SAR Evaluation Report for

Report No.: SESF1402132

IEEE Std1528-2013, FCC KDB Publication 648474 D04

Handset SA	K V	01r02 and 4/CFI	K § 2.1093			
Report No.:SESF1402132						
Client	:	HAIER INTERNATIO	DNAL CO.,LTD			
Product	:	1.77inch 3G Feature	Phone			
Model	-	B8305				
Trade Mark	-	Bitel				
FCC ID	:	2ABW9-B8305				
Manufacturer/ supplier	:	HAIER INTERNATION	ONAL CO.,LTD			
Date test campaign completed	:	March 03,2014				
Date of issue	:	March 04,2014				
Test Result	:	Compliance				
level of 1.6 W/kg averaged over Std.1528-2013. The test result only correspo						
this report, in part or in full, w	vitho	ut the permission of t	the test laboratory.			
Total number of pages of this te	est re	eport: 96 pages				
The testing described in this report has responsibility is limited to the exercise sellers from their legal and/or contract	e of re	easonable care. This certific				
Test Engineer:		,	Approved by:			
lan chan			od odl			

Leo Chen Miro Chueh

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 1 of 98

Applicant Information

Client : HAIER INTERNATIONAL CO.,LTD

Address : Unit 2815 28/F China Merchants Tower, Shun Tak Center,

168-200 Connaught Road Central, Hong Kong

Report No.: SESF1402132

Manufacturer : HAIER INTERNATIONAL CO.,LTD

Address: Unit 2815 28/F China Merchants Tower, Shun Tak Center,

168-200 Connaught Road Central, Hong Kong

EUT : 1.77inch 3G Feature Phone

Model No. : B8305

Standard Applied : IEEE Std1528-2013 and 47CFR § 2.1093

FCC KDB Publication 648474 D04 Handset SAR v01r02

FCC KDB Publication 447498 D01v05r02 FCC KDB Publication 865664 D01v01r03

Laboratory : CERPASS TECHNOLOGY CORP.

No.66, Tangzhuang Road, Suzhou Industrial Park, Jiangsu

215006, China.

Max. Average Output Power : WCDMA Band II:23.58dBm

Max. Reported SAR Value : Head

WCDMA Band II: 1.230 W/kg(1g)

Body

WCDMA Band II: 1.041 W/kg(1g)

Cerpass Technology Corp. Issued Date : March 04,2014

Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 2 of 98

CERPASS TECHNOLOGY CORP.

Report No.: SESF1402132

Contents

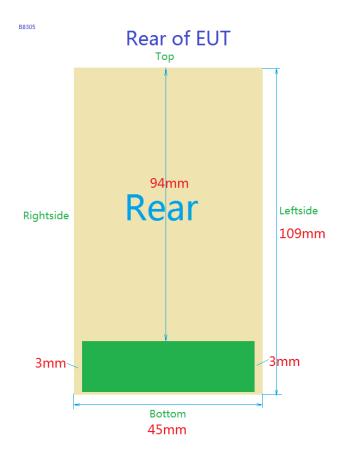
1.	Gene	ral Information	4
	1.1.	Executive Summary	4
	1.2.	Description of Equipment under Test	4
	1.3.	Antenna Location	5
	1.4.	Simultaneous Transmission Configurations	5
	1.5.	SAR Test Exclusions Applied	6
	1.6.	Power Reduction for SAR	6
	1.7.	Environment Condition	6
	1.8.	Test Standards	6
	1.9.	RF Exposure Limits	7
2.	The S	SAR Measurement Procedure	8
	2.1.	System Performance Check	
	2.2.	Test Requirements	12
3.	DASY	/5 Measurement System	15
	3.1.	Uncertainty of Inter-/Extrapolation and Averaging	
	3.2.	DASY5 E-Field Probe	
	3.3.	Data Acquisition Electronics (DAE)	
	3.4.	Robot	17
	3.5.	Light Beam Unit	
	3.6.	Measurement Server	18
	3.7.	SAM Phantom	
	3.8.	Device Holder	
	3.9.	Test Equipment List	
4.	Resu	lts	
	4.1.	Summary of Test Results	
	4.2.	Description for EUT test position	
	4.3.	Conducted power (Average)	
	4.4.	SAR Test Results Summary	
5.	The D	Description of Test Procedure	
	5.1.	General Notes:	
	5.2.	Simultaneous Transmission Procedures	
	5.3.	Simultaneous Transmission Analysis	
	5.4.	Simultaneous Transmission Conclusion	
		urement Uncertainty	
		NDIX A. SAR System Validation Data	
		NDIX B. SAR measurement Data	
		ENDIX C Antenna Location, EUT and Test Setup Photographs	
		NDIX D. Probe Calibration Data	
	• •	ndix E. Dipole Calibration Data	
11	Anno	ndiy F DAF Calibration Data	94

1. General Information

1.1. Executive Summary

The EUT is a 1.77inch 3G Feature Phone with operations in 1900MHz and 2450MHz frequency ranges. It only contains WCDMA band II and BT functions for SAR testing. And hotspot function is not supported. The measurement was conducted by CERPASS, carried out with the dosimetric assessment system under DASY5. And it conducts according to the IEEE Std.1528-2013 and FCC KDBs for SAR evaluating compliance.

Report No.: SESF1402132


1.2 Description of Equipment under Test

1.2. Description of Equipment under Test					
Product Name	1.77inch 3G Feature Phone				
Model No.	B8305				
IMEI	358688000000158				
Hardware Version	Z118_MB_H301_PBF				
Software Version	Z118_RH_VEN_QQVGA_V1.2.0				
Device Category	Portable				
RF Exposure Environment	Uncontrolled				
Antenna Type	Internal				
3G					
Support Band	WCDMA Band II				
Uplink	WCDMA Band II: 1850~1910MHz				
Downlink	WCDMA Band II: 1930~1990MHz				
Release Version	Rel-6				
Type of modulation	QPSK				
Antenna Gain	WCDMA Band II: -3.0dBi				
Bluetooth					
Bluetooth Frequency	2402~2480MHz				
Bluetooth Version	2.1+EDR				
Type of modulation	FHSS				
Data Rate	1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps (8DPSK)				
Antenna Gain	-2.0dBi				
· · · · · · · · · · · · · · · · · · ·					

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 4 of 98

1.3. Antenna Location

Report No.: SESF1402132

1.4. Simultaneous Transmission Configurations

Simultaneous Transmission Scenarios

Mode	Back	Front	Тор	Bottom	Right	Left
WCDMA Band II	Yes	Yes	No	Yes	No	No

Simultaneous Transmission Condition

RF Exposure Condition	Capable Transmit Configurations	Note
Head	1. WCDMA Band II (Voice)+ BT	
Body-worn	1. WCDMA Band II (RMC) + BT	
Accessory	2. WCDMA Band II (Voice)+ BT	

Notes:

- 1. By reason of their independent modules and antennas, when WCDMA is on, BT function also can be at work;
- 2. According to FCC KDB Publication 447498 D01v05r02 section5.3, transmitter are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneously transmission analysis.

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 5 of 98

Tel:886-512-6917-5888 Fax:886-512-6917-5666

1.5. SAR Test Exclusions Applied

Wi-Fi/Bluetooth

Per FCC KDB 447498 D01v05r02, the SAR exclusion threshold for distances<50mm is defined by the following equation:

Report No.: SESF1402132

$$\frac{Max\ Power\ of\ Channel\ (mW)}{Test\ Separation\ Dist\ (mm)}*\sqrt{Frequency(GHz)} \leq 3.0$$

Based on the maximum conducted power of Bluetooth and the antenna to use separation distance, Bluetooth SAR is not required;

 $[(3.16 \text{mW/5})^* \sqrt{2.441}] = 0.988 < 3.0 \text{ for Head}; [(3.16 \text{mW/15})^* \sqrt{2.441}] = 0.329 < 3.0 \text{ for Body}.$

1.6. Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.7. Environment Condition

Item	Target	Measured
Ambient Temperature(°C)	18~25	21.5±2
Temperature of Simulant(°C)	20~22	21±2
Relative Humidity(%RH)	30~70	52

1.8. Test Standards

- 1. IEEE Std.1528-2013
- 2. FCC KDB Publication 447498 D01 General RF Exposure Guidance v05r02
- 3. FCC KDB Publication 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
- 4. FCC KDB Publication 941225 D01 SAR test for 3G devices v02
- 5. FCC KDB Publication 941225 D02 HSPA and 1x Advanced v02r02
- 6. FCC KDB Publication 648474 D04 Handset SAR v01r02

Cerpass Technology Corp. Issued Date : March 04,2014

Tel:886-512-6917-5888 Fax:886-512-6917-5666

: 6 of 98

Page No.

CERPASS TECHNOLOGY CORP. Report No.: SESF1402132

1.9. RF Exposure Limits

Human Exposure	Basic restrictions for electric, magnetic and electromagnetic fields. (Unit in mW/ or W/kg)
Spatial Peak SAR ¹	1.60
(Head and Body)	1.00
Spatial Average SAR ²	0.00
(Whole Body)	0.08
Spatial Peak SAR ³	4.00
(Arms and Legs)	4.00

Notes:

- 1. The Spatial Peak value of the SAR averaged over any 1gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 1 grams of tissue (defined as a tissue volume in the shape of a cube) and over appropriate averaging time.

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 7 of 98

2. The SAR Measurement Procedure

2.1. System Performance Check

2.1.1 Purpose

- 1. To verify the simulating liquids are valid for testing.
- 2. To verify the performance of testing system is valid for testing.

2.1.2 Tissue Dielectric Parameters for Head and Body Phantoms

Target Frequency	Head		Во	ody
(MHz)	ε _r	σ (S/m)	ϵ_{r}	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
850	41.5	0.92	55.2	0.99
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

Report No.: SESF1402132

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Cerpass Technology Corp. Issued Date : March 04,2014

Page No. : 8 of 98

CERPASS TECHNOLOGY CORP. Report No.: SESF1402132

2.1.3 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Assessment Kit and Agilent Vector Network Analyzer E5071C.

Head Tissue Simulant Measurement						
Frequency	Description	Dielectric P	Tissue Temp.			
[MHz]		٤ _٢	σ [s/m]	[°C]		
	Reference result	40.0	1.40	N/A		
1900 MHz	± 5% window	38.00 to 42.00	1.33 to 1.47	IN/A		
	03-03-2014	39.68	1.41	21.0		
				•		

Body Tissue Simulant Measurement					
Frequency	Description	Dielectric Parameters		Tissue Temp.	
[MHz]	Description	ε _r	σ [s/m]	[°C]	
	Reference result	53.3	1.52	N/A	
1900 MHz	± 5% window	50.64 to 55.97	1.44 to 1.60	IN/A	
	03-03-2014	51.05	1.54	21.0	

Refer to KDB 865664 D01 v01r03, The depth of body tissue-equivalent liquid in a phantom must be ≥ 15.0 cm with ≤ ± 0.5 cm variation for SAR measurements ≤ 3 GHz and ≥ 10.0 cm with ≤ ± 0.5 cm variation for measurements > 3 GHz.

