FCC TEST REPORT

For

Z-Wave Plug-in appliance module(on/off switch)

Model Number: PA-100

FCC ID: 2ABWCPA100

Report Number : WT148001577

Test Laboratory : Shenzhen Academy of Metrology and Quality Inspection

National Digital Electronic Product Testing Center

Site Location : No.4 TongFa Road, Xili Town, Nanshan District,

Shenzhen, China

Tel : 0086-755-86009898

Fax : 0086-755-86009898-31396

Web: www.smq.com.cn

Test report declaration

Applicant : Dragon Tech Industrial Limited

Address : Rm. 302 Hanley House, 3./F, 776-778 Nathan Road, Mongkok,

Kowloon, Hong Kong

Manufacturer : DONG GUAN TONEX ELECTRONIC CO., LTD

Address : No.10, LiMin Road, JinXiaoTang Indust Zone, Zhu Tang Village,

Feng Gang Town, Dong Guan, GuangDong, China.

Factory : DONG GUAN TONEX ELECTRONIC CO., LTD

Address : No.10, LiMin Road, JinXiaoTang Indust Zone, Zhu Tang Village,

Feng Gang Town, Dong Guan, GuangDong, China.

EUT Description : Z-Wave Plug-in appliance module(on/off switch)

Model No : PA-100

FCC ID : 2ABWCPA100

Test Standards:

FCC Part 15 (10-1-12 Edition)

ANSI C63.4-2009

The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the maximum emissions from the EUT. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (2009) and the energy emitted by the sample EUT tested as described in this report is in compliance with FCC Rules Part 15.249.

The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory.

Project Engineer:	79.36 P3	Date:	_Jun.23,2014
	(Chen Qichun)		
Checked by:	起多年	Date:	Jun.23,2014
	(Yang Dongping)		
Approved by:	(Yang Dongping)	Date:	Jun.23,2014
	(Lin Bin)		

Report No.: WT148001577 Page 2/25

TABLE OF CONTENTS

1.	TECT						
	TEST RESULTS SUMMARY5						
2.	GENE	ERAL INFORMATION6					
	2.1.	Report information6					
	2.2.	Laboratory Accreditation and Relationship to Customer6					
	2.3.	Measurement Uncertainty7					
3.	PROD	OUCT DESCRIPTION8					
	3.1.	EUT Description8					
•	3.2.	Related Submittal(s) / Grant (s)8					
	3.3.	Block Diagram of EUT Configuration8					
	3.4.	Operating Condition of EUT9					
	3.5.	Special Accessories9					
	3.6.	Equipment Modifications9					
	3.7.	Support Equipment List9					
	3.8.	Test Conditions9					
4.	TEST	EQUIPMENT USED10					
5.	CONE	DUCTED DISTURBANCE TEST11					
	5.1.	Test Standard and Limit					
	5.2.	Test Procedure					
	5.3.	Test Arrangement					
	5.4.	Test Data12					
6.	RADIA	ATED DISTURBANCE TEST15					
	6.1.	Test Standard and Limit					
	6.2.	Test Procedure					
	6.3.	Test Arrangement					
	6.4.	Test Data16					
7.	occi	JPIED BANDWIDTH20					
	7.1.	Test Standard and Limit					
	7.2.	Test Procedure					

	7.3.	Test Arrangement	20
	7.4.	Test Data	20
8.	BANI	DEDGE	22
	8.1.	Test Standard and Limit	22
	8.2.	Band Edge FCC 15.249(d) Limit	22
	8.3.	Test Procedure	22
	8.4.	Test Arrangement	22
	8.5.	Test Data	22
9.	ANTE	ENNA REQUIREMENT	25

1. TEST RESULTS SUMMARY

Table 1 Test Results Summary

Test Items	FCC Rules	Test Results
Conducted Disturbance	15.207	Pass
Radiated disturbance	15.249	Pass
Occupied Bandwidth	15.215	Pass
Band Edges	15.249	Pass
Antenna Requirement	15.203	Pass

Remark: " N/A" means " Not applicable."

