

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 Issue 3

TEST REPORT

For

WIFI Module

MODEL NUMBER: WKC21M2511

REPORT NUMBER: 4791856253-RF-1

ISSUE DATE: July 21, 2025

FCC ID: 2AC23-WKC21 IC: 12290A-WKC21

Prepared for

Hui Zhou Gaoshengda Technology Co.,LTD No.6,Qiaoguang Road,Chenjiang Street,Zhongkai High-tech Zone,Huizhou,Guangdong,China

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Room 101, Building 2, No.4, Information Road, Songshan Lake, Dongguan, Guangdong, China

Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Page 2 of 149

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	July 21, 2025	Initial Issue	

Page 3 of 149

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c) RSS-GEN Clause 6.8	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207 RSS-GEN Clause 8.8	Pass
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.2.3.1	FCC Part 15.247 (b)(3) RSS-247 Clause 5.4 (d)	Pass
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.5	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.12 & Clause 11.13	FCC Part 15.247 (d) FCC Part 15.205/15.209 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C

ISED RSS-247 Issue 3> when <Simple Acceptance> decision rule is applied.

CONTENTS

1. ATTI	ATTESTATION OF TEST RESULTS			
2. TES	Г METHODOLOGY	7		
3. FAC	LITIES AND ACCREDITATION	7		
4. CAL	BRATION AND UNCERTAINTY	8		
4.1.	MEASURING INSTRUMENT CALIBRATION	8		
4.2.	MEASUREMENT UNCERTAINTY	8		
5. EQU	IPMENT UNDER TEST	9		
5.1.	DESCRIPTION OF EUT	9		
5.2.	CHANNEL LIST	10		
5.3.	MAXIMUM POWER	10		
5.4.	TEST CHANNEL CONFIGURATION	10		
5.5.	THE WORSE CASE POWER SETTING PARAMETER	11		
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	13		
5.7.	SUPPORT UNITS FOR SYSTEM TEST	14		
6. MEA	SURING EQUIPMENT AND SOFTWARE USED	15		
7. ANT	ENNA PORT TEST RESULTS	18		
7.1.	CONDUCTED OUTPUT POWER	18		
7.2.	6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	19		
7.3.	POWER SPECTRAL DENSITY	21		
7.4.	CONDUCTED BAND EDGE AND SPURIOUS EMISSION	23		
7.5.	DUTY CYCLE	25		
8. RAD	IATED TEST RESULTS	26		
9. ANT	ENNA REQUIREMENT	35		
10.	AC POWER LINE CONDUCTED EMISSION	36		
11.	TEST DATA	40		
11.1.	APPENDIX A: DTS BANDWIDTH	40		
11.1. 11.1.				
	APPENDIX B: OCCUPIED CHANNEL BANDWIDTH			
<i>11.2.</i> 11.2.				
11.2.				
11.3.	APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	58		

REPORT NO.: 4791856253-RF-1 Page 5 of 149

11.3.1. Test Result......58 APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY......59 11.4. 11.4.1. Test Result......59 11.4.2. Test Graphs60 11.5. APPENDIX E: BAND EDGE MEASUREMENTS......68 11.5.1. Test Result.......68 11.5.2. Test Graphs69 11.6. APPENDIX F: CONDUCTED SPURIOUS EMISSION75 11.6.1. 11.6.2. Test Graphs77 11.7. APPENDIX G: DUTY CYCLE......101 11.7.1. 11.7.2. 11.8. APPENDIX H: RADIATED BAND EDGE AND SPURIOUS EMISSION104 11.8.1.

Page 6 of 149

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Hui Zhou Gaoshengda Technology Co.,LTD

Address: No.6,Qiaoguang Road,Chenjiang Street,Zhongkai High-tech

Zone, Huizhou, Guangdong, China

Manufacturer Information

Company Name: Hui Zhou Gaoshengda Technology Co.,LTD

Address: No.6, Qiaoguang Road, Chenjiang Street, Zhongkai High-tech

Zone, Huizhou, Guangdong, China

EUT Information

Operations Manager

EUT Name: WIFI Module Model: WKC21M2511

Brand: GSD

Sample Received Date: June 23, 2025

Sample Status: Normal Sample ID: 8674947

Date of Tested: June 24, 2025 to July 21, 2025

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C ISED RSS-247 Issue 3	Pass			

Prepared By: Daniel Zhang	Checked By:
Daniel Zhang	Kebo Zhang
Project Engineer	Operations Leader
Approved By:	
Stephen Gmo	
Stephen Guo	

Page 7 of 149

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C ISED RSS-247 Issue 3, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, KDB 662911 D01 Multiple Transmitter Output v02r01, CFR 47 FCC Part 2, ANSI C63.10-2013 and ISED RSS-GEN Issue 5

3. FACILITIES AND ACCREDITATION

A2LA (Certificate No.: 4102.01)

UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with A2LA.

FCC (FCC Designation No.: CN1187)

UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. Has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.

Accreditation Certificate

ISED (Company No.: 21320)

UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been registered and fully described in a report filed with ISED. The Company Number is 21320 and the test lab Conformity Assessment Body Identifier (CABID) is CN0046.

VCCI (Registration No.: C-20202, G-20240, R-20248 and T-20202)

UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. has been assessed and proved to be in compliance with VCCI, the Membership No. is 3793.

Facility Name:

Chamber E, the VCCI registration No. is G-20240 and R-20248 Shielding Room F, the VCCI registration No. is C-20202 and T-20202

Note 1:

All tests measurement facilities use to collect the measurement data are located at Room 101, Building 2, No.4, Information Road, Songshan Lake, Dongguan, Guangdong, China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

Page 8 of 149

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty			
Conduction emission	3.62 dB			
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB			
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB			
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)			
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)			
Duty Cycle	±0.028%			
DTS and 99% Occupied Bandwidth	±0.0196%			
Maximum Conducted Output Power	±0.686 dB			
Maximum Power Spectral Density Level	±0.743 dB			
Conducted Band-edge Compliance	±1.328 dB			
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)			
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)			
Note: This uncertainty represents an expanded uncertainty expressed at approximately the				

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 149

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	WIFI Module
Model	WKC21M2511

Frequency Range:	2412 MHz to 2462 MHz
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK)
Radio Technology:	IEEE 802.11b/g/n-HT20/n-HT40
Normal Test Voltage:	DC 5 V

Page 10 of 149

5.2. CHANNEL LIST

	Channel List For Bandwidth=20 MHz						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	1	1

Channel List For Bandwidth=40 MHz							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	1	1

5.3. MAXIMUM POWER

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)	Maximum AVG EIRP (dBm)
b	2412 ~ 2462	1-11[11]	14.54	17.15
g	2412 ~ 2462	1-11[11]	18.11	20.72
n HT20	2412 ~ 2462	1-11[11]	17.10	19.71
n HT40	2422 ~ 2452	3-9[7]	17.06	19.67

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency	
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz	
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz	
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz	
n HT40	CH 3(Low Channel), CH 6(MID Channel), CH 9(High Channel)	2422 MHz, 2437 MHz, 2452 MHz	

Page 11 of 149

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band									
Test Softw	/are		QA Tool						
	Transmit			Test C	Channel				
Modulation Mode	Antenna	١	NCB: 20MH	lz	NCB: 40MHz				
Wode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9		
802.11b	1	1D	1D	1C					
002.110	2	1D	1D	1C					
802.11g	1	1E	1E	1E		1			
002.11g	2	1E	1E	1E		/			
802.11n HT20	1	1D	1D	1D					
002.1111 1120	2	1D	1D	1D					
802.11n HT40	1		1		1D	1D	1D		
002.111111140	2		/		1D	1D	1D		

Page 12 of 149

WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

802.11b/g only support SISO mode.

802.11n HT20/HT40 support SISO and MIMO mode.

802.11b SISO mode, Antenna 1 and Antenna 2 has the same power setting, both Antenna 1&2 test data were recorded in the report.

802.11g/n SISO mode and MIMO mode have the same power setting, so only the worst case power mode(MIMO) will be record in the report.

The EUT has 2 separate antennas which correspond to 2 separate antenna ports. Core 1 and Core 2 correspond to antenna 1 and antenna 2 respectively.

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

Conducted output power, power spectral density tests separately on each port with all supported SISO & MIMO port combinations.

Conducted bandedge and spurious emissions tests were performed with SISO mode, as this port was found to have the worst case in terms of power settings amongst all supported possible SISO & MIMO port combinations.

Radiated emissions tests were performed with the MIMO modes. These were found to be the worst modulation scheme with regards to emissions after preliminary investigations and, as this mode emits the highest conducted output power level, it was deemed to be the worst case.

The EUT support Cyclic Shift Diversity(CDD), Space Time Coding(STBC), Spartial Division Multiplexing(SDM) modes. They use the same conducted power per chain in any given mode, so we only chose the worst case mode CDD for final testing.

Page 13 of 149

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	PCB antenna	2.61
2	2412-2462	PCB antenna	1.24

The EUT support Cyclic Shift Diversity(CDD) mode.

MIMO output power port and MIMO PSD port summing were performed in accordance with KDB 662911 D01. For the CDD results the Directional Gain was calculated in accordance with the following mothed.

