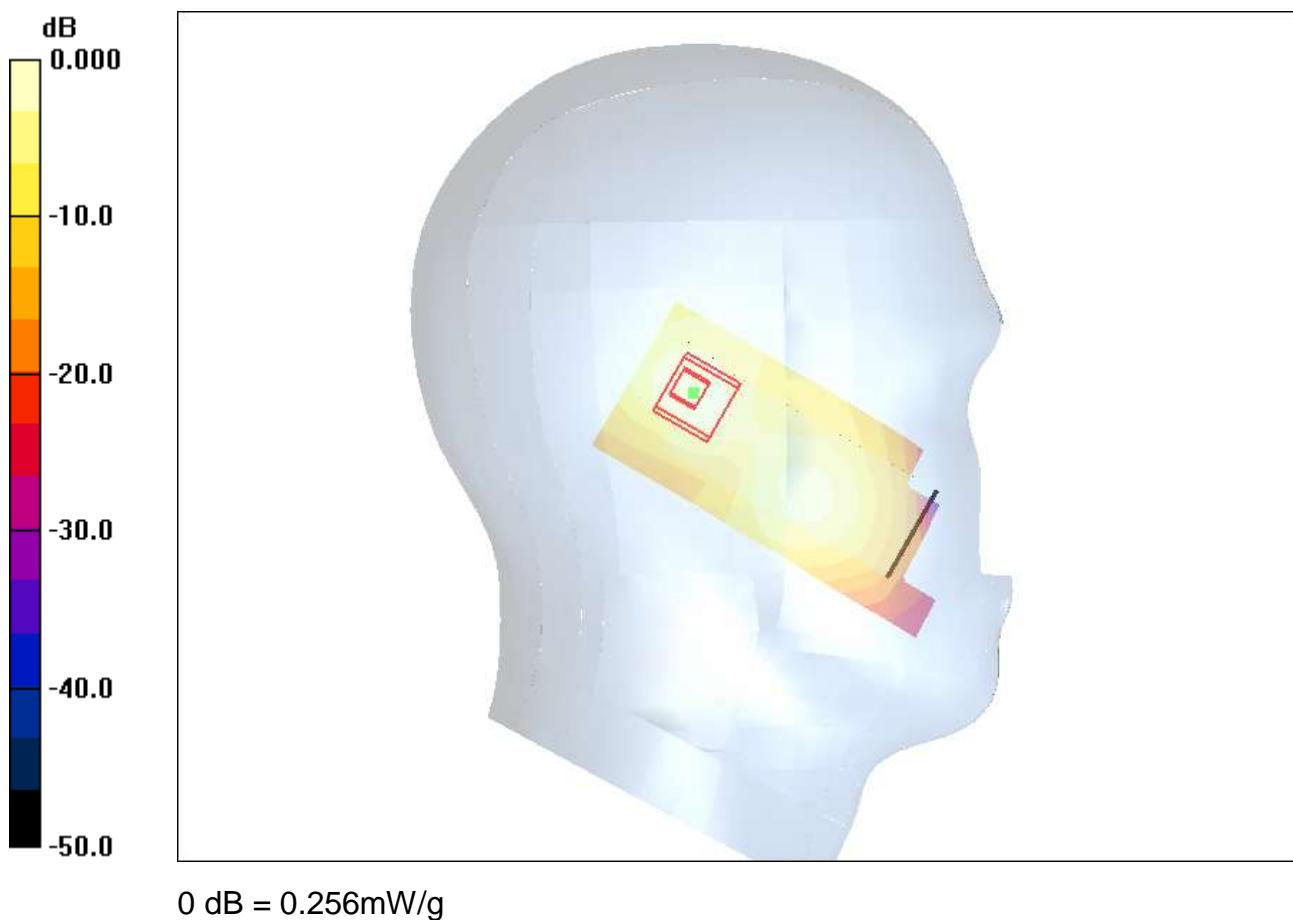
Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3221; ConvF(5.20, 5.20, 5.20); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Cheek/Area Scan (41x91x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (interpolated) = 0.249 mW/g


Left Cheek/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 12.8 V/m; Power Drift = 0.091 dB

Peak SAR (extrapolated) = 0.618 W/kg

SAR(1 g) = 0.228 mW/g; SAR(10 g) = 0.108 mW/g

Maximum value of SAR (measured) = 0.256 mW/g

#3

Date: 1/17/2016

Test Laboratory: SUNWAY COMMUNICATION CO.,LTD.

DUT: R150; Type: SI PIN; Serial: IMEI Number

Program Name: R150

Communication System: GPRS850; Frequency: 836.6 MHz; Duty Cycle: 1:4

Medium parameters used (interpolated): $f = 836.6$ MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 55.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3221; ConvF(6.29, 6.29, 6.29); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 2; Type: SAM; Serial: TP-1432
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (41x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.813 mW/g

Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.0 V/m; Power Drift = 0.134 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.694 mW/g; SAR(10 g) = 0.499 mW/g

Maximum value of SAR (measured) = 0.786 mW/g

0 dB = 0.786mW/g

#4**Date: 1/17/2016****Test Laboratory: SUNWAY COMMUNICATION CO.,LTD.****DUT: R150; Type: SI PIN; Serial: IMEI Number****Program Name: R150**

Communication System: GPRS1900; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium parameters used: $f = 1880 \text{ MHz}$; $\sigma = 1.57 \text{ mho/m}$; $\epsilon_r = 51.1$; $\rho = 1000 \text{ kg/m}^3$

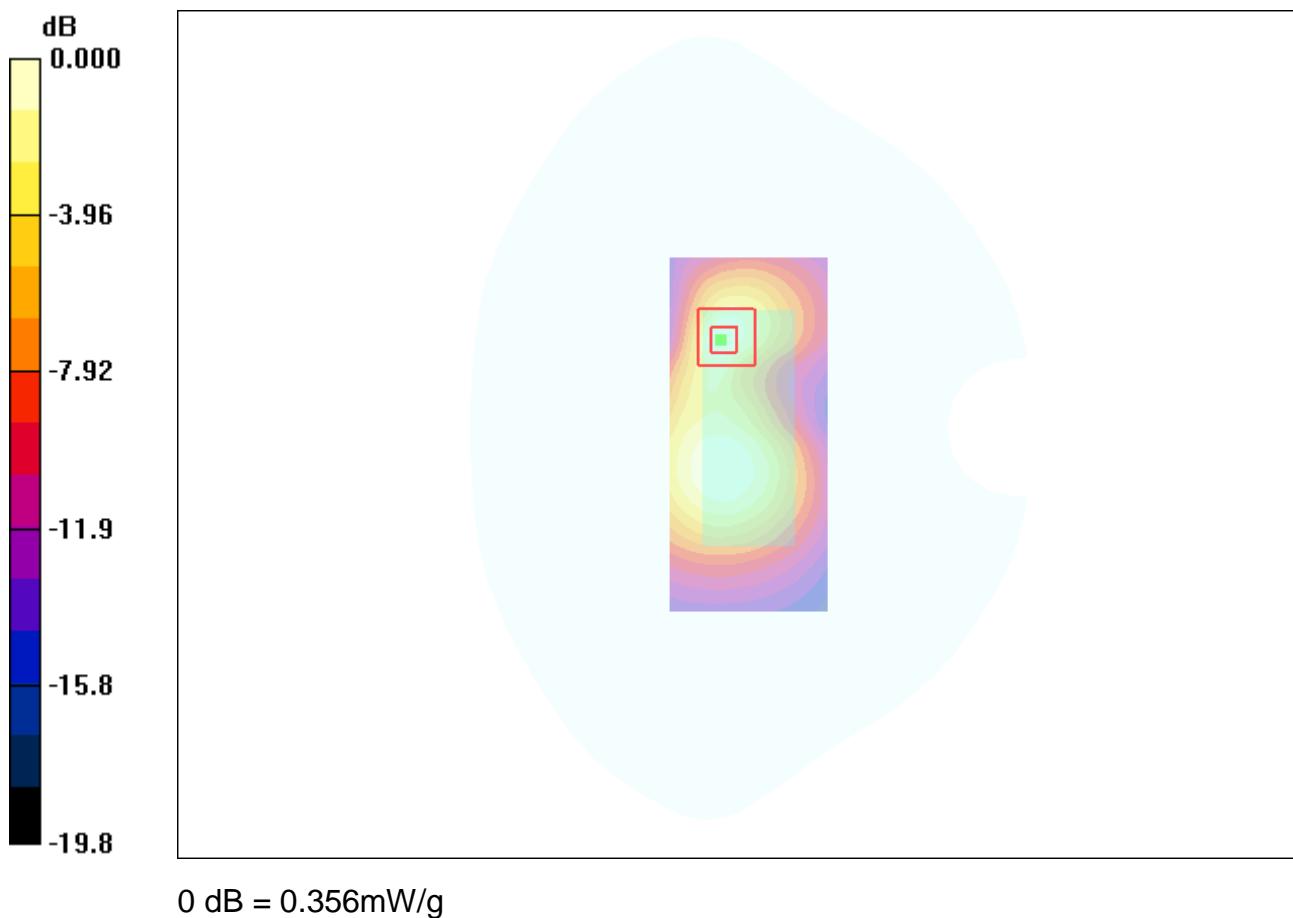
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3221; ConvF(4.79, 4.79, 4.79); Calibrated: 1/31/2015
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn905; Calibrated: 7/16/2015
- Phantom: SAM 1; Type: SAM; Serial: TP-1360
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Back/Area Scan (41x91x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (interpolated) = 0.378 mW/g


