

TESTING CENTRE TE	TEST REPO	RT				
FCC ID:	2AC23-DCT2J					
Test Report No::	TCT220328E084	CT220328E084				
Date of issue::	Apr. 27, 2022	pr. 27, 2022				
Testing laboratory:	SHENZHEN TONGCE TES	TING LAB	\			
Testing location/ address:	TCT Testing Industrial Park Street, Bao'an District Shen Republic of China					
Applicant's name::	Hui Zhou Gaoshengda Tecl	nnology Co., LTD				
Address:	NO.75 Zhongkai Developmo	ent Area, Huizhou, Guan	gdong, China			
Manufacturer's name:	Hui Zhou Gaoshengda Tech	nnology Co., LTD	\			
Address:	NO.75 Zhongkai Development Area, Huizhou, Guangdong, China					
Standard(s):	FCC CFR Title 47 Part 15 S KDB 662911 D01 Multiple T KDB 789033 D02 General U v02r01	ransmitter Output v02r01				
Product Name::	WIFI+BT Module					
Trade Mark:	N/A					
Model/Type reference:	DCT2JM2001					
Rating(s)::	DC 3.3V	(3)	(61)			
Date of receipt of test item	Mar. 28, 2022					
Date (s) of performance of test:	Mar. 28, 2022 ~ Apr. 27, 20	22				
Tested by (+signature):	Aaron MO	Auron Magce				
Check by (+signature):	Beryl ZHAO	Boy C TT CT	STING			
Approved by (+signature):	Tomsin	forms is a				

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TABLE OF CONTENTS

1.1. EUT description	3 4
	4
1.3. Test Frequency	
	. 5
2. Test Result Summary	
3. General Information	. 6
3.1. Test environment and mode	
3.2. Description of Support Units	7
4. Facilities and Accreditations	
4.1. Facilities	8
4.2. Location	8
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	. 9
5.1. Antenna requirement	9
5.2. Conducted Emission	
5.3. Maximum Conducted Output Power	14
5.4. 6dB Emission Bandwidth	
5.5. 26dB Bandwidth and 99% Occupied Bandwidth	
5.6. Power Spectral Density	22
5.7. Band edge	
5.8. Unwanted Emissions	42
5.9. Frequency Stability Measurement	60
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

Report No.: TCT220328E084

1.1. EUT description

Product Name:	WIFI+BT Module	
Model/Type reference:	DCT2JM2001	
Sample Number:	TCT220328E061-0101	
Operation Frequency:	Band 1: 5180 MHz -5240 MHz Band 2A: 5260 MHz -5320 MHz Band 2C: 5500 MHz -5720 MHz Band 3: 5745 MHz -5825 MHz	
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz	
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFD)	M)
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK	
Antenna Type:	PIFA Antenna	(6)
Antenna Gain:	3dBi	
Rating(s):	DC 3.3V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 337

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TESTING CENTRE TECHNOLOGY Report No.: TCT220328E084

1.3. Test Frequency

Band 1

20M	1Hz		40MHz	80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		
48	5240				

Band 2A

20M	1Hz		40MHz	80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260	54	5270	58	5290
60	5300	62	5310		
64	5320	(C)	(.c.)		(.c.)

Band 2C

20MHz		40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
100	5500	102	5510	106	5530
120	5600	118	5590	122	5610
140	5700	134	5670		(¿C)

Band 3

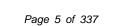
20MHz		40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825	(C)	(C)		(C)

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 337

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(a)	PASS
Radiated Emission	§15.407(a)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Software:	
Software Information:	WCN Combo Tool
Power Level:	Default
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 100%)

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

3	Mode	Data rate		
	802.11a	6 Mbps		
	802.11n(HT20)	6.5 Mbps		
	13.5 Mbps			
	802.11ac(VHT20) 6.5 Mbps			
	802.11ac(VHT40) 13.5 Mbps			
	802.11ac(VHT80)	29.3 Mbps		

Report No.: TCT220328E084

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Notebook Computer	G3 3500	00342-36088-998 32-AAOEM	<u>()</u> /	DELL

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 337

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an

District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

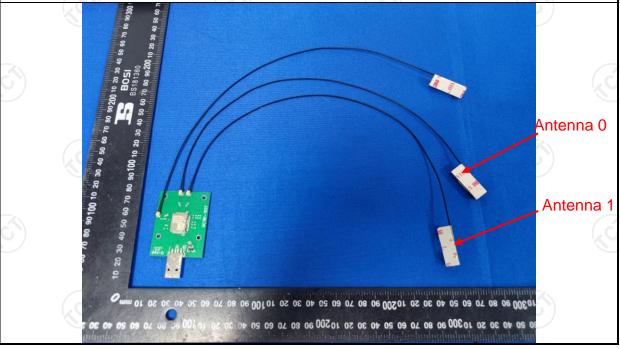
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT220328E084

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Pa


FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT has two PIFA antennas, and the best case gains of the both antennas are 3dBi.

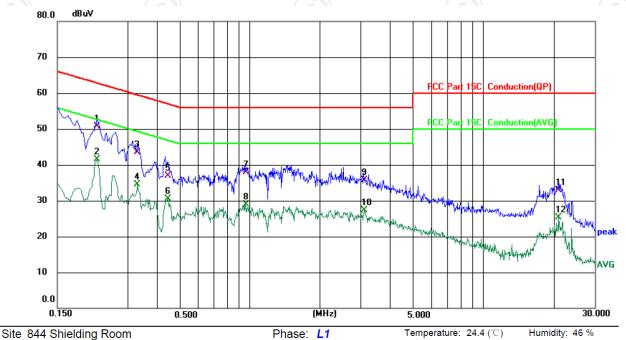
5.2. Conducted Emission

5.2.1. Test Specification

Test Method: ANSI C63.10:2013 Frequency Range: REW=9 kHz, VBW=30 kHz, Sweep time=auto Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Receiver E.U.T AC power LISN Test Mode: Transmitting Mode 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH couplin impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH couplin impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH couplin impedance for the measuring equipment. 3. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH couplin impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup an photographs). 3. Both sides of A.C. line are checked for maximur conducted interference. In order to find the maximu									
Test Setup: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto	Test Requirement:	FCC Part15 C Section	15.207	E C					
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto	Test Method:	ANSI C63.10:2013							
Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane LISN Line impedence Stabilization Network Test table height-0 8m	Frequency Range:	150 kHz to 30 MHz		(6)					
Limits: (MHz) Quasi-peak Average	Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto					
Test Setup: Consider the procedure		Frequency range	Limit (dBuV)					
Test Setup: Consider the procedure		(MHz) Quasi-peak Aver							
Test Setup: Reference Plane	Limits:								
Test Setup: Test Mode: Transmitting Mode			56	 					
Test Setup: Test table/Insulation plane			60	50					
Test Setup: Test Setup: E.U.T AC power Filter Ac power		Reference	e Plane						
1. The E.U.T and simulators are connected to the mai power through a line impedance stabilization networ (L.I.S.N.). This provides a 50ohm/50uH couplin impedance for the measuring equipment. 2. The peripheral devices are also connected to the mai power through a LISN that provides a 50ohm/50ul coupling impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup an photographs). 3. Both sides of A.C. line are checked for maximur conducted interference. In order to find the maximur emission, the relative positions of equipment and all of the interface cables must be changed according to	Test Setup:	E.U.T AC power Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network							
power through a line impedance stabilization networ (L.I.S.N.). This provides a 50ohm/50uH couplin impedance for the measuring equipment. 2. The peripheral devices are also connected to the mai power through a LISN that provides a 50ohm/50ul coupling impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup an photographs). 3. Both sides of A.C. line are checked for maximur conducted interference. In order to find the maximur emission, the relative positions of equipment and all of the interface cables must be changed according to	Test Mode:	Transmitting Mode							
ANSI C63.10: 2013 on conducted measurement.	Test Procedure:	power through a line (L.I.S.N.). This proimpedance for the magnetic power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferer emission, the relative the interface cables.	e impedance stabovides a 50ohm neasuring equipmeses are also connects. SN that provides with 50ohm termediagram of the line are checked are. In order to fine positions of equals must be change	bilization network n/50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum of the maximum ipment and all of led according to					
Test Result: PASS	Test Result:			6					

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)									
Equipment	Manufacturer	Model	Serial Number	Calibration Due					
EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022					
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2023					
Line-5	тст	CE-05	N/A	Jul. 07, 2022					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					



5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

one off officiality room.

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Notebook Computer Input AC 120 V/60 Hz)

Report No.: TCT220328E084

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.2220	41.13	9.55	50.68	62.74	-12.06	QP	
2	*	0.2220	31.95	9.55	41.50	52.74	-11.24	AVG	
3		0.3300	33.84	9.61	43.45	59.45	-16.00	QP	
4		0.3300	24.90	9.61	34.51	49.45	-14.94	AVG	
5		0.4460	27.23	9.66	36.89	56.95	-20.06	QP	
6		0.4460	20.90	9.66	30.56	46.95	-16.39	AVG	
7		0.9619	28.20	9.74	37.94	56.00	-18.06	QP	
8		0.9619	19.14	9.74	28.88	46.00	-17.12	AVG	
9		3.0979	25.90	9.88	35.78	56.00	-20.22	QP	
10		3.0979	17.37	9.88	27.25	46.00	-18.75	AVG	
11		21.1060	23.18	9.68	32.86	60.00	-27.14	QP	
12		21.1060	15.63	9.68	25.31	50.00	-24.69	AVG	

Note:

Freq. = Emission frequency in MHz

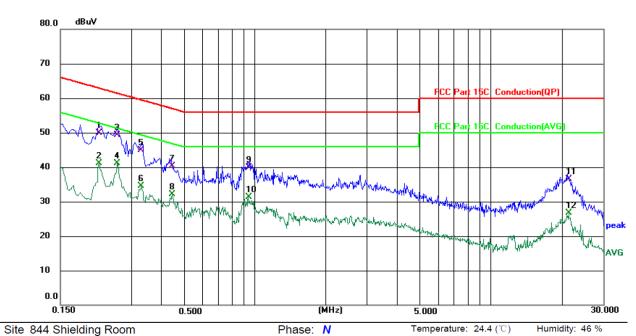
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Notebook Computer Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.2179	40.28	9.55	49.83	62.90	-13.07	QP	
2		0.2179	31.49	9.55	41.04	52.90	-11.86	AVG	
3		0.2615	39.68	9.57	49.25	61.38	-12.13	QP	
4	*	0.2615	31.60	9.57	41.17	51.38	-10.21	AVG	
5		0.3300	35.35	9.61	44.96	59.45	-14.49	QP	
6		0.3300	24.92	9.61	34.53	49.45	-14.92	AVG	
7		0.4460	30.72	9.66	40.38	56.95	-16.57	QP	
8		0.4460	22.37	9.66	32.03	46.95	-14.92	AVG	
9		0.9419	30.21	9.74	39.95	56.00	-16.05	QP	
10		0.9419	21.56	9.74	31.30	46.00	-14.70	AVG	
11		21.4420	26.72	9.70	36.42	60.00	-23.58	QP	
12		21.4420	16.96	9.70	26.66	50.00	-23.34	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

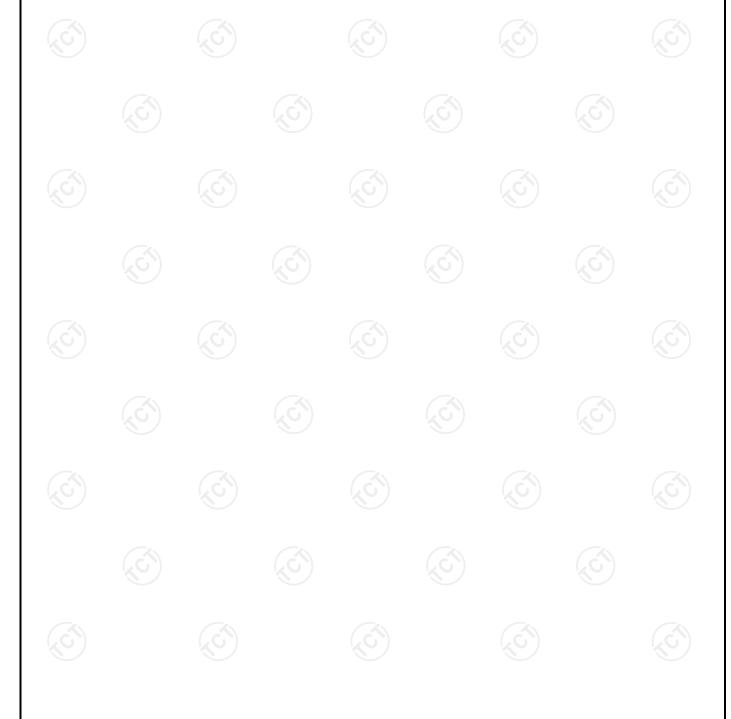
Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Middle channel and 802.11a transmit with antenna 0) was submitted only.