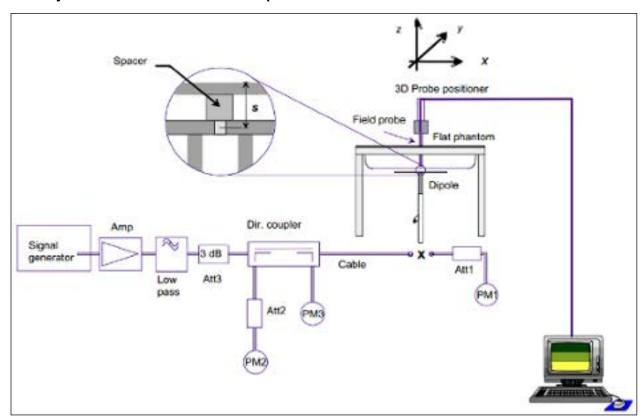
2.1.4 System Performance Check Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and the system performance check. They are read-only document files and destined as fully defined but unmeasured masks, so the finished system performance check must be saved under a different name. The system performance check document requires the SAM Twin Phantom or ELI4 Phantom, so the phantom must be properly installed in your system. (User defined measurement procedures can be created by opening a new document or editing an existing document file). Before you start the system performance check, you need only to tell the system with which components (probe, medium, and device) you are performing the system performance check; the system will take care of all parameters.

- The Power Reference Measurement and Power Drift Measurement jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the Dipole output power. If it is too high (above ±0.2 dB), the system performance check should be repeated;
- The Surface Check job tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid

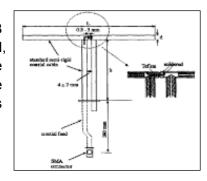
Cerpass Technology Corp. Issued Date : March 04,2014

Page No.


: 9 of 98

CERPASS TECHNOLOGY CORP. Report No.:

due to separation of the sugar-water mixture gives poor repeatability (above ±0.1mm). In that case it is better to abort the system performance check and stir the liquid;


- The Area Scan job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable;
- The Zoom Scan job measures the field in a volume around the peak SAR value assessed in the previous Area Scan job (for more information see the application note on SAR evaluation). If the system performance check gives reasonable results. The dipole input power(forward power) was 250mW, 1 g and 10 g spatial average SAR values normalized to 1W dipole input power give reference data for comparisons and it's equal to 10x(dipole forward power). The next sections analyze the expected uncertainties of these values, as well as additional checks for further information or troubleshooting.

2.1.5 System Performance Check Setup

2.1.6 Validation Dipoles

The dipoles use is based on the IEEE Std.1528-2013 and FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03 standard, and is complied with mechanical and electrical specifications in line with the requirements of both EN62209-1 and EN62209-2. The table below provides details for the mechanical and electrical specifications for the dipoles.

SESF1402132

Cerpass Technology Corp. Issued Date : March 04,2014

Tel:886-512-6917-5888 Fax:886-512-6917-5666

CERPASS TECHNOLOGY CORP.

Frequency	L (mm)	h (mm)	d (mm)
1900MHz	68.0	39.5	3.6

Report No.: SESF1402132

2.1.7 Result of System Performance Check: Valid Result

System Performance Check at 1900MHz for Head.

Validation Kit: D1900V2-SN: 5d174

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
1900 MHz	Reference result ± 10% window	39.9 35.91 to 43.89	20.9 18.81 to 22.99	N/A
	03-03-2014	37.80	20.16	21.0

Note: All SAR values are normalized to 1W forward power.

System Performance Check at 1900MHz for Body.

Validation Kit: D1900V2-SN: 5d174

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
1900 MHz	Reference result ± 10% window	40.4 36.36 to 44.44	21.5 19.35 to 23.65	N/A
	03-03-2014	41.6	22.16	21.0

Note: All SAR values are normalized to 1W forward power.

Cerpass Technology Corp. Issued Date : March 04,2014

Page No. : 11 of 98

2.2. Test Requirements

2.2.1 Test Procedures

Step 1 Setup a Connection

First, engineer should record the conducted power before the test. Then establish a call in handset at the maximum power level with a base station simulator via air interface, or make the EUT estimate by itself in testing band. Place the EUT to the specific test location. After the testing, must export SAR test data by SEMCAD. Then writing down the conducted power of the EUT into the report, also the SAR values tested.

Report No.: SESF1402132

Step 2 Power Reference Measurements

To measure the local E-field value at a fixed location which value will be taken as a reference value for calculating a possible power drift.

Step 3 Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01v01r03

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution 1 x or y dimension of the test dimeasurement point on the test	on, is smaller than the above, must be ≤ the corresponding device with at least one

Cerpass Technology Corp. Issued Date : March 04,2014

Page No.

: 12 of 98

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Step 4 Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Report No.: SESF1402132

Zoom Scan Parameters extracted from KDB 865664 D01 v01r03

			≤3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx _{Zooms} Δy _{Zoom}			\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
	grid $\Delta z_{Z_{00m}}(n>1)$: between subsequent points		≤ 1.5·	$\Delta z_{Z_{00m}}(n-1)$
Minimum zoom scan volume x, y, z			≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 5 Power Drift Measurements

Repetition of the E-field measurement at the fixed location mentioned in Step 1 to make sure the two results differ by less than \pm 0.2 dB.

2.2.2 Standards of Mobile Phone SAR testing

According to IEEE std.1528-2013, head SAR testing of the mobile phone is a matter of course. Also, per FCC KDB 941225 D06 Hotspot Mode SAR v01r01, when the overall device length and width are \geq 9 cm x 5 cm respectively, a test separation of 10 mm is required. SAR must be measured for all sides (edges) and surfaces with a transmitting antenna located at \leq 25 mm from that surface or edge, for the data modes, wireless technologies and frequency bands supporting hotspot mode.

Cerpass Technology Corp. Issued Date : March 04,2014

Page No.

: 13 of 98

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

CERPASS TECHNOLOGY CORP. Report No.: SESF1402132

2.2.3 Test Channel Choosing

Per FCC KDB 941225 D01 SAR test for 3G devices v02, body SAR is not required for handsets with HSUPA/HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than 1/4 dB higher than that measured without HSUPA/HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is ≤ 75% of the SAR limit.

Here are HSDPA/HSUPA sub-test setups as show blow, per FCC KDB 941225 D01 v02.

Sub-Test 1 Setup for Release 5 HSDPA

			_			
Sub-test	β_c	β_d	β _d (SF)	β_c/β_d	β _{hs} (1)	CM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{lis} = \beta_{lis}/\beta_c = 30/15 \Leftrightarrow \beta_{lis} = 30/15 *\beta_c$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

Sub- test	βε	β_d	β _d (SF)	β_c/β_d	β _{hs} ⁽¹⁾	β_{ec}	β _{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15(3)	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	_64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{lis} = \beta_{lis}/\beta_c = 30/15 \Leftrightarrow \beta_{lis} = 30/15 *\beta_c$.

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Cerpass Technology Corp. Issued Date : March 04,2014

Tel:886-512-6917-5888 Fax:886-512-6917-5666

: 14 of 98

Page No.

3. DASY5 Measurement System

DASY5 Measurement System

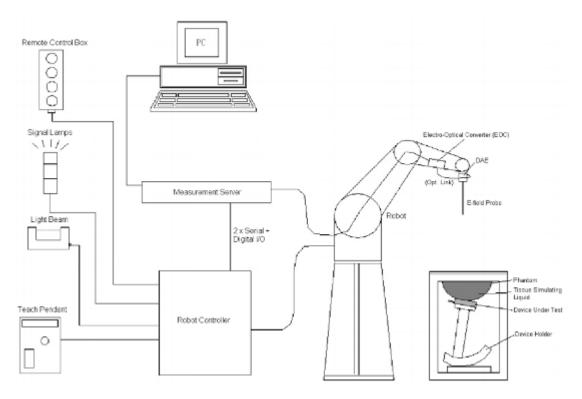


Figure 2.1 SPEAG DASY5 System Configurations

Report No.: SESF1402132

The DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic(DAE)attached to the robot arm extension \triangleright
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter(ECO)performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows 7
- DASY5 software
- Remove control with teach pendant additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder \triangleright
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 15 of 98

Tel:886-512-6917-5888 Fax:886-512-6917-5666

3.1. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$\begin{split} f_1(x,y,z) &= Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2+y'^2}}{5a}\right) \\ f_2(x,y,z) &= Ae^{-\frac{z}{a}}\frac{a^2}{a^2+x'^2}\left(3-e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right) \\ f_3(x,y,z) &= A\frac{a^2}{\frac{a^2}{4}+x'^2+y'^2}\left(e^{-\frac{2z}{a}}+\frac{a^2}{2(a+2z)^2}\right) \end{split}$$

3.2. DASY5 E-Field Probe

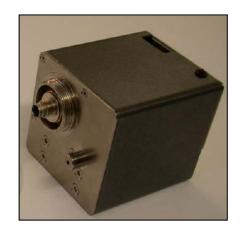
The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

Model	EX3DV4					
Construction	Symmetrical design with triangular core Built-in shielding against static charges					
	PEEK enclosure material (resistant to organic solvents, e.g., DGBE)					
Frequency	10 MHz to 6 GHz					
	Linearity: ± 0.2 dB (30 MHz to 6 GHz)					
Directivity	± 0.3 dB in HSL (rotation around probe axis)					
	± 0.5 dB in tissue material (rotation normal to probe					
	axis)					
Dynamic Range	10 μW/g to 100 mW/g					
	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)					
Dimensions	Overall length: 330 mm (Tip: 20 mm)					
	Tip diameter: 2.5 mm (Body: 12 mm)					
	Typical distance from probe tip to dipole centers: 1 mm					
Application	High precision dosimetric measurements in any exposure scenario (e.g., very					
	strong gradient fields). Only probe which enables compli	ance testing for				
	frequencies up to 6 GHz with precision of better 30%.					

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 16 of 98


Issued Date : March 04,2014

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Report No.: SESF1402132

3.4. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

: 17 of 98

Page No.

Cerpass Technology Corp. Issued Date : March 04,2014

Tel:886-512-6917-5888 Fax:886-512-6917-5666

CERPASS TECHNOLOGY CORP. Report No.: SESF1402132

3.6. Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

3.7. SAM Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

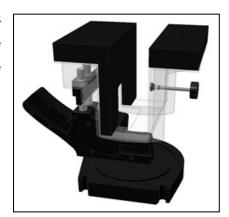
The ELI4 Phantom also is a fiberglass shell phantom with 2mm shell thickness. It has 30 liters filling volume, and with a dimension of 600mm for major ellipse axis, 400mm for minor axis. It is intended for compliance testing of handheld and body-mounted wireless devices in frequency range of 30 MHz to 6GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Issued Date : March 04,2014 Cerpass Technology Corp.

> : 18 of 98 Page No.

