

TEST REPORT

Report Number: 101277992MIN-001C
Project Number: G101277992

**Testing performed on the
Model 4500, Clinician Programmer**

**FCC ID:
Industry Canada ID:**

**to
47 CFR Part 95 Subpart I: 2013
RSS- 243, Issue 3, November 2010
47 CFR, Part 15:2013, §15.109 and §15.107, Class B**

Minnetronix

Test Performed by:
Intertek Testing Services NA, Inc.
7250 Hudson Blvd., Suite 100
Oakdale, MN 55128 USA

Test Authorized by:
Minnetronix
1635 Energy Park Drive
St. Paul, MN 55108 USA

Prepared by: U. Spector
Uri Spector

Date: November 12, 2013

Reviewed by: S. Khazon
Simon Khazon

Date: November 12, 2013

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TABLE OF CONTENTS

1.0	GENERAL DESCRIPTION.....	3
1.1	Product Description; Test Facility	4
1.3	Environmental conditions.....	5
1.4	Measurement uncertainty	6
1.5	Field Strength Calculation.....	6
2.0	TEST SUMMARY.....	7
3.0	TEST CONDITIONS AND RESULTS.....	8
3.1	Effective Radiated Power at Fundamental	8
3.2	Bandwidth of Emissions.....	10
3.3	Radiated Spurious Emissions.....	12
3.4	Frequency Error	19
3.5	MedRadio Operation.....	20
3.6	Receiver/digital device radiated emissions.....	31
3.7	Digital device conducted emissions.....	35
4.0	TEST EQUIPMENT	38

1.0 GENERAL DESCRIPTION

Model:	4500
Type of EUT:	Clinician Programmer, MedRadio
Serial Number:	DBR 1552
FCC ID:	
Industry Canada ID:	
Related Submittal(s) Grants:	N/A
Company:	Minnetronix
Customer:	Sue Sibilski
Address:	1635 Energy Park Drive St. Paul, MN 55108
Phone:	(651) 917-4060
Fax:	(651) 917-4066
e-mail:	ssibilski@minnetronix.com
Test Standards:	<input checked="" type="checkbox"/> 47 CFR, Part 95 Subpart I: 2013 <input checked="" type="checkbox"/> RSS-243, Issue 3, November 2010 <input type="checkbox"/> RSS-Gen, Issue 2, 2007 <input checked="" type="checkbox"/> 47 CFR, Part 15:2013, §15.109 and §15.107, Class B <input type="checkbox"/> Other
Type of radio:	<input checked="" type="checkbox"/> Stand -alone <input type="checkbox"/> Module <input type="checkbox"/> Hybrid
Date Sample Submitted:	August 16, 2013
Test Work Started:	August 19, 2013
Test Work Completed:	October 30, 2013
Test Sample Conditions:	<input type="checkbox"/> Damaged <input type="checkbox"/> Poor (Usable) <input checked="" type="checkbox"/> Good

1.1 Product Description; Test Facility

Product Description:	Pocket Programmer
Operating Frequency	402-405MHz
Power Level Setting	20
Modulation:	FSK
Emission Designator:	246K8F1D
Antenna(s) Info:	-9.1dBi PCB loop antenna (trace)
Antenna Installation:	<input type="checkbox"/> User <input type="checkbox"/> Professional <input checked="" type="checkbox"/> Factory
Transmitter power configuration:	<input type="checkbox"/> Internal battery <input checked="" type="checkbox"/> External power source <input checked="" type="checkbox"/> 100-240VAC <input type="checkbox"/> 400VAC <input type="checkbox"/> DC <input type="checkbox"/> Other: <input checked="" type="checkbox"/> 50-60Hz
Special Test Arrangement:	As a hand-held device the EUT was rotated through three orthogonal axes to determine and tested with the maximum emissions
Test Facility Accreditation:	A2LA (Certificate No. 1427.01)
Test Methodology:	Measurements performed according to the procedures in ANSI C63.10-2009 / TIA 603-C

1.2 EUT Configuration

The equipment under test was operated during the measurement under the following conditions:

- Standby
- Continuous
- Continuous un-modulated
- Continuous modulated
- Test program (customer specific)
- Below

Operating modes of the EUT:

No.	Description
1	The EUT was powered 120VAC and was activated to transmit continuously modulated carrier except frequency error testing where a CW signal was transmitted. Channel 5 (403.65MHz) was utilized for testing.

Cables:

No.	Type	Length	Designation	Note
1	Not shielded USB Power cable	2m	Power Cable	
2	Shielded USB cable	2m	Communication Cable	
3	Shielded HDMI cable	2m	HDMI Cable	

Support equipment/Services:

No.	Item	Description
1	Avid Board	Implant Emulation board used during MedRadio Communication Sessions testing.

General notes: None

1.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

- Normal**

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

- Extreme**

<input type="checkbox"/> Temperature:	<u>+25 to +45 ° C</u>
<input checked="" type="checkbox"/> Temperature:	<u>-20 to +55 ° C</u>
<input type="checkbox"/> AC power:	<u>± 10%</u>
<input type="checkbox"/> Battery:	<u>0.85 -1.15 times</u>

1.4 Measurement uncertainty

The expanded uncertainty ($k = 2$) for radiated emissions from 30 to 1000 MHz has been determined to be: ± 4 dB at 10m and ± 5.4 dB at 3m

The expanded uncertainty ($k = 2$) for conducted emissions from 150 kHz to 30 MHz has been determined to be:

± 2.6 dB

1.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured emissions reading on the EMI Receiver.

The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where: FS = Field Strength in dB(μ V/m)

RA = Receiver Amplitude in dB(μ V)

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB(m^{-1})

AG = Amplifier Gain in dB

Assume a receiver reading of 48.1 dB(μ V) is obtained. The antenna factor of 7.4 dB(m^{-1}) and cable factor of 1.6 dB is added and amplifier gain of 16.0 dB is subtracted giving field strength of 41.1 dB(μ V/m).

$$RA = 48.1 \text{ dB}(\mu\text{V})$$

$$AF = 7.4 \text{ dB}(m^{-1})$$

$$CF = 1.6 \text{ dB}$$

$$AG = 16.0 \text{ dB}$$

$$FS = RA + AF + CF - AG$$

$$FS = 48.1 + 7.4 + 1.6 - 16.0$$

$$FS = 41.1 \text{ dB}(\mu\text{V}/\text{m})$$

2.0 TEST SUMMARY

Referring to the performance criteria and the operating mode during the tests specified in this report, the equipment complies with the requirements according to the following standards.

TEST SPECIFICATION	TEST PARAMETERS	RESULT
FCC §2.1046 / FCC §95.639(f) / RSS-243 Section 5.4	Effective Radiated Power at Fundamental	Pass
FCC §2.1049 / FCC §95.633(e) / RSS-243 Section 5.1	Bandwidth of the emission	Pass
FCC §2.1053 / FCC §95.635 / RSS-243 Sections 5.5, 5.6	Radiated Spurious Emissions	Pass
FCC §2.1055 / FCC §95.627(e) / RSS-243 Sections 5.3	Frequency Error	Pass
FCC Part 15.109/ICES-003	Receiver/digital device radiated emissions	Pass
FCC Part 15.107/ICES-003	Receiver/digital device conducted emissions	Pass
FCC §95.627(a)(1-4) / RSS-243 Sections 5.7	The MedRadio Communication Sessions (Threshold Power Levels, Monitoring System Bandwidth, Scan Cycle Time, Minimum Channel Monitoring Period, Channel Access, Discontinuation of a MedRadio Session, and Use of Pre-Scanned Alternate Channel)	Pass

3.0 TEST CONDITIONS AND RESULTS

3.1 Effective Radiated Power at Fundamental

Test location: OATS Anechoic Chamber Other

Test distance: 10 meters 3 meters

Frequency range of measurements: 403.66MHz

Test result: Pass

Max. Emissions margin at fundamental: 0.1dB below the limits

Notes: Per FCC 95.627 (g)(3), the maximum effective radiated power measurement was determined by measuring radiated field from the equipment under test at 3m distance. The equivalent radiated field strength at 3 meters for 25 μ W is 18.2mV/meter at 3m test distance (85.2dB μ V/m at 3m).

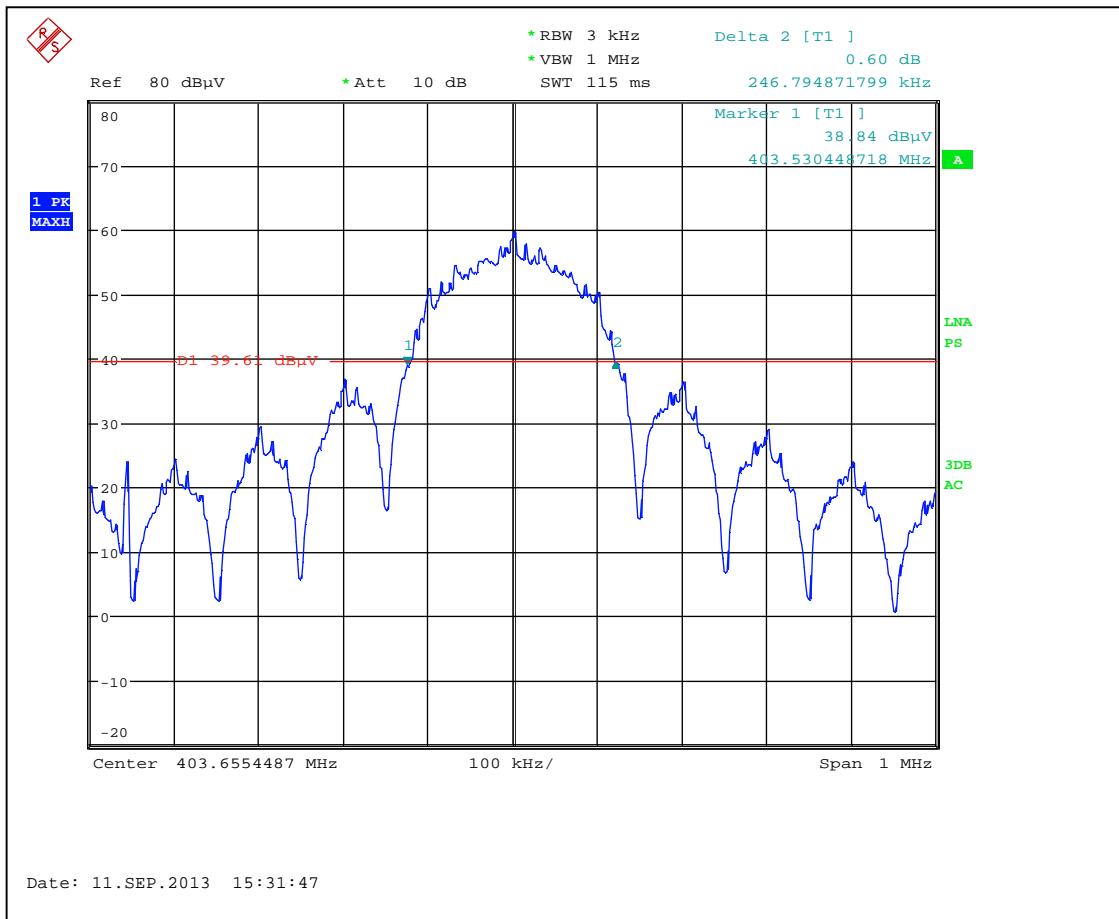
Date:	September 18, 2013	Result:	Pass
Standard:	FCC 95 Subpart I / RSS-243		
Tested by:	Uri Spector		
Test Point:	Enclosure with antenna		
Operation mode:	See Page 5		
Note:	None		

