

FCC PART 15 B, CLASS B

TEST REPORT

For

Shenzhen Xiangyue Perfect Digital Science&Technology Co., Ltd

Building A1, Jiujitongxin Industrial Zone11, Xinbu, Tongle, Longgang, Shenzhen, China

FCC ID: 2ABYGB8501

Report Type: Original Report	Product Type: 3G mobile phone
Test Engineer: <u>Haiguo Li</u>	
Report Number: <u>RSZ140121002-00A</u>	
Report Date: <u>2014-02-17</u>	
Reviewed By: <u>Jimmy Xiao</u> <u>RF Engineer</u>	
Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION.....	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S).....	3
TEST FACILITY	3
SYSTEM TEST CONFIGURATION.....	4
DESCRIPTION OF TEST CONFIGURATION	4
EUT EXERCISE SOFTWARE	4
SPECIAL ACCESSORIES.....	4
EQUIPMENT MODIFICATIONS	4
SUPPORT EQUIPMENT LIST AND DETAILS	4
EXTERNAL I/O CABLE.....	4
BLOCK DIAGRAM OF TEST SETUP	5
SUMMARY OF TEST RESULTS.....	6
FCC §15.107 – AC LINE CONDUCTED EMISSIONS.....	7
APPLICABLE STANDARD	7
MEASUREMENT UNCERTAINTY.....	7
EUT SETUP	7
EMI TEST RECEIVER SETUP.....	8
TEST PROCEDURE	8
TEST EQUIPMENT LIST AND DETAILS.....	8
CORRECTED FACTOR & MARGIN CALCULATION	8
TEST RESULTS SUMMARY	9
TEST DATA	9
FCC §15.109 - RADIATED SPURIOUS EMISSIONS	12
APPLICABLE STANDARD	12
MEASUREMENT UNCERTAINTY.....	12
EUT SETUP	12
EMI TEST RECEIVER SETUP.....	13
TEST PROCEDURE	13
TEST EQUIPMENT LIST AND DETAILS.....	13
CORRECTED AMPLITUDE & MARGIN CALCULATION	14
TEST RESULTS SUMMARY	14
TEST DATA	14

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Shenzhen Xiangyue Perfect Digital Science&Technology Co., Ltd*'s product, model number: *B8501* (*FCC ID: 2ABYGB8501*) or the "EUT" in this report was a *3G mobile phone*, which was measured approximately: 13.44 cm (L) x 6.8 cm (W) x 0.99 cm (H), rated with input voltage: DC 3.8 V rechargeable Li-ion battery. The highest operating frequency is 1.2 GHz.

**All measurement and test data in this report was gathered from production sample serial number: B8403xxxxxxxx (Assigned by the applicant). The EUT supplied by the applicant was received on 2014-01-21.*

Objective

This test report is prepared on behalf of *Shenzhen Xiangyue Perfect Digital Science&Technology Co., Ltd* in accordance with Part 2-Subpart J, Part 15-Subparts A and B of the Federal Communication Commissions rules.

The objective of the manufacturer is to determine the compliance of the EUT with FCC Part 15 B.

Related Submittal(s)/Grant(s)

Part 15.247 DSS and DTS, Part 22H 24E PCE submissions with ID: 2ABYGB8501.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a manufacturer testing fashion.

EUT operation mode: Downloading (data transfer with computer)

EUT Exercise Software

“BurnIn test v5.3” exercise software was used.

