

DASY5 Validation Report for Head TSL

Date: 25.01.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1262

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz

Medium parameters used: $f = 5250 \text{ MHz}$; $\sigma = 4.65 \text{ S/m}$; $\epsilon_r = 35.6$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: $f = 5600 \text{ MHz}$; $\sigma = 5.03 \text{ S/m}$; $\epsilon_r = 35.4$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: $f = 5750 \text{ MHz}$; $\sigma = 5.15 \text{ S/m}$; $\epsilon_r = 35.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 75.34 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.31 W/kg

Smallest distance from peaks to all points 3 dB below = 6.8 mm

Ratio of SAR at M2 to SAR at M1 = 70.8%

Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 75.17 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.34 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

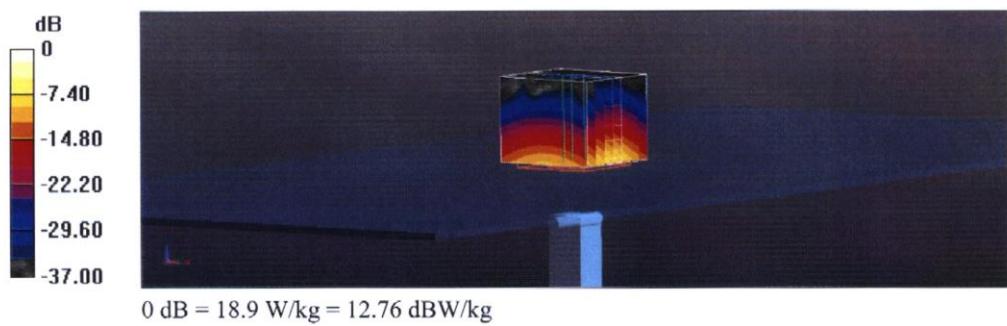
Ratio of SAR at M2 to SAR at M1 = 67.9%

Maximum value of SAR (measured) = 18.9 W/kg

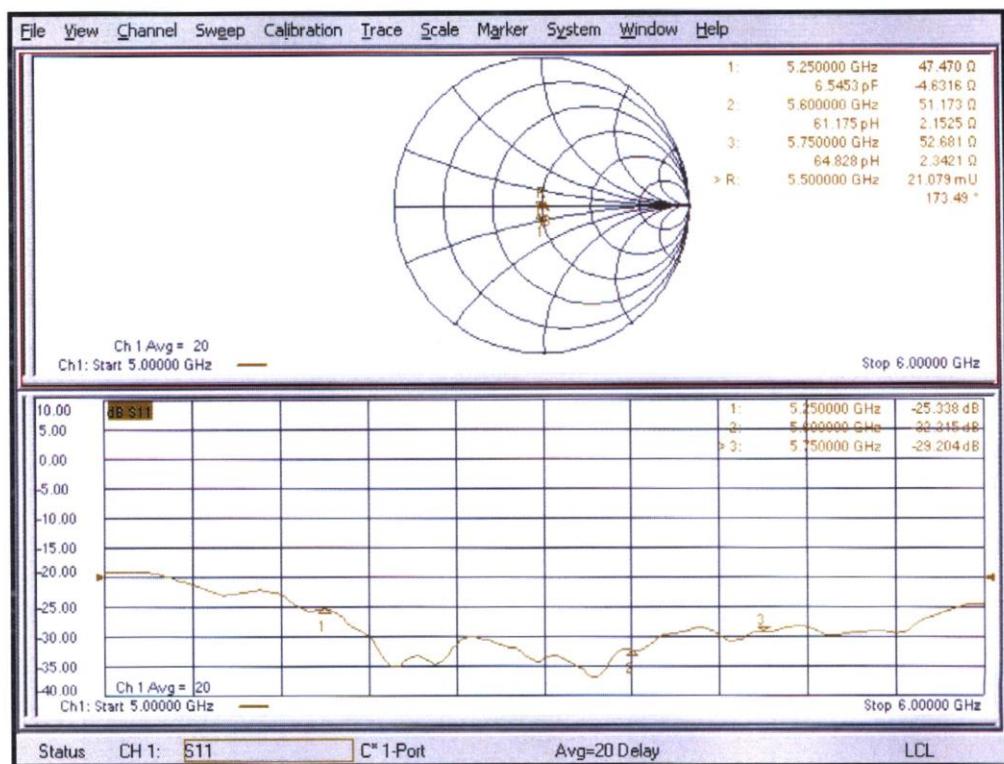
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.05 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.23 W/kg


Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 66.1%

Maximum value of SAR (measured) = 18.4 W/kg

Impedance Measurement Plot for Head TSL

6.5G Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **CTTL-BJ (Auden)**

Certificate No: **D6.5GHzV2-1059_Dec21**

CALIBRATION CERTIFICATE

Object **D6.5GHzV2 - SN:1059**

Calibration procedure(s) **QA CAL-22.v6**
Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: **December 01, 2021**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Power sensor R&S NRP33T	SN: 100967	08-Apr-21 (No. 217-03293)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7405	30-Dec-20 (No. EX3-7405_Dec20)	Dec-21
DAE4	SN: 908	24-Jun-21 (No. DAE4-908_Jun21)	Jun-22
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator Anapico APSIN20G	SN: 669	28-Mar-17 (in house check Dec-18)	In house check: Dec-21
Network Analyzer R&S ZVL13	SN: 101093	10-May-12 (in house check Dec-18)	In house check: Dec-21

Calibrated by:	Name Leif Klynsner	Function Laboratory Technician	Signature
Approved by:	Name Niels Kuster	Function Quality Manager	Signature

Issued: December 1, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020.

Additional Documentation:

- b) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.
- *The absorbed power density (APD):* The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY6	V16.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	5 mm	with Spacer
Zoom Scan Resolution	$dx, dy = 3.4 \text{ mm}, dz = 1.4 \text{ mm}$	Graded Ratio = 1.4 (Z direction)
Frequency	$6500 \text{ MHz} \pm 1 \text{ MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	34.5	6.07 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	34.3 \pm 6 %	6.13 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	29.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	289 W/kg \pm 24.7 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	5.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.3 W/kg \pm 24.4 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 6.2 $j\Omega$
Return Loss	- 23.5 dB

APD (Absorbed Power Density)

APD averaged over 1 cm ²	Condition	
APD measured	100 mW input power	289 W/m ²
APD measured	normalized to 1W	2890 W/m ² \pm 29.2 % (k=2)

APD averaged over 4 cm ²	Condition	
APD measured	100 mW input power	130 W/m ²
APD measured	normalized to 1W	1300 W/m ² \pm 28.9 % (k=2)

*The reported APD values have been derived using psSAR8g.