Table 3.1

Frequency MHz	Antenna		Ant. CF dB1/m	Cable loss dB	Pre-amp Gain (dB)	Reading dB μ V	Total @ 3m dB μ V/m	Limit dB μ V/m	Margin dB	Comments
	Polarity	Hts(cm)								
403.72	V	267	16.6	2.3	0.0	59.4	78.3	85.2	-6.9	EUT Ver
403.72	H	100	16.6	2.3	0.0	66.2	85.1	85.2	-0.1	EUT Ver

Comments: Measurements were taken using an Peak detector at RBW 300kHz, VBW 1MHz

3.2 Bandwidth of Emissions


Center Frequency of operation MHz	Measured 20dB bandwidth kHz	Maximum bandwidth allowed kHz
403.65	246.8	300

Graph 3.2.1 shows bandwidth of emissions

Notes: None

Graph 3.2.1

3.3 Radiated Spurious Emissions

Test location: OATS Anechoic Chamber

Test distance: 10 meters 3 meters

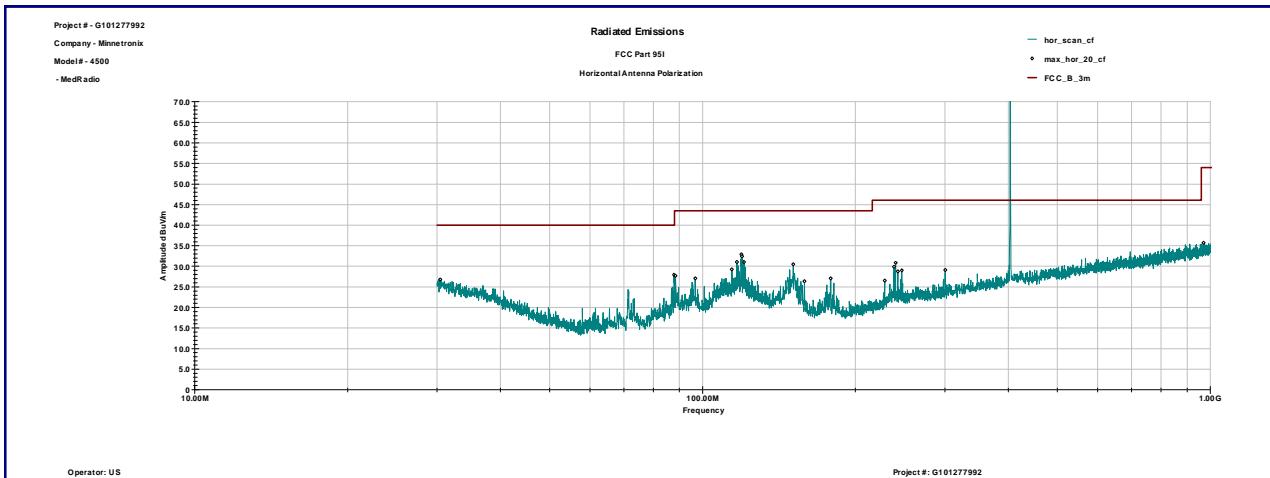
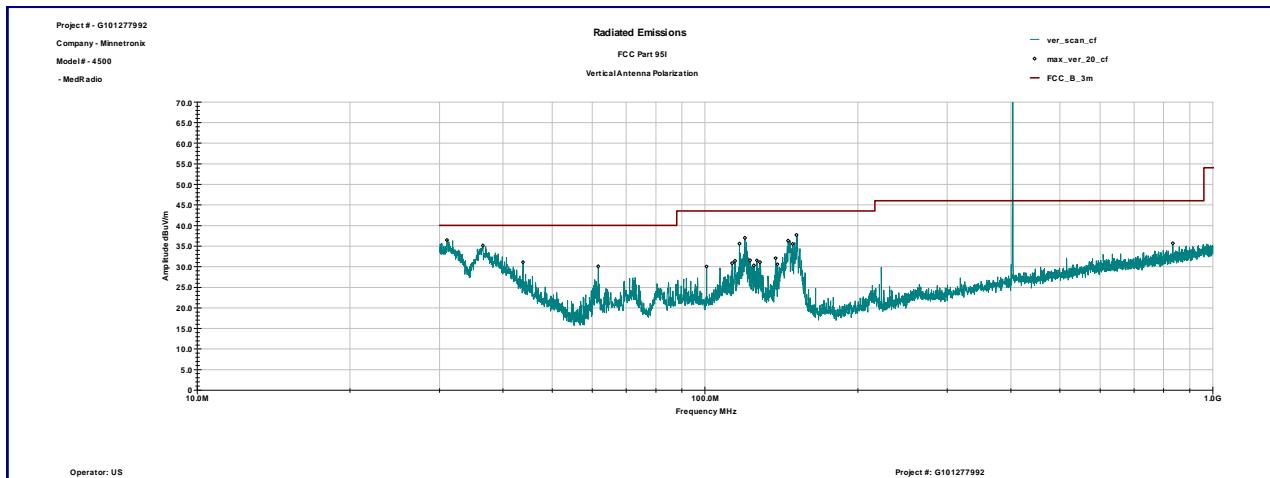
Test result: **Pass**

Frequency range: 30MHz-5000MHz

Max. Emissions margin: 3.5dB below the limits

Notes: The Radiated Spurious Emissions test was performed in the Anechoic chamber at 3m measurement distance (see Table 3.3.1 and Graphs 3.3.1. 3.3.2).

Date:	September 27, 2013	Result:	Pass
Standard:	FCC Part 95 Subpart I / RSS-243		
Tested by:	Uri Spector		
Test Point:	Enclosure with antenna		
Operation mode:	See Page 5		
Note:	The fundamental frequency was removed from the table. No radiated spurious emissions were detected above 1GHz (see Graph 3.3.2).		



Spurious emissions more than 250 kHz removed from the MedRadio band (402-405MHz) at 3 meters test distance must not exceed 40dB μ V/m in the range from 30-88 MHz, 43.5 from 88-216 MHz, 46dB μ V/m from 216-960 MHz and 54dB μ V/m above 960 MHz.

Emissions within 250kHz of the MedRadio band must be attenuated by at least 20dB below the maximum permitted output power, using an instrument resolution bandwidth approximately equal to 1% of the emissions bandwidth.