Report No.: WT148001577 Page 5/25

2. GENERAL INFORMATION

2.1. Report information

- 2.1.1.This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment.
- 2.1.2. The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.
- 2.1.3. Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so.

2.2. Laboratory Accreditation and Relationship to Customer

The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in their facilities located at No.4 TongFa Road, Xili Town, Nanshan District, Shenzhen, China. At the time of testing, Laboratory is accredited by the following organizations:

China National Accreditation Service for Conformity Assessment (CNAS) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is CNAS L0579.

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number are 97379(open area test site) and 274801(semi anechoic chamber).

The Laboratory is registered to perform emission tests with Industry Canada (IC), and the registration number is IC4174.

TUV Rhineland accredits the Laboratory for conformance to IEC and EN standards, the registration number is E2024086Z02.

Report No.: WT148001577 Page 6/25

2.3. Measurement Uncertainty

Conducted Emission
9kHz~30MHz 3.5dB

Radiated Emission
30MHz~1000MHz 4.5dB
1GHz~18GHz 4.6dB

Report No.: WT148001577 Page 7/25

3. PRODUCT DESCRIPTION

3.1.EUT Description

Description : Z-Wave Plug-in appliance module(on/off switch)

Manufacturer : DONG GUAN TONEX ELECTRONIC CO., LTD

Model Number : PA-100

Rated Input : AC 120V/60Hz

Power supply : AC 120V/60Hz

Operate Frequency : 908.4MHz, 916MHz

Modulation 908.4MHz: FSK, 916MHz: GFSK

Antenna Designation : Integrated

3.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2ABWCPA100 filing to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

3.3. Block Diagram of EUT Configuration

Test Setup

Report No.: WT148001577 Page 8/25

3.4. Operating Condition of EUT

Mode 1: ON, Transmitting at 908.4MHz

Mode 2: ON, Transmitting at 916MHz

Mode 3: ON, Receiving

3.5. Special Accessories

Not available for this EUT intended for grant.

3.6. Equipment Modifications

Not available for this EUT intended for grant.

3.7. Support Equipment List

Table 2 Support Equipment List

Name	Model No	S/N	Manufacturer		

3.8. Test Conditions

Date of test: May.20, 2014 - Jun.18, 2014

Date of EUT Receive: May.15, 2014

Temperature: (23-25) ℃

Relative Humidity: (46-60)%

Report No.: WT148001577 Page 9/25

4. TEST EQUIPMENT USED

Table 3 Test Equipment

No	Caulonont	Manufacturar	Model No	Loot Col	Cal.
No.	Equipment	Manufacturer	Model No.	Last Cal.	Interval
SB3319	Test Receiver	R&S	ESCS30	Jan.20, 2014	1 Year
SB3321	AMN	R&S	ESH2-Z5	Jan.20, 2014	1 Year
SB8501/09	EMI Test Receiver	Rohde & Schwarz	ESU40	May.16, 2014	1 Year
SB3955	Broadband antenna	SCHWARZBECK	VULB9163	Jan.20, 2014	1 Year
SB8501/01	Horn Antenna	Rohde & Schwarz	HF907	May.13, 2014	1 Year

Report No.: WT148001577 Page 10/25

5. CONDUCTED DISTURBANCE TEST

5.1. Test Standard and Limit

5.1.1.Test Standard

FCC Part 15 15.207

5.1.2.Test Limit

Table 4 Conducted Disturbance Test Limit (Class B)

Fraguanay	Maximum RF Line Voltage (dB μ V)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

^{*}Decreasing linearly with logarithm of the frequency

5.2. Test Procedure

The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.). AN EMI test receiver is used to test the emissions from both sides of AC line. According to the requirements in Section 7 and 13 of ANSI C63.4-2009.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

The bandwidth of EMI test receiver is set at 9 kHz.

5.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.

Report No.: WT148001577 Page 11/25

^{*}The lower limit shall apply at the transition frequency.