Tel:886-512-6917-5888 Fax:886-512-6917-5666


Report No.: SESF1402132

3.8. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles. The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The laptop extension is lightweight and made of POM, acrylic glass and foam. It fits easily on upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 19 of 98

CERPASS TECHNOLOGY CORP. Report No.: SESF1402132

3.9. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	5P6VA1/A/01	only once
Robot Controller	Stäubli	CS8C	5P6VA1/C/01	only once
Dipole Validation Kits	Speag	D1900V2	5d174	2015.06.09
SAM Twin Phantom	Speag	SAM	1767	N/A
SAM ELI Phantom	Speag	SAM	1211	N/A
Device Holder	Speag	SD 000 H01 KA	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1379	2014.06.13
E-Field Probe	Speag	EX3DV4	3927	2014.06.23
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183W-S+	MN136701248	N/A
Directional Coupler	Agilent	778D	MY52180185	N/A
Universal Radio Communication Tester	R&S	CMU 200	108823	2015.01.08
Vector Network	Agilent	E5071C	MY4631693	2015.01.15
Signal Generator	R&S	SML	103287	2015.03.09
Power Meter	BONN	BLWA0830-160/100/40D	76659	2015.11.10
AUG Power Sensor	R&S	NRP-Z91	100384	2015.03.09

Cerpass Technology Corp. Issued Date : March 04,2014

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Page No. : 20 of 98

Report No.: SESF1402132

4. Results

4.1. Summary of Test Results

No deviations form the technical specification(s) were ascertained in the course of the tests performed						
The deviations as specified in this chapter were ascertained in the course of the tests						
Performed.						

4.2. Description for EUT test position

The following procedure had been used to prepare the EUT for the SAR test.

- The client supplied a special driver to program the EUT, allowing it to continually transmit the specified maximum power and change the channel frequency.
- The output power(dBm) we measured before SAR test in different channel
- Performing the highest output power channel first
- SAR test Tip edge and Bottom Flat mode.

4.3. Conducted power (Average)

> WCDMA/HSDPA/HSUPA

	0000	Ban			
Mode	3GPP Subtest	Co	MPR		
	Subtest	9262	9400	9538	
WCDMA R99	1	23.58	23.37	23.17	N/A
	1	23.47	23.26	23.03	0
Rel5 HSDPA	2	23.36	23.13	23.02	0
Reis HSDPA	3	22.96	23.05	23.00	0.5
	4	22.99	22.88	22.96	0.5
	1	23.23	23.35	23.19	0.0
	2	23.18	23.33	22.18	2.0
Rel6 HSUPA	3	23.02	23.06	22.09	1.0
	4	23.00	23.02	22.06	2.0
	5	23.19	23.22	23.22	0.0

Cerpass Technology Corp. Issued Date : March 04,2014 Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 21 of 98

Mode	Band II (1900MHz) Channel	Normal Power (dBm)	Max. Power (dBm)	Scaling Factor
	9262	23.58	24.0	1.10
WCDMA R99	9400	23.37	24.0	1.16
	9538	Max. Power (dBm) 62 23.58 00 23.37 38 23.17 62 23.47 00 23.26 24.0 38 23.03 24.0 38 23.03 24.0 38 23.23 24.0 23.23 24.0 23.35 24.0	1.21	
	9262	23.47	24.0	1.13
Rel5 HSDPA	9400	23.26	24.0	1.19
	9538	23.03	24.0	1.25
	9262	23.23	24.0	1.19
Rel6 HSUPA	9400	23.35	24.0	1.16
	9538	23.19	24.0	1.21

Report No.: SESF1402132

> Estimated SAR for Bluetooth

Mode	Frequency	Maximum Allowed Power	Separation Distance (Head)	Estimated SAR (Held-to-Ear)	Separation Distance (Body)	Estimated SAR (Body)
Bluetooth	[MHz]	[dBm]	[mm]	[W/kg]	[mm]	[W/kg]
Diueloolii	2441	5.0	5	0.132	15	0.044

Note: This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is≤1.6W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r02 4.3.2 2, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{\text{(Max Power of channel, mW)}}{\text{Min. Separation Distance, mm}}$$

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 22 of 98

4.4. SAR Test Results Summary

SAR MEASUREMENT

Ambient Temperature (°C): 21.5 ±2 Relative Humidity (%): 52

Report No.: SESF1402132

Liquid Temperature (°C): 21.0 ±2 Depth of Liquid (cm):>15

Product: 1.77inch 3G Feature Phone

Test Mode: WCDMA Band II

Tune-up power: 24.0dBm

Turic-up powe	Tune-up power. 24.0uBin								
Test Position	Antenna			Conducted Power	Power Drift	SAR 1g	Scaling	Scaled SAR 1g	Limit
Head	d Position Channel MHz (dBm)	(dBm)	(<±0.2)	(W/kg)	Factor	(W/kg)	(W/kg)		
Left-Cheek	Fixed	9262	1852.4	23.58	0.09	1.06	1.10	1.17	1.6
Left-Cheek	Fixed	9400	1880.0	23.37	0.17	1.04	1.16	1.206	1.6
Left-Cheek	Fixed	9538	1907.6	23.17	0.03	0.795	1.21	0.962	1.6
Left-Tilt	Fixed	9400	1880.0	23.37	0.15	0.603	1.16	0.699	1.6
Right-Cheek	Fixed	9262	1852.4	23.58	0.15	1.09	1.10	1.199	1.6
Right-Cheek	Fixed	9400	1880.0	23.37	0.19	1.06	1.16	1.230	1.6
Right-Cheek	Fixed	9538	1907.6	23.17	0.15	0.830	1.21	1.004	1.6
Right-Tilt	Fixed	9400	1880.0	23.37	0.13	0.345	1.16	0.400	1.6

Note 1: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 23 of 98

CERPASS TECHNOLOGY CORP. Rei

Report No.: SESF1402132

SAR MEASUREMENT

Ambient Temperature (°C): 21.5 ±2

Relative Humidity (%): 52

Liquid Temperature (°C): 21.0 ±2 Depth of Liquid (cm):>15

Product: 1.77inch 3G Feature Phone

Test Mode: WCDMA Band II

Tune-up power: 24.0dBm

Test Position Body (15mm gap)	Antenna Position	Frequency		Conducted	Power Drift	SAR	Scaling	Scaled	Limit
		Channel	MHz	Power (dBm)	(<±0.2)	1g (W/kg)	Factor	SAR 1g (W/kg)	(W/kg)
Body-Back	Fixed	9262	1852.4	23.58	0.06	0.890	1.10	0.979	1.6
Body-Back	Fixed	9400	1880.0	23.37	-0.17	0.897	1.16	1.041	1.6
Body-Back	Fixed	9538	1907.6	23.17	-0.12	0.767	1.21	0.928	1.6
Body-Front	Fixed	9400	1880.0	23.37	0.17	0.311	1.16	0.361	1.6

Note 1: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 24 of 98

5. The Description of Test Procedure

5.1. General Notes:

- 1. Batteries are fully charged at the beginning of the SAR measurements.
- 2. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 3. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05r02.
- 4. Per FCC KDB 616217 D04 Section 4.3, SAR tests are required for the back surface and edges of the tablet with the tablet touching the phantom. The SAR Exclusion Threshold in FCC KDB 447498 D01v05 was applied to determine SAR test exclusion for adjacent edge configurations. SAR tests were required for bottom and primary landscape for the BT/WLAN Antenna.

Report No.: SESF1402132

WLAN/BT Notes:

- 1. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and April 2010 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- 2. WIFI transmission was verified using a spectrum analyzer.
- 3. When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other default channels is not required.

5.2. Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is≤1.6W/kg.

Issued Date : March 04,2014

Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 25 of 98

5.3. Simultaneous Transmission Analysis

Simultaneous Transmission Scenario with Bluetooth

Report No.: SESF1402132

Configuration	Mode	Max. Scaled SAR(W/kg)	Bluetooth SAR(W/kg)	∑ SAR(W/kg)	
Head	WCDMA Band II	1.230	0.132	1.362	
Back	WCDMA Band II	1.041	0.044	1.085	

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

5.4. Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05r02.

Cerpass Technology Corp. Issued Date : March 04,2014

Page No. : 26 of 98

6. Measurement Uncertainty

DASY5 Uncertainty Budget according to IEEE 1528/2011 (0.3-3GHz range) **Error Description** Uncert. Prob. Div. (ci) (ci) Std.Unc. Std. nc. (vi) veff value Dist. 10g (1g)(10g) 1g **Measurement System** 1 **Probe Calibration** ±6.0% Ν 1 ±6.0% ±6.0% R **Axial Isotropy** ±4.7% √3 0.7 0.7 ±1.9% ±1.9% √3 0.7 Hemispherical Isotropy ±9.6% R 0.7 ±3.9% ±3.9% ∞ $\sqrt{3}$ R 1 1 **Boundary Effects** ±1.0% ±0.6% ±0.6% ∞ R $\sqrt{3}$ 1 ±4.7% 1 ±2.7% ±2.7% Linearity √3 1 System Detection Limits ±1.0% R 1 ±0.6% ±0.6% ∞ R √3 1 Modulation Response ±2.4% 1 ±1.4% ±1.4% ∞ Readout Electronics ±0.3% Ν 1 1 ±0.3% ±0.3% 1 ∞ R $\sqrt{3}$ 1 1 ±0.5% Response Time ±0.8% ±0.5% Integration Time ±2.6% R √3 1 1 ±1.5% ±1.5% R √3 1 **RF Ambient Noise** ±3.0% 1 ±1.7% ±1.7% ∞ √3 1 R 1 ±1.7% **RF Ambient Reflections** ±3.0% ±1.7% R $\sqrt{3}$ 1 Probe Positioner ±0.4% 1 ±0.2% ±0.2% ∞ Probe Positioning ±2.9% R √3 1 1 ±1.7% ±1.7% ∞ R √3 1 Max.SAR Eval. ±2.0% 1 ±1.2% ±1.2% ∞ **Test Sample Related Device Positioning** ±2.9% Ν 1 1 +2.9% ±2.9% 145 1 Device Holder Ν 1 1 1 5 ±3.6% ±3.6% ±3.6% Power Drift ±5.0% R √3 1 1 ±2.9% ±2.9% √3 Power Scaling^p ±0% R 0 0 ±0% ±0% ∞ **Phantom and Setup** R Phantom Uncertainty √3 1 1 ±3.5% ±3.5% ±6.1% ∞ SAR correction R √3 ±1.9% 0.84 ±1.1% ±0.9% ∞ Liquid Conductivity (mea.) DAK R $\sqrt{3}$ 0.78 0.71 ±2.5% ±1.1% ±1.0% ∞ Liquid Permittivity (mea.)DAK ±2.5% R √3 0.26 0.26 ±0.3% ±0.4% ∞ Temp. unc. -Conductivity^{BB} √3 ±3.4% R 0.78 0.71 ±1.5% ±1.4% Temp. unc. – Permittivity^{BB} R √3 ±0.4% 0.23 0.26 ±0.1% ±0.1% ∞ Combined Std. Uncertainty ±11.2% ±11.1% 361 Expanded STD Uncertainty(Coverage factor=2) ±22.3% ±22.2%

Report No.: SESF1402132

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 27 of 98

Issued Date : March 04,2014

7. APPENDIX A. SAR System Validation Data

Date/Time: 03/03/2014

Report No.: SESF1402132

Test Laboratory: Cerpass Lab

SystemPerformanceCheck-D1900 Head

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; σ = 1.41 S/m; ϵ r = 39.68; ρ = 1000 kg/m3

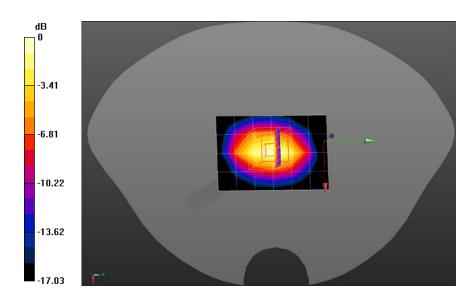
Phantom section: Flat Section Meas. Ambient Temp(celsius) :22 °C;input power=250mW

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0


• Electronics: DAE4 Sn1379; Calibrated: 2013/6/14

Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP-1767

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies above 1 GHz/Systemcheck-D1900 Head/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 12.8 W/kg System Performance Check at Frequencies above 1 GHz/Systemcheck-D1900 Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 98.307 V/m; Power Drift = 0.12 dB, Peak SAR (extrapolated) = 16.2 W/kg

SAR(1 g) = 9.45 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 13.2 W/kg

0 dB = 13.2 W/kg = 11.21 dBW/kg

Cerpass Technology Corp. Issued Date : March 04,2014

Page No.