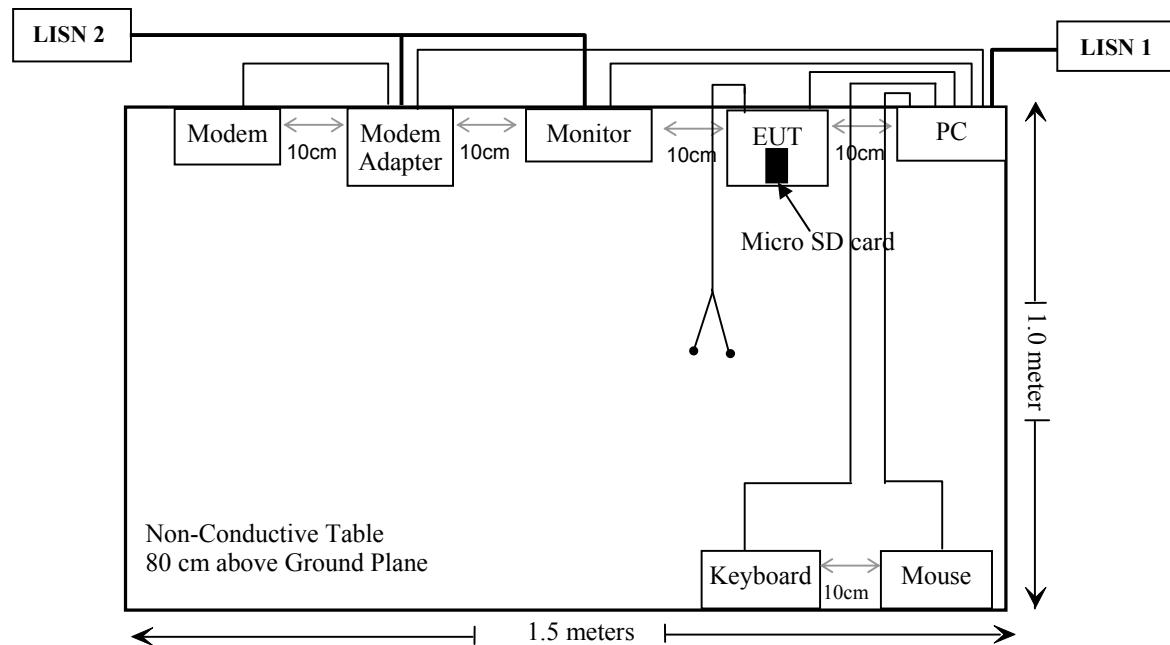
Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
DELL	PC	VOSTRO 220S	127BP2X
DELL	LCD Monitor	E178WFPC	CN-OWY564-64180-7C4-2SQH
DELL	Keyboard	L100	CNORH656658907BL05DC
DELL	Mouse	MOC5UO	G1900NKD
SAST	Modem	AEM-2100	0293
Kingston	Micro SD card	4 GB	/

External I/O Cable

Cable Description	Length (m)	From/Port	To
Shielding Detachable USB Cable	1.5	Host PC	Mouse
Shielding Detachable Serial Cable	1.2	Host PC	Modem
Shielding Detachable K/B Cable	1.5	Host PC	Keyboard
Shielding Detachable VGA Cable	1.5	Host PC	LCD Monitor
Unshielding Detachable USB Cable	0.95	EUT	PC

Block Diagram of Test Setup

Test mode: Downloading

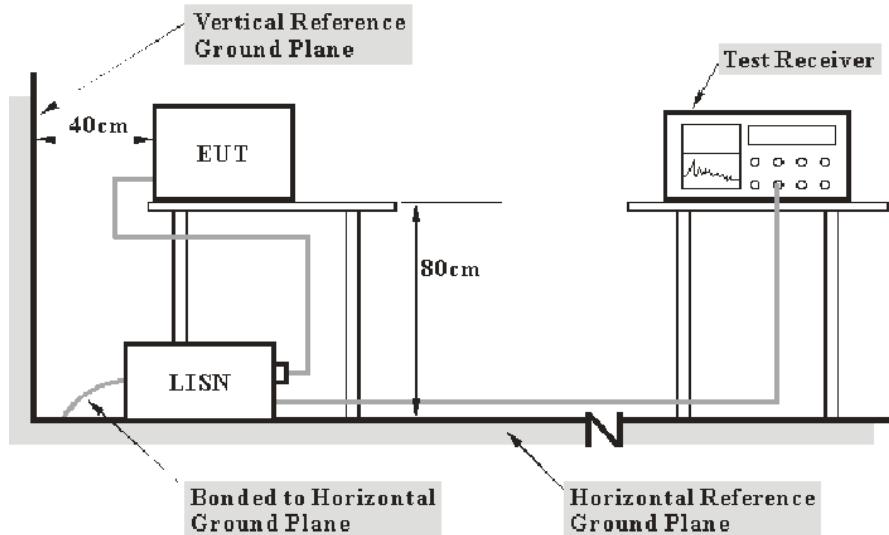
SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§15.107	AC Line Conducted Emissions	Compliance
§15.109	Radiated Spurious Emissions	Compliance