Back/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$

Reference Value = 10.9 V/m; Power Drift = -0.129 dB

Peak SAR (extrapolated) = 0.574 W/kg

SAR(1 g) = 0.307 mW/g; SAR(10 g) = 0.151 mW/g

Maximum value of SAR (measured) = 0.356 mW/g

Appendix C. Probe Calibration Data:

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: ctli@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

CALIBRATION
No. L0570

Client

GCCT

Certificate No: Z15-97014

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3221

Calibration Procedure(s) FD-Z11-2-004-01
 Calibration Procedures for Dosimetric E-field Probes

Calibration date: January 31, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility. environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101548	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Reference10dBAttenuator	18N50W-10dB	13-Mar-14(TMC, No.JZ14-1103)	Mar-16
Reference20dBAttenuator	18N50W-20dB	13-Mar-14(TMC, No.JZ14-1104)	Mar-16
Reference Probe EX3DV4	SN 3617	28-Aug-14(SPEAG, No.EX3-3617_Aug14)	Aug-15
DAE4	SN 777	17-Sep-14 (SPEAG, DAE4-777_Sep14)	Sep-15
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-14 (CTTL, No.J14X02145)	Jun-15
Network Analyzer E5071C	MY46110673	15-Feb-14 (TMC, No.JZ14-781)	Feb-15

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: February 02, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\theta=0$ (f≤900MHz in TEM-cell; f>1800MHz: waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORM_{x,y,z} \cdot frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- $Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z; A,B,C$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} \cdot ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)*: In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the $NORM_x$ (no uncertainty required).

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinatl.com <http://www.chinatl.cn>

Probe ES3DV3

SN: 3221

Calibrated: January 31, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctli@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3221

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ V/(V/m) ²) ^A	1.08	1.39	1.06	\pm 10.8%
DCP(mV) ^B	103.1	100.5	103.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB· μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	261.1	\pm 2.6%
		Y	0.0	0.0	1.0		292.6	
		Z	0.0	0.0	1.0		262.2	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

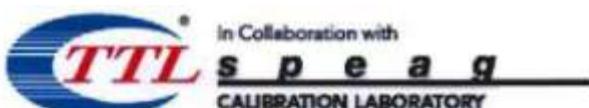
^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ettl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3221


Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.36	6.36	6.36	0.41	1.42	±12%
835	41.5	0.90	6.25	6.25	6.25	0.41	1.47	±12%
900	41.5	0.97	6.13	6.13	6.13	0.35	1.63	±12%
1750	40.1	1.37	5.33	5.33	5.33	0.46	1.55	±12%
1900	40.0	1.40	5.20	5.20	5.20	0.71	1.25	±12%
2000	40.0	1.40	5.12	5.12	5.12	0.70	1.25	±12%
2300	39.5	1.67	4.77	4.77	4.77	0.59	1.45	±12%
2450	39.2	1.80	4.50	4.50	4.50	0.85	1.16	±12%
2600	39.0	1.96	4.35	4.35	4.35	0.76	1.26	±12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

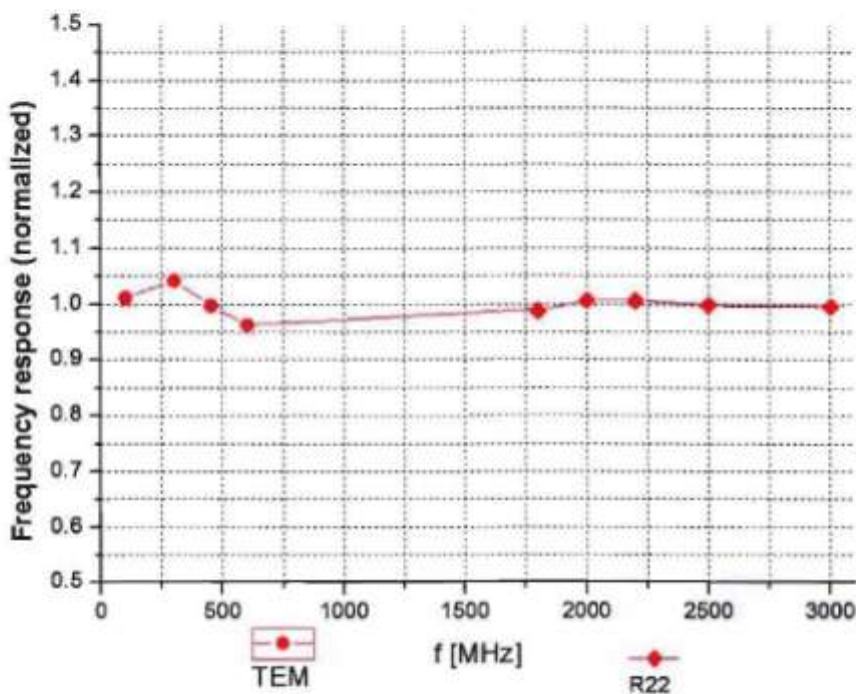
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
 E-mail: cttl@chinattl.com [Http://www.chinattl.com](http://www.chinattl.com)

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3221

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.28	6.28	6.28	0.38	1.63	±12%
835	55.2	0.97	6.29	6.29	6.29	0.44	1.54	±12%
900	55.0	1.05	6.16	6.16	6.16	0.49	1.45	±12%
1750	53.4	1.49	5.00	5.00	5.00	0.61	1.34	±12%
1900	53.3	1.52	4.79	4.79	4.79	0.61	1.36	±12%
2000	53.3	1.52	4.75	4.75	4.75	0.48	1.62	±12%
2300	52.9	1.81	4.65	4.65	4.65	0.63	1.48	±12%
2450	52.7	1.95	4.49	4.49	4.49	0.88	1.16	±12%
2600	52.5	2.16	4.37	4.37	4.37	0.71	1.32	±12%