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

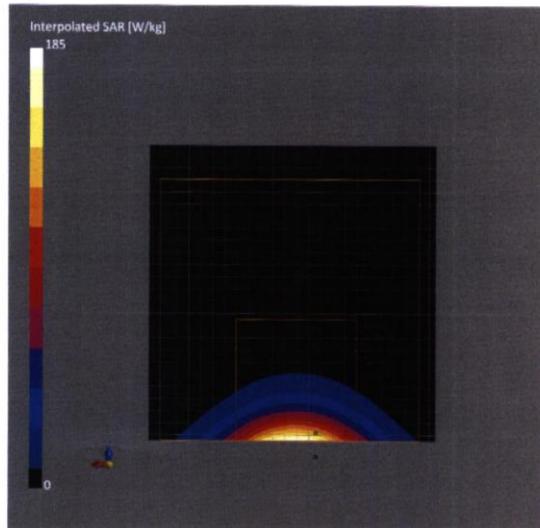
DASY6 Validation Report for Head TSL

Measurement Report for D6.5GHz-1059, UID 0 -, Channel 6500 (6500.0MHz)

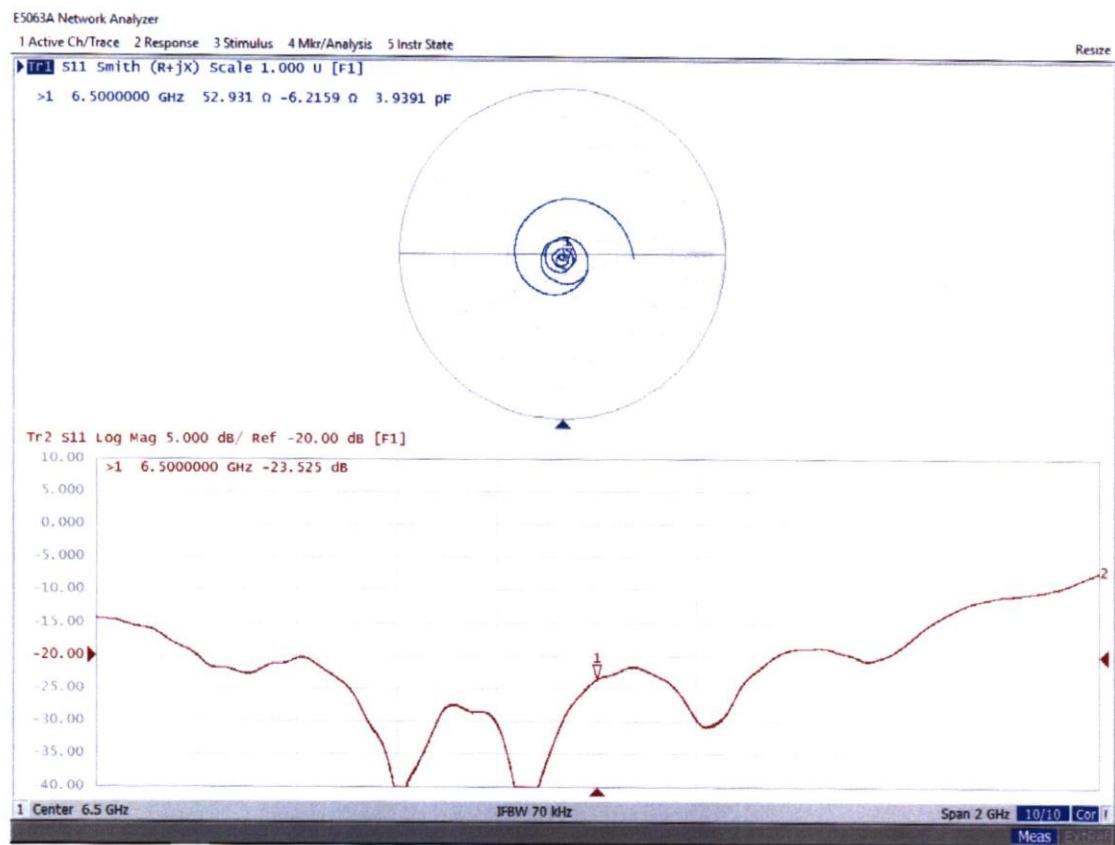
Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
D6.5GHz	16.0 x 6.0 x 300.0	SN: 1059	-

Exposure Conditions


Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz]	Conversion Factor	TSL Cond. [S/m]	TSL Permittivity
Flat, HSL	5.00	Band	CW,	6500	5.75	6.13	34.3

Hardware Setup


Phantom	TSL	Probe, Calibration Date	DAE, Calibration Date
MFP V8.0 Center - 1182	HBBL600-10000V6	EX3DV4 - SN7405, 2020-12-30	DAE4 Sn908, 2021-06-24

Scan Setup

	Zoom Scan	Measurement Results	Zoom Scan
Grid Extents [mm]	22.0 x 22.0 x 22.0	Date	2021-12-01, 13:15
Grid Steps [mm]	3.4 x 3.4 x 1.4	psSAR1g [W/Kg]	29.0
Sensor Surface [mm]	1.4	psSAR10g [W/Kg]	5.33
Graded Grid	Yes	Power Drift [dB]	-0.00
Grading Ratio	1.4	Power Scaling	Disabled
MAIA	N/A	Scaling Factor [dB]	
Surface Detection	VMS + 6p	TSL Correction	No correction
Scan Method	Measured	M2/M1 [%]	51.1
		Dist 3dB Peak [mm]	4.8