5.3. Maximum Conducted Output Power


5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section					
Test Method:	KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section E						
	Frequency Band (MHz)	Limit					
	5180 - 5240	24dBm(250mW) for client device					
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz					
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz					
	5745 - 5825	30dBm(1W)					
Test Setup:	Power meter	EUT					
Test Mode:	Transmitting mode w	vith modulation					
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures Ne Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 						
Test Result:	PASS						
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power						

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Power Meter	Agilent	E4418B	GB43312526	Jul. 07, 2022
Power Sensor	Agilent	E9301A	MY41497725	Jul. 07, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.3.3. Test Data

Configuration Band 1 (5180 - 5240 MHz) / Antenna 0+Antenna 1									
Mode	Test channel		Conducted (A out Power (dBr	Limit	Result				
		Ant0	Ant1	Total	(dBm)				
11a	CH36	13.96	14.18	/	24	PASS			
11a	CH40	14.64	14.11) /	24	PASS			
11a	CH48	14.54	13.92	/	24	PASS			
11n(HT20)	CH36	11.82	12.36	15.11	24	PASS			
11n(HT20)	CH40	11.80	10.35	14.15	24	PASS			
11n(HT20)	CH48	12.56	10.11	14.52	24	PASS			
11n(HT40)	CH38	13.28	12.95	16.13	24	PASS			
11n(HT40)	CH46	13.45	12.84	16.17	24	PASS			
11ac(VHT20)	CH36	11.26	12.26	14.80	24	PASS			
11ac(VHT20)	CH40	11.78	12.31	15.06	24	PASS			
11ac(VHT20)	CH48	12.58	12.03	15.32	24	PASS			
11ac(VHT40)	CH38	13.38	12.97	16.19	24	PASS			
11ac(VHT40)	CH46	13.42	12.98	16.22	24	PASS			
11ac(VHT80)	CH42	11.71	12.49	15.13	24	PASS			

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for Nant≤ 4;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any NANT;

Array Gain = $5 \log(N_{ANT}/N_{SS})$ dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$. Because $N_{ANT}=3$, so Array Gain = 0, Directional gain = G_{ANT} + Array Gain < 6dBi, power limit = 24dBm.

Configuration Band 2A (5260 - 5320 MHz) / Antenna 0+Antenna 1									
Mode	Test channel	Maximum Conducted (Average) Output Power (dBm)			26 dB Bandwidth	11dBm+ 10logB	Limit (dBm)	Result	
		Ant0	Ant1	Total	(MHz)	(dBm)	(3.2.1.)		
11a	CH52	13.36	14.47	/	19.42	23.88	23.88	PASS	
11a	CH60	13.32	14.59	/	19.61	23.92	23.92	PASS	
11a	CH64	13.60	14.55	/	19.52	23.90	23.90	PASS	
11n(HT20)	CH52	12.68	13.65	16.20	20.10	24.03	24	PASS	
11n(HT20)	CH60	12.75	13.77	16.30	20.18	24.05	24	PASS	
11n(HT20)	CH64	12.81	13.68	16.28	19.90	23.99	23.99	PASS	
11n(HT40)	CH54	12.69	13.58	16.17	39.99	27.02	24	PASS	
11n(HT40)	CH62	12.90	13.81	16.39	40.03	27.02	24	PASS	
11ac(VHT20)	CH52	12.69	13.62	16.19	19.94	24.00	24	PASS	
11ac(VHT20)	CH60	12.76	13.71	16.27	20.02	24.01	24	PASS	
11ac(VHT20)	CH64	12.91	13.69	16.33	20.04	24.02	24	PASS	
11ac(VHT40)	CH54	12.67	13.51	16.12	40.32	27.06	24	PASS	
11ac(VHT40)	CH62	12.92	13.85	16.42	39.97	27.02	24	PASS	
11ac(VHT80)	CH58	11.72	13.76	15.87	80.45	30.06	24	PASS	

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any NANT;

Array Gain = $5 \log(N_{\text{ANT}}/N_{\text{SS}})$ dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{\text{ANT}} \ge 5$. Because $N_{\text{ANT}} = 3$, so Array Gain = 0, Directional gain = $G_{\text{ANT}} + A$ rray Gain < 6dBi, power limit = 24dBm.

Note: The maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz

Configuration Band 2C (5500 - 5720 MHz) / Antenna 0+Antenna 1									
Mode	Test channel	nel Output Power (dBm)))	26 dB Bandwidth (MHz)	11dBm+ 10logB (dBm)	Limit (dBm)	Result	
11a	CH100	Ant0 14.34	Ant1 14.26	/ /	20.18	24.05	24	PASS	
	K.			,					
11a	CH120	12.52	13.93	/	20.09	24.03	24	PASS	
11a	CH140	12.82	14.27	/	20.23	24.06	24	PASS	
11n(HT20)	CH100	13.23	13.15	16.20	20.48	24.11	24	PASS	
11n(HT20)	CH120	12.36	12.95	15.68	20.42	24.10	24	PASS	
11n(HT20)	CH140	12.72	13.29	16.02	20.32	24.08	24	PASS	
11n(HT40)	CH102	13.00	13.43	16.23	40.52	27.08	24	PASS	
11n(HT40)	CH118	12.87	13.04	15.97	40.32	27.06	24	PASS	
11n(HT40)	CH134	12.88	13.14	16.02	40.38	27.06	24	PASS	
11ac(VHT20)	CH100	13.23	13.07	16.16	20.28	24.07	24	PASS	
11ac(VHT20)	CH120	12.43	12.91	15.69	20.35	24.09	24	PASS	
11ac(VHT20)	CH140	12.29	13.30	15.83	20.45	24.11	24	PASS	
11ac(VHT40)	CH102	12.90	12.87	15.90	40.34	27.06	24	PASS	
11ac(VHT40)	CH118	12.99	12.99	16.00	40.53	27.08	24	PASS	
11ac(VHT40)	CH134	12.99	12.68	15.85	40.85	27.11	24	PASS	
11ac(VHT80)	CH106	12.17	11.76	14.98	80.58	30.06	24	PASS	
11ac(VHT80)	CH122	12.13	11.05	14.63	80.62	30.06	24	PASS	

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT} ;

Array Gain = $5 \log(N_{\text{ANT}}/N_{\text{SS}})$ dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{\text{ANT}} \ge 5$. Because $N_{\text{ANT}}=3$, so Array Gain = 0, Directional gain = $G_{\text{ANT}}+A_{\text{TRAY}}$ Gain < 6dBi, power limit =24dBm.

Note : The maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm \pm 10 log B, where B is the 26 dB emission bandwidth in megahertz

Configuration B	Configuration Band 3 (5745 - 5825 MHz) / Antenna 0+Antenna 1									
Mode	Test channel		Conducted (A out Power (dBr	Limit	Result					
		Ant0	Ant1	Total	(dBm)					
11a	CH149	13.71	13.74	1	30	PASS				
11a	CH157	13.40	12.90	/	30	PASS				
11a	CH165	13.40	12.88) /	30	PASS				
11n(HT20)	CH149	12.46	13.06	15.78	30	PASS				
11n(HT20)	CH157	12.66	12.80	15.74	30	PASS				
11n(HT20)	CH165	12.65	12.72	15.70	30	PASS				
11n(HT40)	CH151	12.92	12.84	15.89	30	PASS				
11n(HT40)	CH159	13.27	13.13	16.21	30	PASS				
11ac(VHT20)	CH149	11.92	13.15	15.59	30	PASS				
11ac(VHT20)	CH157	12.78	13.28	16.05	30	PASS				
11ac(VHT20)	CH165	12.73	13.16	15.96	30	PASS				
11ac(VHT40)	CH151	12.36	13.32	15.88	30	PASS				
11ac(VHT40)	CH159	12.68	13.08	15.89	30	PASS				
11ac(VHT80)	CH155	12.02	12.74	15.41	30	PASS				

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any Nant;

Array Gain = $5 \log(N_{\text{ANT}}/N_{\text{SS}})$ dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{\text{ANT}} \ge 5$. Because $N_{\text{ANT}}=3$, so Array Gain = 0, Directional gain = $G_{\text{ANT}}+A_{\text{TRAY}}$ Gain < 6dBi, power limit = 30dBm.

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049
Test Method:	KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Page 20 of 337

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

3.3.1. Test opecification	
Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049
Test Method:	KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Limit:	No restriction limits
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box Ascentest		AT890-RFB	N/A	Jul. 07, 2022

Page 21 of 337

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.6. Power Spectral Density

5.6.1. Test Specification

nt: FCC Part15 E Section 15.407 (a)						
KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section F						
≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz						
Spectrum Analyzer EUT						
Transmitting mode with modulation						
 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 						
PASS						

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.6.3. Test data

Configuration Band 1 (5180-5240 MHz) / Antenna 0+Antenna 1									
Mode	Toot shannal	Power	Spectral Der	nsity	Limit	Describ			
Mode	Test channel	Ant0	Ant1	Total	(dBm/MHz)	Result			
11a	CH36	3.48	3.38	/	11	PASS			
11a	CH40	4.06	3.38	/	110	PASS			
11a	CH48	4.10	3.23	/	11	PASS			
11n(HT20)	CH36	0.60	1.04	3.84	10.99	PASS			
11n(HT20)	CH40	1.20	-0.45	3.46	10.99	PASS			
11n(HT20)	CH48	1.97	-0.63	3.87	10.99	PASS			
11n(HT40)	CH38	-0.27	-0.68	2.54	10.99	PASS			
11n(HT40)	CH46	0.02	-0.64	2.71	10.99	PASS			
11ac(VHT20)	CH36	0.61	1.01	3.82	10.99	PASS			
11ac(VHT20)	CH40	0.85	0.90	3.89	10.99	PASS			
11ac(VHT20)	CH48	1.11	0.76	3.95	10.99	PASS			
11ac(VHT40)	CH38	-0.33	-0.52	2.59	10.99	PASS			
11ac(VHT40)	CH46	-0.07	-0.71	2.63	10.99	PASS			
11ac(VHT80)	CH42	-4.88	-4.08	-1.45	10.99	PASS			

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(NANT/Nss) dB.

Directional gain = G_{ant} + Array Gain = 6.01dBi, 6.01dBi > 6dBi, so limit of power spectral density in MIMO mode is 11 - (6.01-6) = 10.99.

Configuration Band 2A (5260-5320MHz) / Antenna 0+Antenna 1									
Mada	Toot channel	Power	Spectral Den	sity	Limit	Danielt			
Mode	Test channel	Ant0	Ant1	Total	(dBm/MHz)	Result			
11a	CH52	2.87	4.17	1	11	PASS			
11a	CH60	2.77	4.24	/	11	PASS			
11a	CH64	3.11	4.33	/	110	PASS			
11n(HT20)	CH52	2.02	2.98	5.54	10.99	PASS			
11n(HT20)	CH60	2.09	3.06	5.61	10.99	PASS			
11n(HT20)	CH64	2.17	3.15	5.70	10.99	PASS			
11n(HT40)	CH54	-1.01	-0.06	2.50	10.99	PASS			
11n(HT40)	CH62	-0.76	0.40	2.87	10.99	PASS			
11ac(VHT20)	CH52	2.09	2.96	5.56	10.99	PASS			
11ac(VHT20)	CH60	2.18	3.21	5.74	10.99	PASS			
11ac(VHT20)	CH64	2.33	3.14	5.76	10.99	PASS			
11ac(VHT40)	CH54	-0.98	0	2.55	10.99	PASS			
11ac(VHT40)	CH62	-0.79	0.30	2.80	10.99	PASS			
11ac(VHT80)	CH58	-4.91	-2.60	-0.59	10.99	PASS			

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(Nant/Nss) dB.

Directional gain = G_{ant} + Array Gain = 6.01dBi, 6.01dBi > 6dBi, so limit of power spectral density in MIMO mode is 11 - (6.01-6) = 10.99.