For output power measurements:

Directional gain= Gant + Array Gain = 2.61 dBi

G_{ANT}: equal to the gain of the antenna having the highest gain

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$

For power spectral density (PSD) measurements:

Directional gain= GANT + Array Gain = 5.62 dBi

Array Gain = 10 log(Nant/Nss) dB. Nant : number of transmit antennas

Nss: number of spatial streams, The worst case directional gain will occur when Nss = 1

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.

Note:

1. WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)

Page 14 of 149

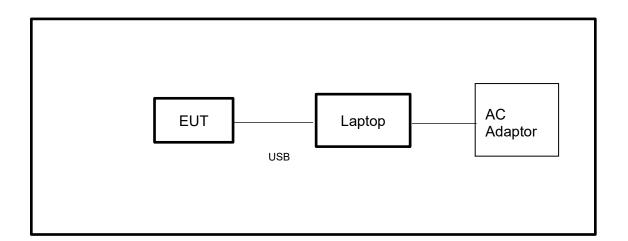
5.7. SUPPORT UNITS FOR SYSTEM TEST

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remark
1	PC	Lenovo	E14	1
2	AC Adaptor	Lenovo	ADLX65YCC3D	Input: AC 100-240V, 1.8A, 50-60Hz Output: DC 20V, 3.25A,65.0W Max

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	1	/	1.0	1


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	1	1	1	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

Note: AC Adaptor only use for AC POWER LINE CONDUCTED EMISSION test

Page 15 of 149

6. MEASURING EQUIPMENT AND SOFTWARE USED

R&S TS 8997 Test System										
Equipment Manufacturer					Model		Serial No.	Last (Cal.	Due. Date
Power sensor, Power M	leter		R&S		OSP1	20	100921	Dec.27,	2024	Dec.26,2025
Vector Signal Genera			R&S	 }	SMBV1	00A	261637	Sep.28,		Sep.27, 2025
Signal Generator			R&S		SMB10		178553	Sep.28,		Sep.27, 2025
Signal Analyzer			R&S		FSV4		101118	Sep.28,		Sep.27, 2025
					Softwa	re		-		
Description			N	/Januf	acturer		Nam	е		Version
For R&S TS 8997 Test	Syste	em	Rol	hde &	Schwa	rz	EMC	32		10.60.10
Tonsend RF Test System										
Equipment	Man	ufacturer Mod		del No.	S	erial No.	Last (Cal.	Due. Date	
Wireless Connectivity Tester		R&S	S	СМ	W270	120	1.0002N75- 102	Sep.13,	2024	Sep.12, 2025
PXA Signal Analyzer	K	eysi	ght	N9	030A	MY	′55410512	Sep.28,	2024	Sep.27, 2025
MXG Vector Signal Generator	K	eysi	ght	N5	182B	MY	′56200284	Sep.28,	2024	Sep.27, 2025
MXG Vector Signal Generator	Ke	eysi	ght	N5	172B	MY	′56200301	Sep.28,	2024	Sep.27, 2025
DC power supply	K	eysi	ght	E3	642A	MY	755159130	Sep.28,	2024	Sep.27, 2025
Temperature & Humidity Chamber	SAI	NMO	DOD	SG-8	80-CC-2		2088	Sep.28,	2024	Sep.27, 2025
Attenuator	A	Aglie	glient 84		195B	28	14a12853	Sep.28,	2024	Sep.27, 2025
RF Control Unit Tonscend JS			JSC	806-2	23E	380620666	Dec.27,	2024	Dec.26,2025	
					Softwa	re				
Description Manufactur				urer	er Name Vers			Version		
Tonsend SRD Test Sys	tem	Т	onser	nd	JS1	120-	3 RF Test S	ystem		V3.2.22

Page 16 of 149

	Conducted Emissions									
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date					
EMI Test Receiver	R&S	ESR3	101961	Sep.28, 2024	Sep.27, 2025					
Two-Line V- Network	R&S	ENV216	101983	Sep.28, 2024	Sep.27, 2025					
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Sep.28, 2024	Sep.27, 2025					
	Software									
ı	Description		Manufacturer	Name	Version					
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1					

	Radiated Emissions								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date				
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Sep.28, 2024	Sep.27, 2025				
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	June 28, 2024	June.27 2027				
Preamplifier	HP	8447D	2944A09099	Sep.28, 2024	Sep.27, 2025				
EMI Measurement Receiver	R&S	ESR26	101377	Sep.28, 2024	Sep.27, 2025				
Horn Antenna	TDK	HRN-0118	130940	Dec.10, 2024	Dec.11, 2027				
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Sep.28, 2024	Sep.27, 2025				
Horn Antenna	Schwarzbeck	BBHA9170	697	Jun 30, 2024	Jun 29, 2027				
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Sep.28, 2024	Sep.27, 2025				
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Sep.28, 2024	Sep.27, 2025				
Loop antenna	Schwarzbeck	1519B	80000	Dec.09, 2024	Dec.08, 2027				
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Sep.28, 2024	Sep.27, 2025				
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Sep.28, 2024	Sep.27, 2025				
	Software								
]	Description		Manufacturer	Name	Version				
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1				

Page 17 of 149

Other Instrument									
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date				
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.8, 2024	Oct.7, 2025				
Barometer	Yiyi	Baro	N/A	Oct.10, 2024	Oct.9, 2025				
Attenuator	Agilent	8495B	2814a12853	Sep.28, 2024	Sep.27, 2025				

Page 18 of 149

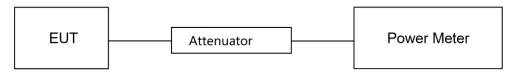
7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3								
Section	Test Item	Limit	Frequency Range (MHz)					
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	AVG Output Power	1 watt or 30 dBm	2400-2483.5					

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 11.9.2.3.1.

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the average output power, after any corrections for external attenuators and cables.

The test result in dBm by adding [10 log (1 / D)], where D is the duty cycle.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.5℃	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

Test Date	July 1, 2025	Test By	Bairong Liu

TEST RESULTS

Please refer to section "Test Data" - Appendix C

Page 19 of 149

7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

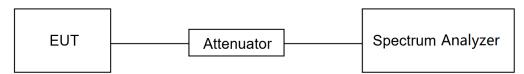
CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a) 6 dB Bandwidth ≥ 500 kHz		2400-2483.5		
ISED RSS-Gen Clause 6.7 99 % Occupied For reporting purposes only. 2400-2483.5				

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple


a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Page 20 of 149

TEST SETUP

TEST ENVIRONMENT

Temperature	24.5℃	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

Test Date	July 1, 2025	Test By	Bairong Liu

TEST RESULTS

Please refer to section "Test Data" - Appendix A&B

Page 21 of 149

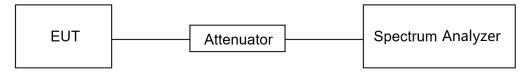
7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	power averaging (rms)
RBW	3 kHz ≤ RBW ≤ 100 kHz
VBW	≥3 × RBW
Span	1.5 x OBW bandwidth
Trace	Employ trace averaging(rms)mode over a minimum of 100 traces
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

Page 22 of 149

TEST ENVIRONMENT

Temperature	24.5℃	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

Test Date July 1, 20	Test By	Bairong Liu
----------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix D

Page 23 of 149

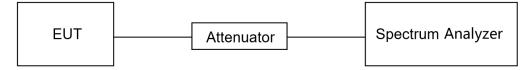
7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyzer and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.


Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

1.5020	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

Page 24 of 149

TEST ENVIRONMENT

Temperature	24.5℃	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

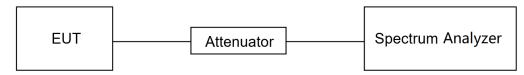
Test Date	July 1, 2025	Test By	Bairong Liu
-----------	--------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix E&F

Page 25 of 149

7.5. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.5℃	Relative Humidity	61%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

Test Date	July 1, 2025	Test By	Bairong Liu
-----------	--------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix G

Page 26 of 149

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz				
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Streng (dBuV/m)		
,		Quasi-P	Peak	
30 - 88	100	40		
88 - 216	150	43.5	;	
216 - 960	200	46		
Above 960	500	54		
Above 1000	500	Peak	Average	
Above 1000	500	74	54	

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz			
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)	
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300	
490 - 1705 kHz	63.7/F (F in kHz)	30	
1.705 - 30 MHz	0.08	30	

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.028	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 – 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
8.215 - 6.218	608 - 614	23.6 - 24.0
8.26775 - 6.26825	960 - 1427	31.2 - 31.8
8.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1845.5 - 1848.5	Above 38.6
8.362 - 8.366	1680 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5480	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 – 138		

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

Page 28 of 149

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

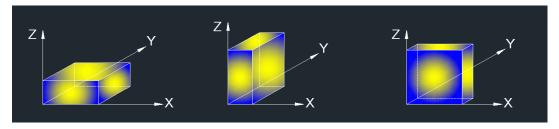
Page 29 of 149

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.


Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
IV/BW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.5. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Page 31 of 149

For Restricted Bandedge:

Note

- 1. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 2. PK=Peak: Peak detector.
- 3. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.5.
- 5. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
- 6. Both horizontal and vertical have been tested, only the worst data was recorded in the report.
- 7. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz):

Note:

- 1. Measurement = Reading Level + Correct Factor.
- 2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.
- 4. All modes have been tested, but only the worst data was recorded in the report.
- 5. $dBuA/m = dBuV/m 20Log10[120\pi] = dBuV/m 51.5$

For Radiate Spurious Emission (30 MHz ~ 1 GHz):

Note:

- 1. Result Level = Read Level + Correct Factor.
- 2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.
- 3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

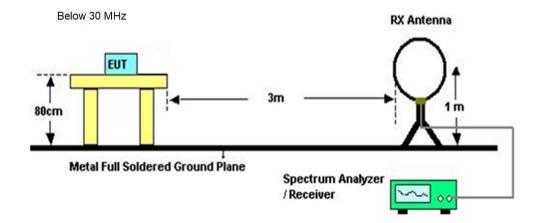
Note:

- 1. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 2. Peak: Peak detector.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.5.
- 5. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 6. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. All modes have been tested, but only the worst data was recorded in the report.

Page 32 of 149

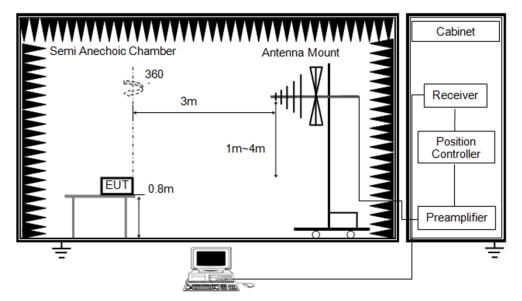
For Radiate Spurious Emission (3 GHz ~ 18 GHz):

Note:

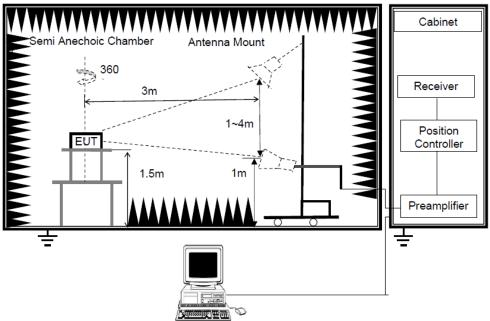

- 1. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 2. Peak: Peak detector.
- 3. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 4. For the transmitting duration, please refer to clause 7.5.
- 5. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
- 6. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 7. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz):

Note:


- 1. Measurement = Reading Level + Correct Factor.
- 2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 3. Peak: Peak detector.
- 4. All modes have been tested, but only the worst data was recorded in the report.

TEST SETUP



Below 1 GHz and above 30 MHz

Above 1GHz

Page 34 of 149

TEST ENVIRONMENT

Temperature	25 ℃	Relative Humidity	60%
Atmosphere Pressure	101kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

Test Date	July 9, 2025	Test By	Rex Huang
-----------	--------------	---------	-----------

TEST RESULTS

Please refer to section "Test Data" - Appendix H

Page 35 of 149

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

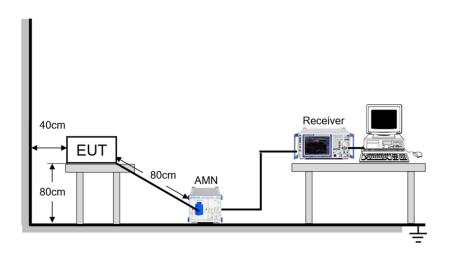
Pass

Page 36 of 149

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8


FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

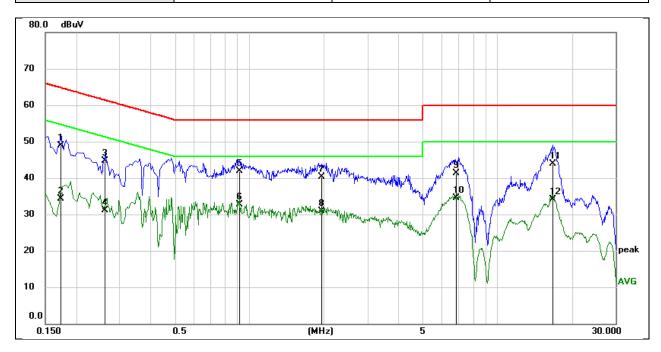
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

Page 37 of 149

TEST ENVIRONMENT

Temperature	22.9℃	Relative Humidity	53.6%
Atmosphere Pressure	101kPa	Test Voltage	AC 120V_60Hz

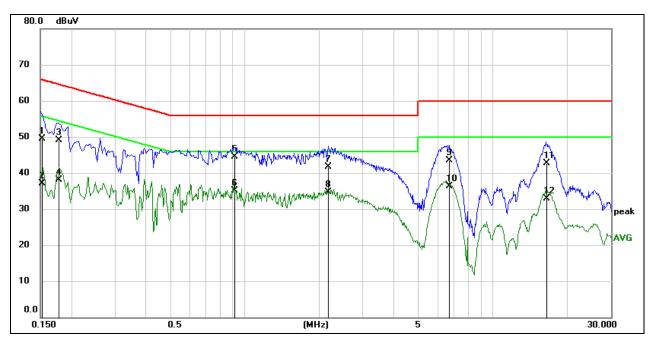

TEST DATE / ENGINEER

T (D)	July 11 2025	T (D	L +
Hest Date	July 11. 2025	Hest Bv	Deacon Ian
. ool Balo	July 11, 2020	1.00.0,	Boacon ran

Page 38 of 149

TEST RESULTS

Test Mode:	802.11b	Frequency(MHz):	2412
Line:	Line		


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1730	39.21	9.69	48.90	64.82	-15.92	QP
2	0.1730	24.53	9.69	34.22	54.82	-20.60	AVG
3	0.2608	35.06	9.64	44.70	61.41	-16.71	QP
4	0.2608	21.47	9.64	31.11	51.41	-20.30	AVG
5	0.9128	32.37	9.63	42.00	56.00	-14.00	QP
6	0.9128	23.13	9.63	32.76	46.00	-13.24	AVG
7	1.9472	30.64	9.73	40.37	56.00	-15.63	QP
8	1.9472	21.20	9.73	30.93	46.00	-15.07	AVG
9	6.9128	31.60	9.73	41.33	60.00	-18.67	QP
10	6.9128	24.81	9.73	34.54	50.00	-15.46	AVG
11	16.7661	34.11	9.74	43.85	60.00	-16.15	QP
12	16.7661	24.40	9.74	34.14	50.00	-15.86	AVG

Note:

- 1. Result = Reading + Correct Factor.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

Test Mode:	802.11b	Frequency(MHz):	2412
Line:	Neutral		

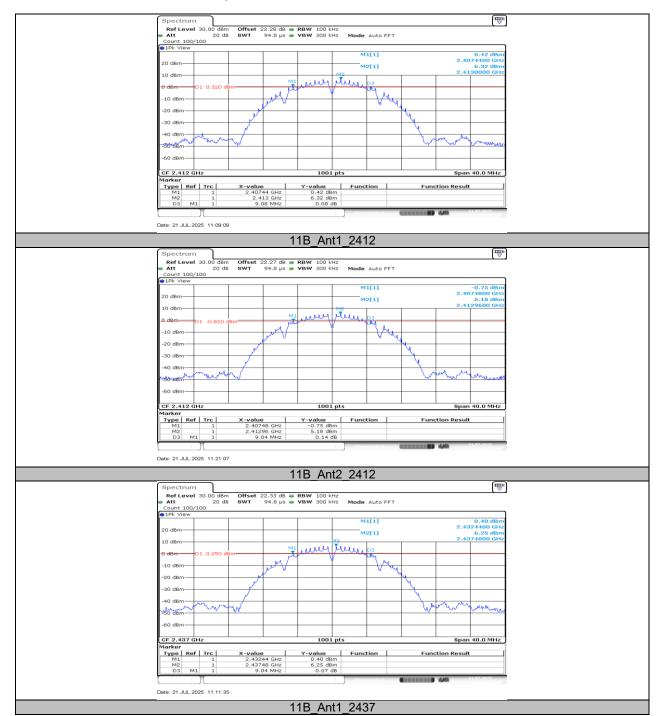
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1526	39.94	9.64	49.58	65.86	-16.28	QP
2	0.1526	27.39	9.64	37.03	55.86	-18.83	AVG
3	0.1783	39.53	9.64	49.17	64.56	-15.39	QP
4	0.1783	28.47	9.64	38.11	54.56	-16.45	AVG
5	0.9111	34.95	9.63	44.58	56.00	-11.42	QP
6	0.9111	25.46	9.63	35.09	46.00	-10.91	AVG
7	2.1777	32.09	9.64	41.73	56.00	-14.27	QP
8	2.1777	25.06	9.64	34.70	46.00	-11.30	AVG
9	6.6573	33.82	9.72	43.54	60.00	-16.46	QP
10	6.6573	26.63	9.72	36.35	50.00	-13.65	AVG
11	16.5728	32.97	9.74	42.71	60.00	-17.29	QP
12	16.5728	23.23	9.74	32.97	50.00	-17.03	AVG

Note:

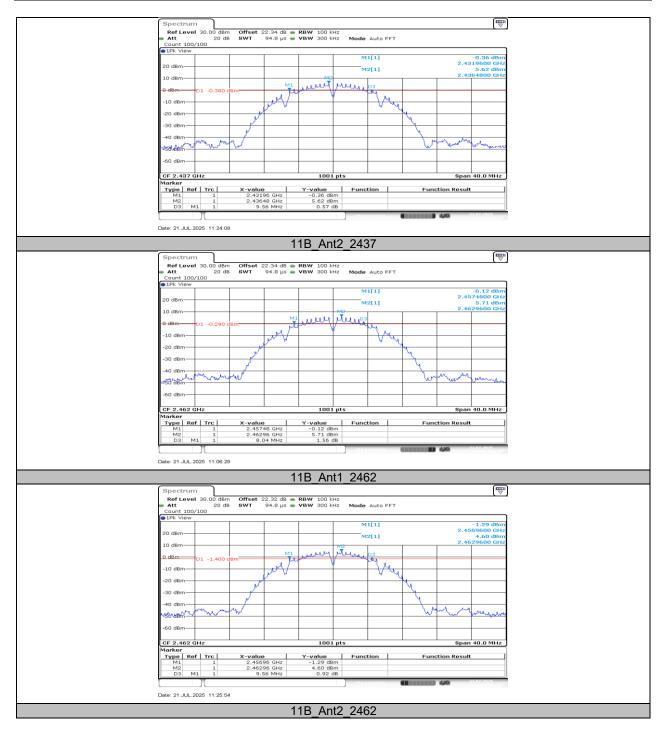
- 1. Result = Reading + Correct Factor.
- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

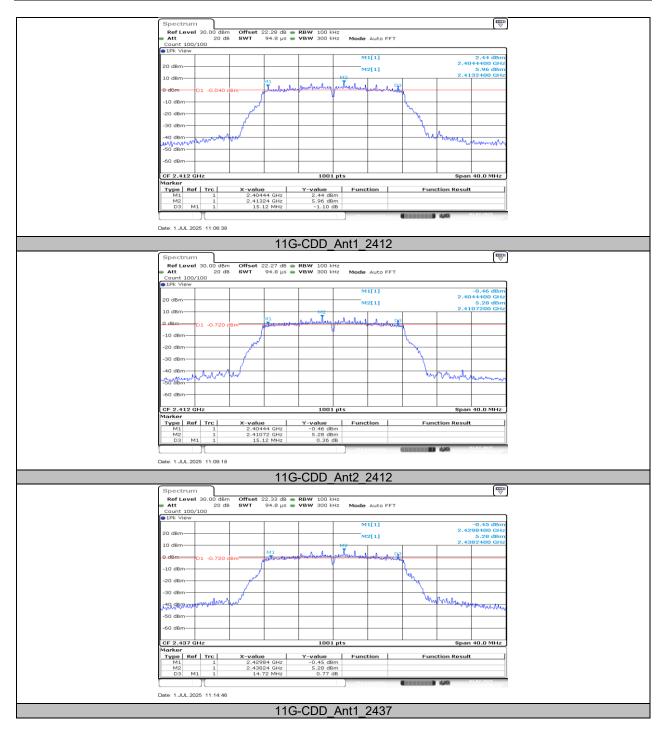
Note: All the modes have been tested, only the worst data was recorded in the report.

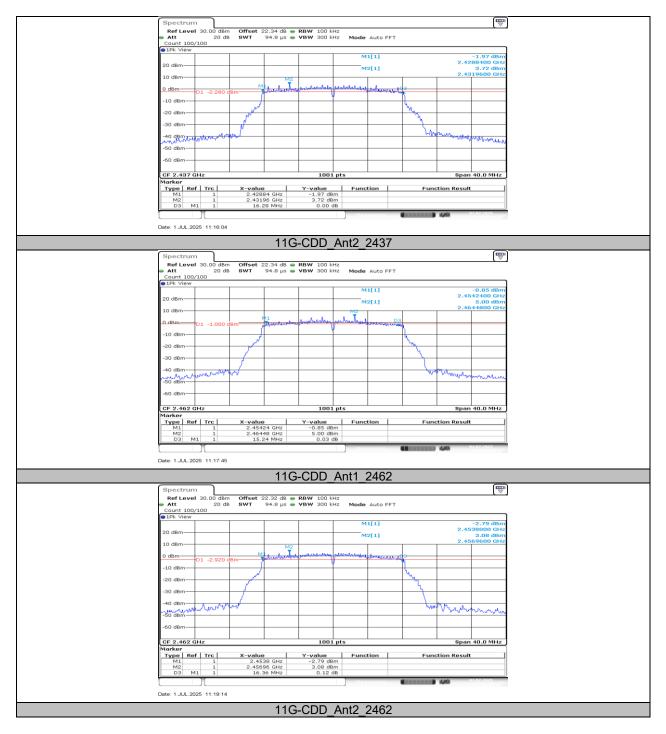
Page 40 of 149

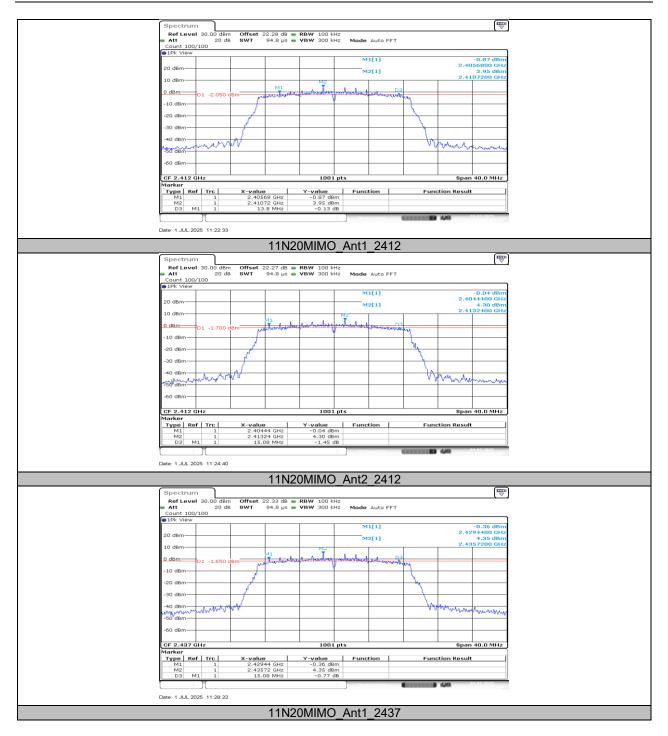

11. TEST DATA

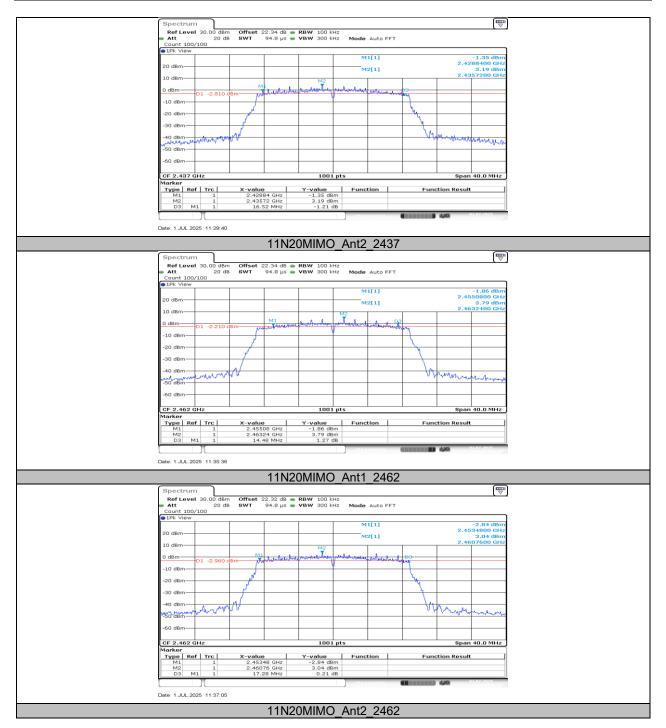
11.1. APPENDIX A: DTS BANDWIDTH 11.1.1. Test Result