Impedance Measurement Plot for Head TSL

10G Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client **CTT (Auden)**

Certificate No: 5G-Veri10-1005_Jan23

CALIBRATION CERTIFICATE

Object	5G Verification Source 10 GHz - SN: 1005		
Calibration procedure(s)	QA CAL-45.v4 Calibration procedure for sources in air above 6 GHz		
Calibration date:	January 11, 2023		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.			
Calibration Equipment used (M&TE critical for calibration)			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Reference Probe EUmmWV3 DAE4ip	SN: 9374 SN: 1602	2023-01-03 (No. EUmmWV3-9374_Jan23) 2022-06-27 (No. DAE4ip-1602_Jun22)	Jan-24 Jun-23
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMF100A Power sensor R&S NRP18S-10	SN: 100184 SN: 101258	19-May-22 (in house check Nov-22) 31-May-22 (in house check Nov-22)	In house check: Nov-23 In house check: Nov-23
Calibrated by:	Name Leif Klysner	Function Laboratory Technician	Signature
Approved by:	Sven Kühn	Technical Manager	
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			
Issued: February 8, 2023			

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary

CW Continuous wave

Calibration is Performed According to the Following Standards

- Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz.
- IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022

Methods Applied and Interpretation of Parameters

- Coordinate System:* z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange.
- Measurement Conditions:* (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections.
- Horn Positioning:* The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn.
- E-field distribution:* E field is measured in two x-y-plane (10mm, 10mm + $\lambda/4$) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-field-maxima and the averaged (1cm^2 and 4cm^2) power density values at 10mm in front of the horn.
- Field polarization:* Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation.

Calibrated Quantity

- Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m^2) averaged over the surface area of 1cm^2 and 4cm^2 at the nominal operational frequency of the verification source. Both square and circular averaging results are listed.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module mmWave	V3.2
Phantom	5G Phantom	
Distance Horn Aperture - plane	10 mm	
XY Scan Resolution	dx, dy = 7.5 mm	
Number of measured planes	2 (10mm, 10mm + $\lambda/4$)	
Frequency	10 GHz \pm 10 MHz	

Calibration Parameters, 10 GHz

Circular Averaging

Distance Horn Aperture to Measured Plane	<i>Prad</i> ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	86.1	153	1.27 dB	57.5	53.5	1.28 dB

Distance Horn Aperture to Measured Plane	<i>Prad</i> ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density		Uncertainty (k = 2)
				psPDn+, psPDtot+, psPDmod+	(W/m ²)	
10 mm	86.1	153	1.27 dB	55.4, 58.4, 58.6	51.6, 54.2, 54.6	1.28 dB

Square Averaging

Distance Horn Aperture to Measured Plane	<i>Prad</i> ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Avg Power Density		Uncertainty (k = 2)
				1 cm ²	4 cm ²	
10 mm	86.1	153	1.27 dB	57.5	53.4	1.28 dB

Distance Horn Aperture to Measured Plane	<i>Prad</i> ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Power Density		Uncertainty (k = 2)
				psPDn+, psPDtot+, psPDmod+	(W/m ²)	
10 mm	86.1	153	1.27 dB	55.4, 58.4, 58.6	51.5, 54.1, 54.5	1.28 dB

Max Power Density

Distance Horn Aperture to Measured Plane	<i>Prad</i> ¹ (mW)	Max E-field (V/m)	Uncertainty (k = 2)	Max Power Density		Uncertainty (k = 2)
				Sn, Stot, Stot (W/m ²)		
10 mm	86.1	153	1.27 dB	57.0, 60.2, 60.3		1.28 dB

¹ Assessed ohmic and mismatch loss plus numerical offset: 0.55 dB

DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

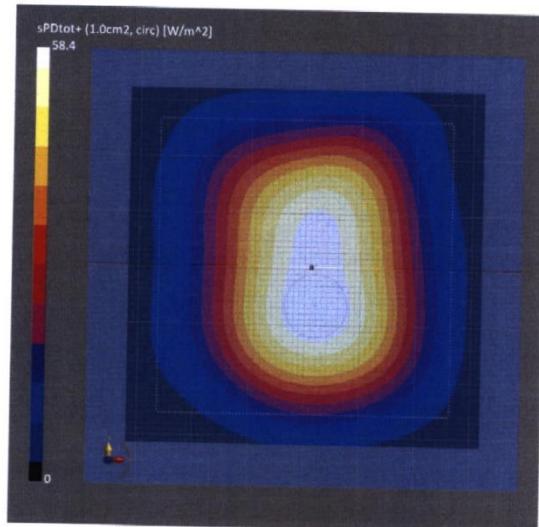
Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	-

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup


Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz, 2022-01-03	DAE4ip Sn1602, 2022-06-27

Scan Setup

Grid Extents [mm]	5G Scan
Grid Steps [lambda]	120.0 x 120.0
Sensor Surface [mm]	0.25 x 0.25
MAIA	10.0
	MAIA not used

Measurement Results

5G Scan
2023-01-11, 08:25
1.00
Circular Averaging
55.4
58.4
58.6
57.0
60.2
60.3
153
-0.00

DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

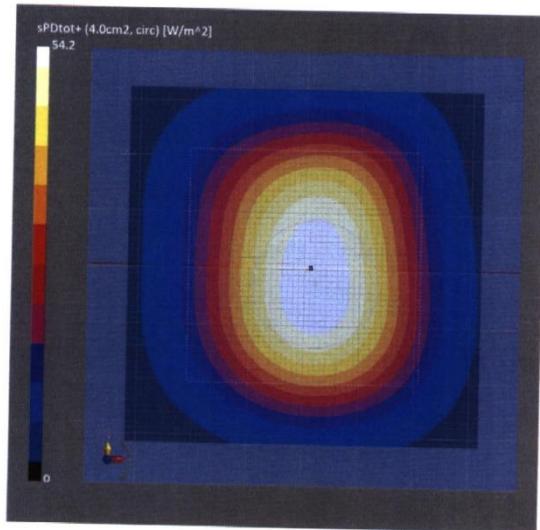
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	-

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz, 2022-01-03	DAE4ip Sn1602, 2022-06-27


Scan Setup

Grid Extents [mm]	5G Scan
Grid Steps [lambda]	120.0 x 120.0
Sensor Surface [mm]	0.25 x 0.25
MAIA	10.0