Configuration B	and 2C (5500-5	720 MHz) /	Antenna 0+	Antenna	1		
Maria	Test channel	Power	Spectral Der	nsity	Limit	Popul	
Mode	rest channel	Ant0	Ant1	Total	(dBm/MHz)	Result	
11a	CH100	3.87	3.90	1	11	PASS	
11a	CH120	2.01	3.33	/	11	PASS	
11a ()	CH140	2.36	3.80	/	11.	PASS	
11n(HT20)	CH100	2.57	2.43	5.51	10.99	PASS	
11n(HT20)	CH120	1.67	2.21	4.96	10.99	PASS	
11n(HT20)	CH140	2.10	2.38	5.25	10.99	PASS	
11n(HT40)	CH102	-0.51	-0.01	2.76	10.99	PASS	
11n(HT40)	CH118	-0.71	-0.72	2.30	10.99	PASS	
11n(HT40)	CH134	-0.45	-0.35	2.61	10.99	PASS	
11ac(VHT20)	CH100	2.65	2.38	5.53	10.99	PASS	
11ac(VHT20)	CH120	1.72	2.15	4.95	10.99	PASS	
11ac(VHT20)	CH140	1.77	2.59	5.21	10.99	PASS	
11ac(VHT40)	CH102	-0.65	-0.55	2.41	10.99	PASS	
11ac(VHT40)	CH118	-0.50	-0.64	2.44	10.99	PASS	
11ac(VHT40)	CH134	-0.52	-0.76	2.37	10.99	PASS	
11ac(VHT80)	CH106	-4.46	-5.02	-1.72	10.99	PASS	
11ac(VHT80)	CH122	-4.49	-5.62	-2.01	10.99	PASS	

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(Nant/Nss) dB.

Directional gain = G_{ant} + Array G_{ain} = 6.01dBi, 6.01dBi > 6dBi, so limit of power spectral density in MIMO mode is 11 - (6.01-6) = 10.99.

Configuration Band 3(5745-5825MHz) / Antenna 0+Antenna 1								
Mode	Test channel	Power	Spectral Den	sity	Limit	Dogult		
iviode	rest channel	Ant0	Ant1	Total	(dBm/MHz)	Result		
11a	CH149	0.57	0.44	1	30	PASS		
11a	CH157	0.43	-0.31	/	30	PASS		
11a	CH165	0.39	-0.37) /	30	PASS		
11n(HT20)	CH149	-0.78	-0.33	2.46	29.99	PASS		
11n(HT20)	CH157	-0.31	-0.54	2.59	29.99	PASS		
11n(HT20)	CH165	-0.56	-0.74	2.36	29.99	PASS		
11n(HT40)	CH151	-3.44	-3.59	-0.50	29.99	PASS		
11n(HT40)	CH159	-3.16	-3.43	-0.28	29.99	PASS		
11ac(VHT20)	CH149	-1.28	-0.31	2.24	29.99	PASS		
11ac(VHT20)	CH157	-0.33	-0.11	2.79	29.99	PASS		
11ac(VHT20)	CH165	-0.34	-0.32	2.68	29.99	PASS		
11ac(VHT40)	CH151	-3.73	-3.01	-0.34	29.99	PASS		
11ac(VHT40)	CH159	-3.67	-3.33	-0.49	29.99	PASS		
11ac(VHT80)	CH155	-7.08	-6.73	-3.89	29.99	PASS		

Refer to KDB 662911 D01 Multiple Transmitter Output v02r01:

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(NANT/Nss) dB.

Directional gain = G_{ant} + Array Gain = 6.01dBi, 6.01dBi > 6dBi, so limit of power spectral density in MIMO mode is 30 - (6.01-6) = 29.99.

5.7. Band edge

5.7.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407								
Test Method:	ANSI C63.10 20	ANSI C63.10 2013							
	In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3:								
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)					
	< 5650	-27	5850~5855	27~15.6					
Limit:	5650~5700	-27~10	5855~5875	15.6~10					
	5700~5720	10~15.6	5875~5925	10~-27					
	$5720 \sim 5725$ E[dBµV/m] = EIR		> 5925 ? @3m	-27					
	In restricted band		Linait 6	20					
	Detec Peal		Limit@ 74dBµ						
	AVG								
Test Setup:	80 Cm (Tamasa)	Ground Reference Plate Test Receiver 1 1 Apriliar Controller							
Test Mode:	Transmitting mo	de with mod	ulation						
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a variance of the top of a variance of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 received from 0 demaximum readiance. 5. The test-received from and Specific specifi	ne ground at a degrees to degree to degree to degree to degrees to degree to degre	a 3 meter cambed as away from the part of	per. The table position of the					

Report No.: TCT220328E084

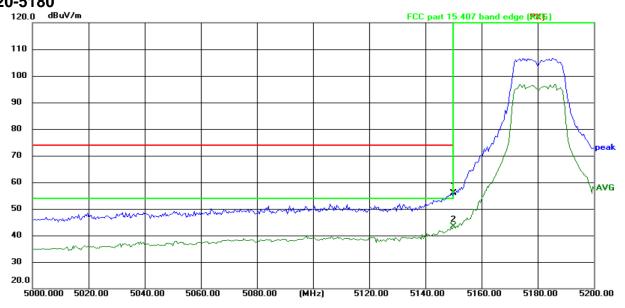
Mode.

Report No.: TCT220328E084

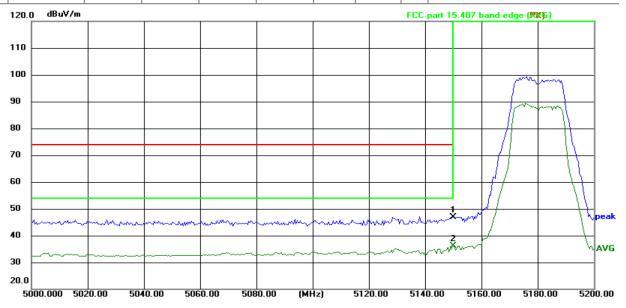
	10dB lo stopped reported 10dB m quasipe	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then							
Result:	PASS								
		6. If the 10dB lo stopped reporter 10dB m quasiped reporter 10dB m quas	6. If the emission I 10dB lower than the stopped and the preported. Otherwise 10dB margin would quasipeak or average reported in a data. Result: PASS ASS ASS ASS ASS ASS ASS ASS	6. If the emission level of the 10dB lower than the limit spe stopped and the peak values reported. Otherwise the emis 10dB margin would be re-tes quasipeak or average metho reported in a data sheet. PASS Result: PASS	6. If the emission level of the EUT in per 10dB lower than the limit specified, ther stopped and the peak values of the EUT reported. Otherwise the emissions that 10dB margin would be re-tested one by quasipeak or average method as specification in a data sheet. Result: PASS PASS	6. If the emission level of the EUT in peak mode we 10dB lower than the limit specified, then testing co stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not hav 10dB margin would be re-tested one by one using quasipeak or average method as specified and the reported in a data sheet. PASS Result: PASS			

5.7.2. Test Instruments

Radiated Emission Test Site (966)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022					
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022					
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022					
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Feb. 24, 2023					
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Feb. 24, 2023					
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022					
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022					
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022					
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022					
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023					
Coaxial cable	SKET	RC_DC18G-N	N/A	Feb. 24, 2023					
Coaxial cable	SKET	RC-DC18G-N	N/A	Feb. 24, 2023					
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022					
Antenna Mast	Keleto	CC-A-4M	N/A	N/A					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					



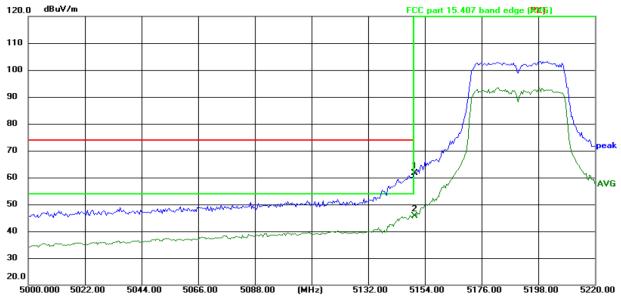
Page 29 of 337



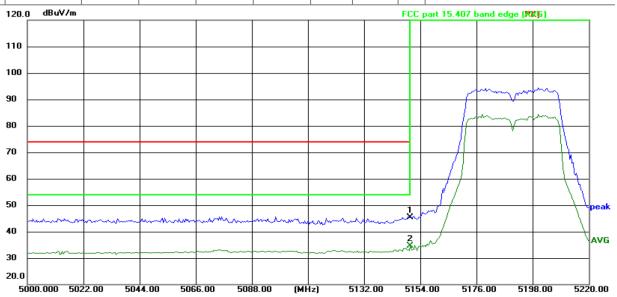
5.7.3. Test Data AC20-5180

Report No.: TCT220328E084

Site					Polar	ization:	Horizo	ontal	Temperature: 24(°ℂ)
Limit:	FCC part 15.	407 band	edge (PK)		Powe	r: AC	120 V/60	Hz	Humidity: 52 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	63.99	-8.04	55.95	74.00	-18.05	peak	Р	
2 *	5150.000	51.51	-8.04	43.47	54.00	-10.53	AVG	Р	



Site					Polar	ization:	Vertic	al	Temperature: 24(℃)
Limit:	FCC part 15.		Powe	r: AC	120 V/60	Humidity: 52 %			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	54.98	-8.04	46.94	74.00	-27.06	peak	Р	
2 *	5150.000	44.06	-8.04	36.02	54.00	-17.98	AVG	Р	

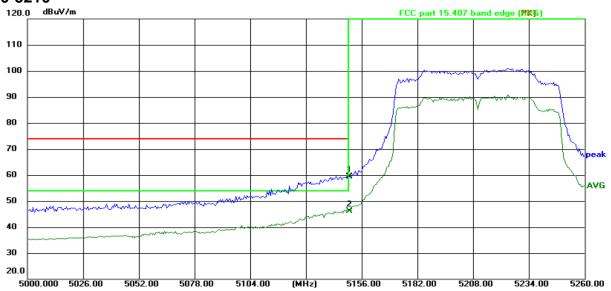

AC40-5190

Report No.: TCT220328E084

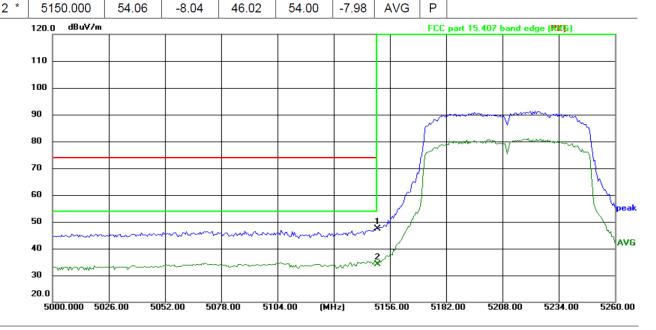
Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: AC 120 V/60 Hz Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	69.64	-8.04	61.60	74.00	-12.40	peak	Р	
2 *	5150.000	53.72	-8.04	45.68	54.00	-8.32	AVG	Р	

Site Polarization: Vertical Temperature: 24(°C)
Limit: FCC part 15.407 band edge (PK) Power: AC 120 V/60 Hz Humidity: 52 %


Frequency Reading Factor Level Limit Margin

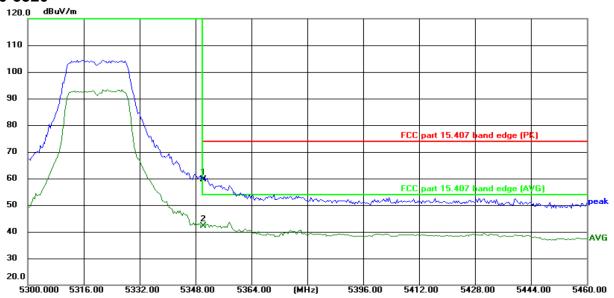
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	l .	Margin (dB)	Detector	P/F	Remark
1	5150.000	53.51	-8.04	45.47	74.00	-28.53	peak	Р	
2 *	5150.000	42.59	-8.04	34.55	54.00	-19.45	AVG	Р	