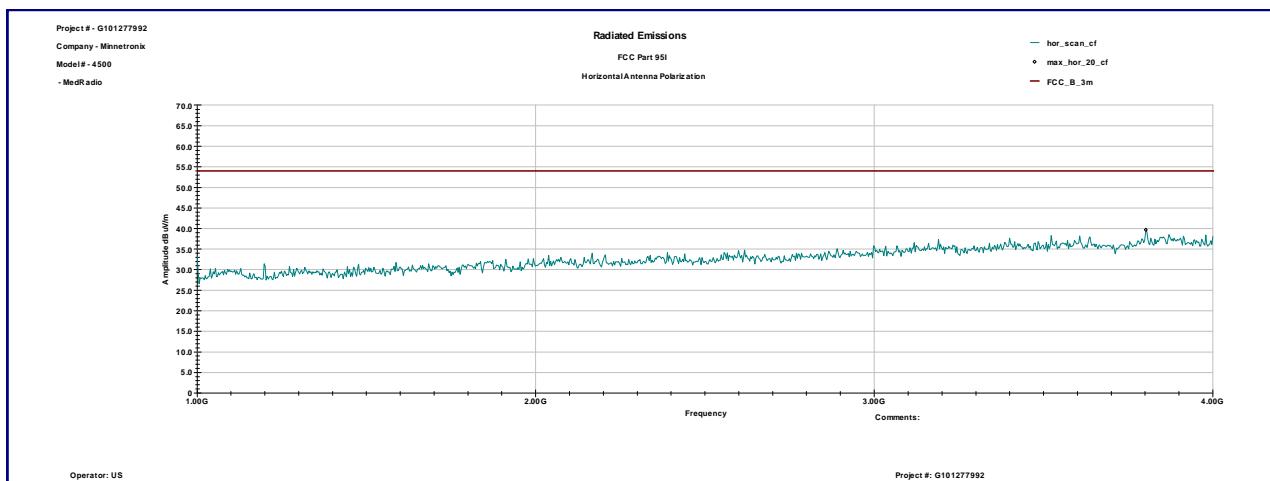
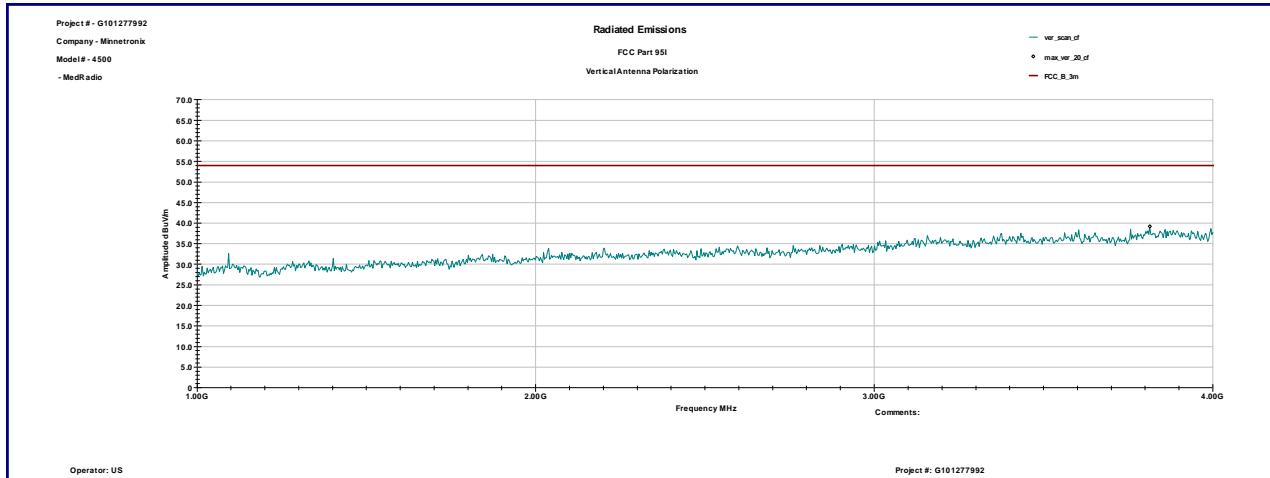
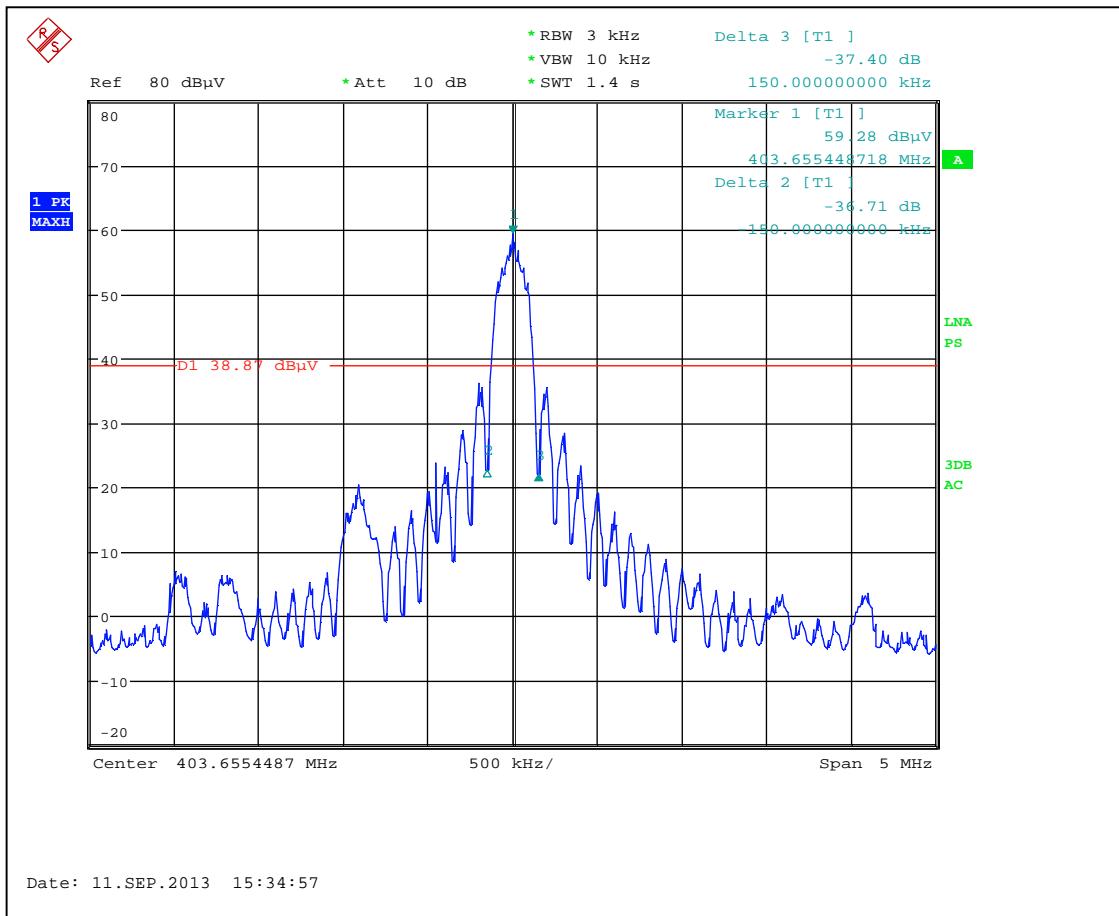
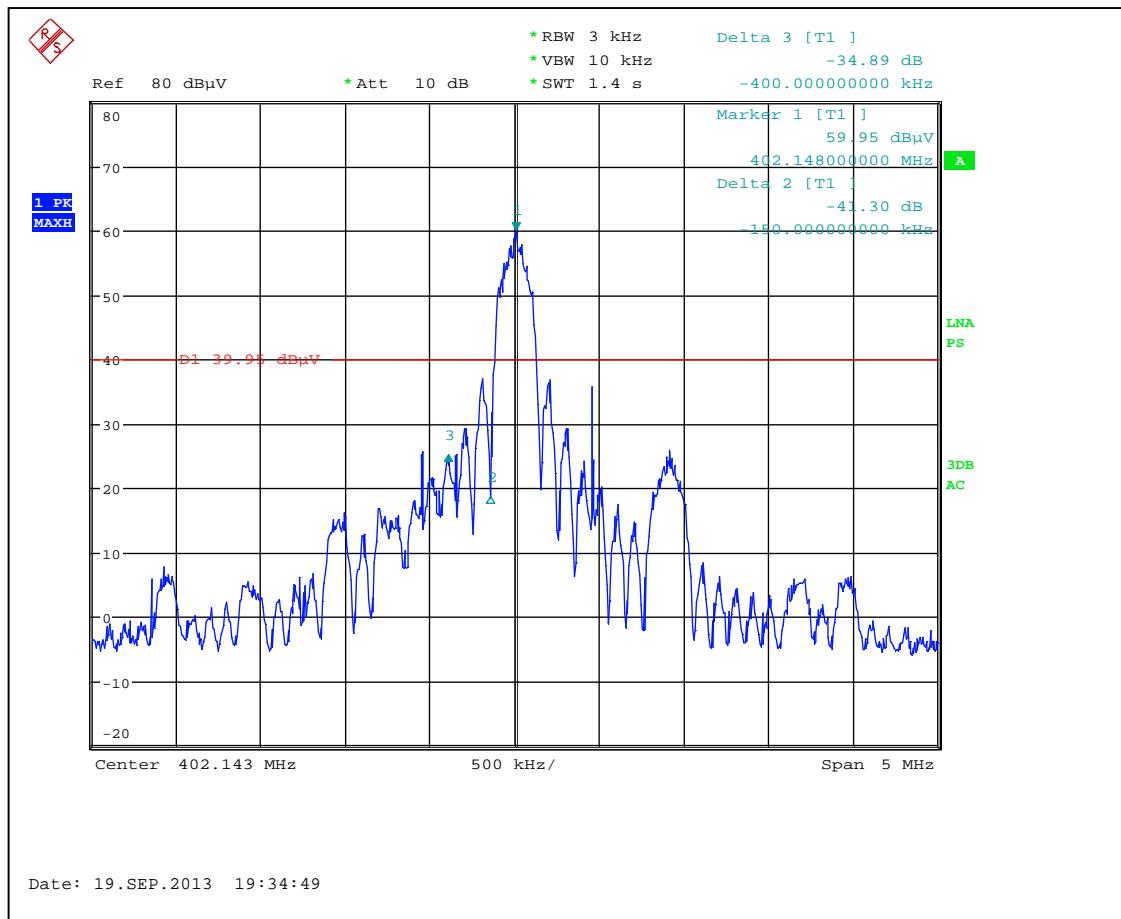
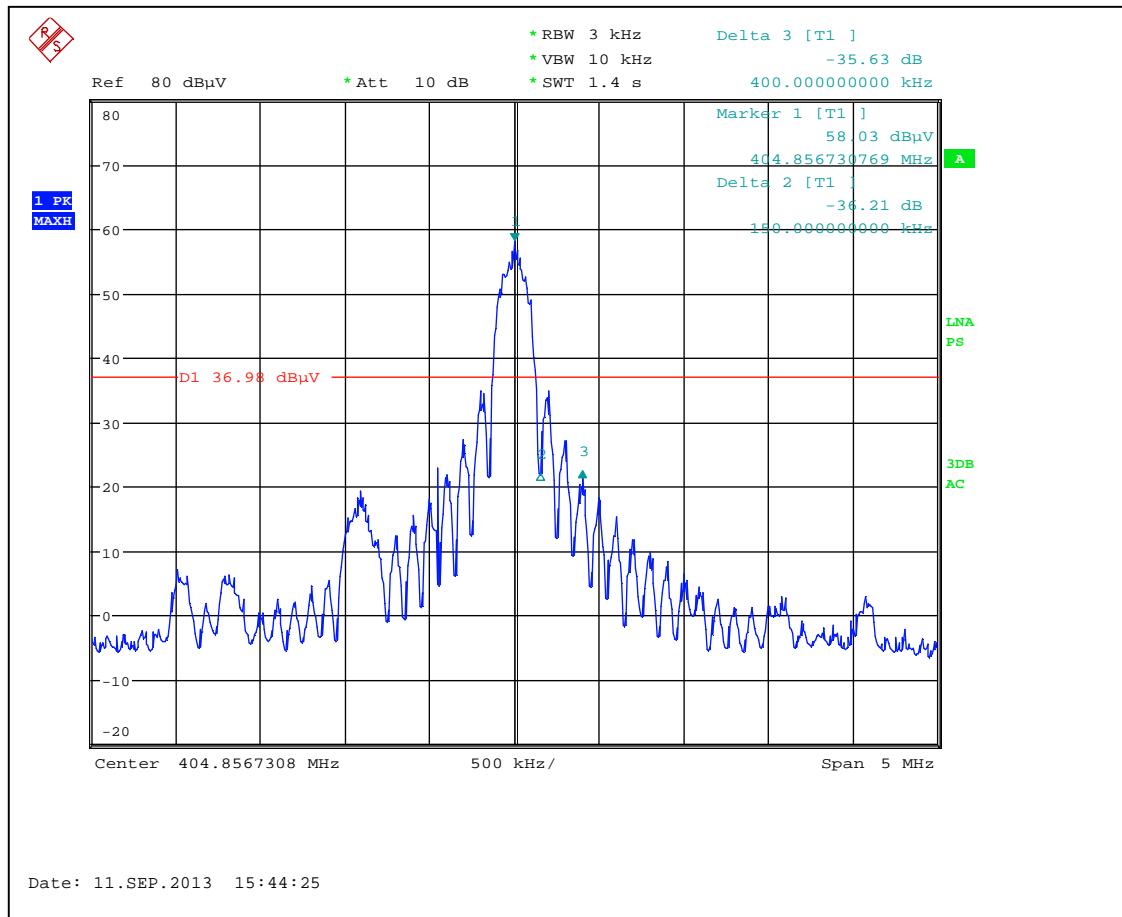


Emissions within the MedRadio band more than 150kHz away from the center frequency of the spectrum the transmission is intended to occupy, will be attenuated below the transmitter output power by at least 20dB, using an instrument resolution bandwidth approximately equal to 1% of the emissions bandwidth.