MAIA not used
psPDn+ [W/m ²]
psPDTot+ [W/m ²]
psPDMod+ [W/m ²]
Max(Sn) [W/m ²]
Max(Stot) [W/m ²]
Max(Stot) [W/m ²]
E _{max} [V/m]
Power Drift [dB]

Measurement Results

5G Scan
2023-01-11, 08:25
4.00
Circular Averaging
51.6
54.2
54.6
57.0
60.2
60.3
153
-0.00

DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	-

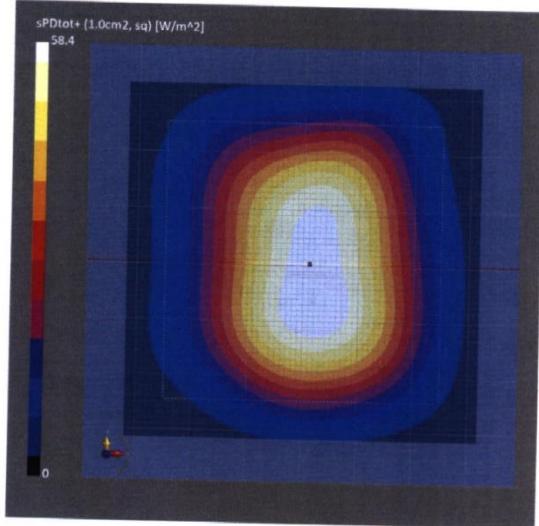
Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz, 2022-01-03	DAE4ip Sn1602, 2022-06-27

Scan Setup


Grid Extents [mm]	5G Scan
Grid Steps [lambda]	120.0 x 120.0
Sensor Surface [mm]	0.25 x 0.25
MAIA	10.0

MAIA not used

Measurement Results

5G Scan
Date
Avg. Area [cm ²]
Avg. Type
psPDRn+ [W/m ²]
psPDTot+ [W/m ²]
psPDMod+ [W/m ²]
Max(Sn) [W/m ²]
Max(Stot) [W/m ²]
Max(Sot) [W/m ²]
E _{max} [V/m]
Power Drift [dB]

2023-01-11, 08:25
1.00
Square Averaging
55.4
58.4
58.6
57.0
60.2
60.3
153
-0.00

DASY Report

Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz)

Device under Test Properties

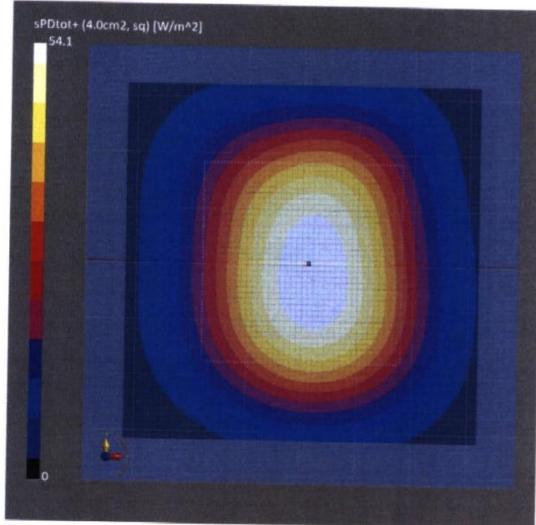
Name, Manufacturer	Dimensions [mm]	IMEI	DUT Type
5G Verification Source 10 GHz	100.0 x 100.0 x 172.0	SN: 1005	-

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group,	Frequency [MHz], Channel Number	Conversion Factor
5G -	10.0 mm	Validation band	CW	10000.0, 10000	1.0

Hardware Setup

Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave Phantom - 1002	Air	EUmmWV3 - SN9374_F1-55GHz, 2022-01-03	DAE4ip Sn1602, 2022-06-27


Scan Setup

Grid Extents [mm]	5G Scan
Grid Steps [λ]	120.0 x 120.0
Sensor Surface [mm]	0.25 x 0.25
MAIA	10.0

MAIA not used

Measurement Results

5G Scan
2023-01-11, 08:25
4.00
Square Averaging
51.5
54.1
54.5
57.0
60.2
60.3
153
-0.00

13 MHz Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client **CTTL**
Beijing

Certificate No. **CLA13-1009_May23**

CALIBRATION CERTIFICATE

Object	CLA13 - SN: 1009																																		
Calibration procedure(s)	QA CAL-15.v10 Calibration Procedure for SAR Validation Sources below 700 MHz																																		
Calibration date:	May 19, 2023																																		
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>																																			
<table><thead><tr><th>Primary Standards</th><th>ID #</th><th>Cal Date (Certificate No.)</th><th>Scheduled Calibration</th></tr></thead><tbody><tr><td>Power meter NRP2</td><td>SN: 104778</td><td>30-Mar-23 (No. 217-03804/03805)</td><td>Mar-24</td></tr><tr><td>Power sensor NRP-Z91</td><td>SN: 103244</td><td>30-Mar-23 (No. 217-03804)</td><td>Mar-24</td></tr><tr><td>Power sensor NRP-Z91</td><td>SN: 103245</td><td>30-Mar-23 (No. 217-03805)</td><td>Mar-24</td></tr><tr><td>Reference 20 dB Attenuator</td><td>SN: CC2552 (20x)</td><td>30-Mar-23 (No. 217-03809)</td><td>Mar-24</td></tr><tr><td>Type-N mismatch combination</td><td>SN: 310982 / 06327</td><td>30-Mar-23 (No. 217-03810)</td><td>Mar-24</td></tr><tr><td>Reference Probe EX3DV4</td><td>SN: 3877</td><td>06-Jan-23 (No. EX3-3877_Jan23)</td><td>Jan-24</td></tr><tr><td>DAE4</td><td>SN: 654</td><td>27-Jan-23 (No. DAE4-654_Jan23)</td><td>Jan-24</td></tr></tbody></table>				Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration	Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24	Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24	Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24	Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24	Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24	Reference Probe EX3DV4	SN: 3877	06-Jan-23 (No. EX3-3877_Jan23)	Jan-24	DAE4	SN: 654	27-Jan-23 (No. DAE4-654_Jan23)	Jan-24
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration																																
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24																																
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24																																
Power sensor NRP-Z91	SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24																																
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24																																
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24																																
Reference Probe EX3DV4	SN: 3877	06-Jan-23 (No. EX3-3877_Jan23)	Jan-24																																
DAE4	SN: 654	27-Jan-23 (No. DAE4-654_Jan23)	Jan-24																																
Secondary Standards	ID #	Check Date (in house)	Scheduled Check																																
Power meter NRP2	SN: 107193	08-Nov-21 (in house check Dec-22)	In house check: Dec-24																																
Power sensor NRP-Z91	SN: 100922	15-Dec-09 (in house check Dec-22)	In house check: Dec-24																																
Power sensor NRP-Z91	SN: 100418	01-Jan-04 (in house check Dec-22)	In house check: Dec-24																																
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24																																
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24																																
Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature 																																
Approved by:	Sven Kühn	Technical Manager																																	
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			Issued: May 23, 2023																																