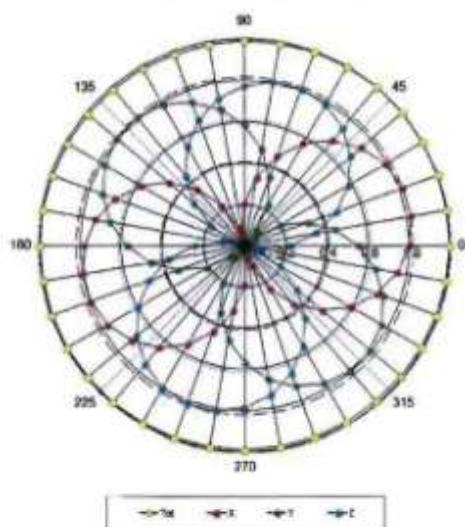
^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

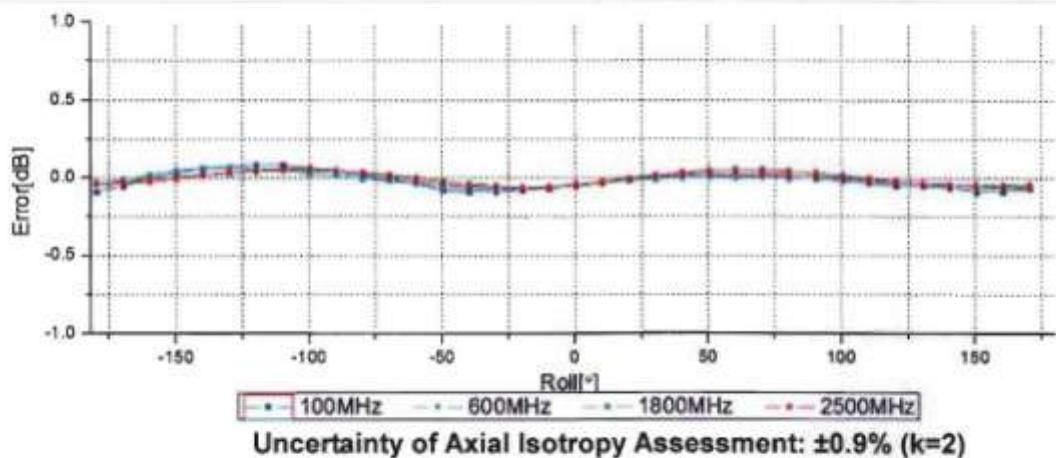
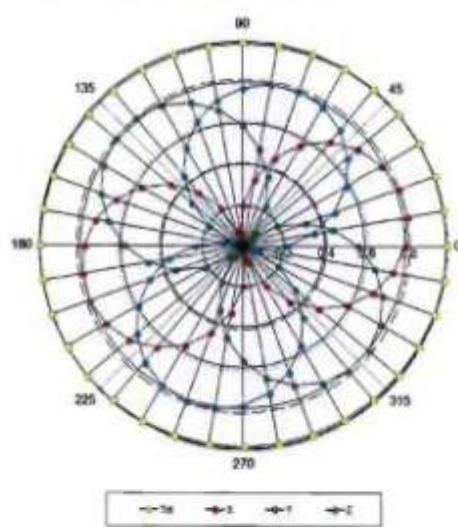

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.cn>

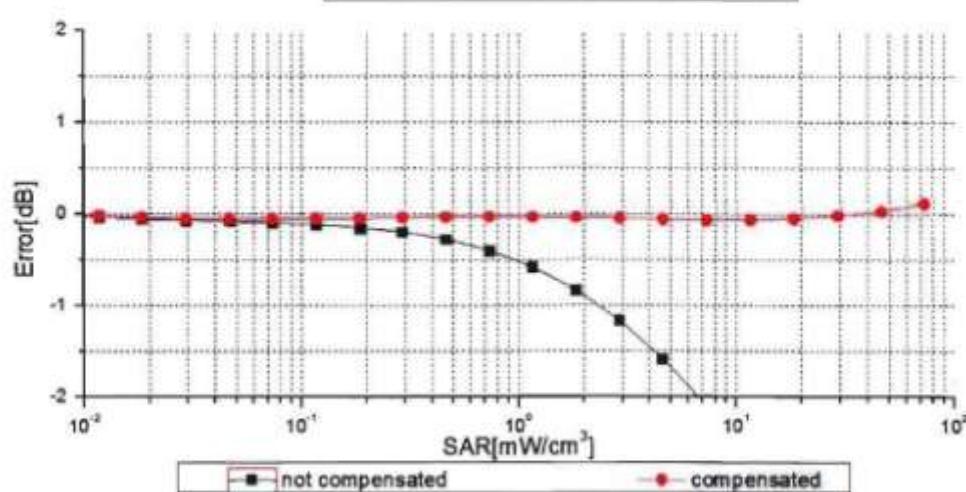
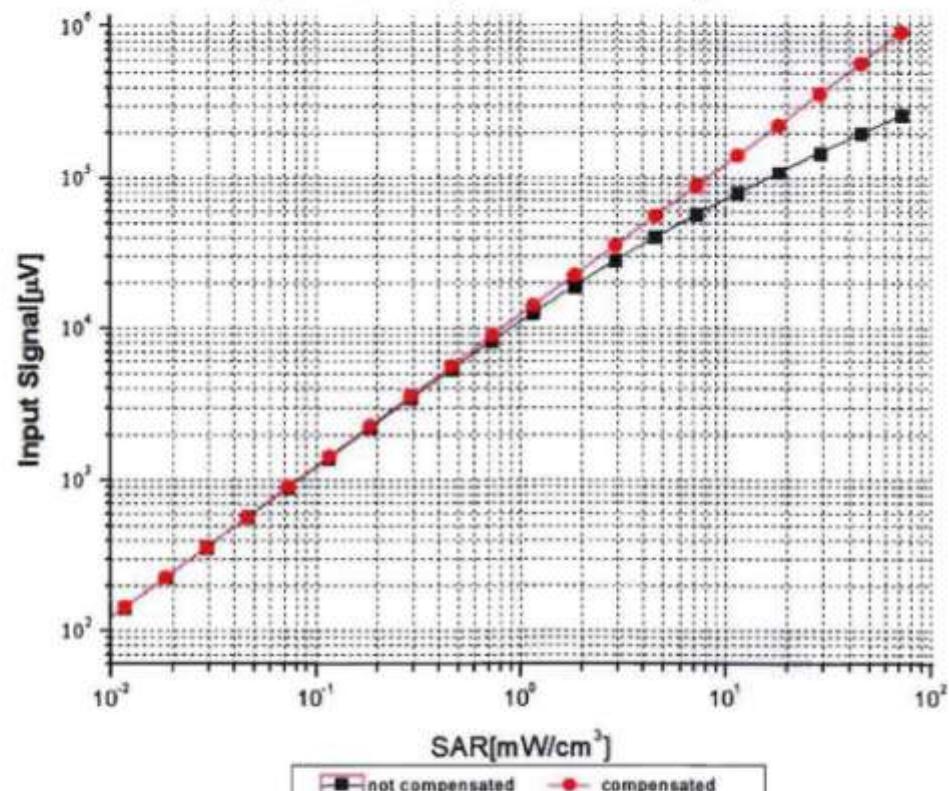
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 7.5\%$ ($k=2$)



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ctl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