FCC §15.107 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

According to FCC §15.107


Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between AMN/ISN and receiver, AMN/ISN voltage division factor, AMN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report

Port	Measurement uncertainty
AC Mains	3.26 dB (k=2, 95% level of confidence)
CAT 3	3.70 dB (k=2, 95% level of confidence)
CAT 5	3.86 dB (k=2, 95% level of confidence)
CAT 6	4.64 dB (k=2, 95% level of confidence)

EUT Setup

Note: 1. Support units were connected to second LISN.
 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with per ANSI C63.4-2009. The related limit was specified in FCC Part 15.107 Class B.

The spacing between the peripherals was 10 cm.

The host PC was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2013-06-17	2014-06-17
Rohde & Schwarz	LISN	ESH2-Z5	892107/021	2013-08-22	2014-08-22
Rohde & Schwarz	Transient Limitor	ESH3Z2	DE25985	2013-10-15	2014-10-15
Rohde & Schwarz	CE Test software	EMC 32	V8.53	--	--

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

$$\text{Correction Factor} = \text{LISN VDF} + \text{Cable Loss} + \text{Transient Limiter Attenuation}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.107, with the worst margin reading of:

6.2 dB at 8.849250 MHz in the Neutral conducted mode

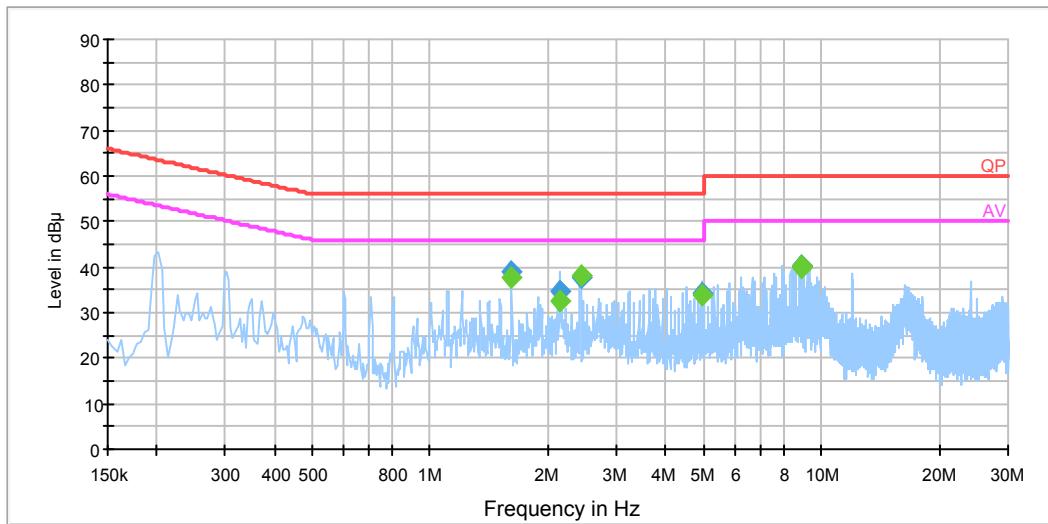
Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_m + U_{(Lm)} \leq L_{lim} + U_{cisp}$$

in BACL., $U_{(Lm)}$ is less than U_{cisp} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