5.4. Test Data

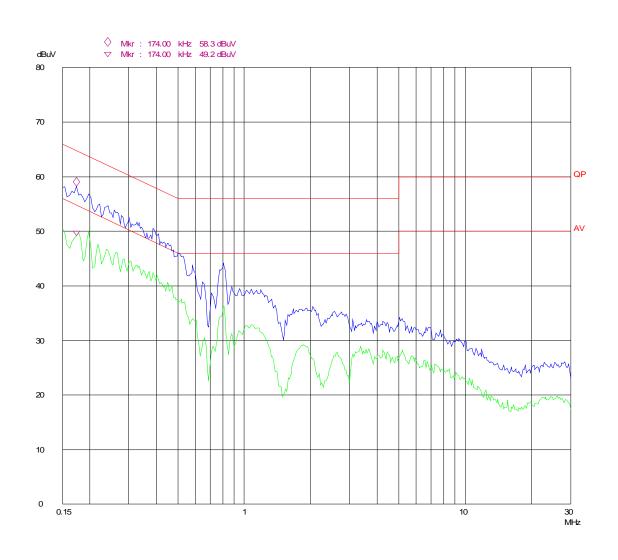
The emissions don't show in below are too low against the limits. Refer to the test curves.

Test mode 1: ON, Transmitting at 908.4MHz

Table 5 Conducted Disturbance Test Data

Model No.: PA-100										
Test mode: 1										
Line										
Frague no.	Q	Р	A۱	/	QP	AV	Factor			
Frequency	Level	Limit	Level	Limit	Reading	Reading	Factor			
MHz	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)			
0.178	53.7	64.6	49.8	54.6	44.0	40.1	9.7			
0.198	53.0	63.7	49.5	53.7	43.3	39.8	9.7			
0.250	49.6	61.8	44.2	51.8	39.9	34.5	9.7			
0.386	46.2	58.1	42.7	48.1	36.5	33.0	9.7			
0.806	40.0	56	35.9	46	30.2	26.1	9.8			
			Neutr	al						
	Q	P	A۱	/	QP	AV	Factor			
Frequency	Level	Limit	Level	Limit	Reading	Reading	Factor			
MHz	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)			
0.178	53.6	64.6	50.2	54.6	43.9	40.5	9.7			
0.194	53.3	63.9	49.4	53.9	43.6	39.7	9.7			
0.218	50.8	62.9	47.8	52.9	41.1	38.1	9.7			
0.246	50.4	61.9	46.3	51.9	40.7	36.6	9.7			
0.386	47.5	58.1	44.1	48.1	37.8	34.4	9.7			
0.790	42.0	56	37.4	46	32.2	27.6	9.8			

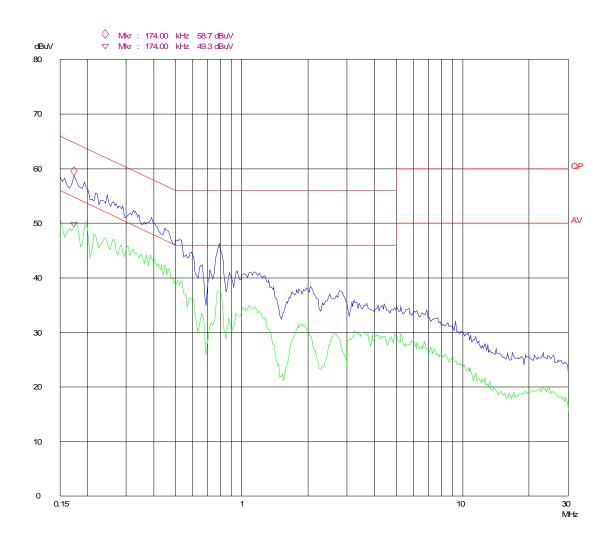
REMARKS: 1. Emission level(dBuV)=Read Value(dBuV) + Correction Factor(dB)


- 2. Correction Factor(dB) =LISN Factor (dB) + Cable Factor (dB)+Limiter Factor(dB)
- 3. The other emission levels were very low against the limit.