Table 3.3.1


Frequency	Ant. Polarity	Peak Reading dB μ V	Total C.F. dB1/m	Total at 3m dB μ V/m	Limit dB μ V/m	Margin dB
31.039 MHz	V	16.9	19.6	36.5	40.0	-3.5
36.546 MHz	V	18.6	16.5	35.1	40.0	-4.9
43.819 MHz	V	18.6	12.5	31.1	40.0	-9.0
61.62 MHz	V	23.1	7.0	30.1	40.0	-9.9
116.94 MHz	V	21.7	13.8	35.6	43.5	-8.0
119.85 MHz	V	23.0	13.9	37.0	43.5	-6.6
137.83 MHz	V	18.6	13.5	32.1	43.5	-11.5
145.84 MHz	V	23.4	12.9	36.3	43.5	-7.2
148.89 MHz	V	22.8	12.7	35.5	43.5	-8.0
151.46 MHz	V	25.2	12.5	37.7	43.5	-5.8
834.13 MHz	V	11.1	24.6	35.7	46.0	-10.3
30.416 MHz	H	6.8	20.0	26.8	40.0	-13.2
87.838 MHz	H	18.1	9.8	27.9	40.0	-12.1
116.86 MHz	H	17.3	13.8	31.1	43.5	-12.5
119.18 MHz	H	19.0	13.9	32.9	43.5	-10.6
119.55 MHz	H	18.5	13.9	32.4	43.5	-11.1
120.74 MHz	H	17.1	14.0	31.0	43.5	-12.5
240.04 MHz	H	17.0	13.9	30.9	46.0	-15.2
300.69 MHz	H	13.2	16.0	29.1	46.0	-16.9

Graph 3.3.1

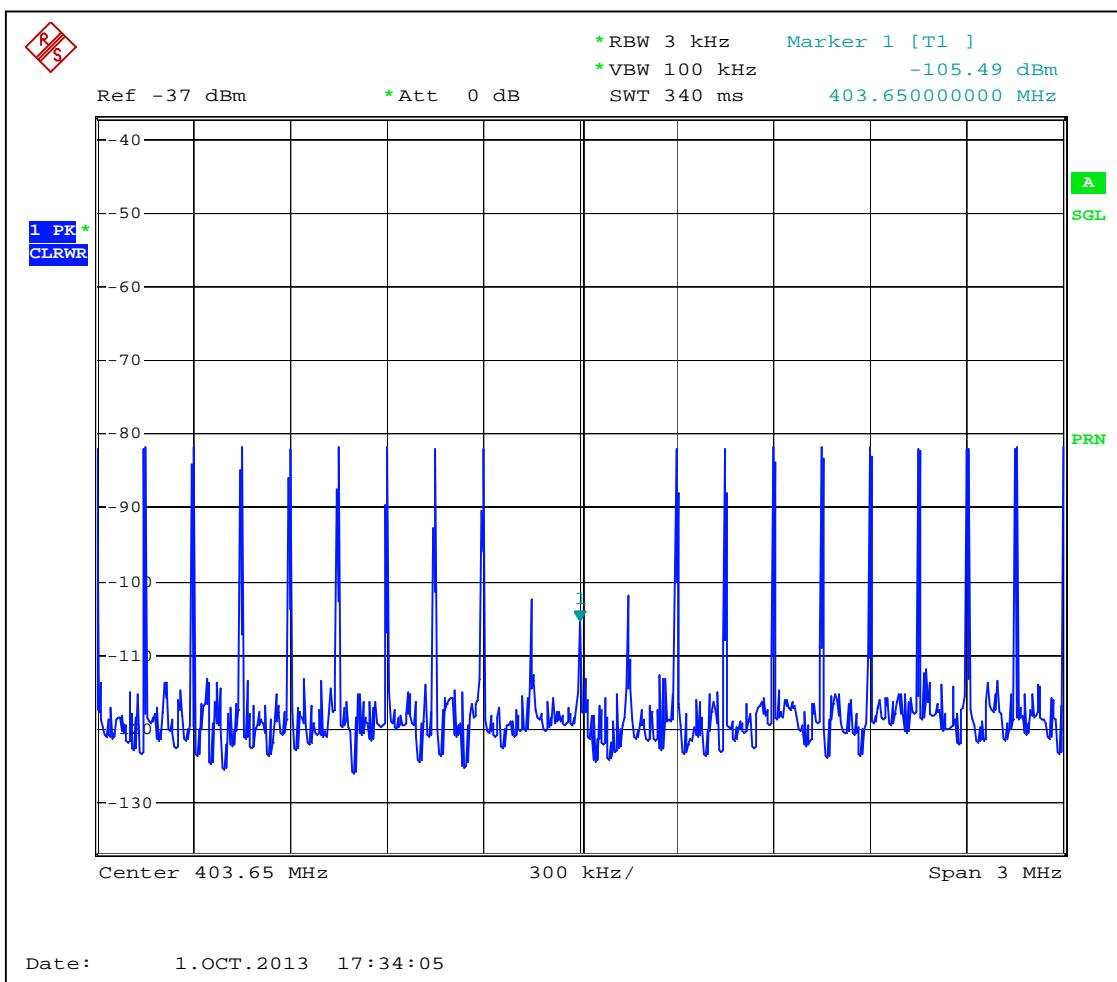

Graph 3.3.2


Graph 3.3.3
Emissions outside 150kHz offset from the intended frequency

Graph 3.3.4
Lower 250kHz band edge

Graph 3.3.5
Upper 250kHz band edge

3.4 Frequency Error**Table 3.4.1**


Temperature Degree C	Output Frequency MHz	Frequency Deviation kHz	Frequency Stability ppm	Frequency error limit ppm	Test Result
-20	403.6442	5.1	12.6	±100	Pass
0	403.6451	4.2	10.4	±100	Pass
15	403.6457	3.6	8.9	±100	Pass
25	403.6493	0.0	0.0	±100	Pass
35	403.6529	3.6	8.9	±100	Pass
55	403.6534	4.1	10.2	±100	Pass

3.5 MedRadio Operation

The MedRadio communication sessions must meet operating requirements for Threshold Power Levels, Monitoring System Bandwidth, Scan Cycle Time, Minimum Channel Monitoring Period, Channel Access, Discontinuation of a MedRadio Session, and Use of Pre-Scanned Alternate Channel.

For these tests, a blocking band was created using the vector signal generator. A notch was created in the blocking band by removing some of the tones, or by lowering the output power of some of the tones in relation to the other. A second signal generator was used to generate a tone on specific channel. Below is an example plot of the blocking band at the EUT, including a single notch in the center.

Graph 3.5.1

System Threshold Power Levels

The monitoring threshold power level shall not be greater than the calculated level given by the equation, $10\log B(\text{Hz}) - 150(\text{dBm}/\text{Hz}) + G(\text{dBi})$, where B is the emissions bandwidth of the MedRadio communication session transmitter having the widest emissions bandwidth and G is the antenna gain of the medical implant programmer transmitter monitoring system.

Calculated Threshold Power: $10 \log(255.4\text{kHz}) - 150 + (-9.1) = -105.2\text{dBm}$

The blocking band was set to -102.2dBm (3dB above the calculated threshold level), with a notch left open at 403.65MHz . A tone was introduced at the center of the notch at -111.2dBm , and was stepped up to the threshold level, -105.2dBm . At each step, MedRadio communications session was initiated and the selected channel was observed.

Measured Threshold Power: -109.2dBm

Monitoring System Bandwidth

The monitoring system bandwidth measured at its 20dB down points shall be equal to, or greater than the emissions bandwidth of the intended transmission.

The blocking band was set to -102.2dBm (3dB above the calculated threshold level), with a notch left open at 403.65MHz . A tone was introduced at the frequencies corresponding to the 20dB down points of the fundamental emission, and was increased until the EUT no longer transmitted on the central frequency. At each step, a MedRadio communication session was initiated and the selected channel was observed. The difference between the values at which the EUT detects the center channel emission and the channel edge emissions should be less than 20dB in order for the monitoring system bandwidth to be wider than the emission bandwidth.