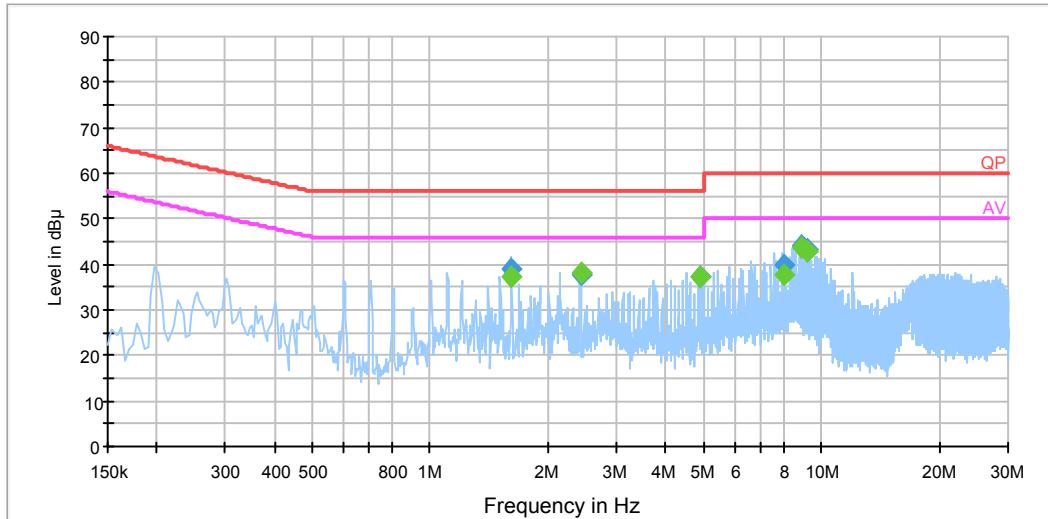
Environmental Conditions


Temperature:	22 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Haiguo Li on 2014-02-25.

EUT Operation Mode: Downloading

AC 120V/60 Hz, Line


EMI Auto Test L

Frequency (MHz)	Corrected Amplitude (dB μ V)	Correction Factor (dB)	Limit (dB μ V)	Margin (dB)	Detector (PK/Ave./QP)
2.421670	38.1	19.6	46.0	7.9	Ave.
1.613790	37.6	19.5	46.0	8.4	Ave.
8.853130	40.3	19.7	50.0	9.7	Ave.
8.851630	39.7	19.7	50.0	10.3	Ave.
4.931990	33.7	19.7	46.0	12.3	Ave.
2.149690	32.6	19.6	46.0	13.4	Ave.
1.613790	39.0	19.5	56.0	17.0	QP
2.421670	37.9	19.6	56.0	18.1	QP
8.853130	40.2	19.7	60.0	19.8	QP
8.851630	40.1	19.7	60.0	19.9	QP
2.149690	34.8	19.6	56.0	21.2	QP
4.931990	34.4	19.7	56.0	21.6	QP

AC 120V/60 Hz, Neutral

EMI Auto Test N

Frequency (MHz)	Corrected Amplitude (dB μ V)	Correction Factor (dB)	Limit (dB μ V)	Margin (dB)	Detector (PK/Ave./QP)
8.849250	43.8	19.8	50.0	6.2	Ave.
9.253690	42.8	19.8	50.0	7.2	Ave.
2.421670	38.0	19.7	46.0	8.0	Ave.
1.613850	37.2	19.6	46.0	8.8	Ave.
4.928050	37.2	19.7	46.0	8.8	Ave.
8.049310	37.9	19.8	50.0	12.1	Ave.
8.849250	43.9	19.8	60.0	16.1	QP
9.253690	43.4	19.8	60.0	16.6	QP
1.613850	39.0	19.6	56.0	17.0	QP
2.421670	37.7	19.7	56.0	18.3	QP
4.928050	37.2	19.7	56.0	18.8	QP
8.049310	39.8	19.8	60.0	20.2	QP