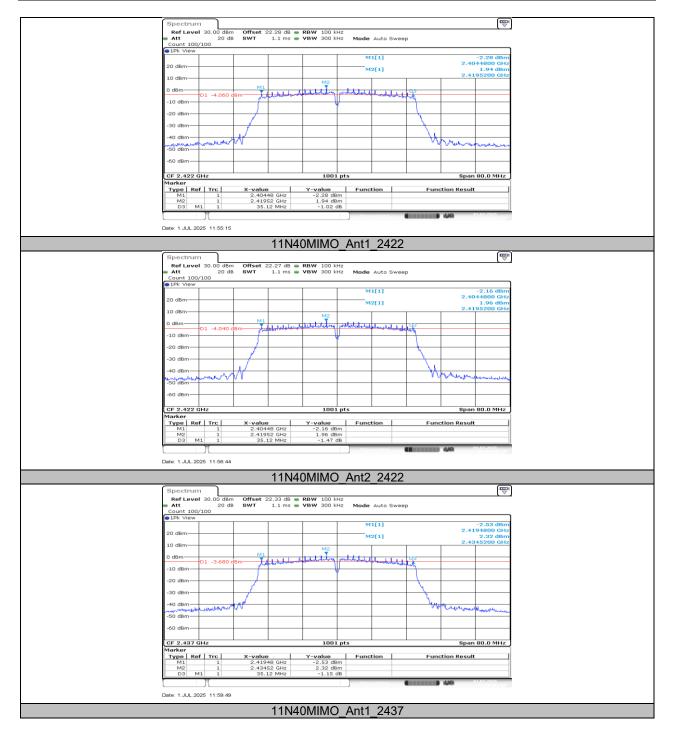

			DTS				
Toot Mode	A mata mana	Гиа ж. тамах (INAL I=1		C1 [NAL 1-1		1 ::4FN A1 1=1	\/a naliat
Test Mode	Antenna	Frequency[MHz]	BW	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
			[MHz]				
	Ant1	2412	9.08	2407.44	2416.52	≥0.5	PASS
	Ant2	2412	9.04	2407.48	2416.52	≥0.5	PASS
11B	Ant1	2437	9.04	2432.44	2441.48	≥0.5	PASS
116	Ant2	2437	9.56	2431.96	2441.52	≥0.5	PASS
	Ant1	2462	8.04	2457.48	2465.52	≥0.5	PASS
	Ant2	2462	9.56	2456.96	2466.52	≥0.5	PASS
	Ant1	2412	15.12	2404.44	2419.56	≥0.5	PASS
	Ant2	2412	15.12	2404.44	2419.56	≥0.5	PASS
11G-CDD	Ant1	2437	14.72	2429.84	2444.56	≥0.5	PASS
110-000	Ant2	2437	16.28	2428.84	2445.12	≥0.5	PASS
	Ant1	2462	15.24	2454.24	2469.48	≥0.5	PASS
	Ant2	2462	16.36	2453.80	2470.16	≥0.5	PASS
	Ant1	2412	13.80	2405.68	2419.48	≥0.5	PASS
	Ant2	2412	15.08	2404.44	2419.52	≥0.5	PASS
11N20MIMO	Ant1	2437	15.08	2429.44	2444.52	≥0.5	PASS
I IINZUIVIIIVIO	Ant2	2437	16.52	2428.84	2445.36	≥0.5	PASS
	Ant1	2462	14.48	2455.08	2469.56	≥0.5	PASS
	Ant2	2462	17.28	2453.48	2470.76	≥0.5	PASS
	Ant1	2422	35.12	2404.48	2439.60	≥0.5	PASS
	Ant2	2422	35.12	2404.48	2439.60	≥0.5	PASS
11N40MIMO	Ant1	2437	35.12	2419.48	2454.60	≥0.5	PASS
I IN4UMIMO	Ant2	2437	35.04	2419.48	2454.52	≥0.5	PASS
	Ant1	2452	35.12	2434.48	2469.60	≥0.5	PASS
	Ant2	2452	35.12	2434.48	2469.60	≥0.5	PASS