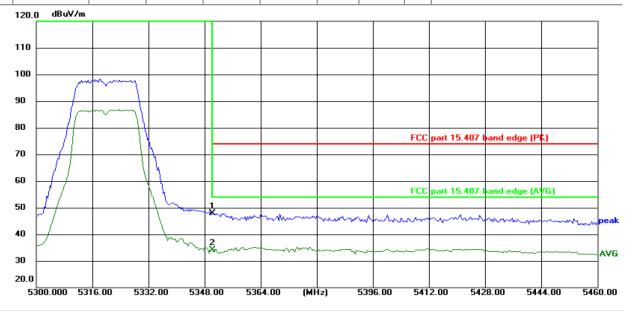
AC80-5210

Report No.: TCT220328E084

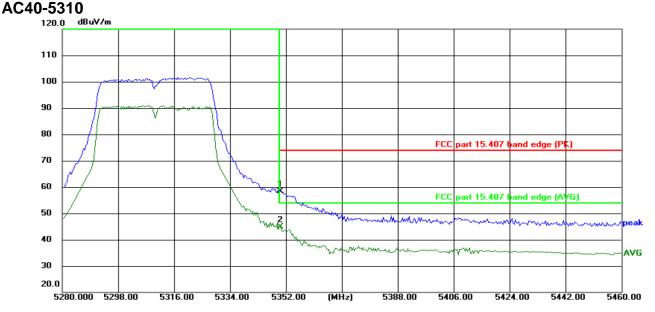
Polarization: Horizontal 24(℃) Site Temperature: Limit: FCC part 15.407 band edge (PK) Power: AC 120 V/60 Hz Humidity: 52 % Level Limit Frequency Reading Factor Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 5150.000 67.35 -8.04 59.31 74.00 -14.69 peak

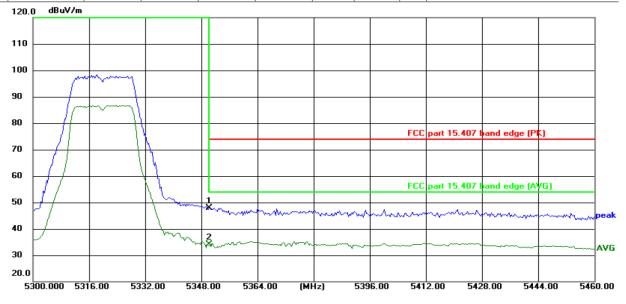


Site Polarization: Vertical Temperature: 24(℃) Limit: FCC part 15.407 band edge (PK) AC 120 V/60 Hz Humidity: Power: 52 % Frequency Reading Factor Level Limit Margin No. Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m)|(dBuV/m)(dB) 55.53 -8.04 74.00 Р 5150.000 47.49 -26.51 1 peak 2 5150.000 42.16 -8.04 54.00 Р 34.12 -19.88 **AVG**



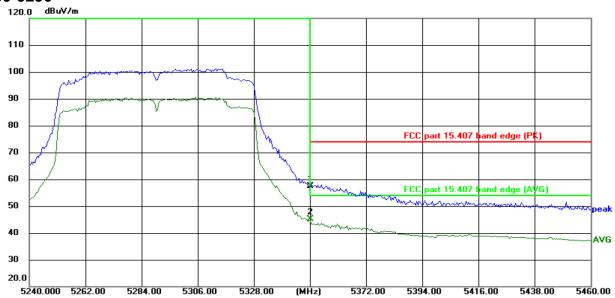
AC20-5320


Report No.: TCT220328E084

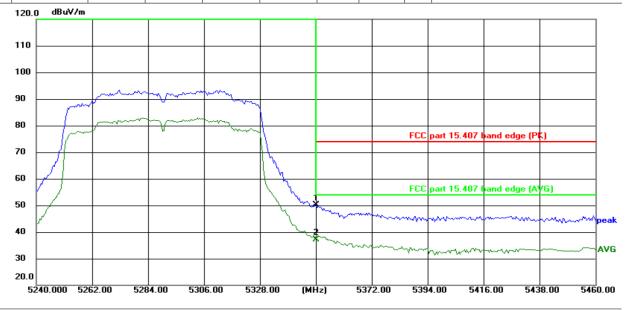

Site					Polar	ization:	Horize	ontal	Temperature: 24(°ℂ)
Limit:	FCC part 15	.407 band	edge (PK))	Powe	er: AC	120 V/60	Hz	Humidity: 52 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	67.70	-8.09	59.61	74.00	-14.39	peak	Р	
2 *	5350.000	50.29	-8.09	42.20	54.00	-11.80	AVG	Р	

Site					Polari	zation:	Vertica	al	Temperature: 24(℃)
Limit:	FCC part 15.4		Power: AC 120 V/60 Hz				Humidity: 52 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	56.04	-8.09	47.95	74.00	-26.05	peak	Р	
2 *	5350.000	42.19	-8.09	34.10	54.00	-19.90	AVG	Р	

Site					Polar	ization:	Horizo	ontal	Temperature: 24(°ℂ)
Limit:	FCC part 15	.407 band	edge (PK)		Powe	er: AC	120 V/60	Humidity: 52 %	
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	66.36	-8.09	58.27	74.00	-15.73	peak	Р	
2 *	5350.000	53.09	-8.09	45.00	54.00	-9.00	AVG	Р	

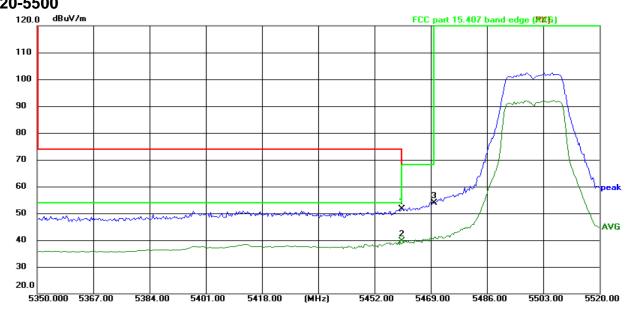


Site					Polar	ization:	Vertic	al	Temperature: 24(°ℂ)
Limit:	FCC part 15	.407 band	edge (PK)		Powe	er: AC	120 V/60	Humidity: 52 %	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	56.04	-8.09	47.95	74.00	-26.05	peak	Р	
2 *	5350.000	42.19	-8.09	34.10	54.00	-19.90	AVG	Р	

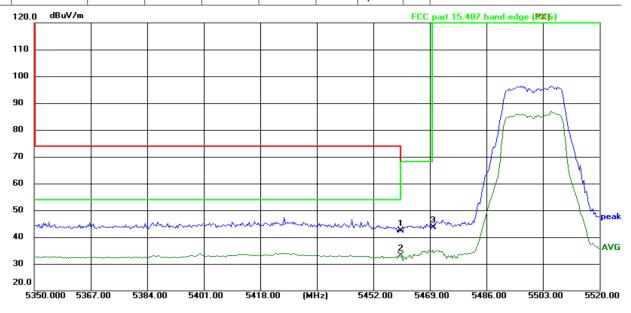

AC80-5290

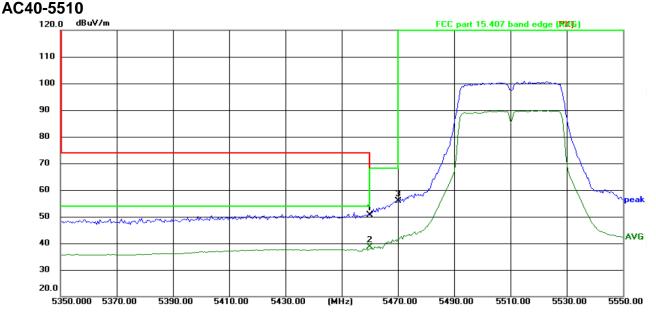
Report No.: TCT220328E084

Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: AC 120 V/60 Hz Humidity: 52 %

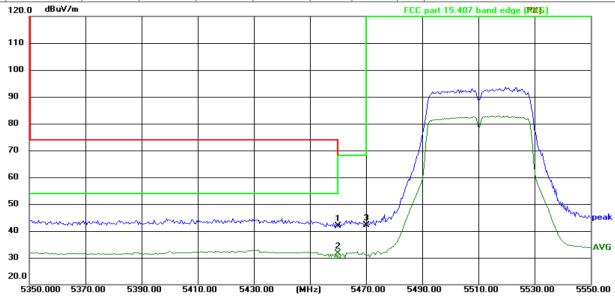

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	65.45	-8.09	57.36	74.00	-16.64	peak	Р	
2 *	5350.000	53.30	-8.09	45.21	54.00	-8.79	AVG	Р	

Site Polarization: Vertical Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: AC 120 $^{\circ}$ 60 Hz Humidity: 52 $^{\circ}$ 8


No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	58.18	-8.09	50.09	74.00	-23.91	peak	Р	
2 *	5350.000	45.21	-8.09	37.12	54.00	-16.88	AVG	Р	

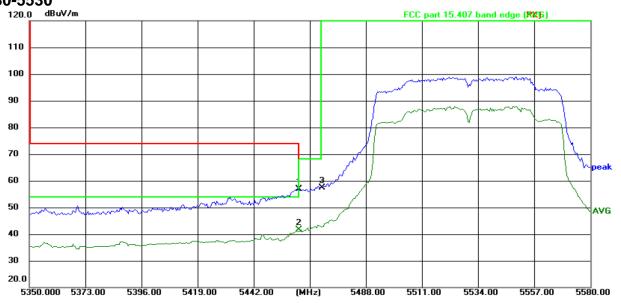

Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: AC 120 $^{\circ}$ 60 Hz Humidity: 52 $^{\circ}$ 6

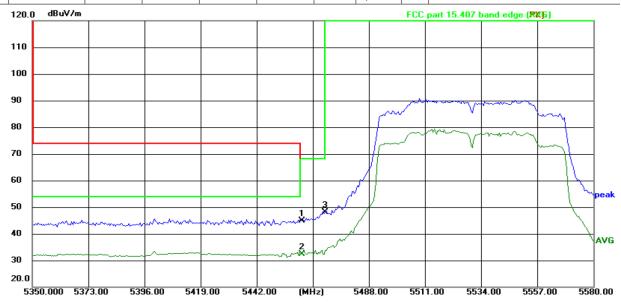
	•		• , ,						
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5460.000	59.71	-8.11	51.60	68.20	-16.60	peak	Р	
2	5460.000	47.71	-8.11	39.60	54.00	-14.40	AVG	Р	
3 *	5470.000	62.10	-8.11	53.99	68.20	-14.21	peak	Р	



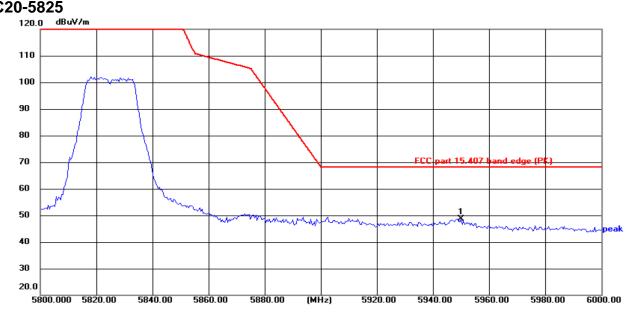
Site Polarization: Vertical Temperature: 24(℃) Limit: FCC part 15.407 band edge (PK) Power: AC 120 V/60 Hz Humidity: 52 % Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (dB/m) (dBuV/m) (dBuV/m) (MHz) (dBuV) (dB) 5460.000 50.54 42.43 68.20 Ρ 1 -8.11 -25.77 peak 2 5460.000 41.30 -8.11 33.19 54.00 Р -20.81 **AVG** 3 5470.000 51.84 43.73 68.20 -24.47 Ρ -8.11 peak

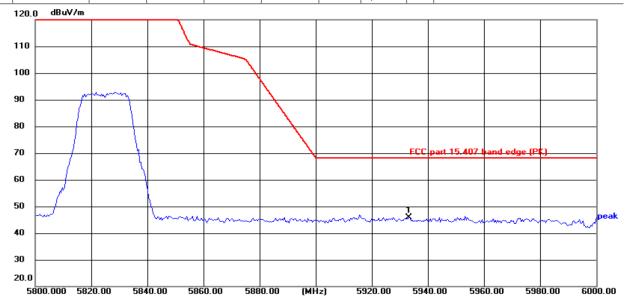
Site					Polar	ization:	Horize	ontal	1	Temperature	e: 24 (°ℂ)	1
Limit:	FCC part 15.	407 band	edge (PK)		Powe	er: AC	120 V/60	Hz		Humidity:	52 %	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark	(
1	5460.000	58.70	-8.11	50.59	68.20	-17.61	peak	Р				
2	5460.000	46.66	-8.11	38.55	54.00	-15.45	AVG	Р				
3 *	5470.000	63.93	-8.11	55.82	68.20	-12.38	peak	Р				