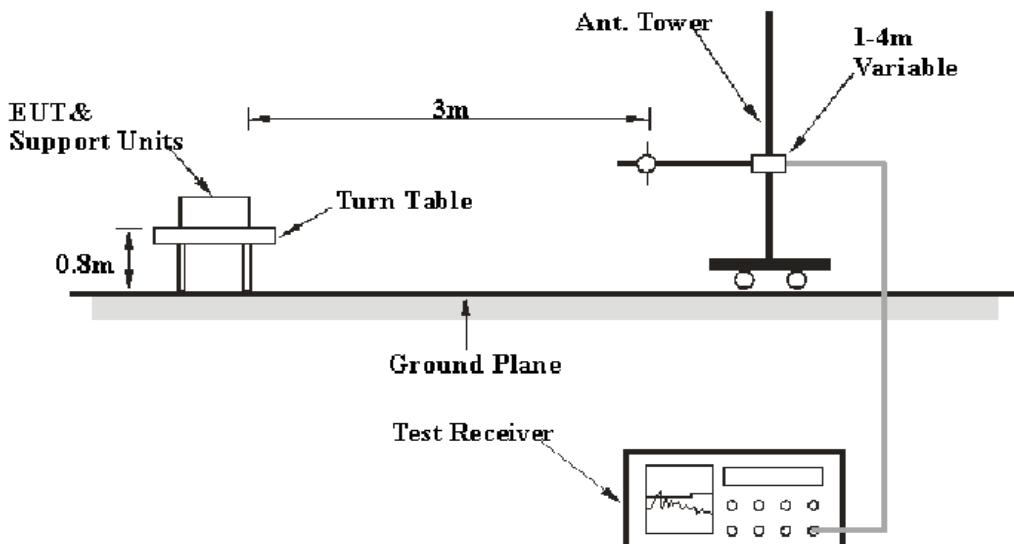
Note:

- 1) Correction Factor = LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
The corrected factor has been input into the transducer of the test software.
- 2) Corrected Amplitude = Reading + Correction Factor
- 3) Margin = Limit – Corrected Amplitude

FCC §15.109 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §15.109


Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown in below table. And the uncertainty will not be taken into consideration for the test data recorded in the report

Frequency	Polarity	Measurement uncertainty
30 MHz~200 MHz	Horizontal	4.62 dB (k=2, 95% level of confidence)
	Vertical	4.54 dB (k=2, 95% level of confidence)
200 MHz~1 GHz	Horizontal	4.84 dB (k=2, 95% level of confidence)
	Vertical	5.91 dB (k=2, 95% level of confidence)
1 GHz~6 GHz	Horizontal/Vertical	4.68 dB (k=2, 95% level of confidence)
Above 6 GHz	Horizontal/Vertical	4.92 dB (k=2, 95% level of confidence)

EUT Setup

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC Part 15.109 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The host PC was connected to a 120 VAC/60 Hz power source.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 6 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
	1MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
HP	Amplifier	8447E	1937A01046	2013-09-30	2014-09-30
Rohde & Schwarz	EMI Test Receiver	ESCI	101122	2013-09-25	2014-09-25
Sunol Sciences	Broadband Antenna	JB1	A040904-2	2011-11-28	2014-11-27
Mini	Amplifier	ZVA-183-S+	5969001149	2013-04-03	2014-04-03
A.H. System	Horn Antenna	SAS-200/571	135	2012-02-11	2015-02-10
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2013-11-12	2014-11-12
R&S	Auto test Software	EMC32	V9.10	--	--

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.109 Class B, with the worst margin reading of:

1.76 dB at 298.563375 MHz in the **Horizontal** polarization mode

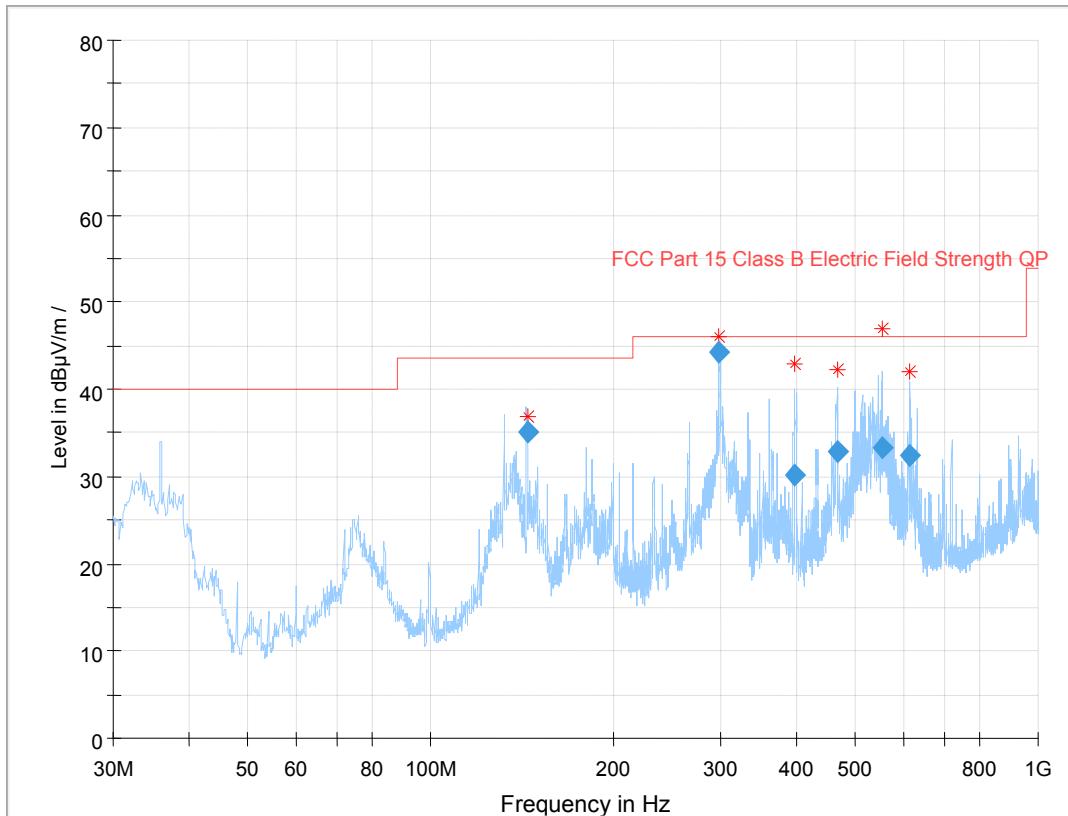
Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_m + U_{(L_m)} \leq L_{\lim} + U_{\text{cisp}}$$

In BACL, $U_{(L_m)}$ is less than U_{cisp} , if L_m is less than L_{\lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions


Temperature:	22 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Haiguo Li on 2014-02-25.

EUT Operation Mode: Downloading

30 MHz ~ 1 GHz

Full Spectrum

Frequency (MHz)	Corrected Amplitude (dB μ V/m)	Antenna Height (cm)	Antenna Polarity	Turntable Position (Degree)	Correction Factor (dB/m)	Limit (dB μ V/m)	Margin (dB)
144.054625	35.18	174.0	H	89.0	-14.1	43.50	8.32
298.563375	44.24	117.0	H	103.0	-13.0	46.00	1.76*
398.312500	30.17	97.0	H	277.0	-11.2	46.00	15.83
466.405000	32.87	227.0	V	178.0	-9.9	46.00	13.13
553.576750	33.20	128.0	V	84.0	-8.7	46.00	12.80
614.216250	32.30	100.0	V	60.0	-8.4	46.00	13.70

Above 1 GHz:

Frequency (MHz)	Receiver		Turntable Degree	Rx Antenna		Corrected Factor (dB/m)	Corrected Amplitude (dB μ V/m)	FCC Part 15B	
	Reading (dB μ V)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)			Limit (dB μ V/m)	Margin (dB)
1223.5	53.21	PK	229	1.2	H	0.13	53.34	74	20.66
1223.5	42.21	Ave.	229	1.2	H	0.13	42.34	54	11.66
1223.5	58.34	PK	188	2.3	V	0.13	58.47	74	15.53
1223.5	41.02	Ave.	188	2.3	V	0.13	41.15	54	12.85

Note:

- 1) Correction Factor=Antenna factor (RX) + cable loss – amplifier factor
- 2) Corrected Amplitude = Correction Factor + Reading
- 3) Margin = Limit - Corrected Amplitude
- 4) *Within measurement uncertainty

******* END OF REPORT *******