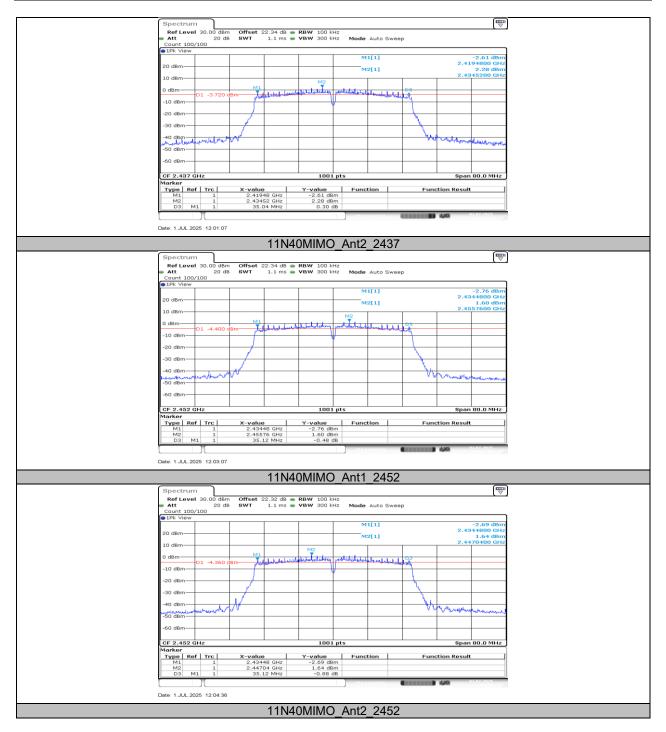

11.1.2. Test Graphs

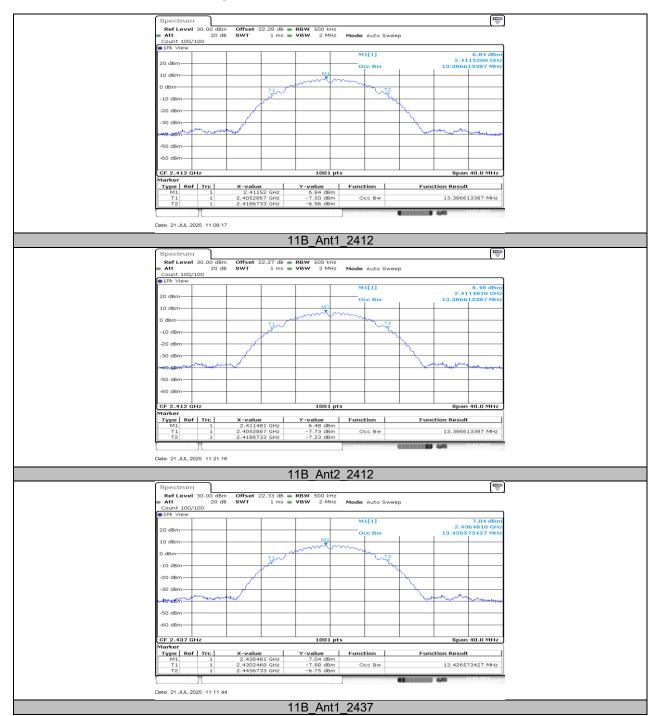




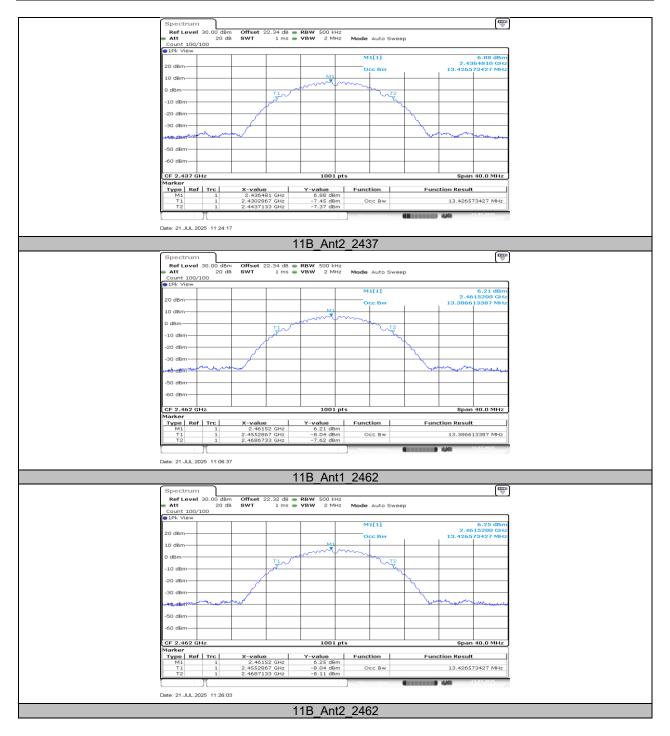


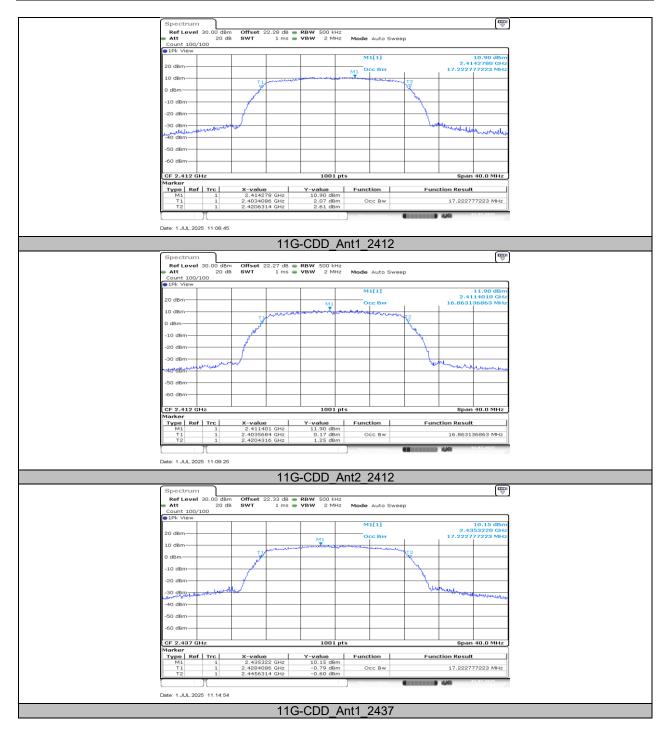


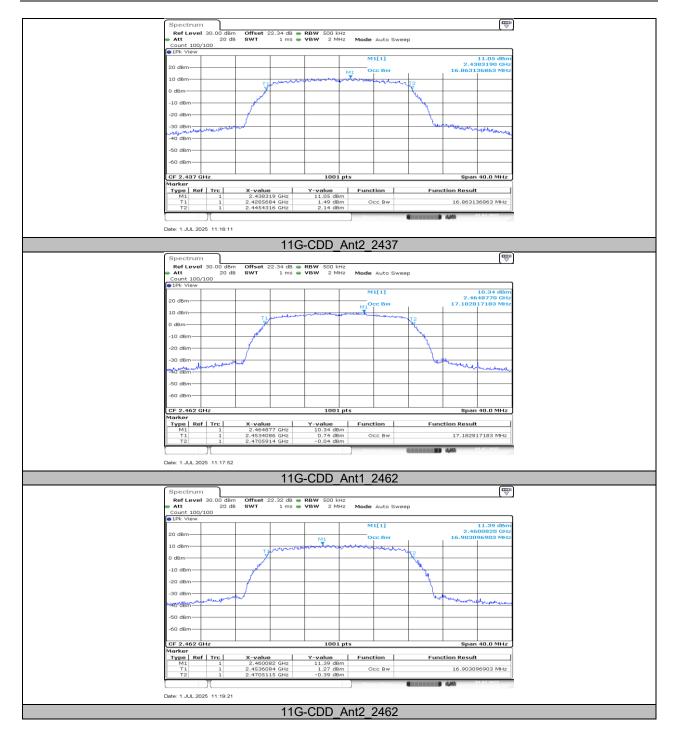


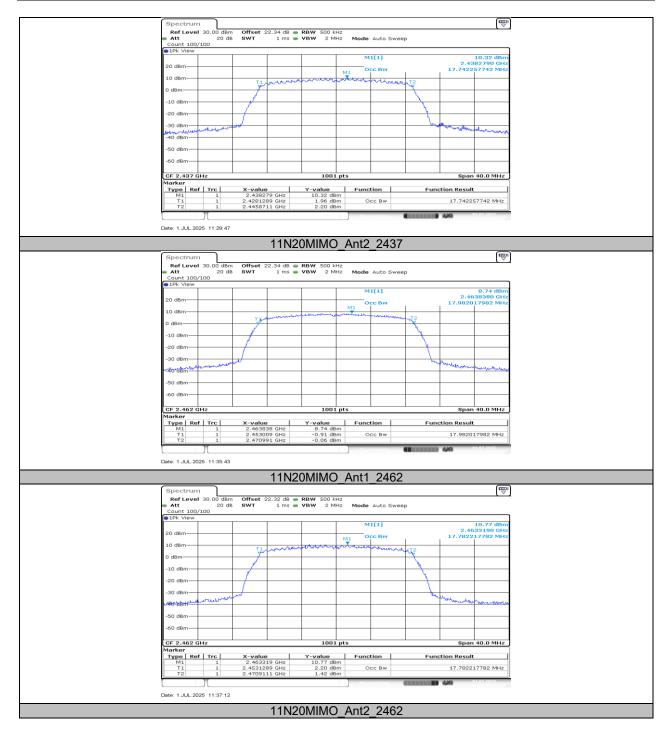

Page 49 of 149

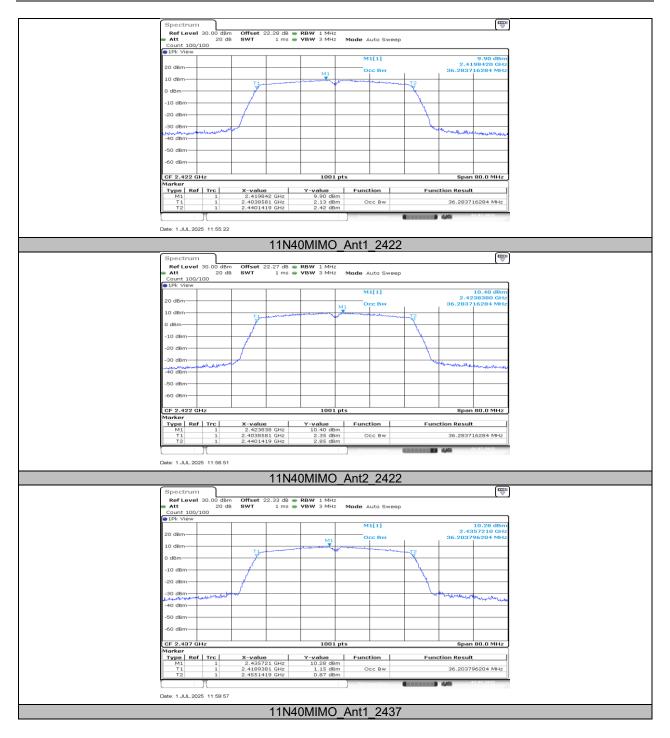
11.2. APPENDIX B: OCCUPIED CHANNEL BANDWIDTH 11.2.1. Test Result

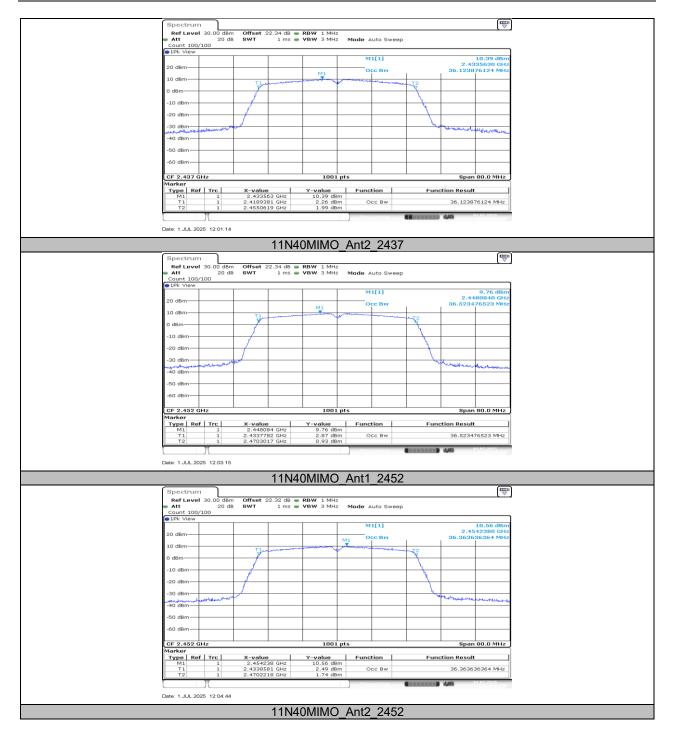

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Verdict
	Ant1	2412	13.387	2405.2867	2418.6733	≥0.5
	Ant2	2412	13.387	2405.2867	2418.6733	≥0.5
11B	Ant1	2437	13.427	2430.2468	2443.6733	≥0.5
IID	Ant2	2437	13.427	2430.2867	2443.7133	≥0.5
	Ant1	2462	13.387	2455.2867	2468.6733	≥0.5
	Ant2	2462	13.427	2455.2867	2468.7133	≥0.5
	Ant1	2412	17.223	2403.4086	2420.6314	≥0.5
	Ant2	2412	16.863	2403.5684	2420.4316	≥0.5
11G-CDD	Ant1	2437	17.223	2428.4086	2445.6314	≥0.5
TIG-CDD	Ant2	2437	16.863	2428.5684	2445.4316	≥0.5
	Ant1	2462	17.183	2453.4086	2470.5914	≥0.5
	Ant2	2462	16.903	2453.6084	2470.5115	≥0.5
	Ant1	2412	18.022	2403.0090	2421.0310	≥0.5
	Ant2	2412	17.782	2403.1289	2420.9111	≥0.5
11N20MIMO	Ant1	2437	17.982	2428.0090	2445.9910	≥0.5
I INZUMIMO	Ant2	2437	17.742	2428.1289	2445.8711	≥0.5
	Ant1	2462	17.982	2453.0090	2470.9910	≥0.5
	Ant2	2462	17.782	2453.1289	2470.9111	≥0.5
	Ant1	2422	36.284	2403.8581	2440.1419	≥0.5
	Ant2	2422	36.284	2403.8581	2440.1419	≥0.5
11N40MIMO	Ant1	2437	36.204	2418.9381	2455.1419	≥0.5
I I IN4UIVIIIVIU	Ant2	2437	36.124	2418.9381	2455.0619	≥0.5
	Ant1	2452	36.523	2433.7782	2470.3017	≥0.5
	Ant2	2452	36.364	2433.8581	2470.2218	≥0.5


11.2.2. Test Graphs









Page 58 of 149

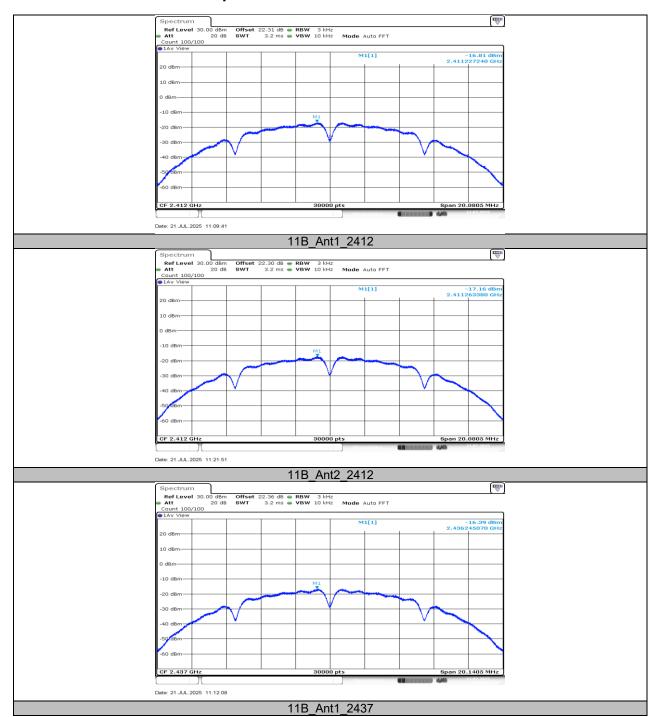
11.3. APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER 11.3.1. Test Result