: 28 of 98

Report No.: SESF1402132

Date/Time: 03/03/2014

Test Laboratory: Cerpass Lab

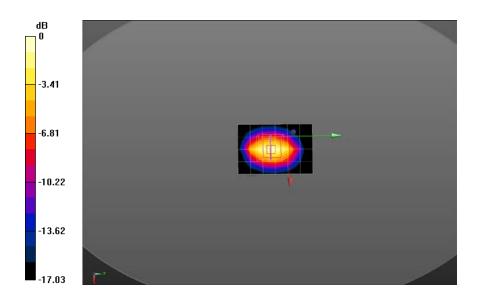
SystemPerformanceCheck-D1900 Body

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.54 \text{ S/m}$; $\epsilon r = 51.05$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section Meas. Ambient Temp(celsius):22°C;input power=250mW


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP-1211
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies above 1 GHz/Systemcheck-D1900 Body/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 14.0 W/kg System Performance Check at Frequencies above 1 GHz/Systemcheck-D1900 Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 96.964 V/m; Power Drift = -0.01 dB, Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.54 W/kg Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg

Cerpass Technology Corp. Issued Date : March 04,2014

Page No.

: 29 of 98

Tel:886-512-6917-5888 Fax:886-512-6917-5666

9. APPENDIX B. SAR measurement Data

Date/Time: 03/03/2014

Issued Date : March 04,2014

: 30 of 98

Page No.

Report No.: SESF1402132

Test Laboratory: Cerpass Lab; DUT: Mobile Phone; Type: B8305

Procedure Name: WCDMA Band II Low Touch-Left

Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1

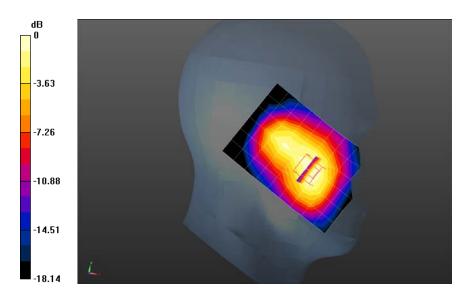
Medium parameters used: f = 1852.4 MHz; σ = 1.40 S/m; ϵ r = 39.86; ρ = 1000 kg/m3

Phantom section: Left Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

Probe: EX3DV4 - SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (7);


Configuration/WCDMA Band II Low Touch-Left/Area Scan (7x10x1): Measurement grid:

dx=15mm, dy=15mm, Maximum value of SAR (measured) = 1.09 W/kg

Configuration/WCDMA Band II Low Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.445 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.644 W/kg Maximum value of SAR (measured) = 1.16 W/kg

0 dB = 1.16 W/kg = 0.64 dBW/kg

Cerpass Technology Corp.

Report No.: SESF1402132

Date/Time: 03/03/2014

Test Laboratory: Cerpass Lab;

DUT: 1.77inch 3G Feature Phone; Type: B8305

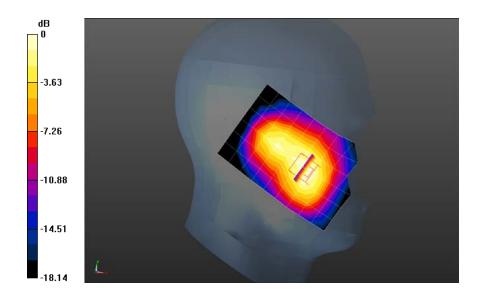
Procedure Name: WCDMA Band II Mid Touch-Left

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.41 \text{ S/m}$; $\epsilon r = 39.74$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Left Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (7);

Configuration/WCDMA Band II Mid Touch-Left/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 1.07 W/kg

Configuration/WCDMA Band II Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.492 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 1.57 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.633 W/kg Maximum value of SAR (measured) = 1.14 W/kg

0 dB = 1.14 W/kg = 0.57 dBW/kg

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Page No. : 31 of 98

Date/Time: 03/03/2014

Report No.: SESF1402132

Test Laboratory: Cerpass Lab; DUT: Mobile Phone; Type: B8305

Procedure Name: WCDMA Band II High Touch-Left

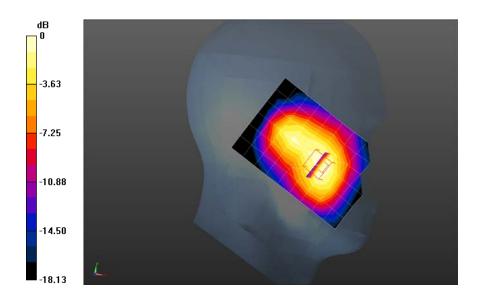
Communication System: WCDMA; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1907.6 MHz; σ = 1.42 S/m; ϵ r = 39.63; ρ = 1000 kg/m3

Phantom section: Left Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (7);


Configuration/WCDMA Band II High Touch-Left/Area Scan (7x10x1): Measurement grid:

dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.819 W/kg

Configuration/WCDMA Band II High Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.540 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.795 W/kg; SAR(10 g) = 0.484 W/kg Maximum value of SAR (measured) = 0.870 W/kg

0 dB = 0.870 W/kg = -0.60 dBW/kg

Cerpass Technology Corp. Issued Date : March 04,2014

Page No.

: 32 of 98

Date/Time: 03/03/2014

Report No.: SESF1402132

Test Laboratory: Cerpass Lab;

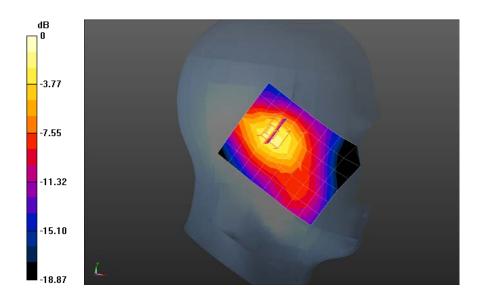
DUT: 1.77inch 3G Feature Phone; Type: B8305

Procedure Name: WCDMA Band II Mid Tilt-Left

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.41 S/m; ϵr = 39.74; ρ = 1000 kg/m3

Phantom section: Left Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY5 Configuration:

- Probe: EX3DV4 SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (7);

Configuration/WCDMA Band II Mid Tilt-Left/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.415 W/kg

Configuration/WCDMA Band II Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.697 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.950 W/kg

SAR(1 g) = 0.603 W/kg; SAR(10 g) = 0.356 W/kg Maximum value of SAR (measured) = 0.658 W/kg

0 dB = 0.658 W/kg = -1.82 dBW/kg

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 33 of 98

Date/Time: 03/03/2014

Report No.: SESF1402132

Test Laboratory: Cerpass Lab;

DUT: 1.77inch 3G Feature Phone; Type: B8305

Procedure Name: WCDMA Band II Low Touch-Right

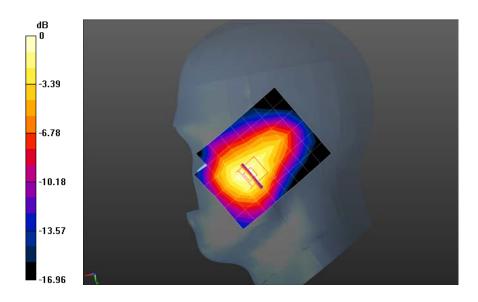
Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.40 \text{ S/m}$; $\epsilon r = 39.86$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Right Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (7);


Configuration/WCDMA Band II Low Touch-Right/Area Scan (7x9x1): Measurement grid:

dx=15mm, dy=15mm, Maximum value of SAR (measured) = 1.01 W/kg

Configuration/WCDMA Band II Low Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.178 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.668 W/kg Maximum value of SAR (measured) = 1.16 W/kg

0 dB = 1.16 W/kg = 0.64 dBW/kg

Tel:886-512-6917-5888 Fax:886-512-6917-5666

: 34 of 98

Page No.

Z-Axis Plot

Report No.: SESF1402132

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 35 of 98

Report No.: SESF1402132

Date/Time: 03/03/2014

Test Laboratory: Cerpass Lab;

DUT: 1.77inch 3G Feature Phone; Type: B8305

Procedure Name: WCDMA Band II Mid Touch-Right

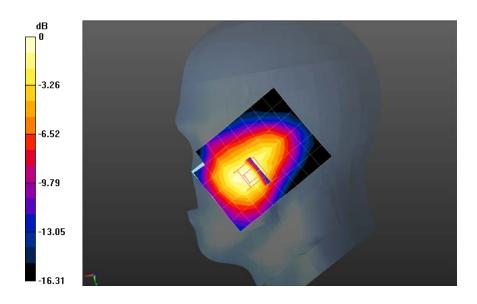
Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; $\sigma = 1.41 \text{ S/m}$; $\epsilon r = 39.74$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Right Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (7);


Configuration/WCDMA Band II Mid Touch-Right/Area Scan (7x9x1): Measurement grid:

dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.991 W/kg

Configuration/WCDMA Band II Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.236 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 1.59 W/kg

SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.644 W/kg Maximum value of SAR (measured) = 1.13 W/kg

0 dB = 1.13 W/kg = 0.53 dBW/kg

Tel:886-512-6917-5888 Fax:886-512-6917-5666

: 36 of 98

Page No.

Date/Time: 03/03/2014

Test Laboratory: Cerpass Lab;

DUT: 1.77inch 3G Feature Phone; Type: B8305

Procedure Name: WCDMA Band II High Touch-Right

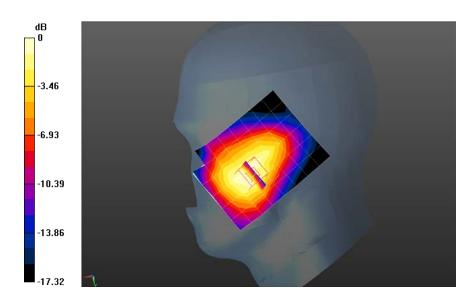
Communication System: WCDMA; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.42 \text{ S/m}$; $\epsilon r = 39.63$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Right Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (7);


Configuration/WCDMA Band II High Touch-Right/Area Scan (7x9x1): Measurement grid:

dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.782 W/kg

Configuration/WCDMA Band II High Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.712 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.830 W/kg; SAR(10 g) = 0.505 W/kg Maximum value of SAR (measured) = 0.874 W/kg

0 dB = 0.874 W/kg = -0.58 dBW/kg

Cerpass Technology Corp. Issued Date : March 04,2014

Page No.