$f_{low} = 403.526\text{MHz}$

$f_{high} = 403.773\text{MHz}$

$P_a = -105.2\text{dBm}$

$P_b = -97.2\text{dBm}$

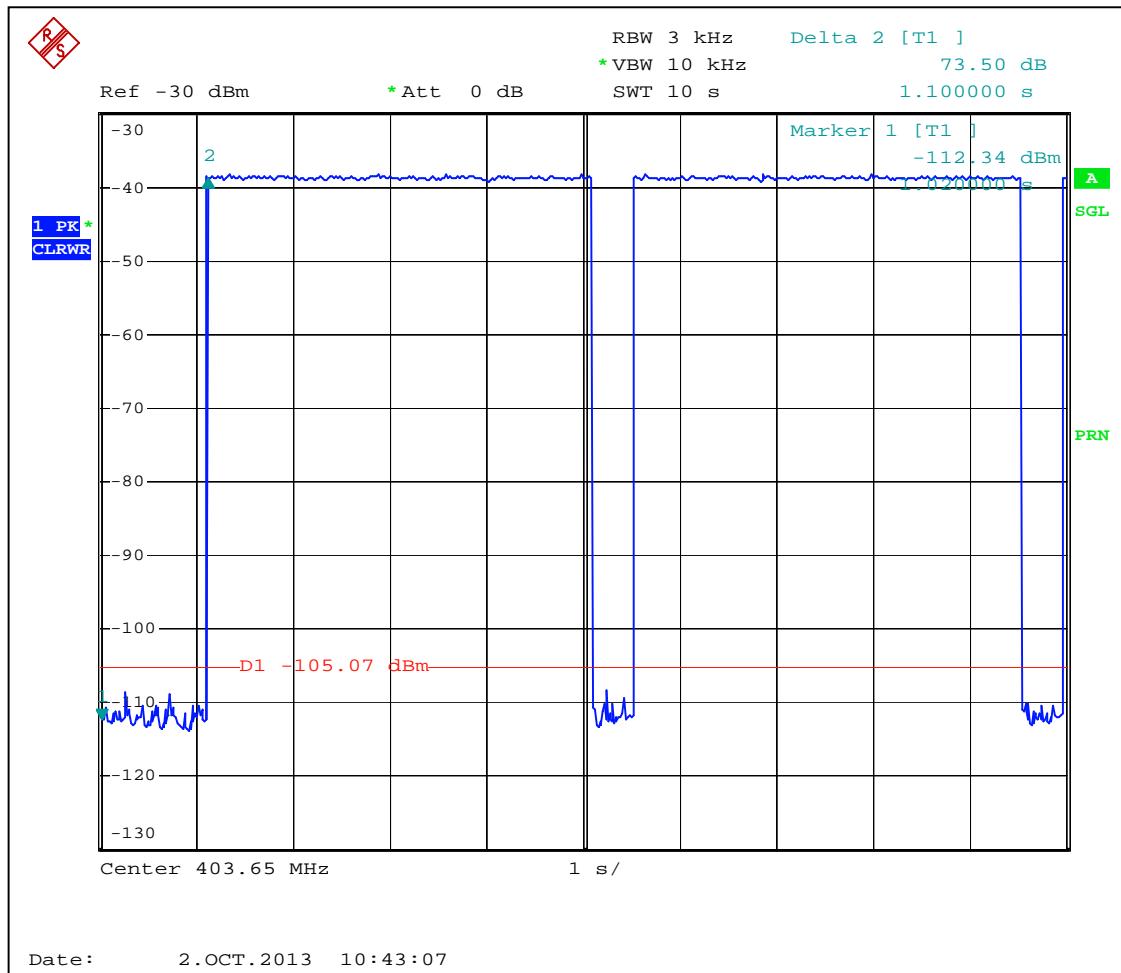
$P_c = -97.2\text{dBm}$

$D_1 = P_a - P_b = -105.2 - (-97.2) = -8.0\text{dB}$

$D_2 = P_a - P_c = -105.2 - (-97.2) = -8.0\text{dB}$

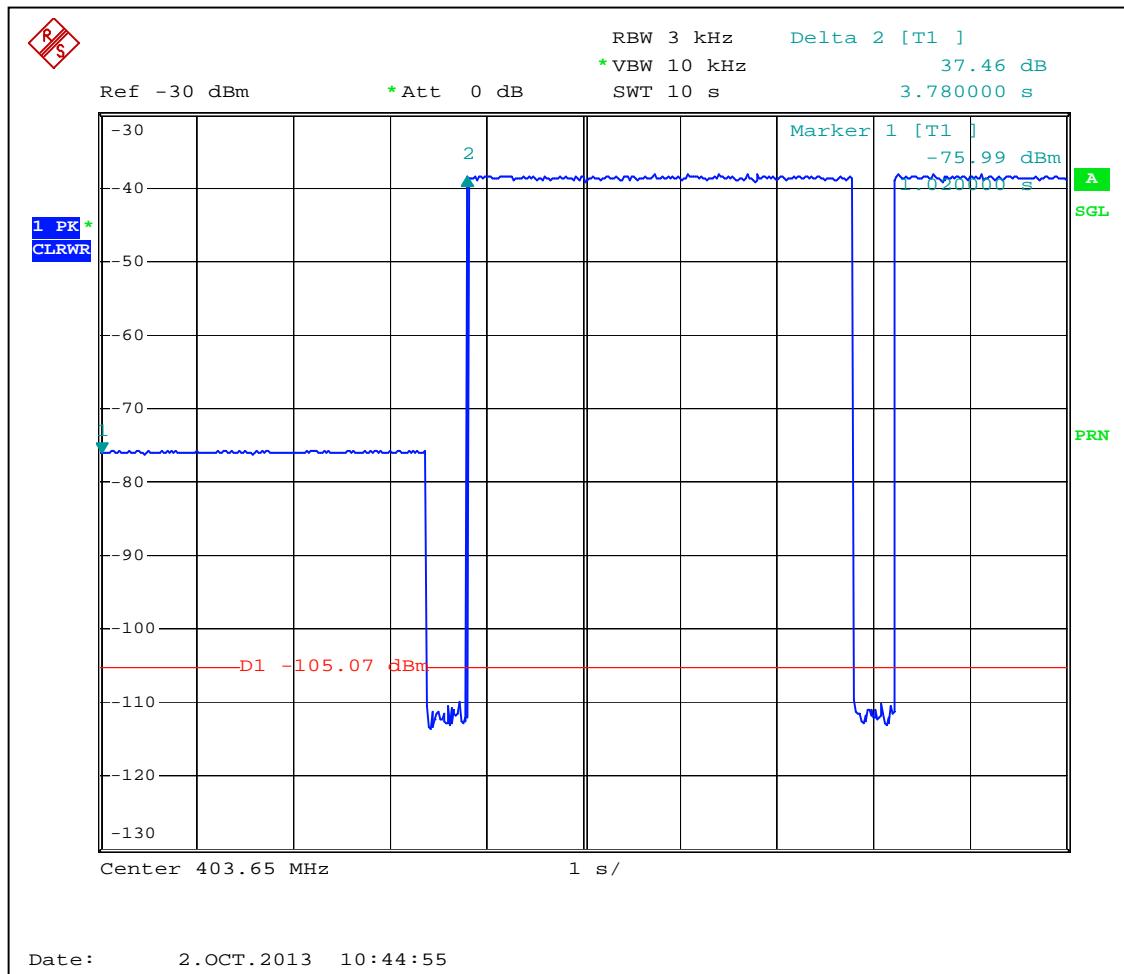
D_1 and D_2 are both less than 20dB

Test result: Pass

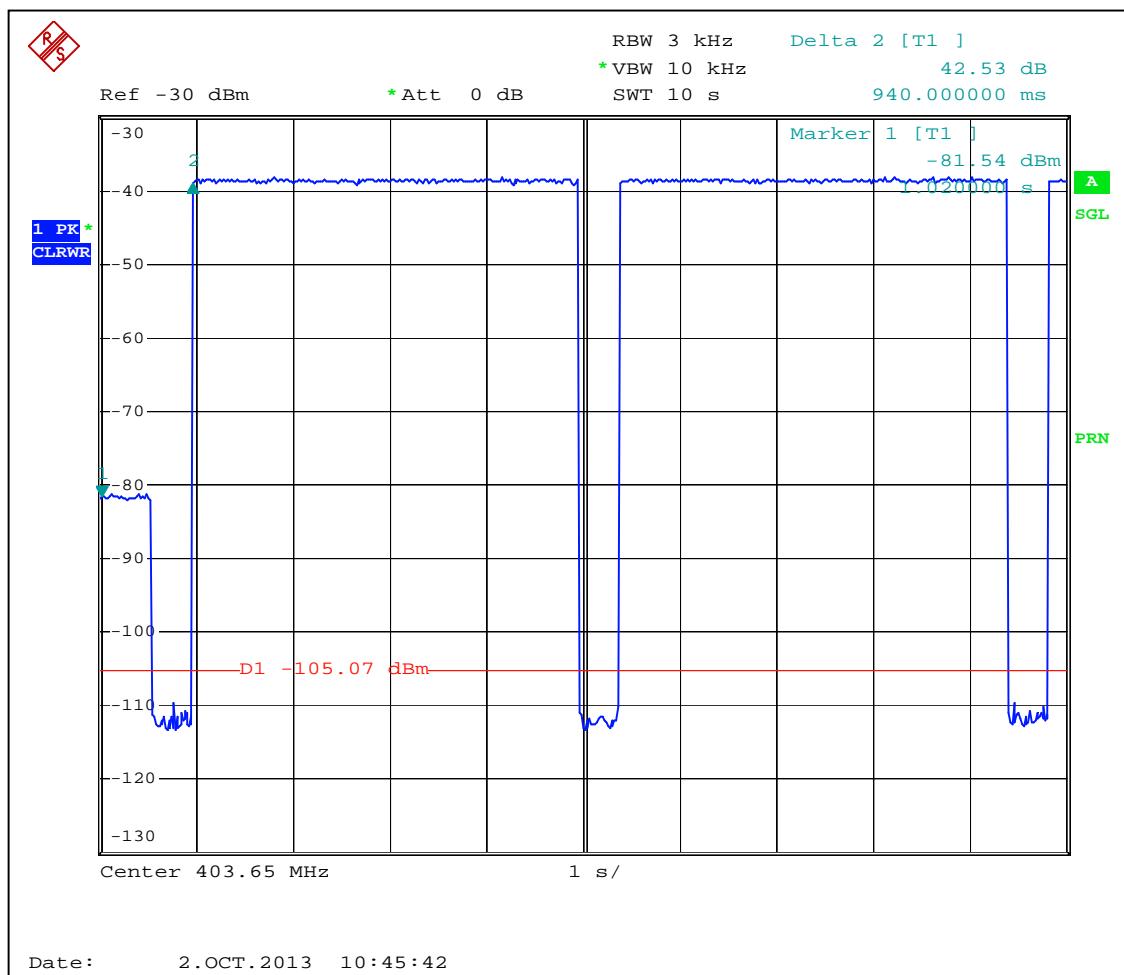

Scan Cycle Time

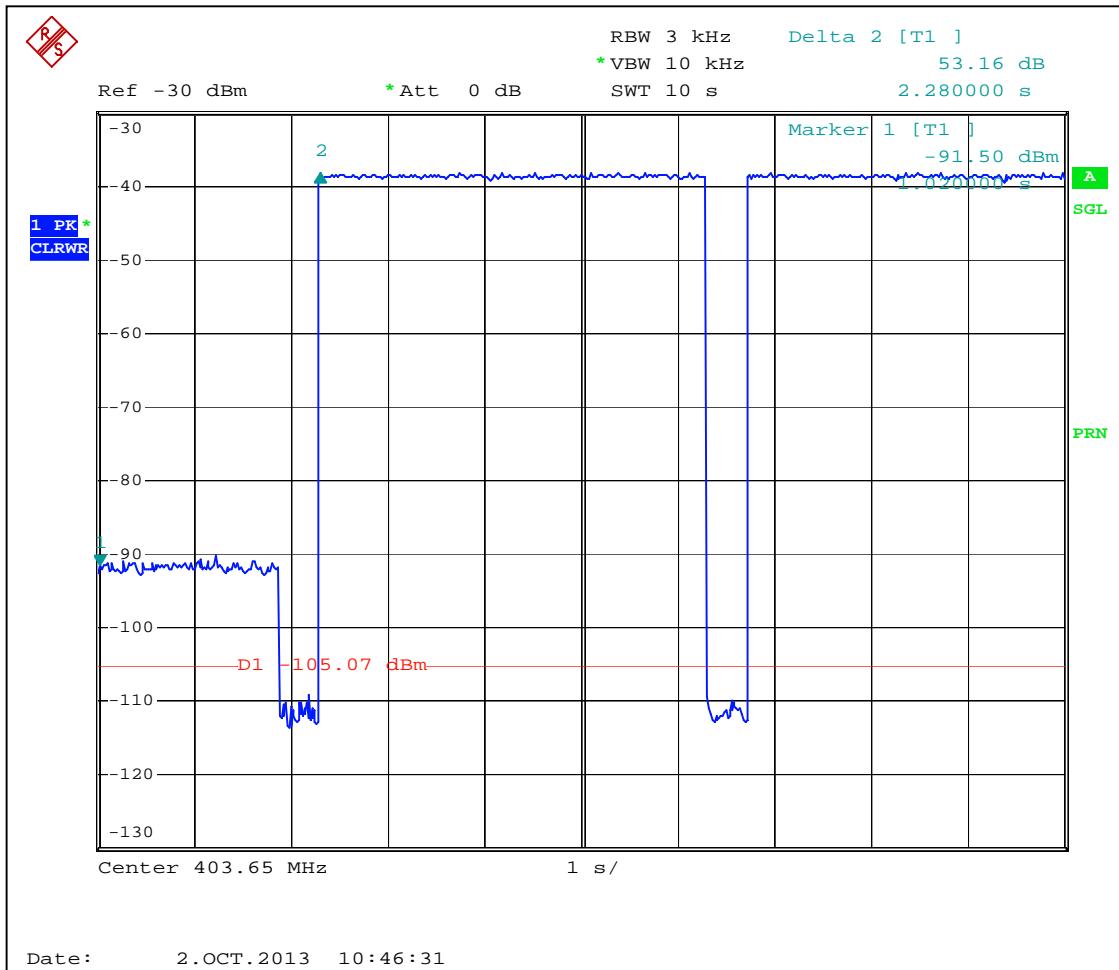
Within 5 seconds prior to initiating a communications session, circuitry associated with a medical implant programmer transmitter shall monitor all the channels in the 402-405MHz frequency band.

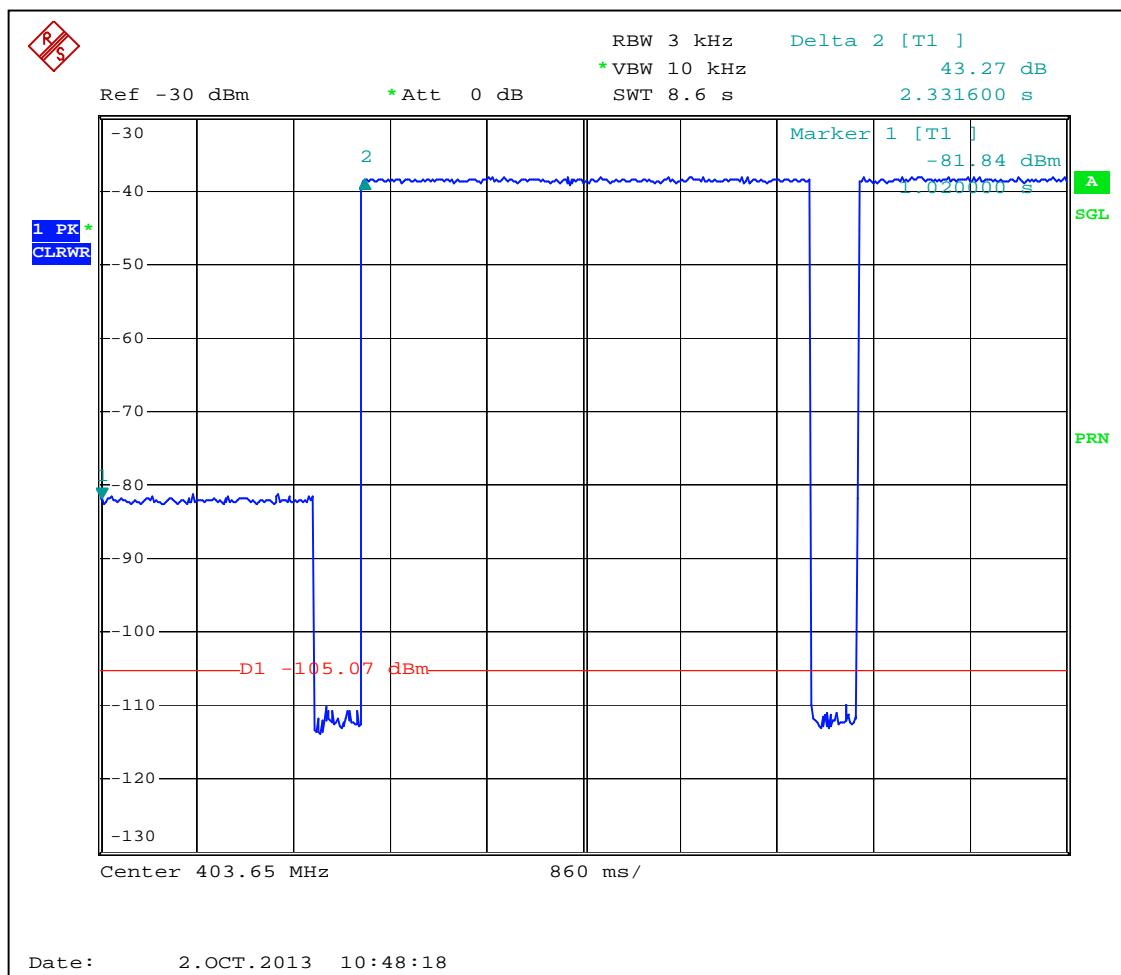
The blocking band was set to -102.2dBm (3dB above the calculated threshold level), with a notch left open at 403.65MHz. A tone was introduced at the center of the notch at -99.2dBm. The tone was removed and a MedRadio communications session was initiated. The time elapsed between removal of the CW tone and the start of the MedRadio session was recorded. The highest value was: **3.78sec**


Test result: Pass

Graph 3.5.2 Scan Cycle Time 1 (1.1sec)




Graph 3.5.3 Scan Cycle Time 2 (3.78sec)


Graph 3.5.4 Scan Cycle Time 3 (940msec)

Graph 3.5.5 Scan Cycle Time 4 (2.28sec)

Graph 3.5.6 Scan Cycle Time 5 (2.33sec)

Minimum Channel Monitoring Period

Each MedRadio channel shall be monitored for a minimum of 10 milliseconds during each scan cycle of 5 seconds or less.

The level of the out-of-operating-region disturbance was increased sufficiently high to prevent operation under any circumstances on a channel other than f_c as specified by the manufacturer. It was verified that the EUT transmits on f_c . The CW signal at frequency f_c was introduced at a level equal to the out-of-operating-region disturbance level. Then the out-of-operating-region disturbance was temporarily removed and the process was initiated and it was verified that the communications do not occur on f_c . The out-of-operating-region disturbance was reinserted at a level 3 dB above the level used before. It was verified that the EUT never communicates outside the EUT operating region at f_c after reinitiating communication.

The out of operating region disturbance signal was modulated with 0.1 ms pulse whose repetition frequency was adjusted to 100Hz corresponding to a silent period between pulses of 9.9 ms. This condition was monitored for several times, at least 10 attempts, and it was verified that the EUT did not select a channel in the blocking band over several attempts.