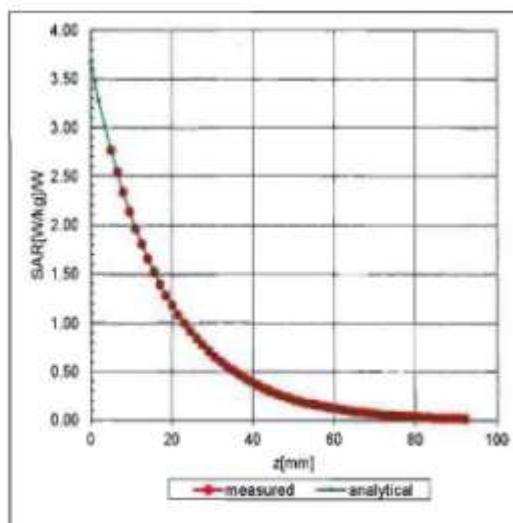
Receiving Pattern (Φ), $\theta=0^\circ$

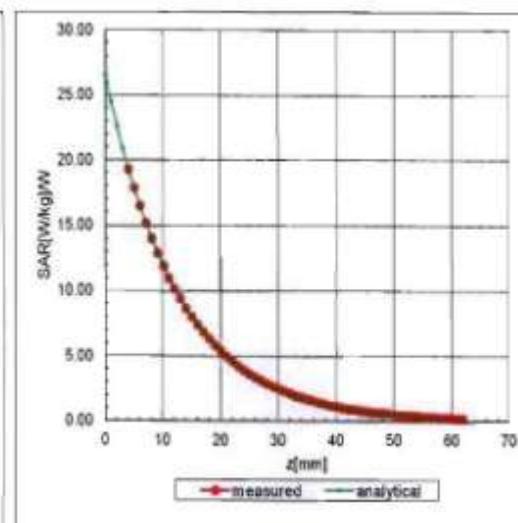
$f=600$ MHz, TEM



$f=1800$ MHz, R22

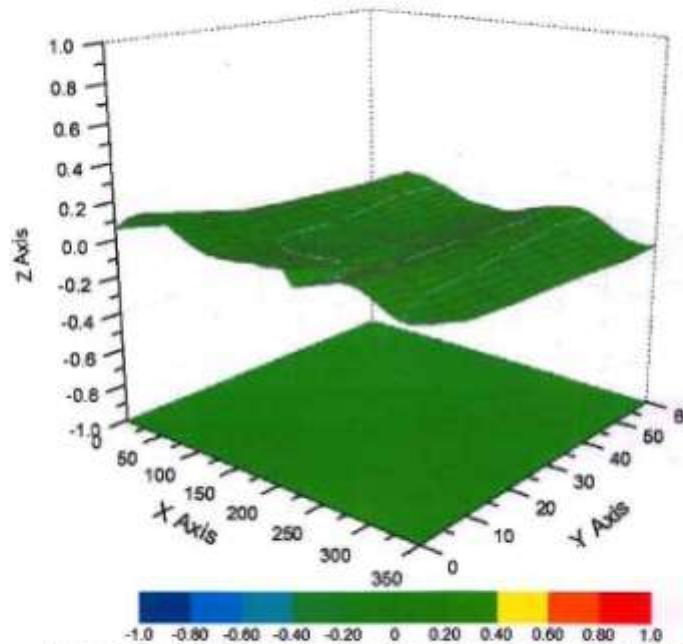
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: ttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)


Uncertainty of Linearity Assessment: $\pm 0.9\% (k=2)$


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Conversion Factor Assessment


f=900 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: $\pm 2.8\% (K=2)$

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com <http://www.chinattl.com>

DASY/EASY – Parameters of Probe: ES3DV3 - SN: 3221**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	36.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Appendix D. DAE Calibration Data:

In Collaboration with
speag
CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinatl.com <http://www.chinatl.cn>

CALIBRATION
No. L0570

Client : **Auden**

Certificate No: Z15-97093

CALIBRATION CERTIFICATE

Object DAE4 - SN: 905

Calibration Procedure(s) FD-Z11-2-002-01
Calibration Procedure for the Data Acquisition Electronics
(DAEx)

Calibration date: July 16, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

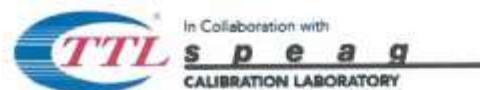
Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	06-July-15 (CTTL, No.J15X04257)	July-16

Calibrated by:	Name	Function	Signature
	Yu Zongying	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: July 17, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.


Add: No.51 Xueshan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Glossary:

DAE data acquisition electronics
Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

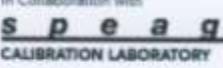
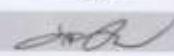
Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctll@chinattl.com Http://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = $6.1\mu V$, full range = $-100...+300\text{ mV}$
Low Range: 1LSB = 61nV , full range = $-1.....+3\text{mV}$
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec



Calibration Factors	X	Y	Z
High Range	$404.672 \pm 0.15\% \text{ (k=2)}$	$405.235 \pm 0.15\% \text{ (k=2)}$	$404.825 \pm 0.15\% \text{ (k=2)}$
Low Range	$3.98116 \pm 0.7\% \text{ (k=2)}$	$4.00286 \pm 0.7\% \text{ (k=2)}$	$3.99735 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$269^\circ \pm 1^\circ$
---	-------------------------

Appendix E. Dipole Calibration Data:

 In Collaboration with CALIBRATION LABORATORY		 IEC-MRA	 CNAS CNAS-L0442																												
Client	Sunway	Certificate No: J13-2-2185																													
CALIBRATION CERTIFICATE																															
Object	D900V2 - SN: 1d086																														
Calibration Procedure(s)	TMC-OS-E-02-194 Calibration procedure for dipole validation kits																														
Calibration date:	August 9, 2013																														
<p>This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p> <table border="1"><thead><tr><th>Primary Standards</th><th>ID #</th><th>Cal Date(Calibrated by, Certificate No.)</th><th>Scheduled Calibration</th></tr></thead><tbody><tr><td>Power Meter NRV0</td><td>102083</td><td>11-Sep-12 (TMC, No.JZ12-443)</td><td>Sep-13</td></tr><tr><td>Power sensor NRV-Z5</td><td>100595</td><td>11-Sep-12 (TMC, No. JZ12-443)</td><td>Sep-13</td></tr><tr><td>Reference Probe EX3DV4</td><td>SN 3846</td><td>20-Dec-12 (SPEAG, No.EX3-3846_Dec12)</td><td>Dec-13</td></tr><tr><td>DAE4</td><td>SN 777</td><td>22-Feb-13 (SPEAG, DAE4-777_Feb13)</td><td>Feb-14</td></tr><tr><td>Signal Generator E4438C</td><td>MY49070393</td><td>13-Nov-12 (TMC, No.JZ12-394)</td><td>Nov-13</td></tr><tr><td>Network Analyzer E8362B</td><td>MY43021135</td><td>19-Oct-12 (TMC, No.JZ13-278)</td><td>Oct-13</td></tr></tbody></table> <p>Calibrated by: Name: Zhao Jing Function: SAR Test Engineer</p> <p>Reviewed by: Name: Qi Dianyuhan Function: SAR Project Leader</p> <p>Approved by: Name: Xiao Li Function: Deputy Director of the laboratory</p> <p>Issued: August 11, 2013</p> <p>This calibration certificate shall not be reproduced except in full without written approval of the laboratory.</p>				Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	Power Meter NRV0	102083	11-Sep-12 (TMC, No.JZ12-443)	Sep-13	Power sensor NRV-Z5	100595	11-Sep-12 (TMC, No. JZ12-443)	Sep-13	Reference Probe EX3DV4	SN 3846	20-Dec-12 (SPEAG, No.EX3-3846_Dec12)	Dec-13	DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb-14	Signal Generator E4438C	MY49070393	13-Nov-12 (TMC, No.JZ12-394)	Nov-13	Network Analyzer E8362B	MY43021135	19-Oct-12 (TMC, No.JZ13-278)	Oct-13
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration																												
Power Meter NRV0	102083	11-Sep-12 (TMC, No.JZ12-443)	Sep-13																												
Power sensor NRV-Z5	100595	11-Sep-12 (TMC, No. JZ12-443)	Sep-13																												
Reference Probe EX3DV4	SN 3846	20-Dec-12 (SPEAG, No.EX3-3846_Dec12)	Dec-13																												
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb-14																												
Signal Generator E4438C	MY49070393	13-Nov-12 (TMC, No.JZ12-394)	Nov-13																												
Network Analyzer E8362B	MY43021135	19-Oct-12 (TMC, No.JZ13-278)	Oct-13																												