Report No.: WT148001577 Page 12/25

Conducted disturbance

PA-100 ON Transmitting at 908.4MHz


EUT: Op Cond: Test Spec: Comment: L AC 120V/60Hz

Report No.: WT148001577 Page 13/25

Conducted disturbance

EUT: Op Cond: Test Spec: Comment: PA-100 ON Transmitting at 908.4MHz N AC 120V/60Hz

Report No.: WT148001577 Page 14/25

6. RADIATED DISTURBANCE TEST

6.1. Test Standard and Limit

6.1.1.Test Standard

FCC Part 15 15.249

6.1.2.Test Limit

Table 6 Radiated Disturbance Test Limit (Class B)

	Twell of the state								
FREQL	JENCY	FIELD	FIELD						
M	Ηz	STRENGTHS	STRENGTHS						
		LIMITS	LIMITS						
		(μV/m)	dB (μV/m)						
Fundar	mental	50000	94.0						
Harm	onics	500	54.0						
30	~ 88	100	40.0						
88	~ 216	150	43.5						
216	~ 960	200	46.0						
960	~	500	54.0						

^{*} The lower limit shall apply at the transition frequency.

6.2. Test Procedure

The EUT is placed on a turntable, which is 0.8 meter above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can move up and down to find out the maximum emission level. Radiated emission test above 1 GHz, between the antenna and the EUT using RF absorbing material covering the ground plane. Broadband antenna is used as a receiving antenna at frequency range 30MHz to 1000MHz, Horn antenna is used as a receiving antenna at frequency range above 1GHz. Both horizontal and vertical polarization of the antenna is set on test, in order to find out the max emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 8 and 13 of ANSI C63.4-2009.

The RBW of the EMI test receiver is:

30~1000MHz 120KHz 1-18GHz 1MHz

6.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture. The EUT shall be measured in the XYZ three positions, and the test data which was shown in the follow was the worst case.

Report No.: WT148001577 Page 15/25

^{*} The test distance is 3m.

6.4. Test Data

Table 7 Radiated Disturbance Test Data

Model No.: PA-100

Test mode: 1

l est mode:	1							
Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dB µ V)	Emission Level dB (µ V/m)	Limits dB (µ V/m)	EUT axes	Note
908.397	Horizontal	3.9	21.1	59.2	84.2	94	Х	Fundamental QP
2725.233	Horizontal	-39.8	29.6	55.4	45.2	74	Х	Harmonics PK
2725.233	Horizontal	-39.8	29.6	49.6	39.4	54	Х	Harmonics AV
3633.650	Horizontal	-38.9	32.0	42.7	35.8	74	Х	Harmonics PK
3633.650	Horizontal	-38.9	32.0	33.2	26.3	54	Х	Harmonics AV
6358.898	Horizontal	-35.1	34.7	47.2	46.8	74	Х	Harmonics PK
6358.898	Horizontal	-35.1	34.7	37.7	37.3	54	Х	Harmonics AV
908.397	Vertical	3.9	21.1	61.4	86.4	94	Х	Fundamental QP
2725.233	Vertical	-39.8	29.6	57.7	47.5	74	Х	Harmonics PK
2725.233	Vertical	-39.8	29.6	52.1	41.9	54	Х	Harmonics AV
6358.898	Vertical	-35.1	34.7	47.7	47.3	74	Х	Harmonics PK
6358.898	Vertical	-35.1	34.7	38.9	38.5	54	Х	Harmonics AV