Test Mode	Antenna	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
	Ant1	2412	14.22	≤30.00	PASS
11B	Ant2	2412	14.02	≤30.00	PASS
	Ant1	2437	14.54	≤30.00	PASS
	Ant2	2437	14.41	≤30.00	PASS
	Ant1	2462	13.69	≤30.00	PASS
	Ant2	2462	13.77	≤30.00	PASS
	Ant1	2412	15.13	≤30.00	PASS
	Ant2	2412	15.07	≤30.00	PASS
	total	2412	18.11	≤30.00	PASS
	Ant1	2437	14.96	≤30.00	PASS
11G-CDD	Ant2	2437	14.90	≤30.00	PASS
	total	2437	17.94	≤30.00	PASS
	Ant1	2462	14.85	≤30.00	PASS
	Ant2	2462	14.99	≤30.00	PASS
	total	2462	17.93	≤30.00	PASS
	Ant1	2412	14.14	≤30.00	PASS
	Ant2	2412	14.03	≤30.00	PASS
	total	2412	17.10	≤30.00	PASS
	Ant1	2437	13.93	≤30.00	PASS
11N20MIMO	Ant2	2437	13.76	≤30.00	PASS
	total	2437	16.86	≤30.00	PASS
	Ant1	2462	13.84	≤30.00	PASS
	Ant2	2462	13.84	≤30.00	PASS
	total	2462	16.85	≤30.00	PASS
	Ant1	2422	14.03	≤30.00	PASS
	Ant2	2422	14.06	≤30.00	PASS
	total	2422	17.06	≤30.00	PASS
	Ant1	2437	14.03	≤30.00	PASS
11N40MIMO	Ant2	2437	14.05	≤30.00	PASS
	total	2437	17.05	≤30.00	PASS
	Ant1	2452	14.09	≤30.00	PASS
	Ant2	2452	13.97	≤30.00	PASS
	total	2452	17.04	≤30.00	PASS

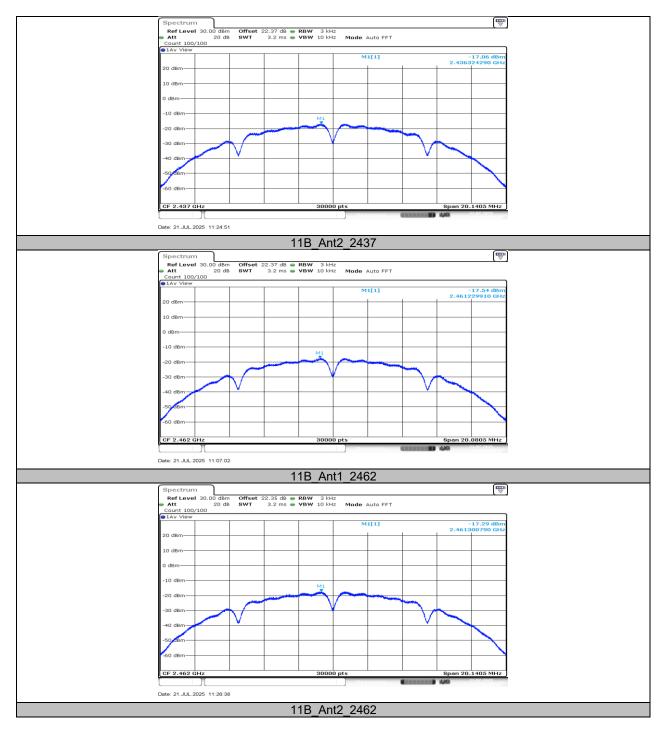
Note: 1. Conducted Power=Meas. Level+ Correction Factor

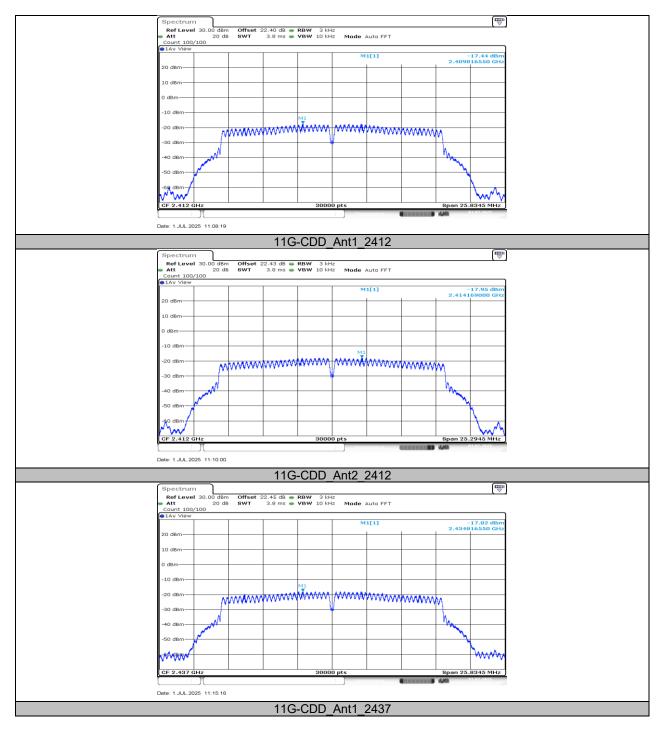
2. The Duty Cycle Factor (refer to section 7.5) had already compensated to the test data.