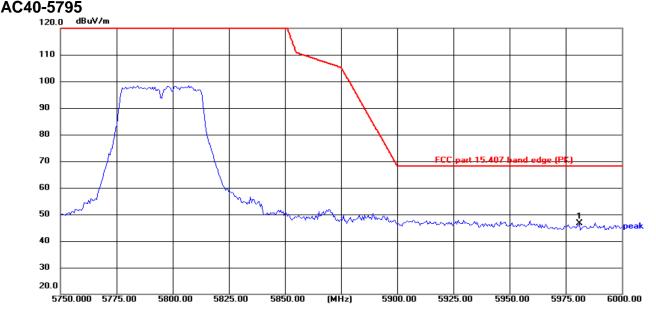

Site					Polari	zation:	Vertic	al	Temperature: 24(°ℂ)
Limit:	FCC part 15.	407 band 6	edge (PK)		Powe	r: AC	120 V/60	Humidity: 52 %	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5460.000	49.87	-8.11	41.76	68.20	-26.44	peak	Р	
2 *	5460.000	39.84	-8.11	31.73	54.00	-22.27	AVG	Р	
3	5470.000	50.26	-8.11	42.15	68.20	-26.05	peak	Р	

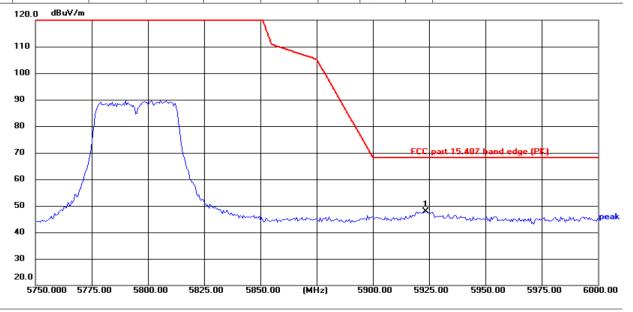

TESTING CENTRE TECHNOLOGY

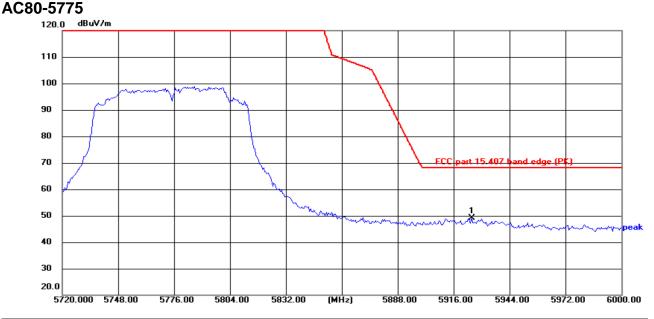
Report No.: TCT220328E084


AC80-5530


Site					Polar	zation:	Horizo	ontal	Temperature: 24(℃)
Limit:	FCC part 15.	407 band	edge (PK)		Powe	r: AC	120 V/60	Hz	Humidity: 52 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5460.000	64.92	-8.11	56.81	68.20	-11.39	peak	Р	
2	5460.000	49.74	-8.11	41.63	54.00	-12.37	AVG	Р	
3 *	5470.000	65.43	-8.11	57.32	68.20	-10.88	peak	Р	


Site					Polari	ization:	Vertic	al	Temperature: 24(°ℂ)	
Limit:	FCC part 15.	407 band (edge (PK)		Powe	r: AC	120 V/60	Humidity: 52 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark	
1	5460.000	53.06	-8.11	44.95	68.20	-23.25	peak	Р		
2	5460.000	40.39	-8.11	32.28	54.00	-21.72	AVG	Р		
3 *	5470.000	56.30	-8.11	48.19	68.20	-20.01	peak	Р		


Temperature: 24(℃) Site Polarization: Horizontal Limit: FCC part 15.407 band edge (PK) Power: AC 120 V/60 Hz Humidity: 52 % Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m)|(dBuV/m)| (dB) 1 * 5950.000 55.66 -6.96 48.70 68.20 -19.50 peak


Polarization: Vertical Temperature: 24(℃) AC 120 V/60 Hz Limit: FCC part 15.407 band edge (PK) Humidity: Power: 52 % Margin Frequency Reading Factor Level Limit Detector P/F Remark No. (MHz) (dBuV) (dB/m) (dBuV/m) | (dBuV/m) | (dB)5933.200 52.96 45.95 68.20 -7.01-22.25 peak

Site Polarization: Horizontal Temperature: 24(℃) AC 120 V/60 Hz Limit: FCC part 15.407 band edge (PK) Humidity: Power: 52 % Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m)|(dBuV/m)| (dB) 1 * 5981.000 46.65 68.20 Р 53.53 -6.88 -21.55 peak

Temperature: Polarization: Vertical 24(℃) Limit: FCC part 15.407 band edge (PK) Power: AC 120 V/60 Hz Humidity: 52 % Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) | (dBuV/m) | (dB)5923.500 54.81 -7.03 47.78 68.20 -20.42 peak

Site					Polar	ization:	Horizo	ontal		Temperatur	re: 24(°℃	e)
Limit:	FCC part 15	407 band	edge (PK)		Powe	er: AC	120 V/60	Hz		Humidity:	52 %	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remarl	Κ.		
1 *	5924.960	56.08	-7.03	49.05	68.20	-19.15	peak	Р				
	120.0 dBuV/m											
	110											
	100]
	100					\						1

10										
00										
	مد	mm	manny	-1		\				
1	- f						\			
							FCC	part 15.407	and edge (Pl	9
	1			\ \ <u>\</u>						
t	/			M	Madenia	A.e	W. A.	X	wh	
-										W
.0										

Site					Polari	zation:	Vertic	al	Temperature: 24(°ℂ)		
Limit:	FCC part 15.	407 band	edge (PK)		Power: AC 120 V/60 Hz			Hz	Humidity: 52 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark		
1 *	5928.880	54.47	-7.02	47.45	68.20	-20.75	peak	Р			

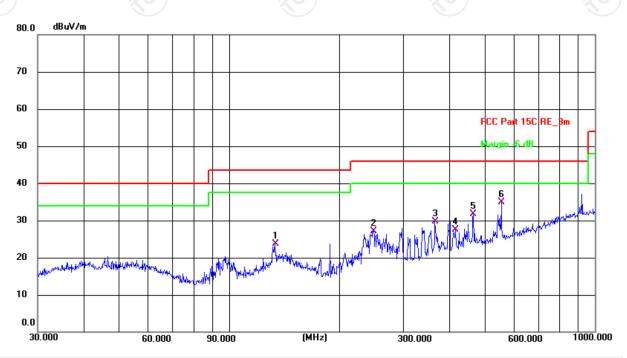
Note: All modulation (802.11a, 802.11n, 802.11ac) have been tested, only the worst case in 802.11ac be reported.

5.8. Unwanted Emissions

5.8.1. Test Specification

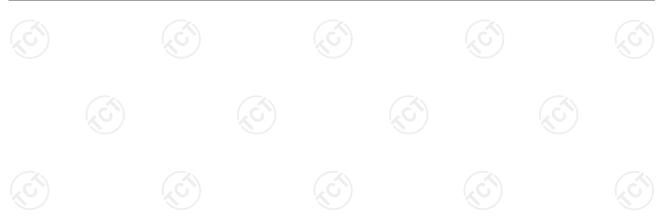
Test Requirement:	FCC CFR47	Part 15 S	Section 15.	407 & 1	5.209 & 15.205
Test Method:	KDB 789033	D02 v02	r01		
Frequency Range:	9kHz to 40G	Hz			
Measurement Distance:	3 m		(0)		$\langle C \rangle$
Antenna Polarization:	Horizontal &	Vertical			
Operation mode:	Transmitting	mode wi	th modulat	ion	
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz 30MHz-1GHz Above 1GHz	Detector Quasi-pea Quasi-pea Quasi-pea Peak Peak	k 9kHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value
Limit:	per FCC Par	t15.205 s d strength bands: ncy 1G	Detection Detection limits seem Detection Detection Pea AVC Field Strengtl (microvolts/m 2400/F(KHz) 24000/F(KHz) 30 100 150 200 500	y with the tor k	Limit@3m 74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 30 3 3 3
Test setup:	For radiated	Distance = 3m Turn table	s below 30	OMHz	Computer Pre -Amplifier Receiver

TESTING CENTRE TECHNOLOGY	Report No.: TCT220328E084
	30MHz to 1GHz
	Antenna Tower Search Antenna RF Test Receiver Ground Plane
	Above 1GHz
	ATEUT Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver Controller
	1. The EUT was placed on the top of a rotating table 0.8
Test Procedure:	meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified andthen reported in a data sheet.
Test results:	PASS

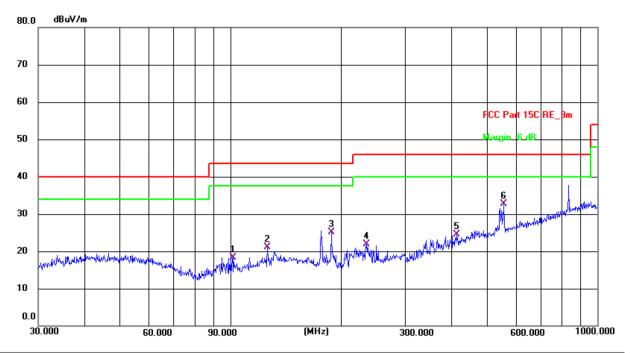


5.8.2. Test Data

Please refer to following diagram for individual


Below 1GHz

Horizontal:


Site #2 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.8(C) Humidity: 56 % Limit: FCC Part 15C RE_3m Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	133.6188	10.77	12.84	23.61	43.50	-19.89	QP	Р	
2	247.6819	14.44	12.65	27.09	46.00	-18.91	QP	Р	
3	365.5391	13.63	16.02	29.65	46.00	-16.35	QP	Р	
4	416.1791	9.85	17.59	27.44	46.00	-18.56	QP	Р	
5	465.5994	13.03	18.66	31.69	46.00	-14.31	QP	Р	
6 *	554.8254	14.44	20.43	34.87	46.00	-11.13	QP	Р	

Vertical:

Site #2 3m Anechoic Chamber Polarization: Vertical Temperature: 23.8(C) Humidity: 56 %

Limit: FCC Part 15C RE_3m

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	101.6443	7.86	10.54	18.40	43.50	-25.10	QP	Р	
2	126.3285	8.82	12.38	21.20	43.50	-22.30	QP	Р	
3	188.4125	14.28	10.85	25.13	43.50	-18.37	QP	Р	
4	234.9909	9.58	12.41	21.99	46.00	-24.01	QP	Р	
5	413.2706	6.95	17.53	24.48	46.00	-21.52	QP	Р	
6 *	556.7743	12.24	20.47	32.71	46.00	-13.29	QP	Р	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40) 802.11nac(VHT80), and the worst case Mode (Middle channel and 11a) was submitted only.
- 3.Measurement (dBμV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss Pre-amplifier.

