

FCCID: 2ABXZU-5296MH

RF Exposure evaluation

According to 447498 D01 General RF Exposure Guidance v06

4.3. General SAR test exclusion guidance

4.3.1. Standalone SAR test exclusion considerations

a) For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following: $[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR,³⁰ where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is $<$ 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

³⁰ This is equivalent to the formula written as: $[(\text{max. power of channel, including tune-up tolerance, mW}) / (60/\sqrt{f(\text{GHz})} \text{ mW})] \cdot [20 \text{ mm} / (\text{min. test separation distance, mm})] \leq 1.0$ for 1-g SAR; also see Appendix A for approximate exclusion threshold numerical values at selected frequencies and distances.

$$\text{eirp} = \text{pt} \times \text{gt} = (\text{Exd})^2/30$$

where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m, --- $10^{[(\text{dBuV/m})/20]/10^6}$

d = measurement distance in meters (m)---3m

So $\text{pt} = (\text{Exd})^2/30 \times \text{gt}$

RF Exposure evaluation

Copied from the FCC test report:

Quasi-Peak measurement of carrier						
Frequency	Level		Transducer	Limit	Margin	
MHz	dBuV/m		dB	dBuV/m	dB	
	V	H			V	H
902.3 (L)	91.1	85.0	27.6	94	-2.9	-9.0
915.36 (M)	90.8	81.2	27.8	94	-3.2	-12.8
927.7 (H)	92.2	86.3	27.9	94	-1.8	-7.7

Note:

50mV/m (94dBuV/m) for QP limit in band (902MHz to 928MHz).

The transducer factor = antenna factor + cable loss - preamplifier. In band 902MHz to

928MHz, preamplifier factor = 0 dB.

The Level = Read level + transducer factor.

H: Antenna polarization horizontal direction. V: Antenna polarization vertical direction.

The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes and choose the worst case of X orthogonal plane for the final measurement.

So E's max value@927.7MHz&3m=92.2dBuV/m

Field strength = 92.2 dBuV/m @927.7MHz&3m

Ant gain =0dBi ;so Ant numeric gain= -2.02 = 2.02, with opposite direction

So $pt = \{ [10^{(92.2/20)/10^6} \times 3]^2 / 30 \times (2.02) \} \times 1000 \text{ mW} = 1.006 \text{ mW}$, with opposite direction

min. test separation distance = 5 mm, since the min distance from the antenna to the outer = 18 mm.

So $(1.0006 \text{ mW}/5\text{mm}) \times \sqrt{0.9277 \text{ GHz}} = 0.1937 < 3$

Then SAR evaluation is not required