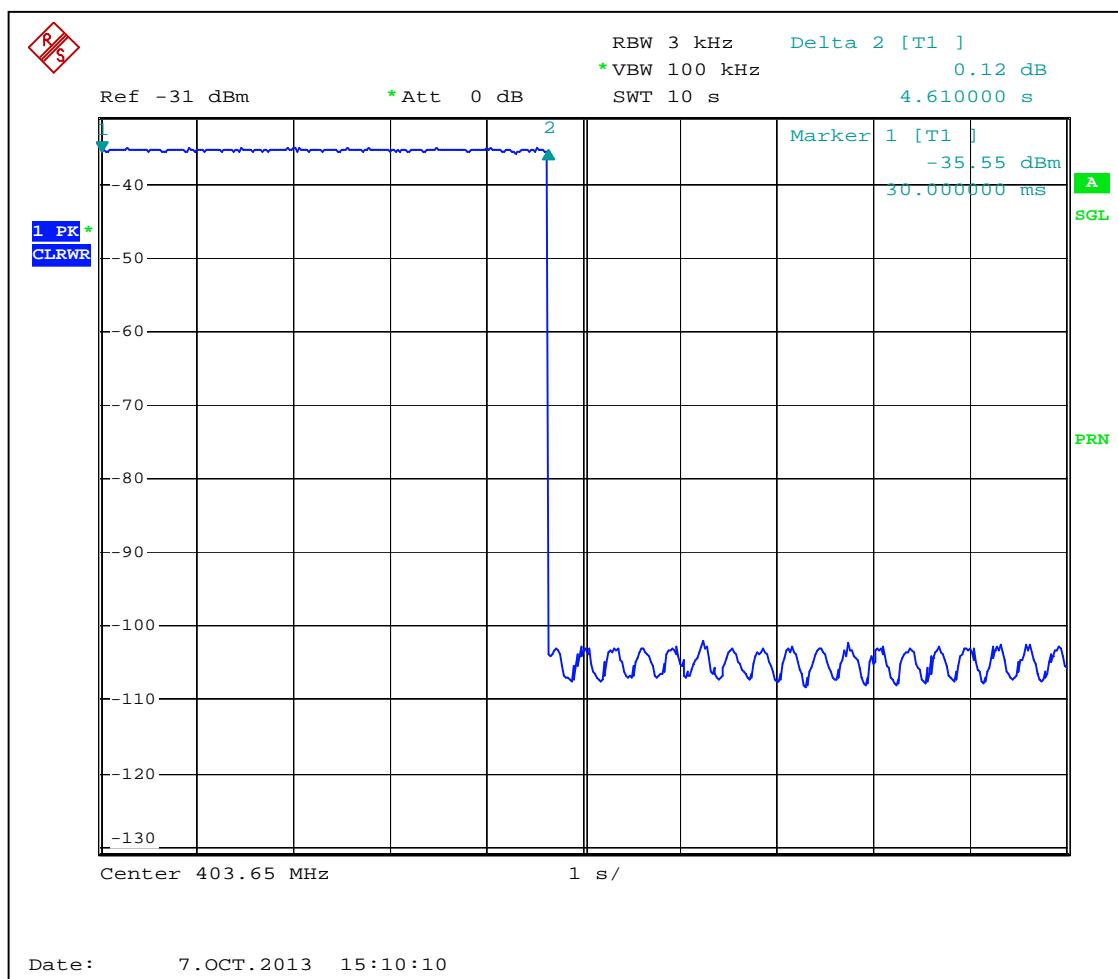
Test result: Pass

Channel Access

Immediate access is permitted on any channel having an ambient power level that is below the maximum threshold. If no channel having an ambient power below the maximum threshold is available, the equipment under test shall access and transmit on the least interfered channel.

The blocking band was set to -95.2dBm (10dB above the calculated threshold level), with a notch left open at 403.65MHz. A second notch was created at out-of operating-region by lowering the blocking tones by 7dB. A CW tone was introduced at the center of the channel at -108.2dB (3dB below the calculated threshold). A MedRadio communication session was then initiated and it was verified that the EUT transmitted only on the center frequency through several attempts. The CW tone at center frequency was then increased by 9dB to -99.2dBm, and it was verified that the EUT transmitted on the center frequency of the LIC channel over 10+ attempts.

Test result: Pass


Discontinuation of a MedRadio session

MedRadio shall cease transmission in the event the communication session is interrupted for a period of 5 seconds or more.

A MedRadio communication session was initiated, and the MedRadio implant was caused to cease transmission during the session. The time from when the implant ceased transmission until the programmer ceased communication was 4.61 seconds, as shown in the plot below. Communication was set on channel 5 (403.65MHz). Power was turned off block the implant transmission.

Test result: Pass

Graph 3.5.7

Use of the Pre-scanned Alternate Channel

Pre-scanned alternate channel operation is not implemented

3.6 Receiver/digital device radiated emissions

Test location: OATS Anechoic Chamber

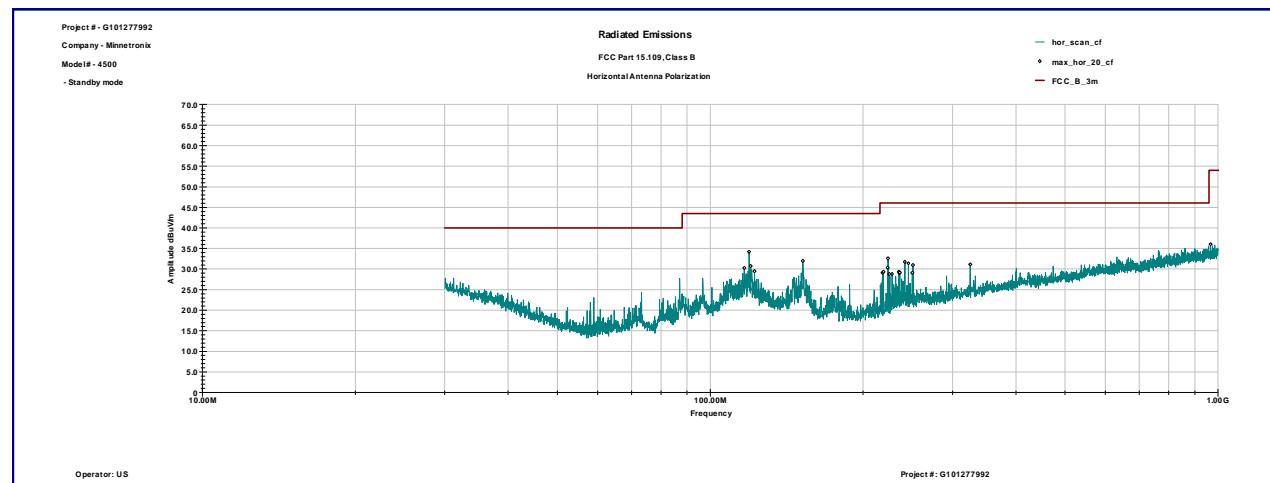
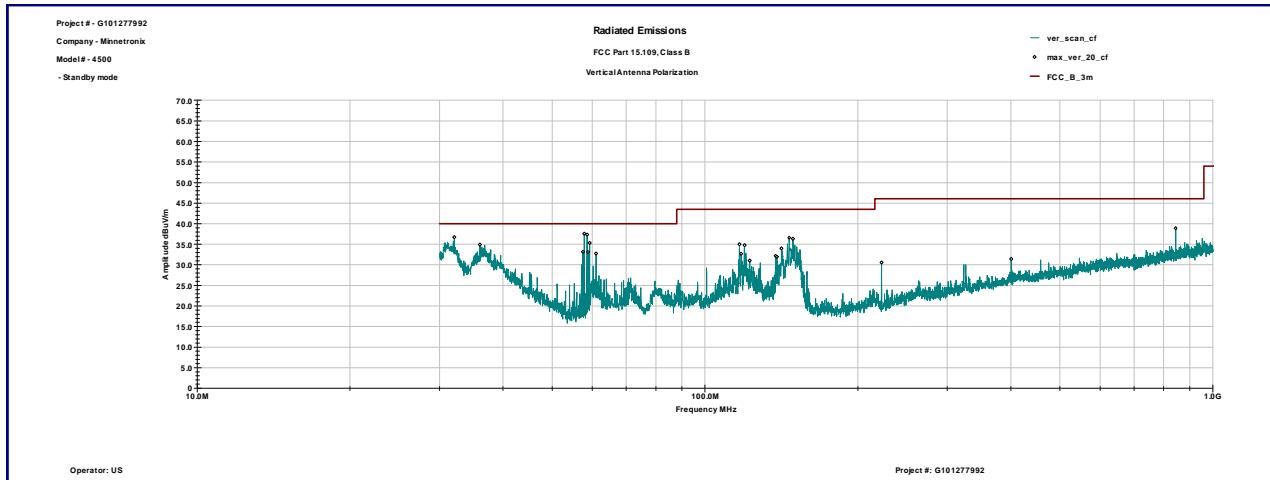
Test distance: 10 meters 3 meters

Test result: **Pass**

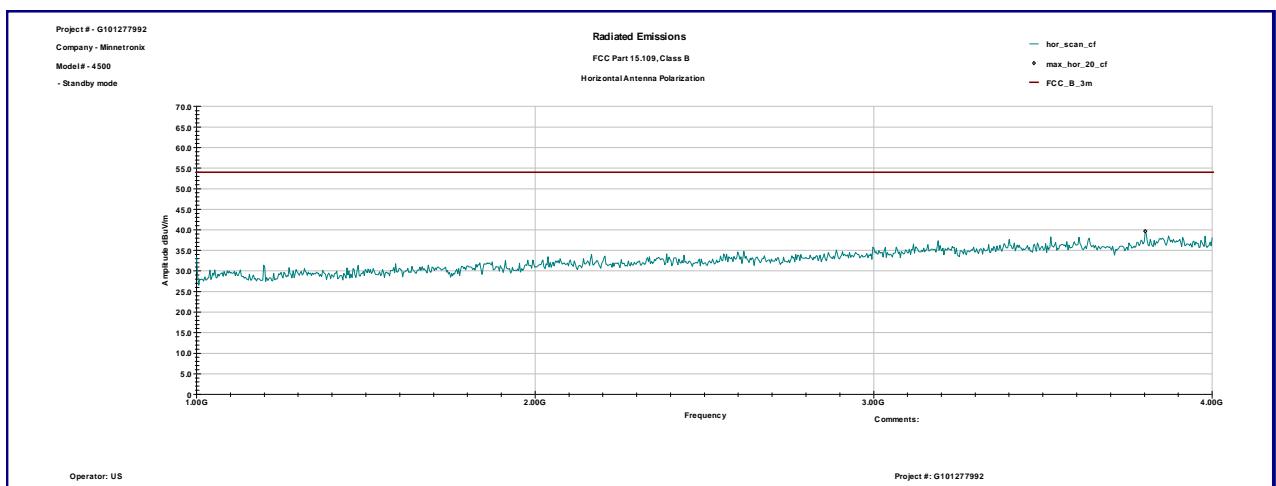
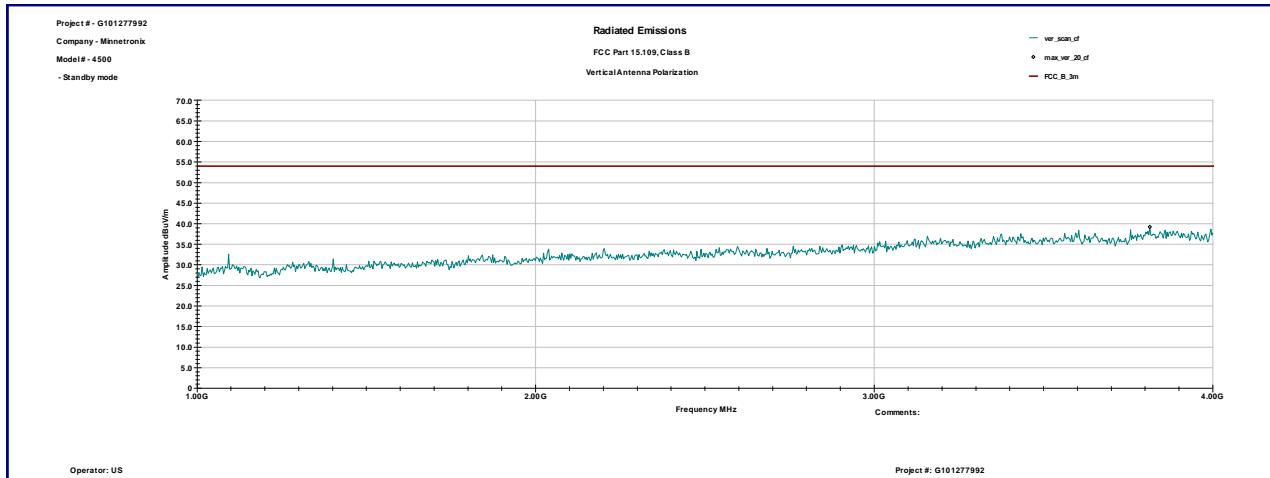
Frequency range: 30MHz-5000MHz

Max. Emissions margin: 2.4dB below the limits

Notes: The Radiated Emissions test was performed in the Anechoic chamber at 3m measurement distance (see Tables 3.6.1 and Graphs 3.6.1 to 3.6.2).