			N		ype: Band	1			
					: 5180MHz				
Fraguency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
Frequency (MHz)	H/V	reading (dBµV)	(dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	I	40.42		8.02	48.44		74	54	-5.56
15540	I	40.75		9.87	50.62		74	54	-3.38
	Н								
40000				0.00	47.00				0.70
10360	V	39.28	(_C)	8.02	47.30	G `)	74	54	-6.70
15540	V	40.66		9.87	50.53		74	54	-3.47
	V			44 - 01140					
1		Dools	1		5200MHz	n Lovel		· · · · · ·	
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10400	Н	41.44		7.97	49.41		74	54	-4.59
15600	Н	40.09		9.83	49.92		74	54	-4.08
	H		(%		/	Z		(#\)	
	(2G)		(20		//	(C)		(C)	
10400	V	42.31		7.97	50.28		74	54	-3.72
15600	V	39.97		9.83	49.80		74	54	-4.20
	V								
					5240MHz				
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	H	40.54		7.97	48.51		74	54	-5.49
15720	H	40.80		9.83	50.63		74	54	-3.37
	H)		1/2	<i>)</i>		9)		2-	
10480	V	41.27		7.97	49.24		74	54	-4.76
15720	V	38.95		9.83	48.78		74	54	-5.22
13720	V								J.ZZ
	v		11n	(HT20) C	H36: 5180N	ЛНz			1.5
_	A . D .	Peak		Correction		n Level	5 11: ''	A V / II' ' '	
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10360	H	41.64	(.6)	8.02	49.66		74	54	-4.34
15540	H	40.78		9.87	50.65	<u> </u>	74	54	-3.35
	Н								
10360	V	41.43		8.02	49.45		74	54	-4.55
15540	V	39.35		9.87	49.43		74	54	-4.78
15540	V			3.01					-4.70
	•			n(HT20) CF	140: 5200M				
_		Peak		Correction		n Level		A 3 / II	
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10400	\mathbb{H}	40.52		7.97	48.49	<u> </u>	74	54	-5.51
15600	Н	40.82		9.83	50.65		74	54	-3.35
	Н								
10400	V	42.74		7.97	50.71		74	54	-3.29
15600	V	40.28		9.83	50.11		74	54	-3.89
10000	V								

■通测检测

Report No.: TCT220328E084 Peak Correction **Emission Level** Frequency Ant. Pol. AV reading Peak limit **AV limit** Margin Factor reading Peak AV (MHz) H/V (dBµV) $(dB\mu V/m)$ (dBµV/m) (dB) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10480 7.97 -5.82 Н 40.21 48.18 74 54 74 15720 Н 39.15 9.83 48.98 54 -5.02 Н ٧ 10480 40.85 7.97 48.82 74 -5.18------54 15720 ٧ 40.43 9.83 50.26 74 54 -3.74٧ ---11n(HT40)CH38: 5190MHz AV reading Correction Peak **Emission Level** Frequency (MHz) Ant. Pol. Peak limit | AV limit Margin reading (dBuV) Factor (dB/m) Peak AV H/V $(dB\mu V/m) \mid (dB\mu V/m)$ (dB) (dBµV)

(1411 12)	1 1/ 4	(dBµV)	(4561)	(dB/m)	(dBµV/m)	(dBµV/m)	(αΒμ (/////)	(αΣμ ν/ιιι)	(45)
10380	Н	42.16		7.75	49.91		74	54	-4.09
15570	Н	39.98		9.87	49.85		74	54	-4.15
	Η			-			<u></u>		
10380	V	41.30		7.75	49.05		74	54	-4.95
15570	V	40.24	(6)	9.87	50.11		74	54	-3.89
	V			/	')		\\\\\/	
			11	n(HT40)Ch	H46: 5230M	Hz			
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	Н	42.55		7.97	50.52		74	54	-3.48
15690	Н	40.41		9.83	50.24		74	54	-3.76
	Н								
						7			
10460	V	42.73	-420	7.97	50.70	()	74	54	-3.30
15690	V	40.84		9.83	50.67		74	54	-3.33
	V								
			11a	c(VHT20) (CH36: 5180I	MHz			
	Ant Dal	Peak	A) /	Correction	Emissio	n Level	Do ale lineit	A	N 4 =
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10360	Н	42.08		8.02	50.10		74	54	-3.90
15540	H	40.27		9.87	50.14		74	54	-3.86
	H		(.c)		(,	<u> </u>		(
•									
10360	V	40.44		8.02	48.46		74	54	-5.54
15540	V	40.75		9.87	50.62		74	54	-3.38
(- X)	V	- 		/					 X\
			11a	c(VHT20) (CH40: 5200I	MHz			
	Ant Dal	Peak	A) /	Correction	Emissio	n Level	Da ale linait	A	N 4 =
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10400	H	42.52	()	7.97	50.49		74	54	-3.51
15600	(AP)	40.86	120	9.83	50.69	(0)	74	54	-3.31
	H			-		<u> </u>			
10400	V	40.97		7.97	48.94		74	54	-5.06
10400									
15600	V	40.63		9.83	50.46		74	54	-3.54

			- 11	· // // ITOO\ O	1140 5040	. 41.1	•		
			11a	c(VHT20) C					
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.89		7.97	46.86		74	54	-7.14
15720	Н	40.44		9.83	50.27	(74	54	-3.73
\/	Н	-12		(/		<u></u>		<u></u>
10480	V	41.20		7.97	49.17		74	54	-4.83
15720	V	40.32		9.83	50.15	~	74	54	-3.85
	V		-40)	🗸	O^)			
			11a	c(VHT40) C	H38: 5190I	MHz			
requency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	42.94		7.75	50.69		74	54	-3.31
15570	Н	40.77		9.87	50.64		74	54	-3.36
	Н								
10380	V	40.66	(, C)	7.75	48.41	()	74	54	-5.59
15570	>	40.80		9.87	50.67	<i></i>	74	54	-3.33
	V								
			11a	c(VHT40) C	H46: 5230I	MHz			
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	Н	41.32		7.97	49.29		74	54	-4.71
15690	Н	40.55		9.83	50.38		74	54	-3.62
	H			\	(4	
•	KO)		YO.)	K			(0)	
10460	V	42.07		7.97	50.04		74	54	-3.96
15690	V	40.45		9.83	50.28		74	54	-3.72
	V								 ,
			1	1ac(VHT80	<u></u>				
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10420	H	41.99		7.96	49.95		74	54	-4.05
15630	H	40.84	{,G	9.84	50.68	G '}	74	54	-3.32
	H			/	\	U		0/	
10100	.,	10.05				ı			
10420	V	42.26		7.96	50.22		74	54	-3.78
15630	V	40.74		9.84	50.58		74	54	-3.42
KO /	V	140)		KO-7		(C-7)

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			M		ype: Band 2	2A			
					: 5260MHz				
Fraguency	Ant. Pol.	Peak	AV reading	Correction	Emissio	on Level	Peak limit	AV limit	Margin
Frequency (MHz)	H/V	reading (dBµV)	(dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10520	Н	40.03		7.97	48.00		74	54	-6.00
15780	Η	40.21		9.83	50.04		74	54	-3.96
	Н								
40.00				\		A	T = .		
10520	V	42.66	(<u>,</u> G)	7.97	50.63	C))	74	54	-3.37
15780	V	40.86		9.83	50.69		74	54	-3.31
	V								
					: 5300MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10600	Н	40.94		7.98	48.92		74	54	-5.08
15900	H	40.56		9.85	50.41		74	54	-3.59
	HX							-	
	(,C))		(20)	+	(2	(0)	1	(,0)	
10600	V	41.57		7.98	49.55		74	54	-4.45
15900	V	40.08		9.85	49.93		74	54	-4.07
	V								
				11a CH64	: 5320MHz				
Fraguanay	Ant Dol	Peak	AV/ roading	Correction		on Level	Dook limit	AV/ limit	Morgin
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10640	Н	42.30		7.98	50.28		74	54	-3.72
15960	H	40.22		9.85	50.07		74	54	-3.93
	#		1/0)		9)		(2.)	
40040	1/	40.04		7.00	50.00	ı	7.4	5 4	0.74
10640	V	42.31		7.98	50.29		74	54	-3.71
15960	V V	41.05		9.85	50.90		74	54	-3.10
	V			 In/UT20\ C	F2: F2C0M	 I	LC		(.c.)
		Peak		Correction	52: 5260Ml	n Level	I	· ·	
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10520	(HA)	42.55	(6)	7.97	50.52		74	54	-3.48
15780	H	40.66		9.83	50.49	Y)	74	54	-3.51
	Н								
40500		40.04	<u> </u>	7.07	40.04	T	7.		F 00
10520	V	40.34		7.97	48.31		74	54	-5.69
15780	V	41.02		9.83	50.85		74	54	-3.15
	V		44.						
		Dagli	111		160: 5300M				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10600	\mathcal{H}	41.18		7.98	49.16		74	54	-4.84
15900	Н	40.04		9.85	49.89		74	54	-4.11
	H								
						1		<u> </u>	
10600	V	42.05		7.98	50.03		74	54	-3.97
	V	42.05 40.36		7.98 9.85	50.03 50.21		74 74	54 54	-3.97 -3.79

「通测检测

10600

15900

39.57

38.40

Report No.: TCT220328E084 Peak Correction **Emission Level** Frequency Ant. Pol. AV reading Peak limit **AV** limit Margin reading Factor Peak (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (dB/m) (dBµV) (dBµV/m) (dBµV/m) 40.25 7.98 48.23 -5.77 10640 Н 74 54 15960 Н 40.33 9.85 50.18 74 54 -3.82Η ٧ -4.2710640 41.75 ---7.98 49.73 ---74 54 15960 74 V 40.69 9.85 50.54 54 -3.46V 11n(HT40)CH54: 5270MHz Peak Correction **Emission Level** AV reading Ant. Pol. Peak limit **AV** limit Frequency Margin reading Factor Peak AV (dB) (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB/m) (dBµV) (dBµV/m) (dBµV/m) 10540 Η 42.71 7.97 50.68 74 54 -3.3215810 Н 41.12 9.83 50.95 74 54 -3.05Η ------------------------10540 V 40.06 7.97 48.03 74 -5.9754 15810 ٧ 40.75 ___ 9.83 50.58 ---74 54 -3.42V ------11n(HT40)CH62: 5310MHz Peak Correction **Emission Level** Ant. Pol. AV reading Frequency Peak limit **AV** limit Margin reading Factor Peak ΑV H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (MHz) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10620 Η 42.29 7.98 50.27 74 54 -3.73-3.77 15930 Н 40.38 9.85 50.23 74 54 Н ------10620 V 40.07 7.98 48.05 74 54 -5.9515930 40.80 9.85 50.65 74 54 -3.35 V ----------------------------11ac(VHT20) C52: 5260MHz Peak Correction **Emission Level AV** limit Ant. Pol. **AV** reading Frequency Peak limit Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB)(dBµV) (dB/m) (dBµV/m) dBµV/m 10520 Η 40.92 7.97 48.89 74 54 -5.11 15780 Н 40.38 9.83 50.21 74 54 -3.79Н -----4 **}---**------10520 V 42.03 7.97 50.00 74 54 -4.00 ------15780 40.83 9.83 50.66 74 54 -3.34V 11ac(VHT20) CH60: 5300MHz **Emission Level** Peak Correction AV reading Ant. Pol. Peak limit **AV** limit Frequency Margin reading Factor AV Peak (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 40.59 74 -5.43 10600 Ħ ---7.98 48.57 54 ---15900 50.28 74 -3.72Н 40.43 ---9.85 54 H ---

-6.45

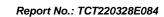
-5.75

54

54

74

74


47.55

48.25

7.98

9.85

			11a	c(VHT20) C	H64: 5320l	MHz			
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	Н	42.66		7.98	50.64	(74	54	-3.36
15960	Н	40.38		9.85	50.23		74	54	-3.77
	Н								
		T							
10640	V	41.66	(_	7.98	49.64		74	54	-4.36
15960	V	41.02		9.85	50.87	9)	74	54	-3.13
	V								
			11a	c(VHT40) C	H54: 5270	MHz			
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10540	Н	42.15		7.97	50.12		74	54	-3.88
15810	Н	39.38		9.83	49.21		74	54	-4.79
	Hz				/			75	
	(,0)		(, C)	*)	(2	G')		(,C)	
10540	V	41.53		7.97	49.50	<u> </u>	74	54	-4.50
15810	V	40.25		9.83	50.08		74	54	-3.92
	V								
			11a	c(VHT40) C	H60: 5310	MHz			
Fraguenay	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Morgin
Frequency (MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	Margin (dB)
10620	H	40.79		7.98	48.77		74	54	-5.23
15930	H	40.82		9.85	50.67		74	54	-3.33
	CH /			<i></i>	\	9)			
10620	V	40.60		7.98	48.58		74	54	-5.42
15930	V	39.31		9.85	49.16		74	54	-4.84
(-6-	V	fC		(.c			. ()-}-		
			•	11ac(VHT8	O) C58:5290)			
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Morgin
Frequency (MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	Margin (dB)
10580	(H)	42.09	1,6	7.98	50.07	Ġ')	74	54	-3.93
15870	H	40.21		9.85	50.06	<u> </u>	74	54	-3.94
	Н								
10580	V	42.50		7.98	50.48		74	54	-3.52
15870	V	40.82		9.85	50.67		74	54	-3.33
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