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The source is mounted in a touch configuration below the center marking of the flat phantom.
- *Return Loss:* This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	$dx, dy = 4.0$ mm, $dz = 1.4$ mm	Graded Ratio = 1.4 (Z direction)
Frequency	13 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	55.0	0.75 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	0.72 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	0.558 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.573 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	1 W input power	0.344 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	0.353 W/kg ± 18.0 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 1.7 $j\Omega$
Return Loss	- 35.2 dB

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

DASY5 Validation Report for Head TSL

Date: 19.05.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1009

Communication System: UID 0 - CW; Frequency: 13 MHz

Medium parameters used: $f = 13$ MHz; $\sigma = 0.72$ S/m; $\epsilon_r = 53.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

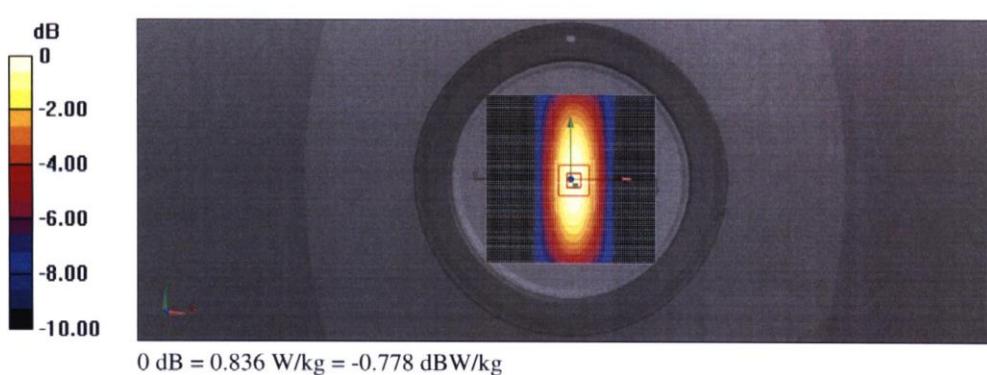
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

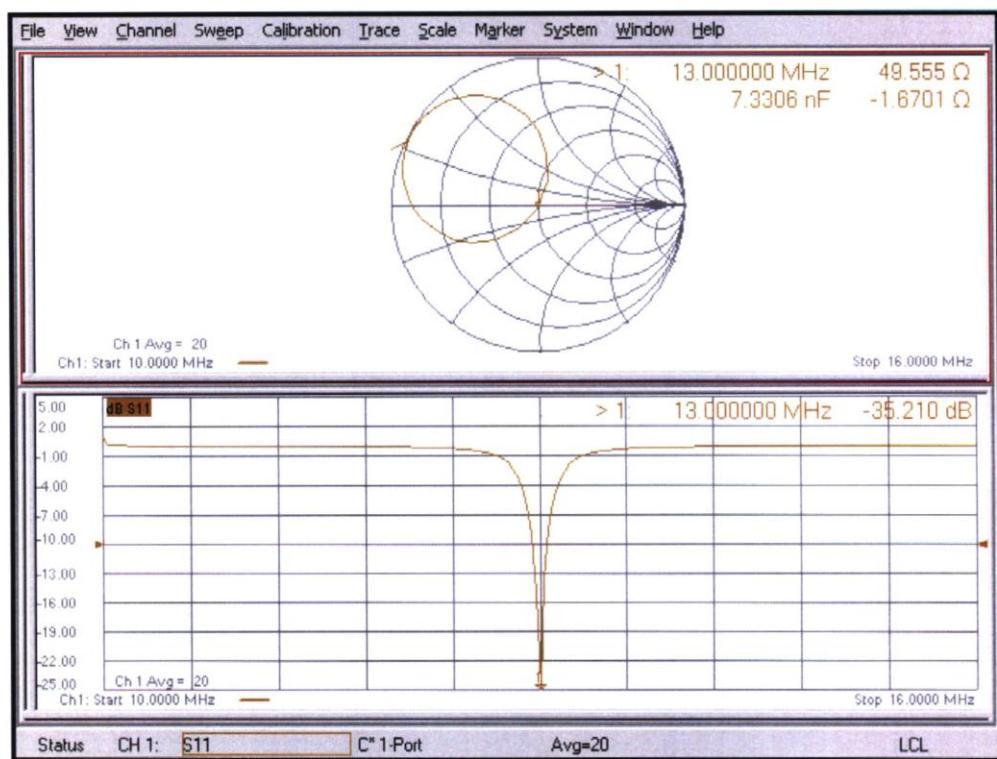
- Probe: EX3DV4 - SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 06.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.01.2023
- Phantom: ELI v6.0; Type: QDOVA003AA; Serial: TP:2034
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 31.63 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.558 W/kg; SAR(10 g) = 0.344 W/kg


Smallest distance from peaks to all points 3 dB below = 15.2 mm

Ratio of SAR at M2 to SAR at M1 = 77.5%

Maximum value of SAR (measured) = 0.836 W/kg

Impedance Measurement Plot for Head TSL

ANNEX I Sensor Triggering Data Summary

Folder Closed ANT1:

SAR Sensor	Rear	13(mm)
	Right	12(mm)
	Bottom	12(mm)

Folder Closed ANT2:

SAR Sensor	Front	12(mm)
	Top	12(mm)

Folder Closed ANT4:

SAR Sensor	Bottom	12(mm)
------------	--------	--------

Folder Closed ANT7:

SAR Sensor	Front	12(mm)
	Top	12(mm)

Folder Open ANT1:

SAR Sensor	Front	10(mm)
	Rear	13(mm)
	Right	12(mm)
	Bottom	12(mm)

Folder Open ANT4:

SAR Sensor	Front	9(mm)
	Rear	12(mm)
	Bottom	12(mm)

Front, Rear, Top, Bottom and Right of the DUT was placed directly below the flat phantom. The DUT was moved toward the phantom in accordance with the steps outlined in KDB 616217 to determine the trigger distance for enabling power reduction. The DUT was moved away from the phantom to determine the trigger distance for resuming full power.