Date:	September 27, 2013	Result:	Pass
Standard:	FCC Part 15.109, Class B		
Tested by:	Uri Spector		
Test Point:	Enclosure		
Operation mode:	Standby/Receiving mode		
Note:	No radiated spurious emissions were detected above 1GHz (see Graph 3.6.2).		



Table 3.6.1

Frequency	Ant. Polarity	Peak Reading dB μ V	Total C.F. dB1/m	Total at 3m dB μ V/m	Limit dB μ V/m	Margin dB
32.113 MHz	V	17.8	18.9	36.7	40.0	-3.3
36.026 MHz	V	18.2	16.8	35.0	40.0	-5.0
57.845 MHz	V	30.1	7.5	37.6	40.0	-2.4
58.607 MHz	V	30.0	7.3	37.4	40.0	-2.6
119.62 MHz	V	20.9	13.9	34.8	43.5	-8.7
141.5 MHz	V	20.8	13.2	34.0	43.5	-9.5
146.48 MHz	V	23.8	12.8	36.6	43.5	-6.9
149.05 MHz	V	23.7	12.7	36.4	43.5	-7.2
400.78 MHz	V	12.5	18.9	31.4	46.0	-14.6
844.74 MHz	V	14.2	24.8	38.9	46.0	-7.1
119.25 MHz	H	20.3	13.9	34.2	43.5	-9.3
152.27 MHz	H	19.5	12.5	32.0	43.5	-11.6
223.96 MHz	H	20.2	12.4	32.6	46.0	-13.5
241.65 MHz	H	17.7	14.0	31.7	46.0	-14.3
245.5 MHz	H	17.0	14.3	31.4	46.0	-14.6
324.94 MHz	H	14.5	16.6	31.2	46.0	-14.9

Graph 3.6.1

Graph 3.6.2

3.7 Digital device conducted emissions

Test location: OATS Anechoic Chamber Other

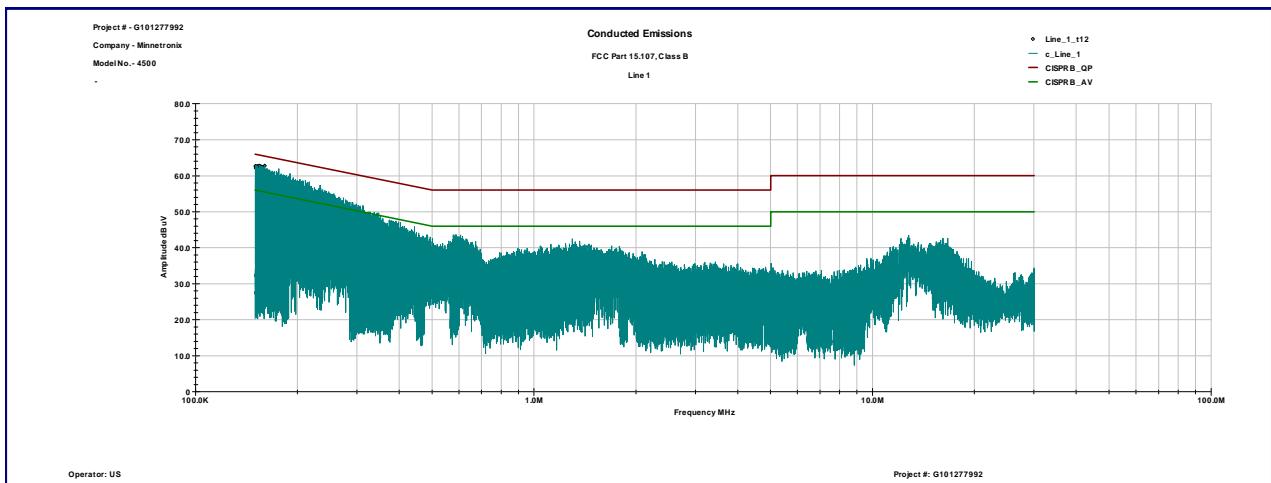
Test result: **Pass**

Frequency range: 0.15MHz-30MHz

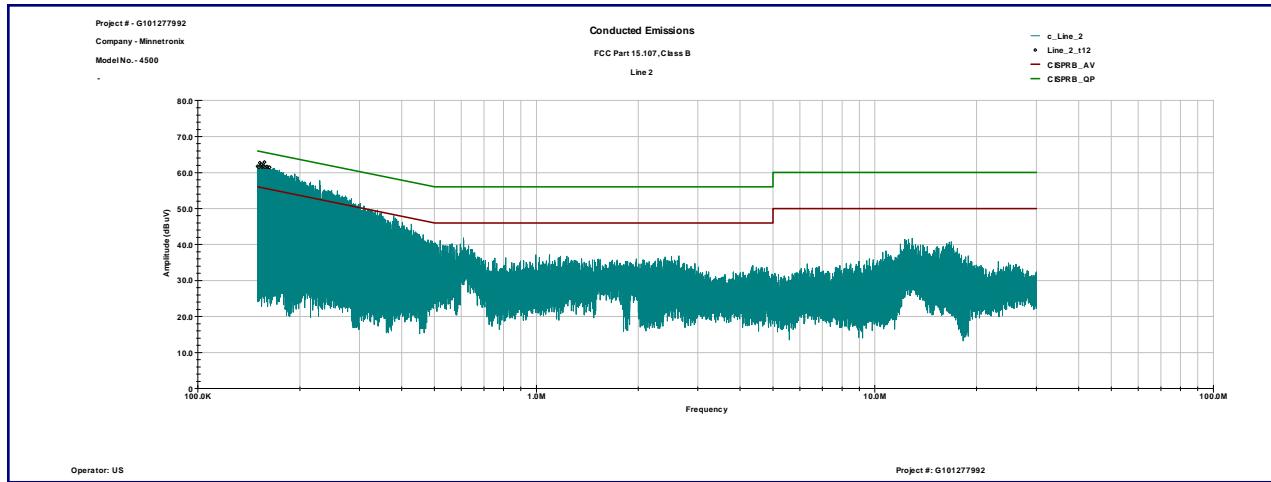
Max. Emissions margin: 11.1dB below the limits

Notes: None

Date:	September 16, 2013	Result:	Pass
Standard:	FCC 15.107, Class B		
Tested by:	Uri Spector		
Test Point:	Power Line		
Operation mode:	Receiving mode		
Note:	None		


Table 3.7.1

Line 1


Frequency MHz	QP dB μ V	AVG dB μ V	Cable Loss dB	QP Lim dB μ V	AVG Lim dB μ V	QP Margin dB	AVG Margin dB
0.156	54.5	28.1	0.1	65.7	55.7	-11.1	-27.5
0.176	50.9	26.9	0.1	64.7	54.7	-13.7	-27.7
0.233	46.9	24.8	0.1	62.3	52.3	-15.3	-27.4
0.298	41.7	21.7	0.1	60.3	50.3	-18.5	-28.5
0.443	33.5	19.2	0.1	57.0	47.0	-23.4	-27.7
0.606	38.8	27.1	0.2	56.0	46.0	-17.0	-18.7

Line 2

Frequency MHz	QP dB μ V	AVG dB μ V	Cable Loss dB	QP Lim dB μ V	AVG Lim dB μ V	QP Margin dB	AVG Margin dB
0.151	54.8	27.2	0.1	65.9	55.9	-11.1	-28.7
0.163	52.8	26.8	0.1	65.3	55.3	-12.4	-28.4
0.193	50.1	24.9	0.1	63.9	53.9	-13.7	-28.9
0.258	44.0	21.6	0.1	61.5	51.5	-17.4	-29.8
12.553	33.9	23.5	0.8	60.0	50.0	-25.3	-25.7
16.813	32.6	19.3	1.0	60.0	50.0	-26.4	-29.7

Graph 3.7.1

Graph 3.7.2

4.0 TEST EQUIPMENT

DESCRIPTION	MANUFACTURER	MODEL	SERIAL NO.	INTERTEK ID	CAL DUE	USED
Spectrum Analyzer	R & S	ESU	100398	25283	12/19/2013	<input checked="" type="checkbox"/>
Spectrum Analyzer	R & S	FSP 40	100024	12559	11/29/2013	<input checked="" type="checkbox"/>
Bicono-Log Antenna	Schaffner-Teseq	CBL6112B	2468	9734	11/30/2013	<input checked="" type="checkbox"/>
Horn Antenna	EMCO	3115	6579	15580	07/18/2014	<input checked="" type="checkbox"/>
LISN	Fischer Custom Communications	FCC-LISN-50-25-2	2014	9665	04/23/2014	<input checked="" type="checkbox"/>
System	Quantum Change	TILE! Instrument Control	Ver. 3.4.K.29	15259	VBU	<input checked="" type="checkbox"/>
Pre-Amplifier	MITEQ	AMF-5D-00501800-28-13P	1122951	13475	11/01/2013	<input checked="" type="checkbox"/>
Environmental Chamber	ESPEC	ESX-4CA	0111386	24300	04/11/2014	<input checked="" type="checkbox"/>
Power Splitter	Mini-Circuits	ZSC-2-4	F221200749		VBU	<input checked="" type="checkbox"/>
Signal Generator	R & S	SMR20	101469	25233	11/12/2013	<input checked="" type="checkbox"/>
Signal Generator	HP	E4433B ESG-D series	US38440484	Rented	09/24/2014	<input checked="" type="checkbox"/>