Add: No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-52304633-3079 Fax: +86-10-52304633-2504
E-mail: info@emcite.com <http://www.emcite.com>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No 52 Huayuanbei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079
Fax: +86-10-62304633-2504
E-mail: info@emcite.com
<http://www.emcite.com>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.6 ± 6 %	0.98 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C	—	—

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.67 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	10.7 mW / g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.72 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.87 mW / g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	1.02 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C	—	—

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.63 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	10.7 mW / g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.71 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.84 mW / g ± 20.4 % (k=2)

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2079
Fax: +86-10-62304633-2504
E-mail: info@emcite.com
[Http://www.emcite.com](http://www.emcite.com)

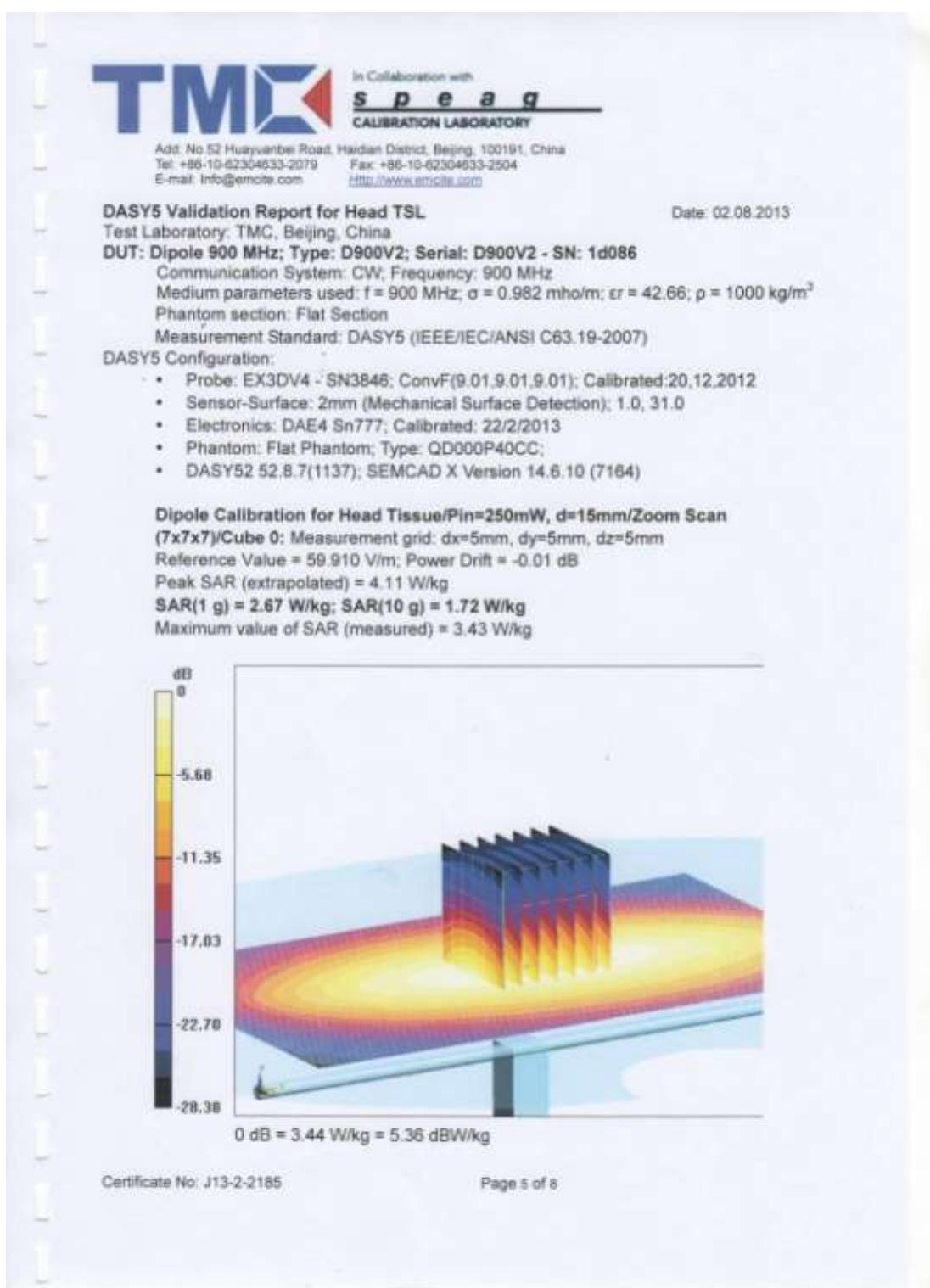
Appendix

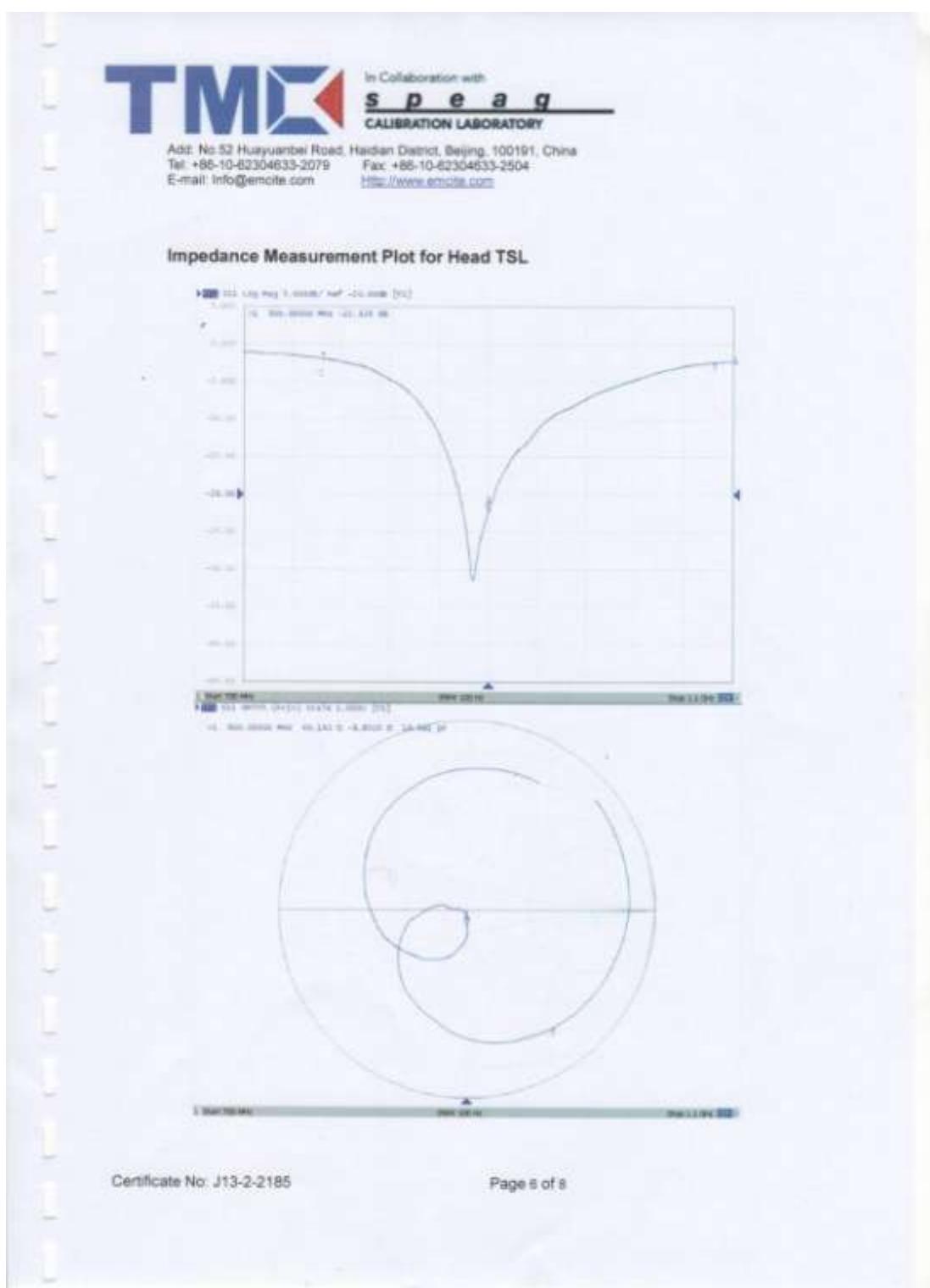
Antenna Parameters with Head TSL

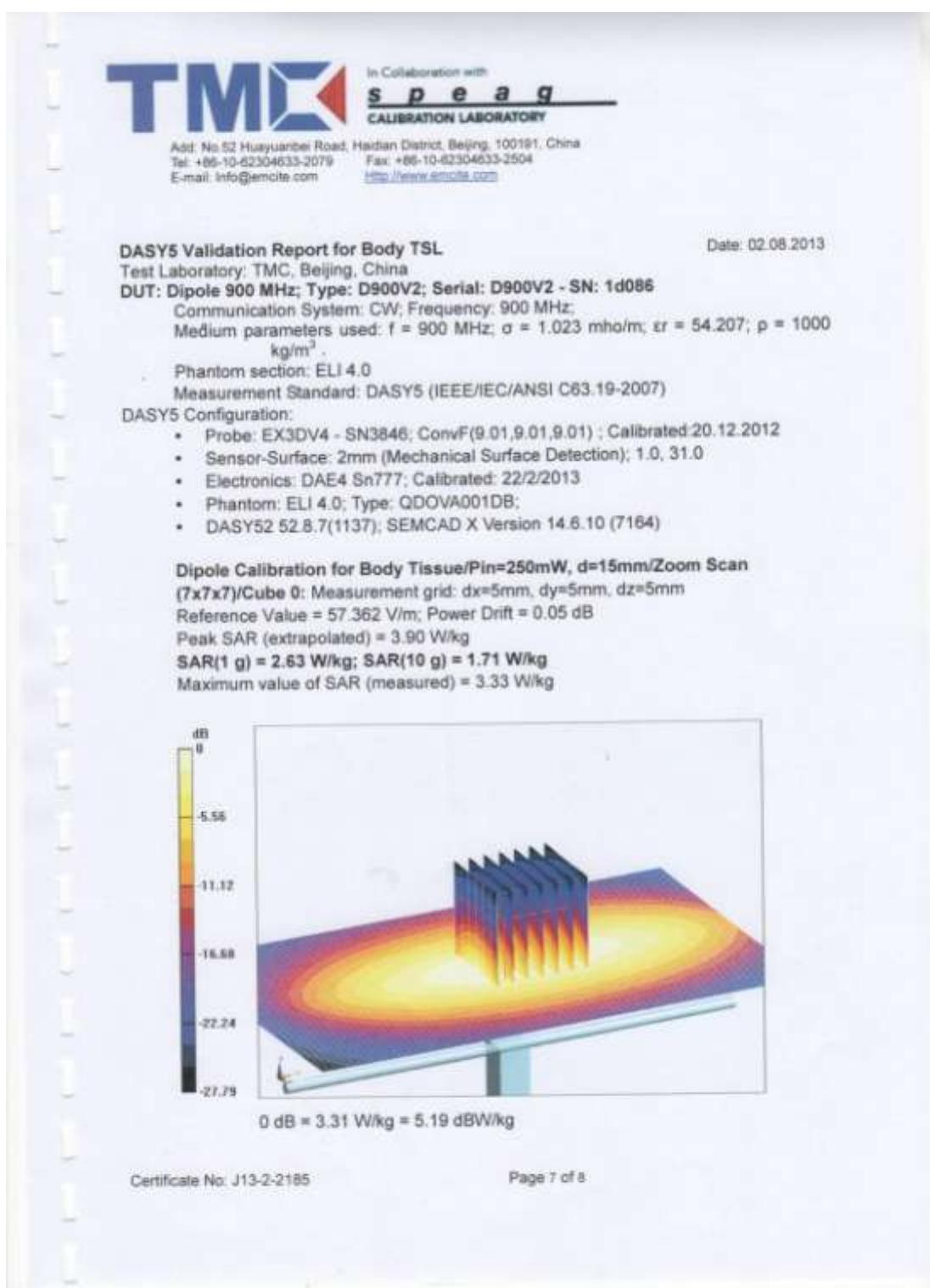
Impedance, transformed to feed point	49.1Ω+8.85jΩ
Return Loss	-22.3dB