					ype: Band 2				
): 5500MHz				
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11000	Н	40.34		8.03	48.37		74	54	-5.63
16500	Н	40.49		9.76	50.25		74	54	-3.75
	Н								
				_			1		
11000	V	42.67	(_G)	8.03	50.70	G))	74	54	-3.30
16500	V	41.20		9.76	50.96		74	54	-3.04
	V								
): 5600MHz				
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	(dBµV)	Factor	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
` ′		(dBµV)	(==	(dB/m)	(dBµV/m)	(dBµV/m)	, , ,	` ' '	` ,
11200	H	41.53		8.04	49.57		74	54	-4.43
16800	H	40.36		9.74	50.10		74	54	-3.90
	H				((3)	
11000		40.1-	140)	10.15	()	·	(0)	
11200	V	40.45		8.04	48.49		74	54	-5.51
16800	V	40.60		9.74	50.34		74	54	-3.66
	V								
): 5700MHz				
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11400	I	40.29		8.05	48.34		74	54	-5.66
17100	/H.	40.33		9.72	50.05	_ \</td <td>74</td> <td>54</td> <td>-3.95</td>	74	54	-3.95
	AH)		120)	×	0)		(Q)	
				7					
11400	V	41.28		8.05	49.33		74	54	-4.67
17100	V	40.95		9.72	50.67		_74	54	-3.33
	V	4-6		(<u> </u>				()
			11n(HT20) CI	H100: 5500	MHz			
Fraguenavi	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Morain
Frequency (MHz)	H/V	reading	(dBµV)	Factor	Peak	AV	(dBµV/m)	(dBµV/m)	Margin (dB)
(1411 12)	11,7	(dBµV)	(СВД Г)	(dB/m)		(dBµV/m)	(abp v/iii)		` ,
11000	H	41.62	(.C)	8.03	49.65	C	74	54	-4.35
16500	, H	40.34		9.76	50.10)	74	54	-3.90
	Н								
			1			T			
11000	V	40.57		8.03	48.60		74	54	-5.40
16500	V	40.73		9.76	50.49		74	54	-3.51
	V				/				
			11n		1120: 5600N				
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11200	H	40.95		8.04	48.99	<u> </u>	74	54	-5.01
	Н	40.52		9.74	50.26		74	54	-3.74
16800	Н								
16800									
16800	11								
16800	V	40.53		8.04	48.57		74	54	-5.43
		40.53 40.36		8.04 9.74	48.57 50.10		74 74	54 54	-5.43 -3.90

11000

16500

40.50

40.40

	TESTING	测 检	IOLOGY				Repo	ort No.: TCT22	0328E084
requency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11400	Н	41.58		8.05	49.63		74	54	-4.37
17100	Н	40.38		9.72	50.10		74	54	-3.90
	Н								
KO)		KO.		N.					KO)
11400	V	42.22		8.05	50.27		74	54	-3.73
17100	V	40.27		9.72	49.99		74	54	-4.01
	V								
			111	n(HT40)CH	102: 5510N	1Hz			
		Peak		Correction	Emissi	on Level			
requency	Ant. Pol.	reading	AV reading	Correction Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11020	Н	40.13		8.03	48.16		74	54	-5.84
16530	H	40.80		9.76	50.56		74	54	-3.44
	H								
	•			l			l		
11020	V	41.06		8.03	49.09		74	54	-4.91
16530	V	39.98		9.76	49.74		74	54	-4.26
	V)	<	\		(<u>Q.</u>)	
			111	n(HT40)CH	118: 5590N	/Hz			
		Peak		Correction		on Level			
requency	Ant. Pol.	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11180	Н	41.23		8.04	49.27		74	54	-4.73
16770	H	40.41		9.74	50.15		74	54	-3.85
	H								
				1			I		
11180	V	39.88	(-)	8.04	47.92	(i)	74	54	-6.08
16770	V	40.63		9.74	50.37	<u></u>	74	54	-3.63
	V								
	V			n(HT40) CH					
		Dools		r`		on Level			
requency	Ant. Pol.	Peak reading	AV reading	Correction Factor			Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11340	Н	42.14		8.05	50.19		74	54	-3.81
17010	H-,	40.20		9.72	49.92		74	54	-4.08
	H		(6)						
)					
11340	V	41.17		8.05	49.22		74	54	-4.78
17010	V	39.55		9.72	49.27		74	54	-4.73
	V						7		7.70
	V		1	(VHT20) C				<u> </u>	
		Peak		Composion		on Level			
Frequency	Ant. Pol.	reading	AV reading	Factor	Peak		Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11000	/HA	40.13		8.03	48.16		74	54	-5.84
16500	(H)	41.05		9.76	50.81	Ġ`L	74	54	-3.19
		T 1.UU		1 0.70	00.01		, , ,	UT/	J. 1 J

54

54

-5.47

-3.84

74

74

48.53

50.16

8.03

9.76

			11ac	(VHT20) CI	H120: 5600	MHz			
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11200	Н	41.82		8.04	49.86		74	54	-4.14
16800	Н	40.54		9.74	50.28		74	54	-3.72
	Н								
11200	V	40.44		8.04	48.48		74	54	-5.52
16800	\	41.15		9.74	50.89	9)	74	54	-3.11
	\				1				
			11ac	(VHT20) CI	H140: 5700	MHz			
requency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11400	Н	41.68		8.05	49.73		74	54	-4.27
17100	H	40.03		9.72	49.75		74	54	-4.25
	Hzs							<u></u>	
	(.G)	ı	(.6)			(C)	ı	(C)	
11400	V	42.52		8.05	50.57	<i></i>	74	54	-3.43
17100	V	40.17		9.72	49.89		74	54	-4.11
	V								
	-		11ac	(VHT40) CI	H102: 5510	MHz			
		Peak		Correction		n Level			
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11020	<u>H</u>	40.45		8.03	48.48		74	54	-5.52
16530	H	40.30	(9.76	50.06		74	54	-3.94
	H			/)		/	
44000	17	40.07	1	0.00	F0.00	1	74	F4 1	0.70
11020	V	42.27		8.03	50.30		74	54	-3.70
16530	V	40.16		9.76	49.92		74	54	-4.08
(.Gr)	V	(- G)			 CLI440:FF		.C. 2} -		<u>(6)</u>
			11	ac(VHT40)					
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11180	(H)	40.37	4,0	8.04	48.41		74	54	-5.59
16770	H	38.80		9.74	48.54	<u> </u>	74	54	-5.46
	H								
		I					I		
11180	V	40.49		8.04	48.53		74	54	-5.47
16770	V	39.34		9.74	49.08		74	54	-4.92
	V								
	•			(VHT40) CI	H134: 5670				
	A	Peak		Carraction	Emissio		Daal Park	A\/ 1' 't	NA =
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11340	H	39.04		8.05	47.09		74	54	-6.91
17010	Н	37.35		9.72	47.07		74	54	-6.93
	Н				-,				 ,
		(.c)		(.0					
11340	V	39.96		8.05	48.01		74	54	-5.99
17010	V	41.13		9.72	50.85		74	54	-3.15

			11ac	(VHT80) C	H106: 5530	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11060	Н	40.23		8.03	48.26		74	54	-5.74
16590	Н	40.89		9.75	50.64		74	54	-3.36
	Н								
11060	V	40.84		8.03	48.87		74	54	-5.13
16590	V	39.97	(.G	9.75	49.72	c;	74	54	-4.28
	V			/	(<u></u>			
			11a	(HT80) CH	122: 5610N	ЛНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11220	Н	41.57		8.05	49.62		74	54	-4.38
16830	Н	39.10		9.72	48.82		74	54	-5.18
	Н								
11220	V	40.55	/20	8.05	48.60	G `)	74	54	-5.40
16830	V	40.63		9.72	50.35		74	54	-3.65

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	lodulation T	ype: Band	3							
	11a(HT20) CH149: 5745MHz												
Frequency (MHz)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
11490	Н	39.95		8.09	48.04		74	54	-5.96				
17235	Н	39.35		9.67	49.02		74	54	-4.98				
	Н												
11490	V	42.07	(6)	8.09	50.16		74	54	-3.84				
17235	V	40.50		9.67	50.17)	74	54	-3.83				
	V												

			11a	(HT20) CH	157: 5785N	ЛHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	41.76		8.1	49.86		74	54	-4.14
17355	H	40.85		9.65	50.50		74	54	-3.50
	(H)		- -/, C	•)	(,	C)		(, G)	
11570	V	40.39		8.1	48.49		74	54	-5.51
17355	V	40.51		9.65	50.16		74	54	-3.84
4	V	-7- (1)			<u> </u>		\-		
(0)		ZO.)	X)		(0)		(0)

							7.							
	11a(HT20) CH161: 5825MHz													
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)					
11650	1	39.88	1,0	8.12	48.00		74	54	-6.00					
17475	I	38.82		9.62	48.44	-	74	54	-5.56					
	Ι													
11650	V	41.16		8.12	49.28		74	54	-4.72					
17475	V	40.59		9.62	50.21		74	54	-3.79					
	V				1									

	11n(HT20) CH151: 5745MHz													
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)					
11510	Η	41.35		8.09	49.44		74	54	-4.56					
17265	Н	40.21		9.67	49.88		74	54	-4.12					
()	Η	(, C)		(, ((,C ,2)		(Æ)					
			/											
11510	V	41.87		8.09	49.96		74	54	-4.04					
17265	V	40.53		9.67	50.20		74	54	-3.80					
	V		(A		/			-4-						

			11n	(HT20) CH	157: 5785N	1Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	41.12		8.10	49.22		74	54	-4.78
17355	Н	41.08		9.65	50.73		74	54	-3.27
	Н)		-					
11570	V	40.67		8.10	48.77	-	74	54	-5.23
17355	V	40.36	(.6)	9.65	50.01		74	54	-3.99
	V			/	🦎			/	

			11n	(HT20) CH	165: 5825N	ИHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11650	Н	40.48		8.12	48.60		74	54	-5.40
17475	Н	39.23		9.62	48.85		74	54	-5.15
	H				/			-	
	$(C_{\mathcal{O}})$		(,0)	*)		(C,)		(2C)	
11650	V	42.45		8.12	50.57		74	54	-3.43
17475	V	41.37		9.62	50.99		74	54	-3.01
	V								

			11r	(HT40) CH	151: 5755N	ИHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11510	H	42.38		8.09	50.47		74	54	-3.53
17265	AH /	41.19	1/20	9.67	50.86	9)	74	54	-3.14
	H)			
			1				T		
11510	V	42.55		8.09	50.64		74	54	-3.36
17265	V	41.01		9.67	50.68		74	54	-3.32
(<u></u>)	V				<i></i>		<u>-</u>		'\'

			11n	(HT40) CH	159: 5795N	1Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11590	Η	41.17		8.10	49.27		74	54	-4.73
17385	Н	40.35		9.65	50.00		74	54	-4.00
	Н								/
(, G,)		(,0))	(, (J)		(, G \)		(,0,)
11590	V	40.86		8.10	48.96		74	54	-5.04
17385	V	39.58		9.65	49.23		74	54	-4.77
	V								

			11ac	(VHT40) CI	H149: 5745	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11490	Н	42.21		8.09	50.30		74	54	-3.70
17235	Н	40.60		9.67	50.27		74	54	-3.73
	Н	-					1		
11490	V	41.42		8.09	49.51		74	54	-4.49
17235	V	40.25	(.6)	9.67	49.92		74	54	-4.08
	V			/	🖔)			

			11ac	(VHT20) C	H157: 5785	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11570	Н	40.41		8.10	48.51		74	54	-5.49
17355	Н	38.29		9.65	47.94		74	54	-6.06
	H				/			7	
	(, (, ', ', ', ', ', ', ', ', ', ', ', ', ',		(,C)	*)		(C)		(2G)	
11570	V	39.65		8.10	47.75		74	54	-6.25
17355	V	40.20		9.65	49.85		74	54	-4.15
	V								
			\		A)				

VI			1		7 71						
	11ac(VHT20) CH165: 5825MHz										
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
11650	H	41.69		8.12	49.81		74	54	-4.19		
17475	T)	39.97	<u>/</u>	9.62	49.59	9)	74	54	-4.41		
	Ξ)=			
11650	V	40.95		8.12	49.07		74	54	-4.93		
17475	V	40.47		9.62	50.09		74	54	-3.91		
` <u> </u>	V	-4-			<i></i>		-7-		\\\		

			11ac	(VHT40) CI	H151: 5755	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)			Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11510	Η	41.08		8.09	49.17		74	54	-4.83
17265	Н	39.55		9.67	49.22		74	54	-4.78
	Ι			/					/=/
(2C)		(20)		(20	37)		(2G)		(2G)
11510	V	42.32		8.09	50.41		74	54	-3.59
17265	V	39.17		9.67	48.84		74	54	-5.16
	V								

			11ac	(VHT40) CI	H159: 5795	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11590	Η	41.32		8.10	49.42		74	54	-4.58
17385	Η	39.37		9.65	49.02		74	54	-4.98
	Н				-				
11590	V	42.56		8.10	50.66		74	54	-3.34
17385	V	40.30	(.6)	9.65	49.95	())	74	54	-4.05
	V			/					

			11ac	(VHT80) CI	H155: 5775	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	Emission Level Peak AV dBµV/m) (dBµV/m)		AV limit (dBµV/m)	Margin (dB)
11550	Н	41.06		8.09	49.15		74	54	-4.85
17325	Н	40.55		9.66	50.21		74	54	-3.79
	H				/			-	
	$(C_{\mathcal{O}})$		(,0)	*)		(C,)		(2C)	
11550	V	42.36		8.09	50.45		74	54	-3.55
17325	V	40.11		9.66	49.77		74	54	-4.23
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. In the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. In the test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at Antenna 0 and Antenna 1, the worst case was found. Only the test data of Antenna 0 was shown in this report.