: 37 of 98

Date/Time: 03/03/2014

Report No.: SESF1402132

Test Laboratory: Cerpass Lab;

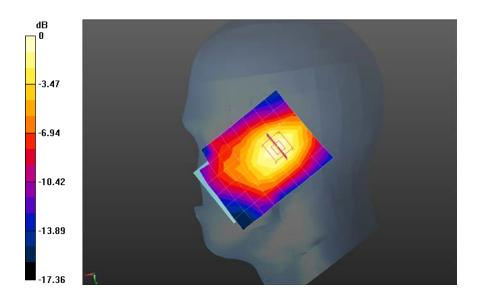
DUT: 1.77inch 3G Feature Phone; Type: B8305

Procedure Name: WCDMA Band II Mid Tilt-Right

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.41 S/m; ϵ r = 39.74; ρ = 1000 kg/m3

Phantom section: Right Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY5 Configuration:

- Probe: EX3DV4 SN3927; ConvF(8.39, 8.39, 8.39); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (7);

Configuration/WCDMA Band II Mid Tilt-Right/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.359 W/kg

Configuration/WCDMA Band II Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.937 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 0.523 W/kg

SAR(1 g) = 0.345 W/kg; SAR(10 g) = 0.212 W/kg Maximum value of SAR (measured) = 0.373 W/kg

0 dB = 0.373 W/kg = -4.28 dBW/kg

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 38 of 98

Date/Time: 03/03/2014

Test Laboratory: Cerpass Lab;

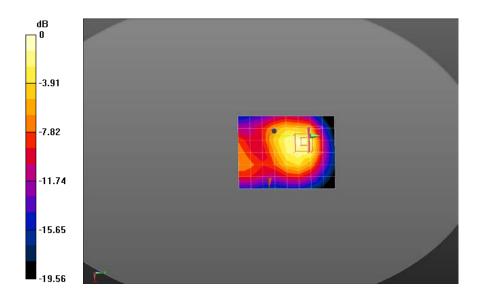
DUT: 1.77inch 3G Feature Phone; Type: B8305

Procedure Name: WCDMA Band II Low Body-Back

Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.53 \text{ S/m}$; $\epsilon r = 51.23$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY5 Configuration:

- Probe: EX3DV4 SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: ELI v5.0; Type: QDOVA002AA
- Measurement SW: DASY52, Version 52.8 (7);

Configuration/WCDMA Band II Low Body-Back/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.826 W/kg

Configuration/WCDMA Band II Low Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.411 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.890 W/kg; SAR(10 g) = 0.520 W/kg Maximum value of SAR (measured) = 0.984 W/kg

0 dB = 0.984 W/kg = -0.07 dBW/kg

Tel:886-512-6917-5888 Fax:886-512-6917-5666

: 39 of 98

Page No.

Date/Time: 03/03/2014

Test Laboratory: Cerpass Lab;

DUT: 1.77inch 3G Feature Phone; Type: B8305

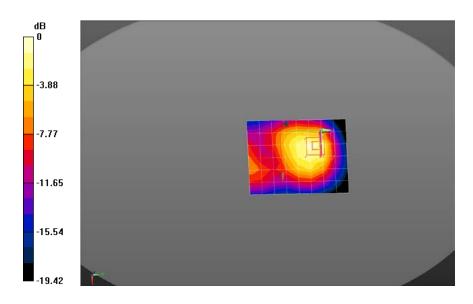
Procedure Name: WCDMA Band II Mid Body-Back

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.54 S/m; ϵr = 51.08; ρ = 1000 kg/m3

Phantom section: Flat Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: ELI v5.0; Type: QDOVA002AA
- Measurement SW: DASY52, Version 52.8 (7);

Configuration/WCDMA Band II Mid Body-Back/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.816 W/kg

Configuration/WCDMA Band II Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.315 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.897 W/kg; SAR(10 g) = 0.519 W/kg Maximum value of SAR (measured) = 0.985 W/kg

0 dB = 0.985 W/kg = -0.07 dBW/kg

Cerpass Technology Corp. Issued Date : March 04,2014

Page No.

: 40 of 98

Date/Time: 03/03/2014

Report No.: SESF1402132

Test Laboratory: Cerpass Lab;

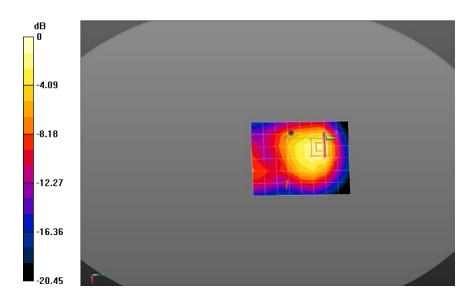
DUT: 1.77inch 3G Feature Phone; Type: B8305

Procedure Name: WCDMA Band II High Body-Back

Communication System: WCDMA; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.55 \text{ S/m}$; $\epsilon r = 51.04$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY5 Configuration:

- Probe: EX3DV4 SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: ELI v5.0; Type: QDOVA002AA
- Measurement SW: DASY52, Version 52.8 (7);

Configuration/WCDMA Band II High Body-Back/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.709 W/kg

Configuration/WCDMA Band II High Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.515 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.767 W/kg; SAR(10 g) = 0.424 W/kg Maximum value of SAR (measured) = 0.847 W/kg

0 dB = 0.847 W/kg = -0.72 dBW/kg

Cerpass Technology Corp. Issued Date : March 04,2014

Page No.

: 41 of 98

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Date/Time: 03/03/2014

Test Laboratory: Cerpass Lab;

DUT: 1.77inch 3G Feature Phone; Type: B8305

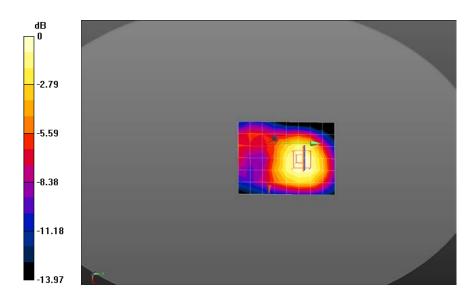
Procedure Name: WCDMA Band II Mid Body-Front

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1880 MHz; σ = 1.54 S/m; ϵ r = 51.08; ρ = 1000 kg/m³

Phantom section: Flat Section; Tissue Temp(celsius)- 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:


- Probe: EX3DV4 SN3927; ConvF(7.91, 7.91, 7.91); Calibrated: 2013/6/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1379; Calibrated: 2013/6/14
- Phantom: ELI v5.0; Type: QDOVA002AA
- Measurement SW: DASY52, Version 52.8 (7);

Configuration/WCDMA Band II Mid Body-Front/Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.335 W/kg

Configuration/WCDMA Band II Mid Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.538 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.481 W/kg

SAR(1 g) = 0.311 W/kg; SAR(10 g) = 0.199 W/kg Maximum value of SAR (measured) = 0.330 W/kg

0 dB = 0.330 W/kg = -4.81 dBW/kg

Cerpass Technology Corp. Issued Date : March 04,2014

Page No.

: 42 of 98

8. APPENDIX C Antenna Location, EUT and Test Setup Photographs

Note: Antenna Location, EUT and test setup photographs, see separate documents in PDF, named FCC SAR-Appendix C-Antenna internal view, outside view and Test Setup Photographs.

Report No.: SESF1402132

Cerpass Technology Corp. Issued Date : March 04,2014

Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page

Page No. : 43 of 98

CERPASS TECHNOLOGY CORP.

Report No.: SESF1402132

9. APPENDIX D. Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Object

Calibration procedure(s)

CAL-01.V8, QA CAL-12.V7, QA CAL-14.V3, QA CAL-23.V4,

QA CAL-25.v4
Calibration procedure for dosimetric E-field probes

Calibration date:

June 24, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Function Signature Name Calibrated by: Approved by: Issued: June 24, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3927_Jun13

Page 1 of 11

Cerpass Technology Corp. Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 44 of 98

Issued Date : March 04,2014

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization or o rotation around probe axis

Polarization 8 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR; PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Page 2 of 11 Certificate No: EX3-3927_Jun13

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 45 of 98

EX3DV4 - SN:3927

June 24, 2013

Probe EX3DV4

SN:3927

Manufactured: Calibrated: March 8, 2013 June 24, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3927_Jun13

Page 3 of 11

 Cerpass Technology Corp.
 Issued Date

 Tel:886-512-6917-5888
 Fax:886-512-6917-5666
 Page No.

Issued Date : March 04,2014 Page No. : 46 of 98

EX3DV4-SN:3927

June 24, 2013

Report No.: SESF1402132

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.57	0.33	0.61	± 10.1 %
DCP (mV) ⁸	101.1	89.9	97.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	cw	T x	0.0	0.0	1.0	0.00	177.4	±2.5 %
		Y	0.0	0.0	1.0		169.2	
		Z	0.0	0.0	1.0		176.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3927_Jun13

Page 4 of 11

Cerpass Technology Corp. Issued Date : March 04,2014 Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 47 of 98

^h The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4-SN:3927

June 24, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	11.02	11.02	11.02	0.14	1.46	± 13.4 %
850	41.5	0.92	10.16	10.16	10.16	0.41	0.82	± 12.0 %
1750	40.1	1.37	8.73	8.73	8.73	0.60	0.90	± 12.0 %
1900	40.0	1.40	8.39	8.39	8.39	0.64	0.88	± 12.0 %
2100	39.8	1.49	8.39	8.39	8.39	0.59	0.93	± 12.0 %
2450	39.2	1.80	7.38	7.38	7.38	0.47	1.03	± 12.0 %
5200	36.0	4.66	5.19	5.19	5.19	0.30	1.80	± 13.1 %
5500	35.6	4.96	5.05	5.05	5.05	0.30	1.80	± 13.1 %
5800	35.3	5.27	4.73	4.73	4.73	0.35	1.80	± 13.1 %

Certificate No: EX3-3927_Jun13

Page 5 of 11

Cerpass Technology Corp. Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 48 of 98

 $^{^{\}circ}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. $^{\circ}$ At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the CorwF uncertainty for indicated target tissue parameters.