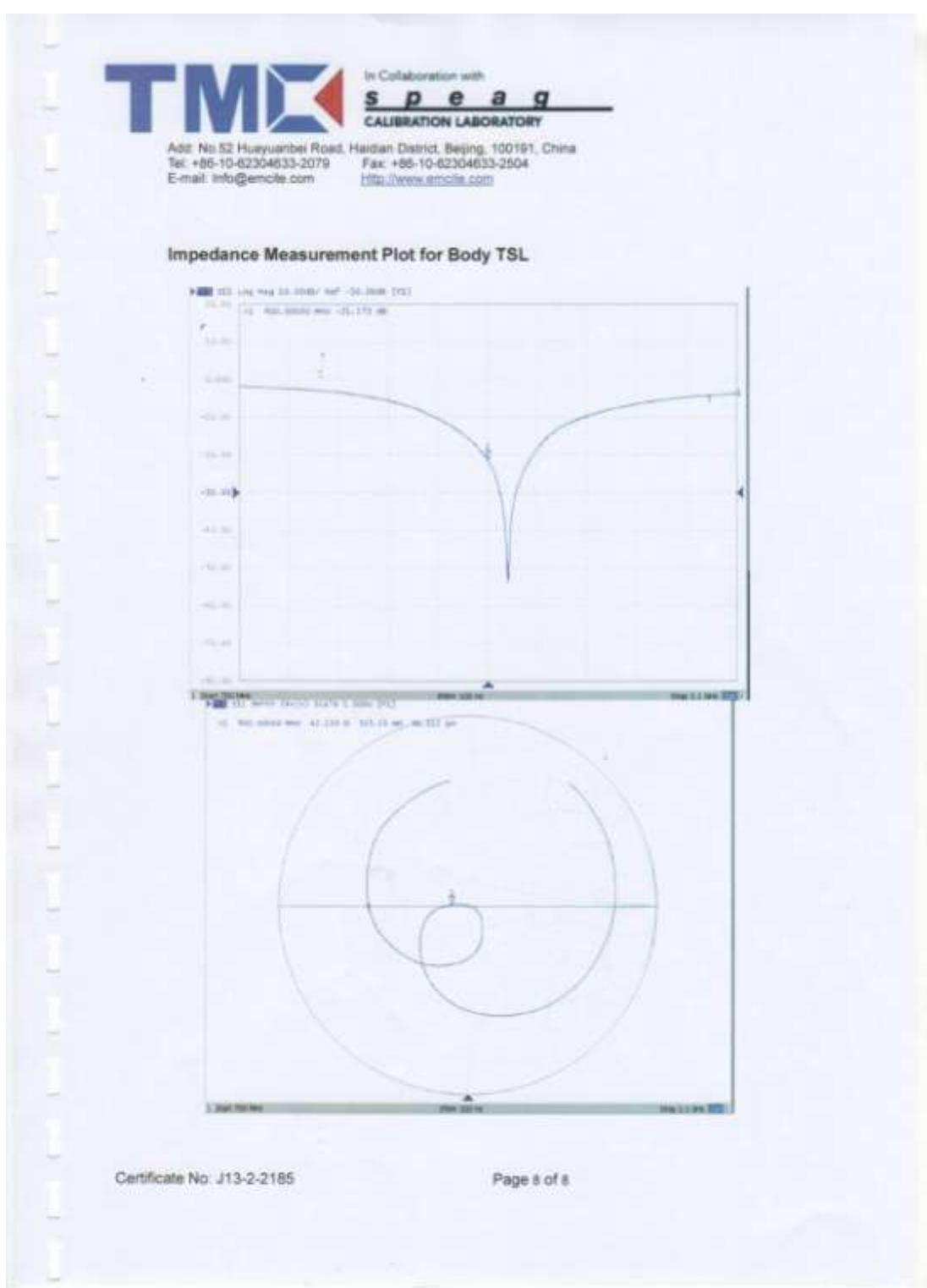
Antenna Parameters with Body TSL

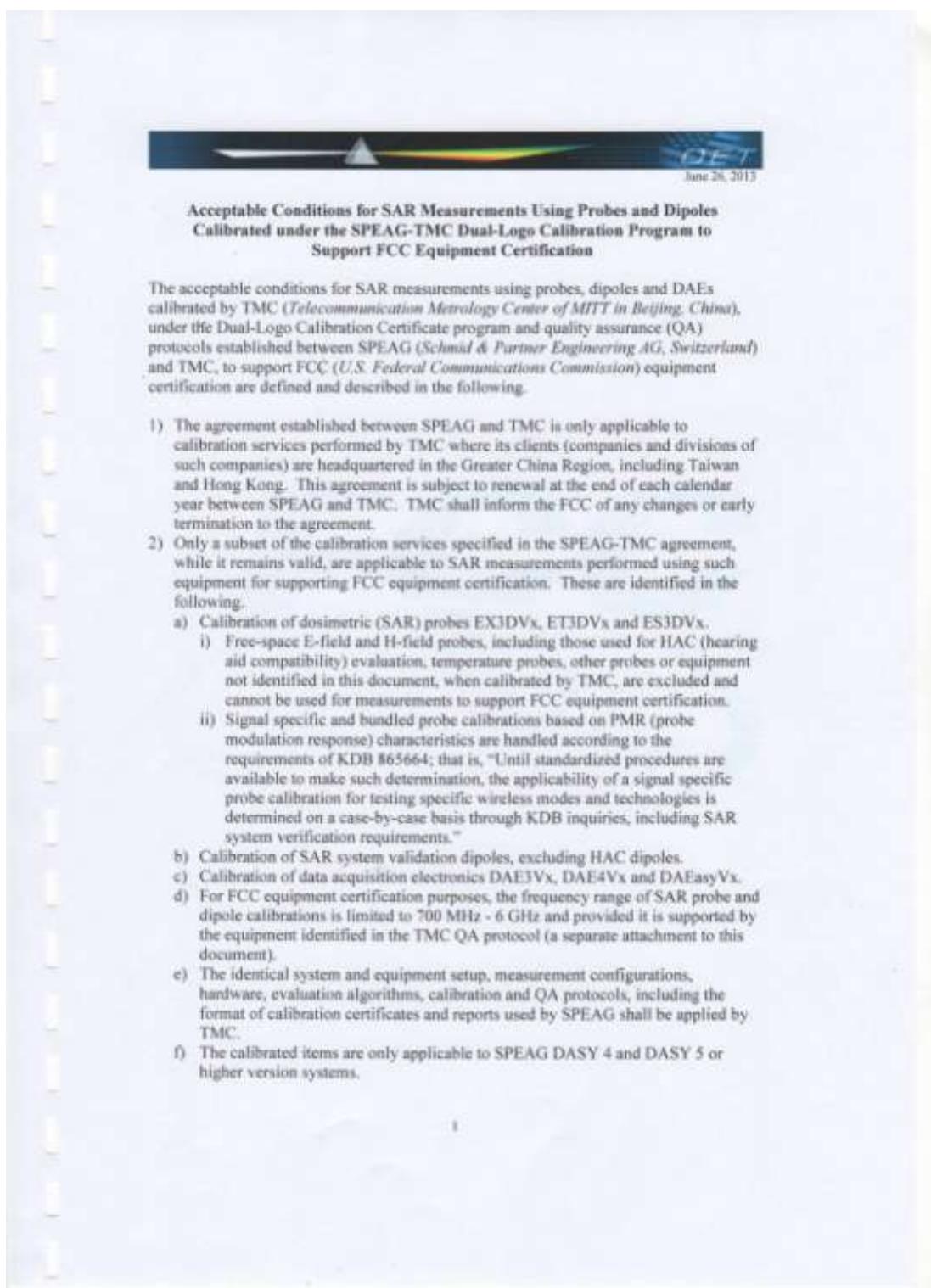
Impedance, transformed to feed point	42.1Ω+0.52jΩ
Return Loss	-21.3dB

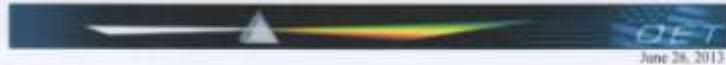

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.


No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data


Manufactured by	SPEAG
-----------------	-------



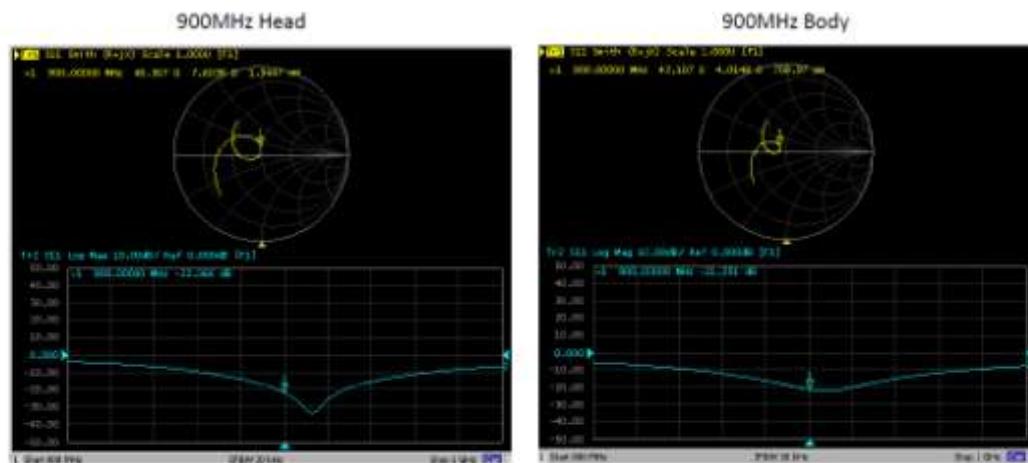
**Acceptable Conditions for SAR Measurements Using Probes and Dipoles
Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to
Support FCC Equipment Certification**

The acceptable conditions for SAR measurements using probes, dipoles and DAEs calibrated by TMC (*Telecommunication Metrology Center of MITT in Beijing, China*), under the Dual-Logo Calibration Certificate program and quality assurance (QA) protocols established between SPEAG (*Schmid & Partner Engineering AG, Switzerland*) and TMC, to support FCC (*U.S. Federal Communications Commission*) equipment certification are defined and described in the following.

- 1) The agreement established between SPEAG and TMC is only applicable to calibration services performed by TMC where its clients (companies and divisions of such companies) are headquartered in the Greater China Region, including Taiwan and Hong Kong. This agreement is subject to renewal at the end of each calendar year between SPEAG and TMC. TMC shall inform the FCC of any changes or early termination to the agreement.
- 2) Only a subset of the calibration services specified in the SPEAG-TMC agreement, while it remains valid, are applicable to SAR measurements performed using such equipment for supporting FCC equipment certification. These are identified in the following.
 - a) Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx.
 - i) Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification.
 - ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB #65664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration for testing specific wireless modes and technologies is determined on a case-by-case basis through KDB inquiries, including SAR system verification requirements."
 - b) Calibration of SAR system validation dipoles, excluding HAC dipoles.
 - c) Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx.
 - d) For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
 - e) The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
 - f) The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.