Report No.: WT148001577 Page 16/25

Table 8 Radiated Disturbance Test Data

Model No.: PA-100

Test mode: 2

Frequency (MHz)	Polarization	Correction Factor (dB)	Antenna Factor (dB/m)	Reading Value (dB µ V)	Emission Level dB (µ V/m)	Limits dB (μ V/m)	EUT axes	Note
915.997	Vertical	3.9	21.1	61.7	86.7	94	Х	Fundamental QP
2748.045	Vertical	-39.8	29.6	56.1	45.9	74	Х	Harmonics PK
2748.045	Vertical	-39.8	29.6	50.6	40.4	54	Х	Harmonics AV
6412.133	Vertical	-34.5	34.8	46.1	46.4	74	Х	Harmonics PK
6412.133	Vertical	-34.5	34.8	37.6	37.9	54	Х	Harmonics AV
915.997	Horizontal	3.9	21.1	59.7	84.7	94	Х	Fundamental QP
2748.045	Horizontal	-39.8	29.6	56.3	46.1	74	Х	Harmonics PK
2748.045	Horizontal	-39.8	29.6	50.9	40.7	54	Х	Harmonics AV
6412.133	Horizontal	-34.5	34.8	45.9	46.2	74	Х	Harmonics PK
6412.133	Horizontal	-34.5	34.8	37.0	37.3	54	Х	Harmonics AV

Report No.: WT148001577 Page 17/25

Table 9 Radiated Disturbance Test Data

Model No.: PA-100

Test mode: 3

	_							
Frequency	Polarization	Correction	Antenna	Reading	Emission	Limits dB	EUT	Note
(MHz)		Factor	Factor	Value	Level	(µ V/m)	axes	
		(dB)	(dB/m)	(dB µ V)	dB (μ V/m)			
							Х	
							.,	
							X	

Note: 1. Emission level(dBuV/m)=Reading Value(dBuV) + Correction Factor(dB)+Antenna Factor (dB/m)

- 2. Correction Factor(dB) = Cable Factor (dB)+Amplifier Factor(dB)
- 3. No other spurious and harmonic emissions were reported greater than listed emissions above table.

Report No.: WT148001577 Page 18/25

Table 10 Restricted Band Radiated Emission Data

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	
6.31175 - 6.31225	123 - 138	2200 - 2300	
8.291 - 8.294	149.9 - 150.05	2310 - 2390	
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	
12.29 - 12.293	167.72 - 173.2	3332 - 3339	
12.51975 -	240 - 285	3345.8 - 3358	
12.52025	322 - 335.4	3600 - 4400	
12.57675 -			
12.57725			
13.36 - 13.41			

All the emission levels of the above band were less than the limit 20dB.

Report No.: WT148001577 Page 19/25

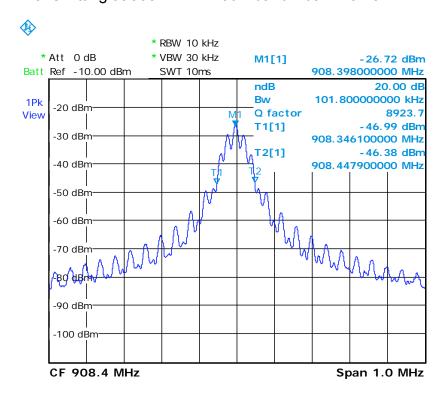
7. OCCUPIED BANDWIDTH

7.1. Test Standard and Limit

7.1.1.Test Standard

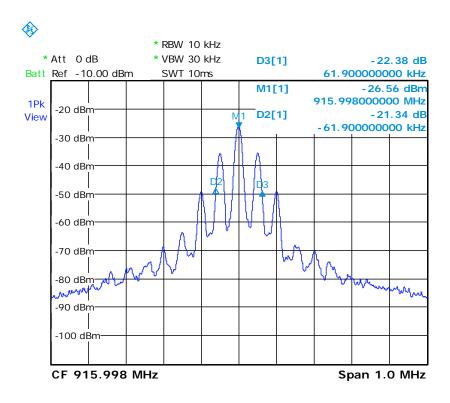
FCC Part 15 15.215

7.2. Test Procedure


- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation
- 3. Set EMI test receiver Center Frequency = fundamental frequency, RBW=10kHz, VBW= 30kHz, Span=Wide enough to capture the complete power envelope.
- 4. Set EMI test receiver Max hold. Mark peak, -20dB.

7.3. Test Arrangement

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.