EX3DV4-SN:3927

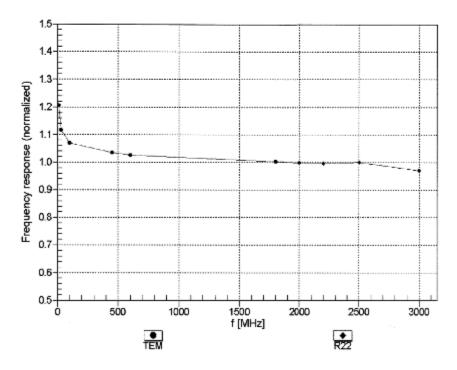
June 24, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	11.57	11.57	11.57	0.05	1.21	± 13.4 %
850	55.2	0.99	10.03	10.03	10.03	0.38	0.93	± 12.0 %
1750	53.4	1.49	8.33	8.33	8.33	0.35	0.85	± 12.0 %
1900	53.3	1.52	7.91	7.91	7.91	0.22	1.13	± 12.0 %
2100	53.2	1.62	8.06	8.06	8.06	0.40	0.80	± 12.0 %
2450	52.7	1.95	7.30	7.30	7.30	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.54	4.54	4.54	0.40	1.90	± 13.1 %
5500	48.6	5.65	4.09	4.09	4.09	0.40	1.90	± 13.1 %
5800	48.2	6.00	4.15	4.15	4.15	0.45	1.90	± 13.1 %

Certificate No: EX3-3927_Jun13


Page 6 of 11

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 49 of 98

 $^{^{\}circ}$ Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the CorwF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. $^{\circ}$ At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if figuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the CorwF uncertainty for indicated target tissue parameters.

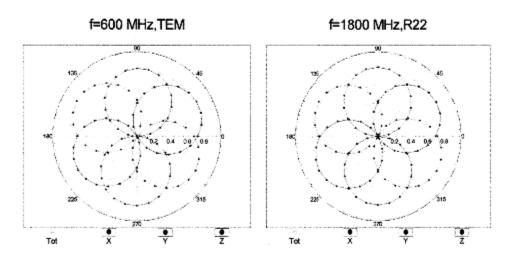
EX3DV4-- SN:3927 June 24, 2013

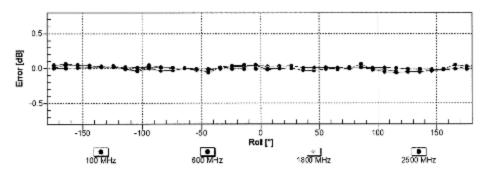
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3927_Jun13 Page 7 of 11

Cerpass Technology Corp. Issued Date : March 04,2014


Page No.


: 50 of 98

EX3DV4-- SN:3927

June 24, 2013

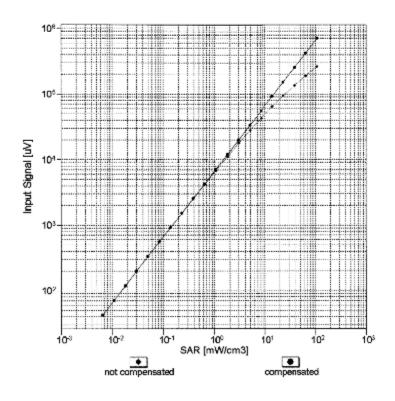
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

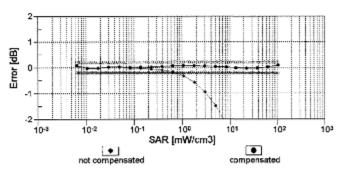
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3927_Jun13

Page 8 of 11

 Cerpass Technology Corp.
 Issued Da


 Tel:886-512-6917-5888
 Fax:886-512-6917-5666
 Page No.

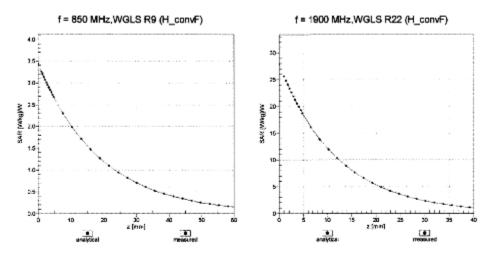

: 51 of 98

EX3DV4-SN:3927

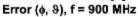
June 24, 2013

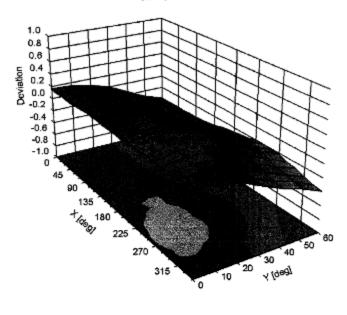
Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

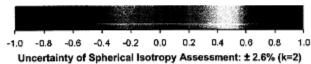
Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3927_Jun13

Page 9 of 11


Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 52 of 98


EX3DV4-SN:3927 June 24, 2013


Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: EX3-3927_Jun13

Page 10 of 11

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 53 of 98

EX3DV4- SN:3927

June 24, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3927

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	25.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3927_Jun13

Page 11 of 11

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 54 of 98

CERPASS TECHNOLOGY CORP.

10. Appendix E. Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kallbrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Report No.: SESF1402132

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBRATION (ERTIFICATI		
Object	D450V3 - SN: 10	086	
Calibration procedure(s)	QA CAL-15.v7 Calibration proce	odure for dipole validation kits be	low 700 MHz
Calibration date:	June 14, 2013		a de la compania de
This calibration certificate docum	ents the traceability to nati	ional standards, which realize the physical ur robability are given on the following pages a	nits of measurements (SI). nd are part of the certificate.
All calibrations have been conduc	ated in the closed laborator	ry facility: environment temperature (22 ± 3)°	C and humidity < 70%.
Calibration Equipment used (M&	ΓE critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ET3DV6	SN: 1507	28-Dec-12 (No. ET3-1507_Dec12)	Dec-13
DAE4	SN: 654	10-Apr-13 (No. DAE4-654_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
	MY41092317	18-Oct-02 (in house check Oct-11)	In house check; Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005 US37390585 S4206	04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	In house check: Oct-13 In house check: Oct-13
RF generator R&S SMT-06 Network Analyzer HP 8753E		18-Oct-01 (in house check Oct-12) Function	
RF generator R&S SMT-06 Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
RF generator R&S SMT-06 Network Analyzer HP 8753E	US37390585 S4208 Name	18-Oct-01 (in house check Oct-12) Function	In house check: Oct-13
RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	US37390585 S4208 Name	18-Oct-01 (in house check Oct-12) Function Laboratory Technician	In house check: Oct-13
RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by:	US37390585 S4208 Name Jeton Kastrati	18-Oct-01 (in house check Oct-12) Function	In house check: Oct-13
Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	US37390585 S4208 Name Jeton Kastrati	18-Oct-01 (in house check Oct-12) Function Laboratory Technician	In house check: Oct-13

Certificate No: D450V3-1086_Jun13

Page 1 of 8

Cerpass Technology Corp. Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 55 of 98

Issued Date : March 04,2014

ERPASS TECHNOLOGY CORP. Report No.: SESF1402132

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kallbrierdlenst Service suisse d'étalonnage

C Service suisse d'étaionnage S Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1086_Jun13

Page 2 of 8

 Cerpass Technology Corp.
 Issued Date : March 04,2014

 Tel:886-512-6917-5888 Fax:886-512-6917-5666
 Page No. : 56 of 98

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were continu

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	44.2 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.73 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.802 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.14 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	57.1 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.61 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	0.776 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.06 W/kg ± 17.6 % (k=2)

Certificate No: D450V3-1086_Jun13

Page 3 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 57 of 98

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.1 Ω - 8.2 jΩ
Return Loss	- 21.8 dB

Report No.: SESF1402132

Antenna Parameters with Body TSL

Impedance, transformed to feed point	56.2 Ω - 6.2 jΩ
Return Loss	- 21.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.349 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the *Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 10, 2012

Page 4 of 8 Certificate No: D450V3-1086_Jun13

Cerpass Technology Corp. Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 58 of 98

DASY5 Validation Report for Head TSL

Date: 14.06.2013

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1086

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 44.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ET3DV6 - SN1507; ConvF(6.59, 6.59, 6.59); Calibrated: 28.12.2012;

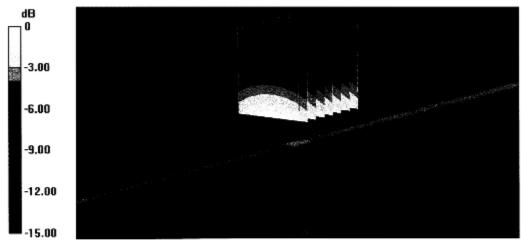
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 10.04.2013

Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

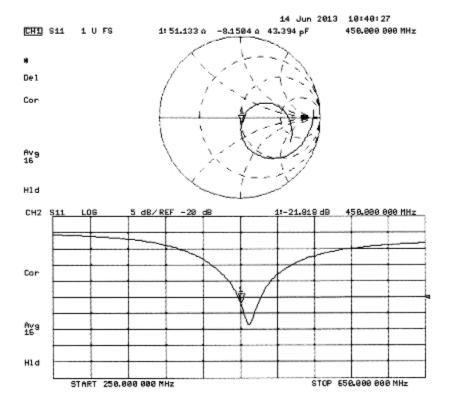
Reference Value = 39.197 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 1.21 W/kg; SAR(10 g) = 0.802 W/kg

Maximum value of SAR (measured) = 1.30 W/kg

0 dB = 1.30 W/kg = 1.14 dBW/kg


Certificate No: D450V3-1086_Jun13

Page 5 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 59 of 98

Impedance Measurement Plot for Head TSL

Certificate No: D450V3-1086_Jun13

Page 6 of 8

Cerpass Technology Corp.Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 60 of 98

DASY5 Validation Report for Body TSL

Date: 14.06.2013

Test Laboratory: The name of your organization

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN: 1086

Communication System: UID 0 - CW; Frequency: 450 MHz

Medium parameters used: f = 450 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 57.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

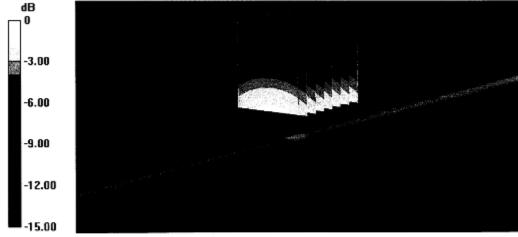
Probe: ET3DV6 - SN1507; ConvF(7.03, 7.03, 7.03); Calibrated: 28.12.2012;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn654; Calibrated: 10.04.2013

Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1003

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

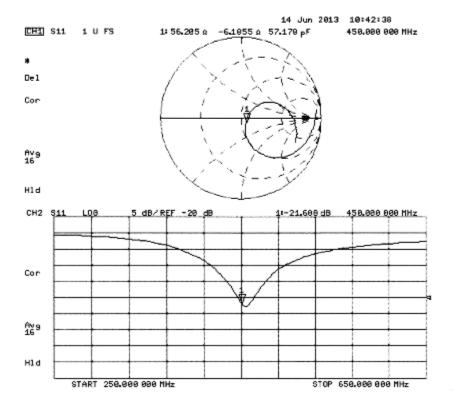
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 39.197 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.81 W/kg

SAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.776 W/kgMaximum value of SAR (measured) = 1.25 W/kg

0 dB = 1.25 W/kg = 0.97 dBW/kg


Certificate No: D450V3-1086_Jun13

Page 7 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 61 of 98

Impedance Measurement Plot for Body TSL

Certificate No: D450V3-1086_Jun13

Page 8 of 8

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 62 of 98

CERPASS TECHNOLOGY CORP.