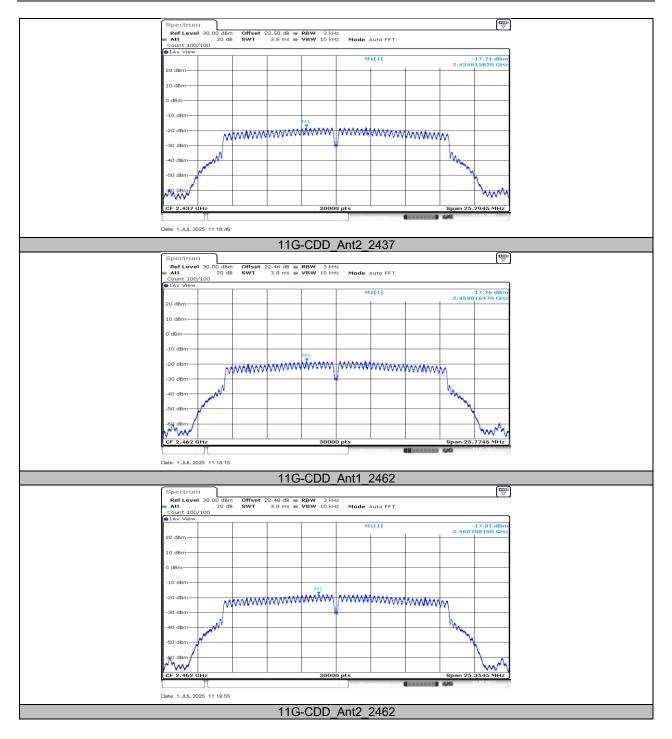
Page 59 of 149

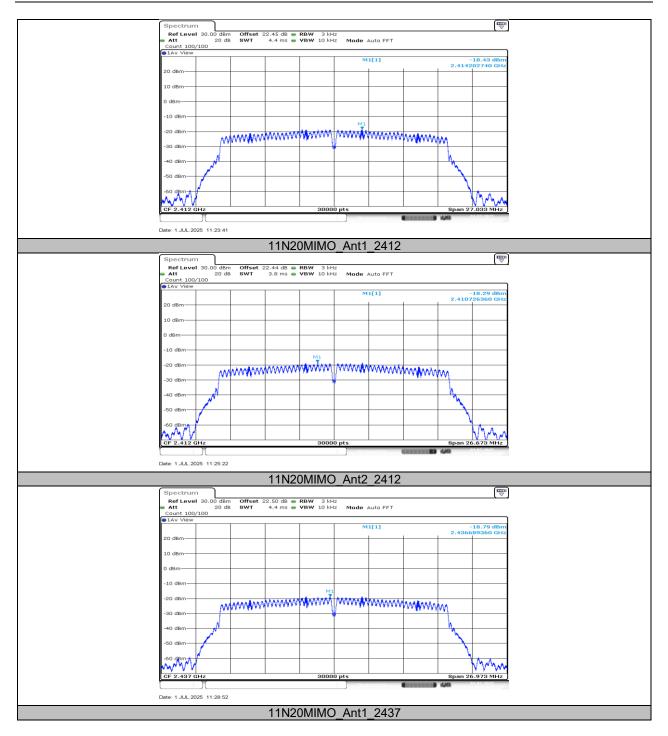

11.4. APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY 11.4.1. Test Result

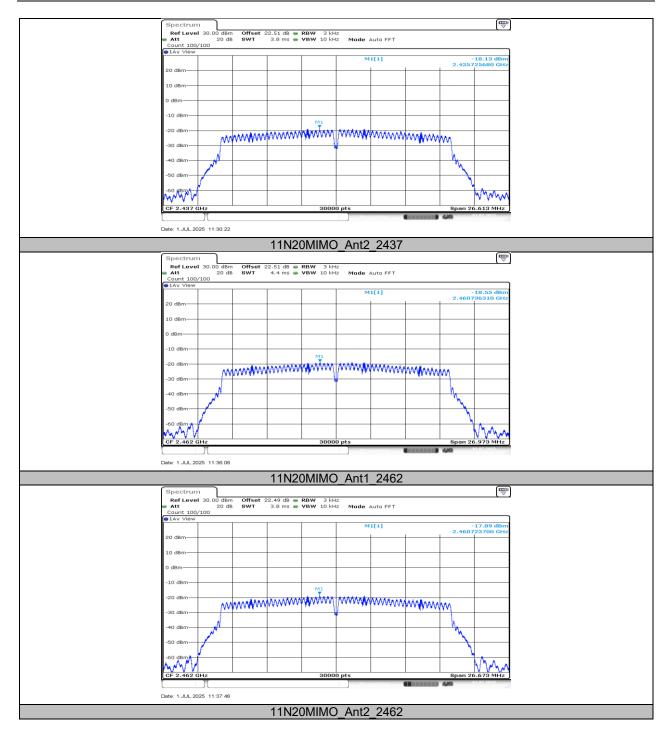
Test Mode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
	Ant1	2412	-16.81	≤8.00	PASS
	Ant2	2412	-17.16	≤8.00	PASS
11B	Ant1	2437	-16.39	≤8.00	PASS
IID	Ant2	2437	-17.06	≤8.00	PASS
	Ant1	2462	-17.54	≤8.00	PASS
	Ant2	2462	-17.29	≤8.00	PASS
	Ant1	2412	-17.44	≤8.00	PASS
	Ant2	2412	-17.95	≤8.00	PASS
	total	2412	-14.68	≤8.00	PASS
	Ant1	2437	-17.82	≤8.00	PASS
11G-CDD	Ant2	2437	-17.71	≤8.00	PASS
	total	2437	-14.75	≤8.00	PASS
	Ant1	2462	-17.76	≤8.00	PASS
	Ant2	2462	-17.81	≤8.00	PASS
	total	2462	-14.77	≤8.00	PASS
	Ant1	2412	-18.43	≤8.00	PASS
	Ant2	2412	-18.29	≤8.00	PASS
	total	2412	-15.35	≤8.00	PASS
	Ant1	2437	-18.79	≤8.00	PASS
11N20MIMO	Ant2	2437	-18.13	≤8.00	PASS
	total	2437	-15.44	≤8.00	PASS
	Ant1	2462	-18.55	≤8.00	PASS
	Ant2	2462	-17.89	≤8.00	PASS
	total	2462	-15.20	≤8.00	PASS
	Ant1	2422	-20.03	≤8.00	PASS
	Ant2	2422	-19.17	≤8.00	PASS
	total	2422	-16.57	≤8.00	PASS
	Ant1	2437	-19.76	≤8.00	PASS
11N40MIMO	Ant2	2437	-19.13	≤8.00	PASS
	total	2437	-16.42	≤8.00	PASS
	Ant1	2452	-20.04	≤8.00	PASS
	Ant2	2452	-19.94	≤8.00	PASS
	total	2452	-16.98	≤8.00	PASS

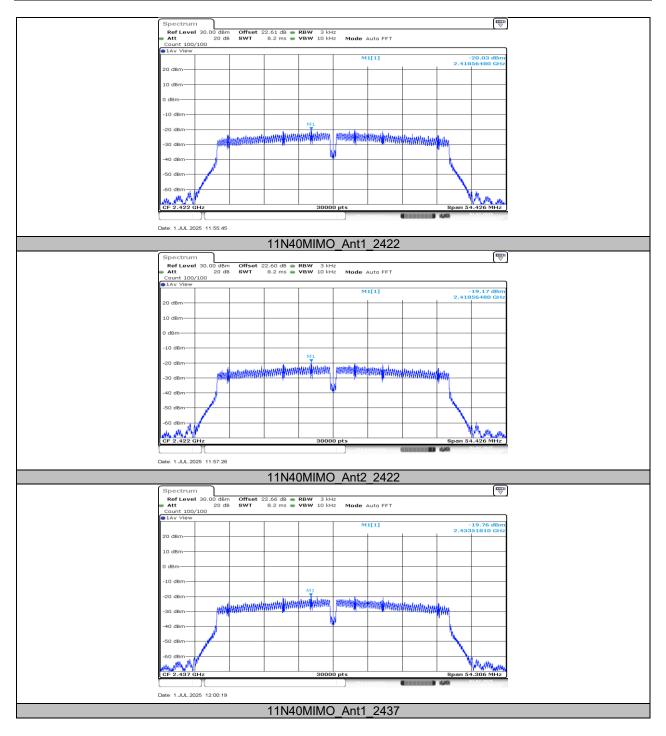

Note: 1. The Duty Cycle Factor (refer to section 7.5) had already compensated to the test data.

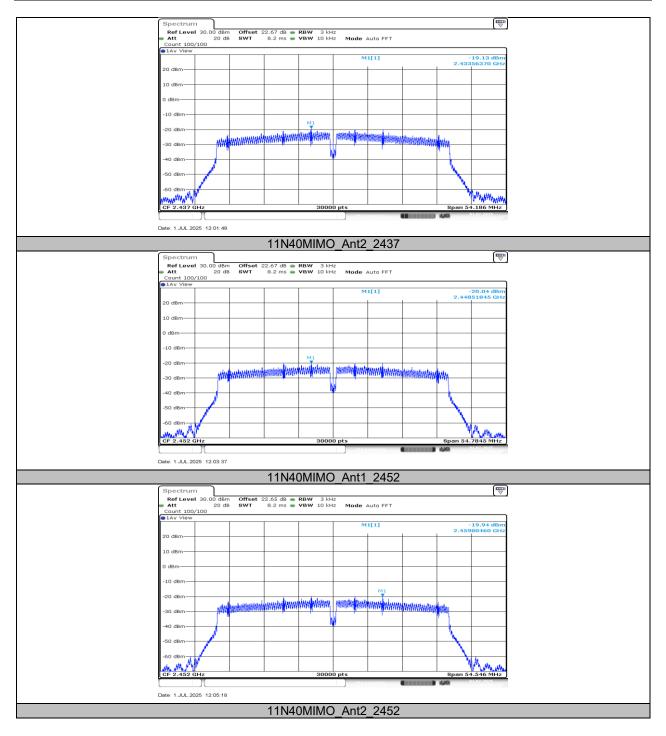

11.4.2. Test Graphs

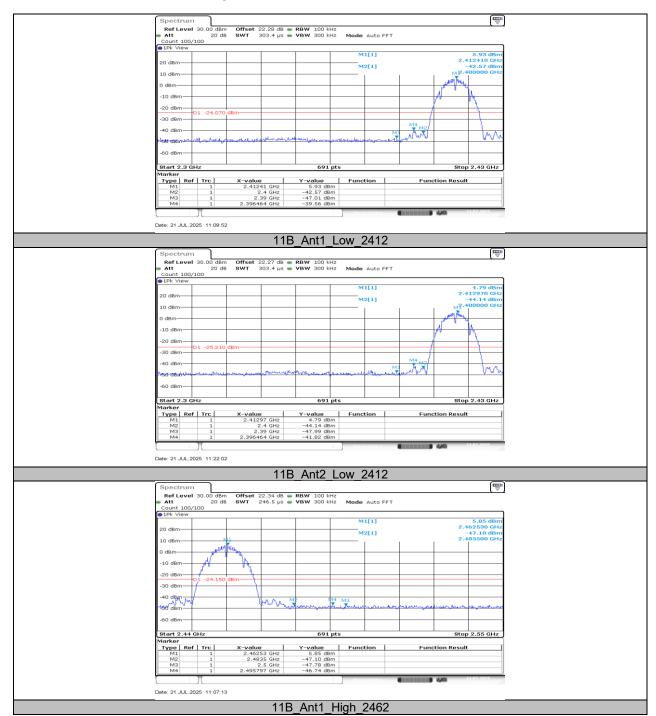











Page 68 of 149

11.5. APPENDIX E: BAND EDGE MEASUREMENTS 11.5.1. Test Result

Test Mode	Antenna	ChName	Frequency [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
	Ant1	Low	2412	5.93	-39.56	≤-24.07	PASS
11B	Ant2	Low	2412	4.79	-41.82	≤-25.21	PASS
IID	Ant1	High	2462	5.85	-46.74	≤-24.15	PASS
	Ant2	High	2462	5.52	-46.55	≤-24.48	PASS
	Ant1	Low	2412	3.87	-38.05	≤-26.13	PASS
11G-CDD	Ant2	Low	2412	4.77	-38.65	≤-25.23	PASS
TIG-CDD	Ant1	High	2462	4.83	-45.64	≤-25.17	PASS
	Ant2	High	2462	3.99	-44.32	≤-26.01	PASS
	Ant1	Low	2412	3.59	-40.47	≤-26.41	PASS
44100141140	Ant2	Low	2412	4.22	-38.7	≤-25.78	PASS
11N20MIMO	Ant1	High	2462	3.97	-45.17	≤-26.03	PASS
	Ant2	High	2462	4.11	-45.96	≤-25.89	PASS
	Ant1	Low	2422	1.43	-38.33	≤-28.57	PASS
141140141140	Ant2	Low	2422	1.37	-36.1	≤-28.63	PASS
11N40MIMO	Ant1	High	2452	1.34	-45.35	≤-28.66	PASS
	Ant2	High	2452	-0.22	-45.44	≤-30.22	PASS

11.5.2. Test Graphs