Folder Closed ANT1:**Rear**

Moving device toward the phantom:

The power state											
Distance [mm]	18	17	16	15	14	13	12	11	10	9	8
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm]	8	9	10	11	12	13	14	15	16	17	18
Main antenna	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	Normal

Right

Moving device toward the phantom:

The power state											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Bottom

Moving device toward the phantom:

The power state											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Folder Closed ANT2/7:**Front**

Moving device toward the phantom:

The power state											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Top

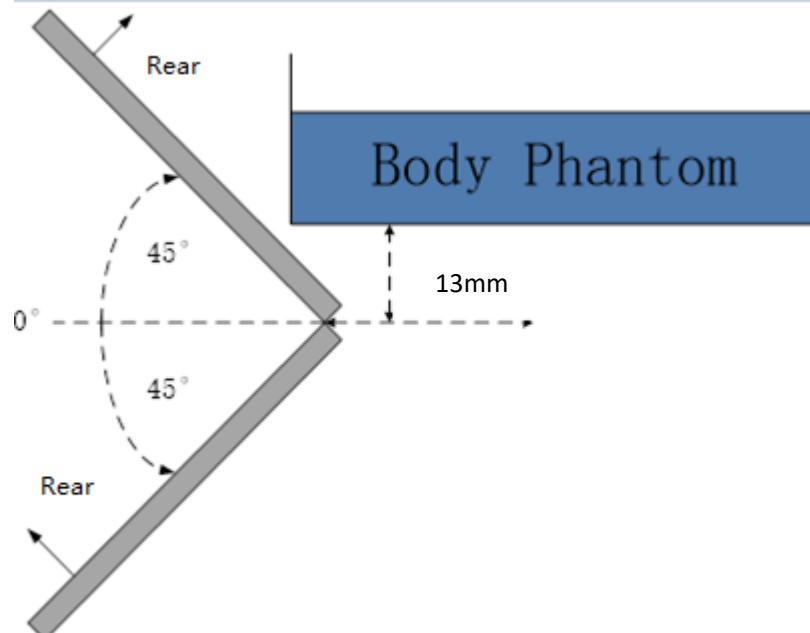
Moving device toward the phantom:

The power state											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

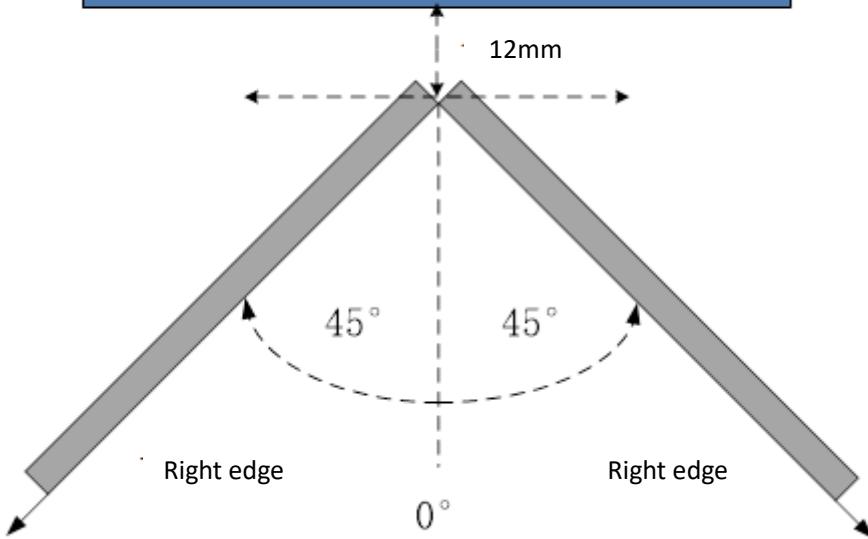
Moving device away from the phantom:

The power state											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Folder Closed ANT4:**Bottom**


Moving device toward the phantom:

The power state											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

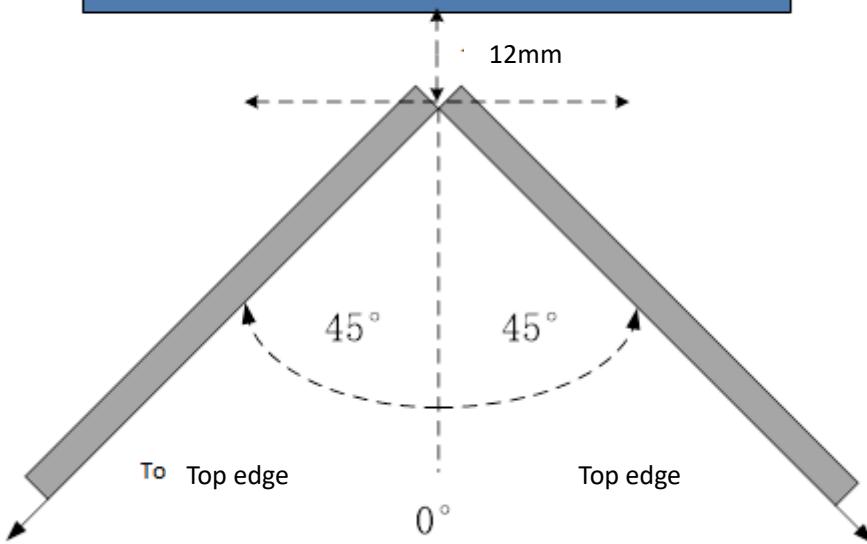

Moving device away from the phantom:

The power state											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^\circ$ increments until the tablet is $\pm 45^\circ$ or more from the vertical position at 0° .