Report No.: SESF1402132

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swise Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client Cerpass (Aude	n)	Ce	rtfficate No: D850V2-1008_Jun13
CALIBRATION C	ERTIFICATE		
Object	D850V2 - SN: 10	08	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation	kits above 700 MHz
Calibration date:	June 13, 2013		
	,		physical units of measurements (SI). g pages and are part of the certificate.
All calibrations have been conduc	ted in the closed laborator	ry facility: environment temperatur	e (22 ± 3)°C and humidity < 70%.
Calibration Equipment used (M&)	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec	12) Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr1	(3) Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-	
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-	•
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technic	ECONOMISSO DE CASO DE PRESENTANDO ANTIGO DE CASO DE CA
Approved by:	Katja Pokovic	Technical Manager	MH
This calibration certificate shall no	of he reproduced except in	full without written approval of the	Issued: June 13, 2013
come-acon serimente andi in	or on represented empopris		

Certificate No: D850V2-1008_Jun13

Page 1 of 8

Cerpass Technology Corp. Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 63 of 98

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Report No.: SESF1402132

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D850V2-1008_Jun13

Page 2 of 8

 Cerpass Technology Corp.
 Issued Date : March 04,2014

 Tel:886-512-6917-5888 Fax:886-512-6917-5666
 Page No. : 64 of 98

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	850 MHz ± 1 MHz	

Report No.: SESF1402132

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.92 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.5 ± 6 %	0.95 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.83 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.63 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.37 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.99 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.62 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.27 W/kg ± 16.5 % (k=2)

Certificate No: D850V2-1008_Jun13

Page 3 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 65 of 98

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω - 3.1 jΩ
Return Loss	- 28.6 dB

Report No.: SESF1402132

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5 Ω - 5.3 jΩ
Return Loss	- 24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.382 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 30, 2009

Certificate No: D850V2-1008_Jun13

Page 4 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Tel:886-512-6917-5888 Fax:886-512-6917-5666

DASY5 Validation Report for Head TSL

Date: 13.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 850 MHz; Type: D850V2; Serial: D850V2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 850 MHz

Medium parameters used: f = 850 MHz; $\sigma = 0.95 \text{ S/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

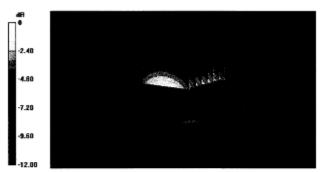
Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)

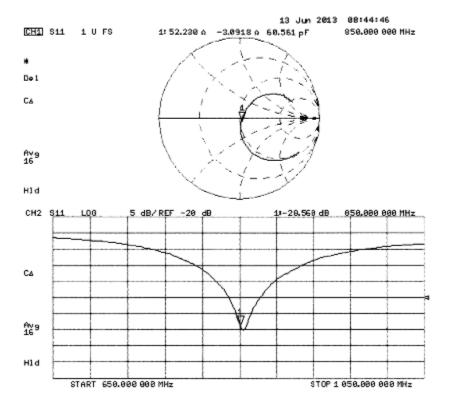
(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.472 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.82 W/kg

SAR(1 g) = 2.53 W/kg; SAR(10 g) = 1.63 W/kgMaximum value of SAR (measured) = 2.96 W/kg

0 dB = 2.96 W/kg = 4.71 dBW/kg


Certificate No: D850V2-1008_Jun13

Page 5 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 : 67 of 98 Page No.

Impedance Measurement Plot for Head TSL

Report No.: SESF1402132

Certificate No: D850V2-1008_Jun13

Page 6 of 8

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 68 of 98

DASY5 Validation Report for Body TSL

Date: 12.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 850 MHz; Type: D850V2; Serial: D850V2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 850 MHz

Medium parameters used: f = 850 MHz; $\sigma = 1.03 \text{ S/m}$; $\epsilon_r = 53.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

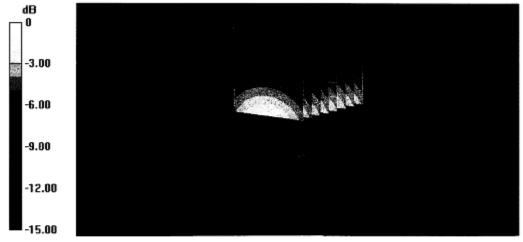
Probe: ES3DV3 - SN3205; ConvF(6.01, 6.01, 6.01); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)

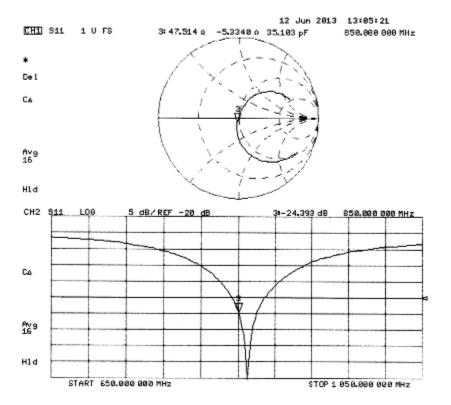
(7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.836 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.61 W/kgMaximum value of SAR (measured) = 2.91 W/kg

0 dB = 2.91 W/kg = 4.64 dBW/kg


Certificate No: D850V2-1008_Jun13

Page 7 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 69 of 98

Impedance Measurement Plot for Body TSL

Certificate No: D850V2-1008_Jun13

Page 8 of 8

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No.

: 70 of 98

CERPASS TECHNOLOGY CORP.

Report No.: SESF1402132

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

С

Accreditation No.: SCS 108

Schweizerlscher Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Cerpass (Auden) Certificate No: D1750V2-1097_Jun13 CALIBRATION CERTIFICATE Object D1750V2 - SN: 1097 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 01-Nov-12 (No. 217-01640) Oct-13 Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 Reference 20 dB Attenuator SN: 5068 (20k) 04-Apr-13 (No. 217-01736) Apr-14 Type-N mismatch combination SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 Secondary Standards ID# Check Date (in house) Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100006 04-Aug-99 (In house check Oct-11) In house check: Oct-13 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-12) In house check: Oct-13 Function Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Technical Manager Issued: June 13, 2013

Certificate No: D1750V2-1097_Jun13

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Cerpass Technology Corp.

Issued Date : March 04,2014

Page No. : 71 of 98

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerlscher Kallbrierdienst s Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1097_Jun13

Page 2 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 72 of 98

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Report No.: SESF1402132

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.32 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.6 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.7 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.1 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1097_Jun13

Page 3 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 73 of 98

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 Ω + 0.5 jΩ
Return Loss	- 38.8 dB

Report No.: SESF1402132

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω + 0.2 jΩ
Return Loss	- 29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.218 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 16, 2013

Certificate No: D1750V2-1097_Jun13

Page 4 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 74 of 98

DASY5 Validation Report for Head TSL

Date: 10.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1097

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.32$ S/m; $\epsilon_t = 39.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.18, 5.18, 5.18); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

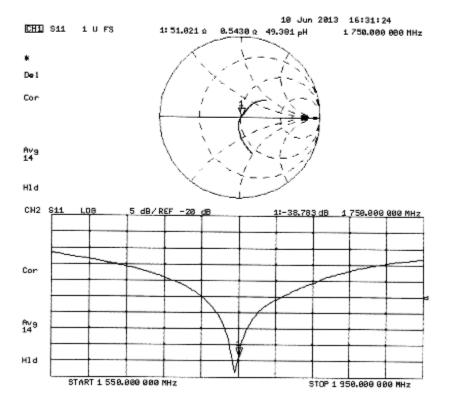
Reference Value = 95.679 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 16.2 W/kg

SAR(1 g) = 9.07 W/kg; SAR(10 g) = 4.85 W/kgMaximum value of SAR (measured) = 11.4 W/kg

0 dB = 11.4 W/kg = 10.57 dBW/kg

Certificate No: D1750V2-1097_Jun13


Page 5 of 8

 Cerpass Technology Corp.
 Issued Date : March 04,2014

 Tel:886-512-6917-5888
 Fax:886-512-6917-5666
 Page No. : 75 of 98

Impedance Measurement Plot for Head TSL

Certificate No: D1750V2-1097_Jun13

Page 6 of 8

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 76 of 98

DASY5 Validation Report for Body TSL

Date: 11.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1097

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

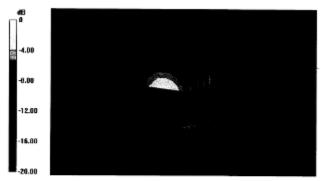
Probe: ES3DV3 - SN3205; ConvF(4.83, 4.83, 4.83); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04,2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

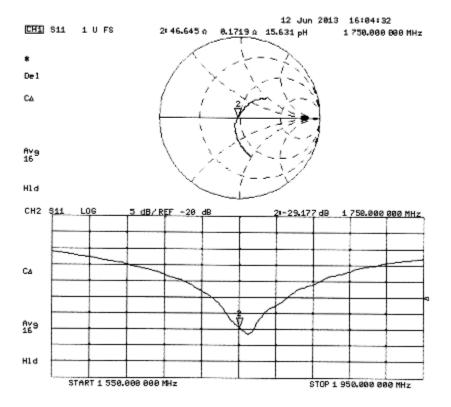
Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.830 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 9.46 W/kg; SAR(10 g) = 5.08 W/kg

Maximum value of SAR (measured) = 11.8 W/kg

0 dB = 11.8 W/kg = 10.72 dBW/kg


Certificate No: D1750V2-1097_Jun13

Page 7 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 77 of 98

Impedance Measurement Plot for Body TSL

Certificate No: D1750V2-1097_Jun13

Page 8 of 8

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 78 of 98

CERPASS TECHNOLOGY CORP. Report No.: SESF1402132

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Certificate No: D1900V2-5d174 Jun13 Cerpass (Auden) Client CALIBRATION CERTIFICATE D1900V2 - SN: 5d174 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 10, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID# 01-Nov-12 (No. 217-01640) Power meter EPM-442A GB37480704 Oct-13 Power sensor HP 8481A US37292783 01-Nov-12 (No. 217-01640) Oct-13 SN: 5058 (20k) 04-Apr-13 (No. 217-01736) Apr-14 Reference 20 dB Attenuator SN: 5047.3 / 06327 04-Apr-13 (No. 217-01739) Apr-14 Type-N mismatch combination Reference Probe ES3DV3 SN: 3205 28-Dec-12 (No. ES3-3205_Dec12) Dec-13 DAE4 SN: 601 25-Apr-13 (No. DAE4-601_Apr13) Apr-14 Scheduled Check ID# Check Date (in house) Secondary Standards Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-11) In house check: Oct-13 04-Aug-99 (in house check Oct-11) In house check: Oct-13 RF generator R&S SMT-06 100005 US37390585 S4206 18-Oct-01 (in house check Oct-12) In house check: Oct-13 Network Analyzer HP 8753E Name Function Calibrated by: Jeton Kastrati Laboratory Technician Technical Manager Approved by: Katia Pokovic Issued: June 11, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d174_Jun13