- 3) The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation.
 - a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC, SPEAG and FCC agreements to remain valid.
 - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
 - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations.
 - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- 4) A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (*Telecommunication Certification Body*), to facilitate FCC equipment approval.
- 5) TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

Change Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.


D900V2, serial no. 1d086 Extended Dipole Calibrations

Referring to KDB 865664D01V01r03, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

D900V2, serial no. 1d086								
	900 Head				900 Body			
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)
2013-8-9	-22.3		49.2		-21.3		42.1	
2014-8-8	-22.21	0.41	49.12	-0.08	-21.1	0.94	42.25	-0.15
2015-8-4	-22.1	0.9	48.4	-0.8	-21.4	-0.5	43.1	1.0

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

<Dipole Verification Data>- D900V2, serial no. 1d086

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client **SMQ (Auden)**

Certificate No: D1900V2-5d194_Jan15

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d194

Calibration procedure(s)

QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

January 07, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292783	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY41092317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5058 (20k)	03-Apr-14 (No. 217-01918)	Apr-15
Type-N mismatch combination	SN: 5047.2 / 06327	03-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES30V3	SN: 3205	30-Dec-14 (No. ES3-3205_Dec14)	Dec-15
DAE4	SN: 601	18-Aug-14 (No. DAE4-601_Aug14)	Aug-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:

Name: **Claudio Leubler** Function: **Laboratory Technician**

Signature:

Approved by:

Name: **Katja Pokovic** Function: **Technical Manager**

Signature:

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: January 7, 2015

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5 \text{ mm}$	
Frequency	1900 MHz $\pm 1 \text{ MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.3 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.95 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.31 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.7 \Omega + 4.9 \text{ j} \Omega$
Return Loss	- 24.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.9 \Omega + 5.1 \text{ j} \Omega$
Return Loss	- 25.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 06, 2014

DASY5 Validation Report for Head TSL

Date: 07.12.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d194

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

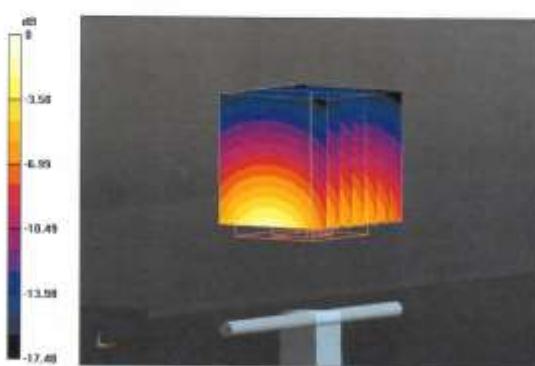
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5, 5, 5); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

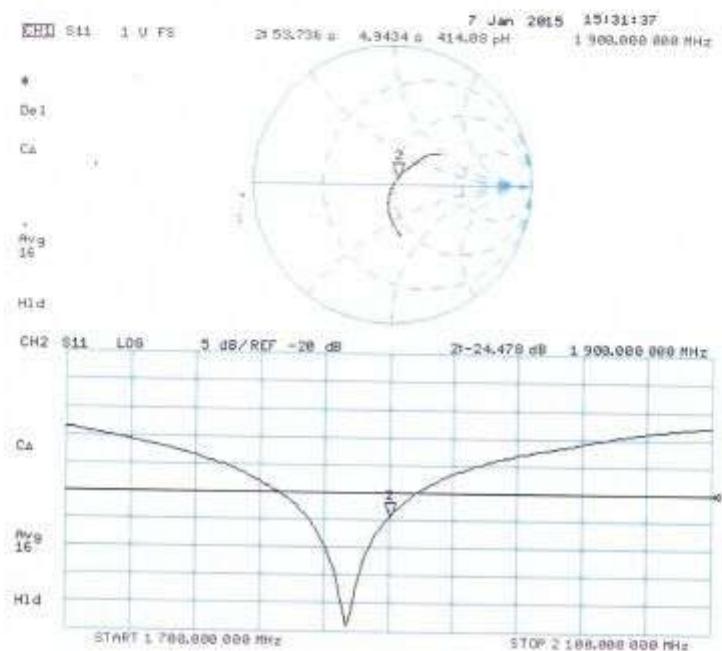
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.35 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.32 W/kg


Maximum value of SAR (measured) = 12.7 W/kg

0 dB = 12.7 W/kg = 11.04 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d194

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.5$ S/m; $\epsilon_r = 53.3$; $\rho = 1000$ kg/m³

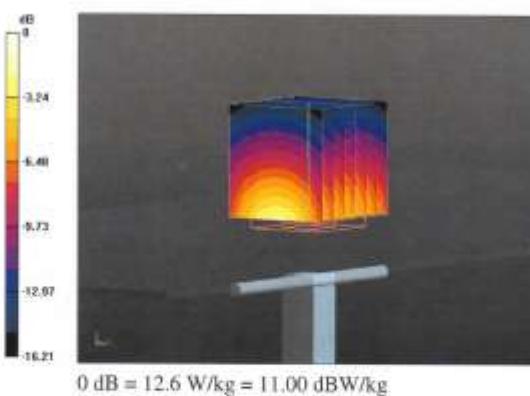
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.65, 4.65, 4.65); Calibrated: 30.12.2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

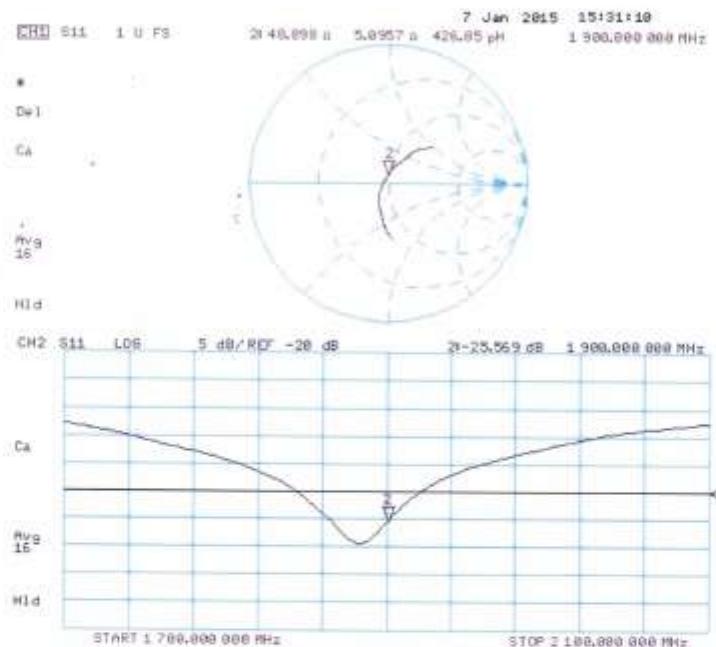
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.88 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.31 W/kg


Maximum value of SAR (measured) = 12.6 W/kg

0 dB = 12.6 W/kg = 11.00 dBW/kg

Impedance Measurement Plot for Body TSL

China National Accreditation Service for Conformity Assessment

LABORATORY ACCREDITATION CERTIFICATE

(Registration No. CNAS L6487)

Shenzhen Sunway Communication Co., Ltd. Testing Center

1/F, Building A, SDG Info Port, Kefeng Road, Hi-Tech Park,

Nanshan District, Shenzhen, Guangdong, China

is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence of testing.

The scope of accreditation is detailed in the attached appendices bearing the same registration number as above. The appendices form an integral part of this certificate.

Date of Issue: 2013-10-29

Date of Expiry: 2016-10-28

Date of Initial Accreditation: 2013-10-29

Date of Update: 2013-10-29

Signed on behalf of China National Accreditation Service
for Conformity Assessment

China National Accreditation Service for Conformity Assessment (CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation schemes for conformity assessment. CNAS is the signatory to International Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (ILAC MRA) and Asia Pacific Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (APLAC MRA).