7.4. Test Data

Transmitting at 908.4MHz: 20dB bandwidth =101.8 kHz

Report No.: WT148001577 Page 20/25

Transmitting at 916MHz: 20dB bandwidth =123.8 kHz

Report No.: WT148001577 Page 21/25

8. BAND EDGE

8.1. Test Standard and Limit

8.1.1.Test Standard

FCC Part 15 15.249

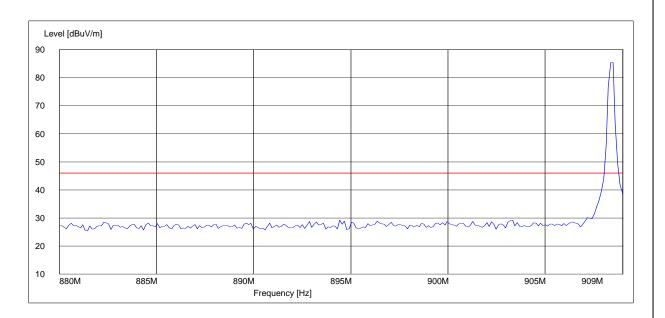
8.2. Band Edge FCC 15.249(d) Limit

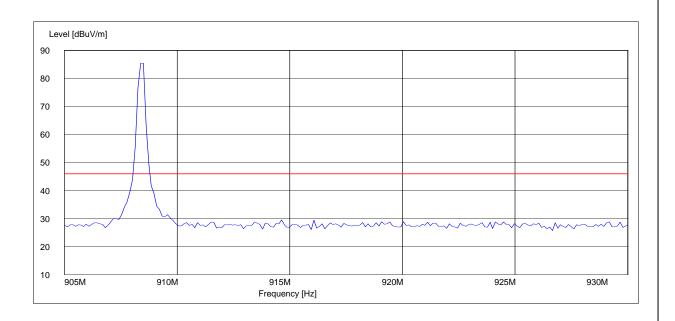
Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation

8.3. Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instruments. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Measure the highest amplitude appearing on spectral display and set it as reference level. Plot the graph with marking the highest point and edge frequency.
- 4. Repeat above procedures until all measured frequencies were complete.

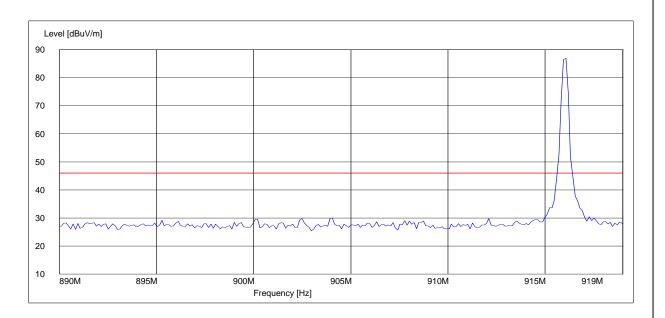
8.4. Test Arrangement

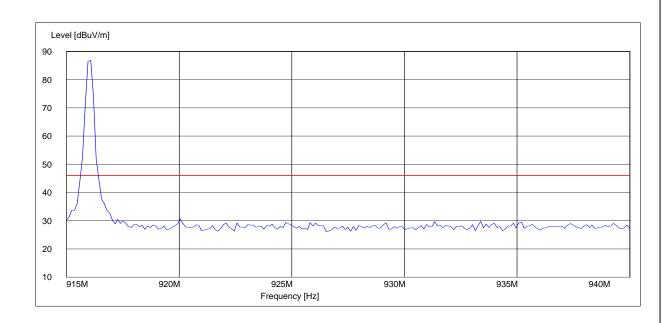

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture.


8.5. Test Data

All the emission outside 902 to 928 is lower than 46 dB (μ V/m). The detailed information refers to test picture.

Report No.: WT148001577 Page 22/25


Transmitting at 908.4MHz



Report No.: WT148001577 Page 23/25

Transmitting at 916MHz

Report No.: WT148001577 Page 24/25

9. ANTENNA REQUIREMENT		
According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.		
The EUT has a built in antenna which is integrated inside the enclosure, this is		
permanently attached antenna and meets the requirements of this section.		

Report No.: WT148001577 Page 25/25