Page 1 of 8

Cerpass Technology Corp. Tel:886-512-6917-5888 Fax:886-512-6917-5666 Issued Date : March 04,2014

Page No. : 79 of 98

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage

С Servizio svizzero di taratura

Accreditation No.: SCS 108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- . Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d174 Jun13

Page 2 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Tel:886-512-6917-5888 Fax:886-512-6917-5666 : 80 of 98

Page No.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head T\$L	Condition	
SAR measured	250 mW input power	9.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.50 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.00 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.34 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.5 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d174_Jun13

Page 3 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 81 of 98

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2 Ω + 3.9 jΩ	
Return Loss	- 26.2 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω + 5.0 jΩ
Return Loss	- 25.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Messurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 08, 2012

Certificate No: D1900V2-5d174 Jun13

Page 4 of 8

Cerpass Technology Corp. Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 82 of 98

DASY5 Validation Report for Head TSL

Date: 10.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d174

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.34 \text{ S/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAF4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.712 V/m; Power Drift = 0.06 dBPeak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.76 W/kg; SAR(10 g) = 5.15 W/kgMaximum value of SAR (measured) = 12.0 W/kg

0 dB = 12.0 W/kg = 10.79 dBW/kg

Certificate No: D1900V2-5d174_Jun13

Page 5 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 83 of 98

DASY5 Validation Report for Body TSL

Date: 10.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d174

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.5 \text{ S/m}$; $\varepsilon_r = 53.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

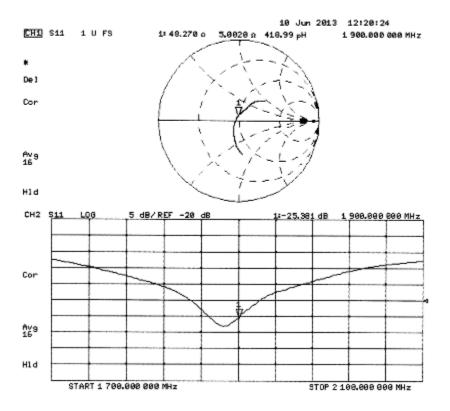
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.712 V/m; Power Drift = 0.01 dBPeak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 12.7 W/kg

0 dB = 12.7 W/kg = 11.04 dBW/kg


Certificate No: D1900V2-5d174_Jun13

Page 7 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 84 of 98

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d174_Jun13

Page 8 of 8

Cerpass Technology Corp. Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 85 of 98

CERPASS TECHNOLOGY CORP.

Report No.: SESF1402132

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

С

Client

Cerpass (Auden)

Certificate No: D2450V2-914_Jun13

110229.db018020.0001000			enmeate No: DZ45UVZ-914_JUN13
CALIBRATION C	ERTIFICATI		
Object	D2450V2 - SN: 9	914	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	edure for dipole validation	n kits above 700 MHz
Calibration date:	June 07, 2013		
The measurements and the unce	rtainties with confidence p	robability are given on the following	physical units of measurements (SI). In pages and are part of the certificate.
All calibrations have been conduc	ted in the closed laborato	ry facility: environment temperatu	re (22 ± 3)°C and humidity < 70%,
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec	12) Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr	13) Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-	
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct	,
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technic	sin Sel The
Approved by:	Katja Pokovic	Technical Manager	AB
This calibration certificate shall no	I be reproduced except in	full without written approval of the	Issued: June 7, 2013

Certificate No: D2450V2-914_Jun13

Page 1 of 8

Cerpass Technology Corp.Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 86 of 98

PASS TECHNOLOGY CORP. Report No.: SESF1402132

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schwelzerlscher Kalibrierdienst
Service suisse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the algnatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-914_Jun13

Page 2 of 8

 Cerpass Technology Corp.
 Issued Date : March 04,2014

 Tel:886-512-6917-5888 Fax:886-512-6917-5666
 Page No. : 87 of 98

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-914_Jun13

Page 3 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 88 of 98

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	57.0 Ω + 1.9 jΩ
Return Loss	- 23.3 dB

Report No.: SESF1402132

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.1 Ω + 3.5 jΩ
Return Loss	- 28.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.160 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 19, 2012

Certificate No: D2450V2-914_Jun13

Page 4 of 8

Cerpass Technology Corp. Issued Date : March 04,2014 Tel:886-512-6917-5888 Fax:886-512-6917-5666

Page No. : 89 of 98

DASY5 Validation Report for Head TSL

Date: 07.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 914

Communication System: UID 0 - CW ; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04,2013

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.695 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.24 W/kg

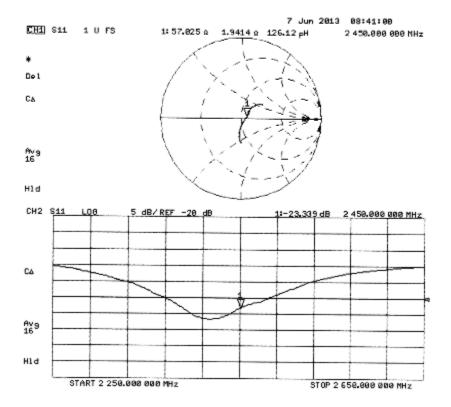
Maximum value of SAR (measured) = 17.6 W/kg

0 dB = 17.6 W/kg = 12.46 dBW/kg

Certificate No: D2450V2-914_Jun13

Page 5 of 8

Tel:886-512-6917-5888 Fax:886-512-6917-5666


Cerpass Technology Corp.

Issued Date : March 04,2014

Page No. : 90 of 98

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-914_Jun13

Page 6 of 8

Cerpass Technology Corp.

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 91 of 98

CERPASS TECHNOLOGY CORP. Report No.: SESF1402132

DASY5 Validation Report for Body TSL

Date: 07.06.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 914

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

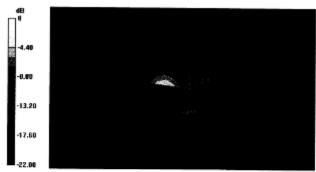
Probe: ES3DV3 - SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.695 V/m; Power Drift = 0.01 dB

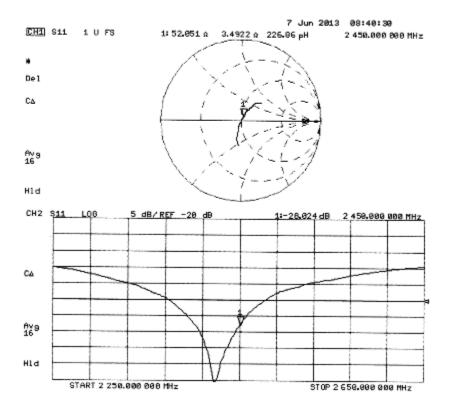
Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

0 dB = 17.5 W/kg = 12.43 dBW/kg

Certificate No: D2450V2-914_Jun13


Page 7 of 8

 Cerpass Technology Corp.
 Issued Date : March 04,2014

 Tel:886-512-6917-5888 Fax:886-512-6917-5666
 Page No. : 92 of 98

Impedance Measurement Plot for Body TSL

Report No.: SESF1402132

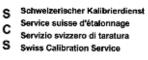
Certificate No: D2450V2-914_Jun13

Page 8 of 8

Tel:886-512-6917-5888 Fax:886-512-6917-5666

Issued Date : March 04,2014

Page No. : 93 of 98



11. Appendix F. DAE Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG

Report No.: SESF1402132

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Certificate No: DAE4-1379_Jun13

Accreditation No.: SCS 108

Cerpass (Auden) CALIBRATION CERTIF Object DAE4-SD 000 D04 BJ - SN: 1379 Calibration procedure(s) QA CAL-06.926 Calibration procedure for the data acquisition electronics (DAE) Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 02-Oct-12 (No:12728) Oct-13 Secondary Standards ID# Check Date (in house) Scheduled Check SE UWS 053 AA 1001 07-Jan-13 (in house check) Auto DAE Calibration Unit In house check: Jan-14 Calibrator Box V2.1 SE UMS 006 AA 1002 07-Jan-13 (in house check) In house check: Jan-14 Function Signature Calibrated by: Fin Bombott Approved by: Issued: June 14, 2013 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1379_Jun13

Page 1 of 5

Cerpass Technology Corp. Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 94 of 98

Issued Date : March 04,2014

DLOGY CORP. Report No.: SESF1402132

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdlenst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Callbration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

Connector angle

DAE data acqu

data acquisition electronics

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1379_Jun13

Page 2 of 5

 Cerpass Technology Corp.
 Issued Date : March 04,2014

 Tel:886-512-6917-5888 Fax:886-512-6917-5666
 Page No. : 95 of 98

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = full range = -100...+300 mV full range = -1......+3mV 6.1μV, Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec

Calibration Factors	x	Y	Z
High Range	403.780 ± 0.02% (k=2)	404.053 ± 0.02% (k=2)	403.989 ± 0.02% (k=2)
Low Range	3.99596 ± 1.50% (k=2)	3.99156 ± 1.50% (k=2)	3.99899 ± 1.50% (k=2)

Connector Angle

Certificate No: DAE4-1379_Jun13

Page 3 of 5

Cerpass Technology Corp. Issued Date : March 04,2014 Tel:886-512-6917-5888 Fax:886-512-6917-5666 Page No. : 96 of 98

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199994.77	-0.79	-0.00
Channel X + Input	19998.34	-1.48	-0.01
Channel X - Input	-19999.63	1.83	-0.01
Channel Y + Input	199996.50	0.61	0.00
Channel Y + Input	19995.46	-4.43	-0.02
Channel Y - Input	-20002.71	-1.27	0.01
Channel Z + Input	199998.27	2.81	0.00
Channel Z + Input	19997.65	-2.19	-0.01
Channel Z - Input	-20002.08	-0.49	0.00

Low Range	Reading (µV)	Difference (μV)	Error (%)
Channel X + Input	2000.48	0.36	0.02
Channel X + Input	200.15	-0.33	-0.16
Channel X - Input	-199.65	-0.28	0.14
Channel Y + Input	1999.47	-0.73	-0.04
Channel Y + Input	200.66	0.01	0.01
Channel Y - Input	-199.30	0.05	-0.02
Channel Z + Input	2000.00	-0.12	-0.01
Channel Z + Input	199.74	-0.81	-0.41
Channel Z - Input	-200.31	-0.98	0.49

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-17.91	-19.73
	- 200	20.20	18.29
Channel Y	200	-4.93	-4.72
	- 200	3.59	3.43
Channel Z	200	-10.76	-10.75
	- 200	8.61	8.62

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-0.44	-5.25
Channel Y	200	7.04	-	0.32
Channel Z	200	9.23	5.34	-

Certificate No: DAE4-1379_Jun13

Page 4 of 5

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 97 of 98

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16053	15886
Channel Y	16274	14321
Channel Z	15829	15916

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-3.67	-4.90	-2.52	0.44
Channel Y	-1.51	-2.97	-0.02	0.59
Channel Z	-0.53	-1.65	1.01	0.65

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1379_Jun13

Page 5 of 5

Cerpass Technology Corp. Issued Date : March 04,2014 Page No. : 98 of 98