Test plots as follows:

Test mode:	802.11ac	(VHT20)	Freque	ency(MHz):	5180
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta	Result
remperature (C)	voltage(vDC)	Frequency(MHz) Frequency(MHz) Frequency		Frequency(H	Hz)
45		518	0.02	20000	PASS
35		518	0.02	20000	PASS
25	3.3V	51	5180		PASS
15	3.37	51	80	0	PASS
5		51	80	0	PASS
0		517	9.98	-20000	PASS
	2.97V	51	80	0	PASS
20	3.3V	51	80	0.0	PASS
	3.63V	51	80	0	PASS

Test mode:	802.11ac(V	/HT20) Freque	ency(MHz):	5200
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
4.5			, , ,	54.00
45		5200.02	20000	PASS
35		5199.98	-20000	PASS
25	3.3V	5200	0	PASS
15	3.37	5199.98	-20000	PASS
5		5199.98	-20000	PASS
0		5200	0	PASS
	2.97V	5200.02	20000	PASS
20	3.3V	5200	0	PASS
	3.63V	5199.98	-20000	PASS

Test mode:	802.11ac(\	/HT20) Frequei		Frequency(MHz):		5240	
Temperature (°C)	Voltage(VDC)	Measur	ement	Delta		Result	
remperature (O)	voltage(vDC)	Frequenc	cy(MHz)	Frequency(Hz)	Result	
45		524	5240			PASS	
35		524	40	0		PASS	
25	3.3V	5239	9.98	-20000		PASS	
15	3.34	5239	98.	-20000		PASS	Z
5		5239	9.98	-20000		PASS	((
0		5240	0.02	20000		PASS	
	2.97V	524	40	0		PASS	
20	3.3V	5239	0.98	-20000		PASS	
	3.63V	524	40	0	·	PASS	

Test mode:	802.11ac(VHT20)	/HT20) Frequency(MHz):			5745	
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
remperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(H	Hz)	Nesuit	
45		574	4.96	-40000		PASS	
35		57	45	0		PASS	
25	3.3V	574	4.98	-20000		PASS	
15	3.3 V	57	45	0		PASS	
5		574	4.98	-20000		PASS	
0		574	4.98	-20000		PASS	
	2.97V	574	4.98	-20000		PASS	
20	3.3V	574	4.98	-20000		PASS	7
(C_{\bullet})	3.63V	57	45	0,0)	PASS	(, C

Test mode:	802.11ac(\	/HT20) Frequ	uency(MHz):	5785
Temperature (°C)	Voltage(VDC)	Measurement	Delta	Result
Temperature (C)	voltage(vDC)	Frequency(MHz) Frequency(Hz)	Nesuit
45		5785.02	20000	PASS
35		5784.98	-20000	PASS
25	3.3V	5784.98	-20000	PASS
15	3.3 V	5784.96	-40000	PASS
5		5785	0	PASS
0		5785	0	PASS
(, (, ')	2.97V	5784.98	-20000	PASS
20	3.3V	5785	0	PASS
	3.63V	5785	0	PASS

Test mode:	802.11ac(/HT20) Free	quency(MHz):	5825
Temperature (°C)	Voltage(VDC)	Measuremen Frequency(MH		Result
45		5825	0	PASS
35		5825	0	PASS
25	3.3V	5825	0	PASS
15	3.3 V	5825	0	PASS
5		5825.02	20000	PASS
0		5825.02	20000	PASS
	2.97V	5824.98	-20000	PASS
20	3.3V	5824.96	-40000	PASS
	3.63V	5824.98	-20000	PASS

Test mode:	802.11ac(VHT40)	HT40) Frequency(MHz):		5190	
Temperature (°C)	Voltage(VDC)		rement	Delta		Result
: op o rotto: o (o)		Frequen	cy(MHz)	Frequency(Hz)	. 1000
45		51	90	0		PASS
35		51	90	0		PASS
25	3.3V	51	90	0		PASS
15	3.37	51	90	0		PASS
5		51	90	0		PASS
0		51	90	0		PASS
	2.97V	51	90	0		PASS
20	3.3V	51	90	0		PASS
$(C_{\mathcal{O}})$	3.63V	51	90	0,0	*)	PASS

Test mode:	802.11ac(VHT40)	HT40) Frequency(MHz):			5230	
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
remperature (O)	voltage(vDC)	Frequen	icy(MHz)	Frequency(H	Hz)	rtesuit	
45		52	230	0		PASS	
35		52	230	0		PASS	
25	3.3V	52	230	0		PASS	
15	3.31	52	230	0		PASS	
5		52	230	0		PASS	
0		52	230	0		PASS	
(c)	2.97V	52	230	0		PASS	
20	3.3V	52	230	0		PASS	
	3.63V	52	230	0		PASS	

Test mode:	802.11ac(\	/HT40) Frequ	ency(MHz):	5755
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5755	0	PASS
35		5754.96	-40000	PASS
25	3.3V	5754.96	-40000	PASS
15	3.3 V	5755	0	PASS
5		5755	0	PASS
0	(6)	5755	0	PASS
	2.97V	5755	0	PASS
20	3.3V	5755	0	PASS
	3.63V	5755	0	PASS

Test mode:	802.11ac(VHT40)	HT40) Frequency(MHz):			5795
Temperature (°C)	Voltage(VDC)		rement	Delta		Result
Temperature (0)	voltage(vbo)	Frequen	cy(MHz)	Frequency(H	Hz)	rtoouit
45	(.c.)	57	95	0		PASS
35		57	95	0		PASS
25	3.3V	57	95	0		PASS
15	3.31	57	95	0		PASS
5		57	95	0		PASS
0		57	95	0		PASS
	2.97V	57	95	0		PASS
20	3.3V	57	95	0		PASS
(C)	3.63V	57	95	0.0		PASS

Test mode:	802.11ac(\	/HT80) Frequ	ency(MHz):	5210
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5210	0	PASS
35		5210	0	PASS
25	3.3V	5210	0	PASS
15	3.3 V	5210	0	PASS
5		5210.08	80000	PASS
0		5210.08	80000	PASS
	2.97V	5210	0	PASS
20	3.3V	5210	0	PASS
	3.63V	5210	0	PASS

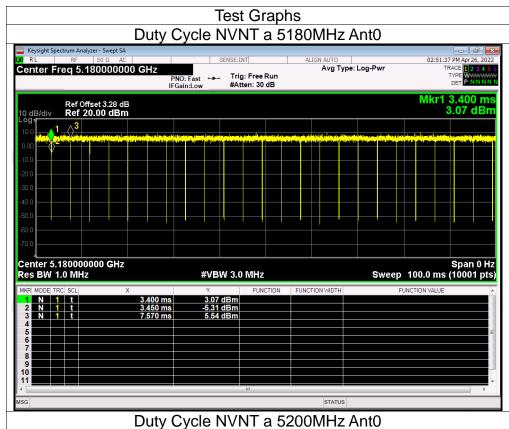
Test mode:	802.11ac(\	/HT80) Frequen		/(MHz):		5775	
Temperature (°C)	Voltage(VDC)	Measureme		Delta		Result	
· · · · · · · · · · · · · · · · · · ·		Frequency(N	Hz) Fr	equency(l	HZ)		
45		5775		0		PASS	
35		5774.92		-80000		PASS	
25	3.3V	5775		0		PASS	
15	3.3 V	5775		0		PASS	
5		5775		0		PASS	
0		5775		0		PASS	
	2.97V	5775		0		PASS	
20	3.3V	5774.92		-80000		PASS	
	3.63V	5775		0		PASS	

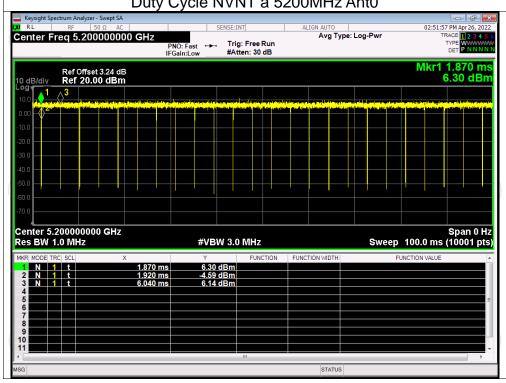
Appendix A: Test Result of Conducted Test

Antenna 0


Duty Cycle

	Duty Cycle		;	201
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)
NVNT	а	5180	Ant0	99.16
NVNT	а	5200	Ant0	99.16
NVNT	а	5240	Ant0	99.17
NVNT	n20	5180	Ant0	99.21
NVNT	n20	5200	Ant0	99.37
NVNT	n20	5240	Ant0	99.32
NVNT	n40	5190	Ant0	99.09
NVNT	n40	5230	Ant0	99.08
NVNT	ac20	5180	Ant0	99.36
NVNT	ac20	5200	Ant0	99.32
NVNT	ac20	5240	Ant0	99.32
NVNT	ac40	5190	Ant0	99.12
NVNT	ac40	5230	Ant0	99.12
NVNT	ac80	5210	Ant0	98.40
NVNT	а	5260	Ant0	99.20
NVNT	а	5300	Ant0	99.20
NVNT	а	5320	Ant0	99.16
NVNT	n20	5260	Ant0	99.09
NVNT	n20	5300	Ant0	99.10
NVNT	n20	5320	Ant0	99.13
NVNT	n40	5270	Ant0	99.22
NVNT	n40	5310	Ant0	99.23
NVNT	ac20	5260	Ant0	99.12
NVNT	ac20	5300	Ant0	99.13
NVNT	ac20	5320	Ant0	99.14
NVNT	ac40	5270	Ant0	99.21
NVNT	ac40	5310	Ant0	99.25
NVNT	ac80	5290	Ant0	98.38
NVNT	а	5500	Ant0	99.20
NVNT	а	5600	Ant0	99.18
NVNT	а	5700	Ant0	99.20
NVNT	n20	5500	Ant0	99.16
NVNT	n20	5600	Ant0	99.12
NVNT	n20	5700	Ant0	99.10
NVNT	n40	5510	Ant0	99.12
NVNT	n40	5590	Ant0	99.11
NVNT	n40	5670	Ant0	99.11
NVNT	ac20	5500	Ant0	99.11
NVNT	ac20	5600	Ant0	99.12
NVNT	ac20	5700	Ant0	99.18
NVNT	ac40	5510	Ant0	98.33
NVNT	ac40	5590	Ant0	98.20


TCT通测检测 testing centre technology


NVNT	ac40	5670	Ant0	98.31
NVNT	ac80	5530	Ant0	98.74
NVNT	ac80	5610	Ant0	98.73
NVNT	а	5745	Ant0	99.24
NVNT	а	5785	Ant0	99.20
NVNT	а	5825	Ant0	99.20
NVNT	n20	5745	Ant0	99.17
NVNT	n20	5785	Ant0	99.16
NVNT	n20	5825	Ant0	99.17
NVNT	n40	5755	Ant0	99.14
NVNT	n40	5795	Ant0	99.14
NVNT	ac20	5745	Ant0	99.14
NVNT	ac20	5785	Ant0	99.15
NVNT	ac20	5825	Ant0	99.15
NVNT	ac40	5755	Ant0	99.12
NVNT	ac40	5795	Ant0	99.13
NVNT	ac80	5775	Ant0	98.18
4 U J		λ ^O 1	XO /	- NO