The Rear evaluation

Body Phantom


The Right edge evaluation

Body Phantom

The Bottom edge evaluation

Body Phantom

The Top edge evaluation

Folder Closed ANT1:**Front**

Moving device toward the phantom:

The power state											
Distance [mm]	15	14	13	12	11	10	9	8	7	6	5
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm]	5	6	7	8	9	10	11	12	13	14	15
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Rear

Moving device toward the phantom:

The power state											
Distance [mm]	18	17	16	15	14	13	12	11	10	9	8
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm]	8	9	10	11	12	13	14	15	16	17	18
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Right

Moving device toward the phantom:

The power state											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Bottom

Moving device toward the phantom:

The power state											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Folder Closed ANT4:**Front**

Moving device toward the phantom:

The power state											
Distance [mm]	14	13	12	11	10	9	8	7	6	5	4
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

Moving device away from the phantom:

The power state											
Distance [mm]	4	5	6	7	8	9	10	11	12	13	14
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

Rear

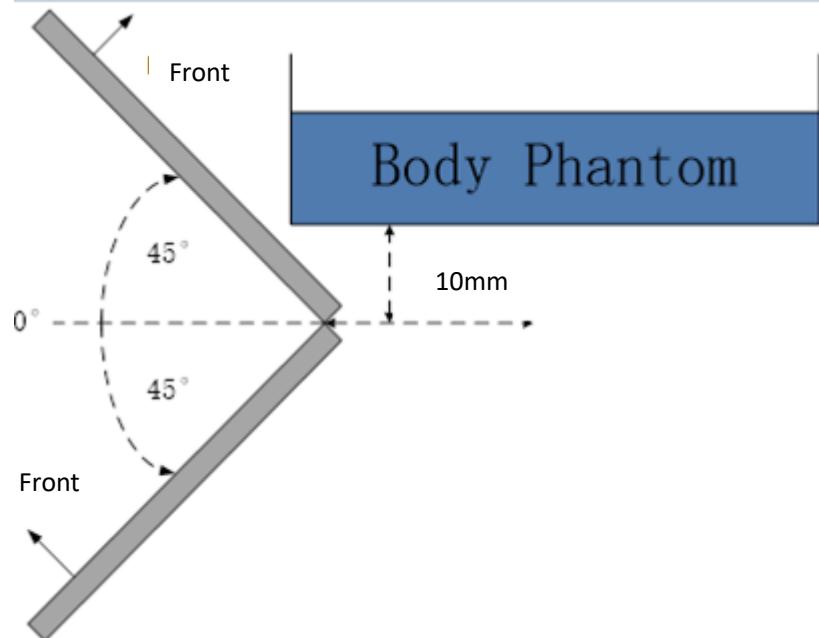
Moving device toward the phantom:

The power state											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

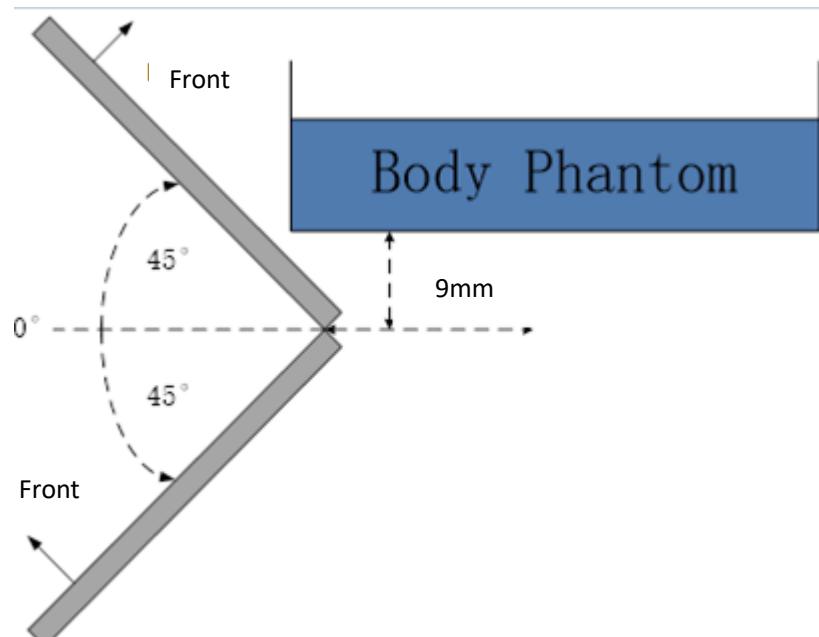
Moving device away from the phantom:

The power state											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

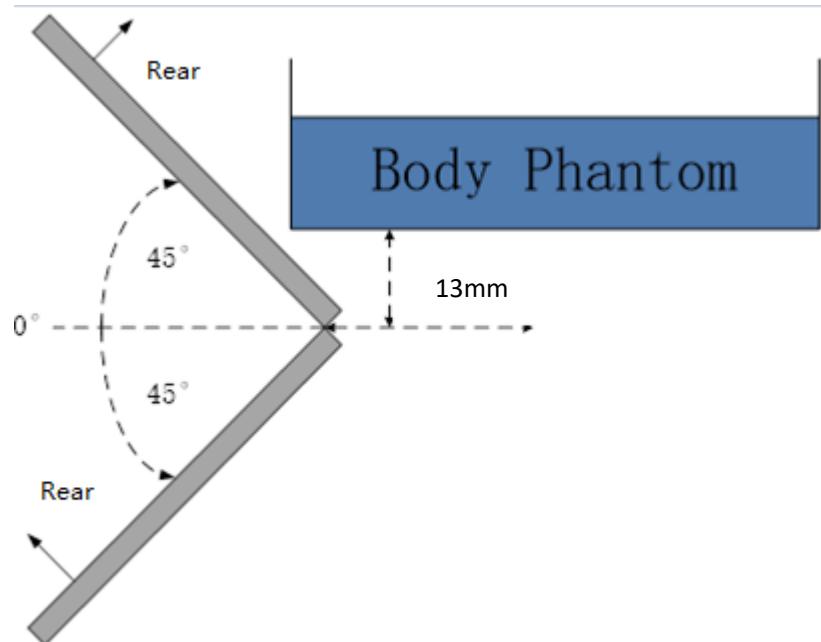
Bottom

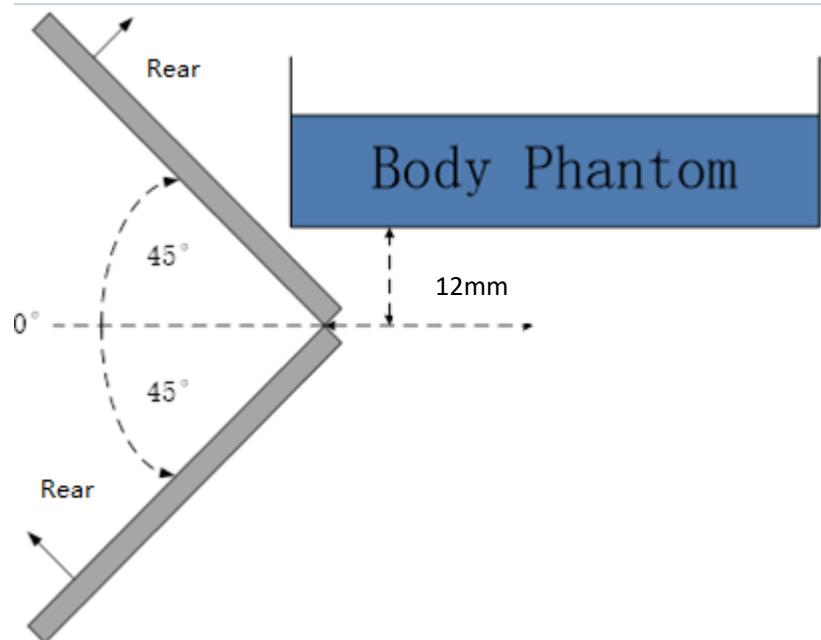

Moving device toward the phantom:

The power state											
Distance [mm]	17	16	15	14	13	12	11	10	9	8	7
Main antenna	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low	Low

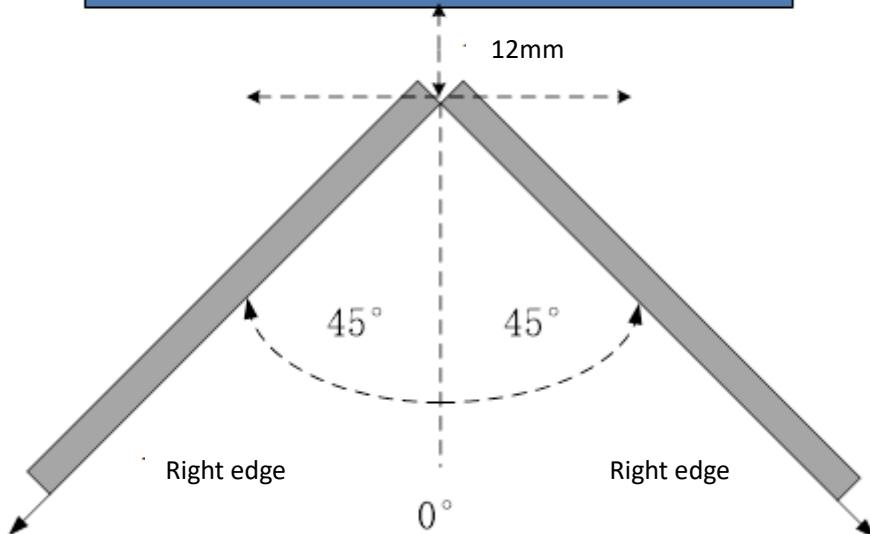

Moving device away from the phantom:

The power state											
Distance [mm]	7	8	9	10	11	12	13	14	15	16	17
Main antenna	Low	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal

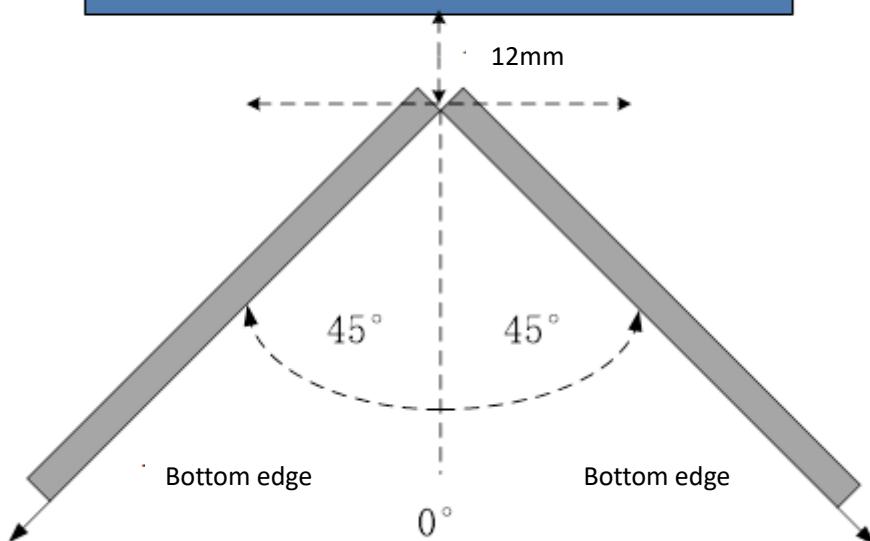

The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the phantom in $\leq 10^\circ$ increments until the tablet is $\pm 45^\circ$ or more from the vertical position at 0° .


The Front evaluation for ANT1

The Front evaluation for ANT4



The Rear evaluation for ANT1


The Rear evaluation for ANT4

Body Phantom

The Right edge evaluation for ANT1

Body Phantom

The Bottom edge evaluation

ANNEX J Accreditation Certificate

United States Department of Commerce
National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing
China

*is accredited by the National Voluntary Laboratory Accreditation Program for specific services,
listed on the Scope of Accreditation, for:*

Electromagnetic Compatibility & Telecommunications

*This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality
management system (refer to joint ISO-ILAC-IAF Communiqué dated January 2009).*

2022-10-01 through 2023-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

A handwritten signature in blue ink that reads "Doreen E. Lamkin".