

TEST REPORT

Report Number: 101277992MIN-005B
Project Number: G101277992

**Testing performed on the
Model 4100, Pocket Programmer**

to
ETSI EN 301 839-1 v1.3.1 (2009-10)
ETSI EN 301 839-2 v1.3.1 (2009-10)
ETSI EN 301 489-27 v1.1.1 (2004-06)

Minnetronix

Test Performed by:
Intertek Testing Services NA, Inc.
7250 Hudson Blvd., Suite 100
Oakdale, MN 55128 USA

Test Authorized by:
Minnetronix
1635 Energy Park Drive
St. Paul, MN 55108 USA

Prepared by: U. Spector
Uri Spector

Date: November 26, 2013

Reviewed by: S. Khazon
Simon Khazon

Date: November 26, 2013

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TABLE OF CONTENTS

1.0	GENERAL DESCRIPTION.....	3
2.0	TEST SUMMARY.....	4
2.1	Statement of the measurement uncertainty.....	5
3.0	EQUIPMENT UNDER TEST.....	6
3.1	Power configuration	6
3.2	Antenna configuration.....	6
3.3	EUT Configuration	7
3.4	Environmental conditions.....	7
4.0	TEST CONDITIONS AND RESULTS.....	8
4.1	Effective Radiated Power at Fundamental	8
4.2	Bandwidth of Emissions.....	12
4.3	Radiated Spurious Emissions.....	14
4.4	Frequency Error	20
4.5	MICS Operation	21
4.6	Receiver spurious emissions	32
4.6.1	<i>Enclosure radiated spurious emissions.....</i>	32
4.7	Radiated Emissions of ancillary equipment enclosure	37
4.8	Conducted Emissions at AC port, DC port, and Telecommunication port	41
4.9	Harmonic Current Emissions	45
4.10	Voltage Fluctuations and Flicker.....	48
4.11	Radiated, Radio-frequency, Electromagnetic Field	50
4.12	Electrostatic Discharge	52
4.13	Electrical Fast Transients / Burst	54
4.14	RF common mode (Conducted Disturbances)	56
4.15	Voltage Dips and Voltage Interruptions	58
4.16	Surges Immunity	59
5.0	TEST EQUIPMENT.....	61

1.0 GENERAL DESCRIPTION

Model:	4100
Type of EUT:	Pocket Programmer, MICS Radio
Serial Number:	DBR 1616
Company:	Minnetronix
Customer:	Sue Sibilski
Address:	1635 Energy Park Drive St. Paul, MN 55108
Phone:	(651) 917-4060
Fax:	(651) 917-4066
e-mail:	ssibilski@minnetronix.com
Test Standards:	<input checked="" type="checkbox"/> EN 301 839-1 v1.3.1 (2009-10) <input checked="" type="checkbox"/> EN 301 839-2 v1.3.1 (2009-10) <input type="checkbox"/> EN 300 330-2 V1.3.1 (2006-04) <input type="checkbox"/> EN 300 440-2 V1.3.1 (2009-03) <input type="checkbox"/> EN 301 489-1 V1.8.1 (2008-04) <input type="checkbox"/> EN 301 489-3 V1.4.1 (2002-08) <input checked="" type="checkbox"/> EN 301 489-27 V1.1.1 (2006-04) <input type="checkbox"/>
Operating Frequency Range(s):	Range: from 402-405 MHz
Power Level Setting:	52
Modulation:	<input type="checkbox"/> FHSS <input checked="" type="checkbox"/> Digital <input type="checkbox"/> Other
Type of radio:	<input checked="" type="checkbox"/> Stand -alone <input type="checkbox"/> Module <input type="checkbox"/> Hybrid
Date Sample Submitted:	August 16, 2013
Test Work Started:	August 19, 2013
Test Work Completed:	November 26, 2013
Test Sample Conditions:	<input type="checkbox"/> Damaged <input type="checkbox"/> Poor (Usable) <input checked="" type="checkbox"/> Good

2.0 TEST SUMMARY

Referring to the performance criteria and the operating mode during the tests specified in this report, the equipment complies with the requirements according to the following standards.

TEST SPECIFICATION	TEST PARAMETERS	RESULT
8.3	Effective Radiated Power at Fundamental	Pass
8.2	Bandwidth of the emission	Pass
8.4	Radiated Spurious Emissions	Pass
9.1	Receiver Spurious Emissions	Pass
8.1	Frequency Error	Pass
10	The MICS Communication Sessions (Threshold Power Levels, Monitoring System Bandwidth, Scan Cycle Time, Minimum Channel Monitoring Period, Channel Access, Discontinuation of a MICS Session, and Use of Pre-Scanned Alternate Channel)	Pass
8.2	Radiated Emissions of enclosure of ancillary equipment	Pass
8.3	Conducted Emissions, DC ports	N/A
8.4	Conducted Emissions, AC mains	Pass
8.5	Harmonic Current Emissions	Pass
8.6	Voltage Fluctuations	Pass
8.7	Conducted Emissions, telecommunication ports	N/A
9.2	RF Electromagnetic Field	Pass
9.3	Electrostatic Discharge	Pass
9.4	Fast Transients	Pass
9.5	RF common mode	Pass
9.6	Transients and surges in vehicular environment	Pass
9.7	Voltage Dips and Voltage Interruptions	Pass
9.8	Surges	Pass

2.1 Statement of the measurement uncertainty

Note 1: The measured result in this report is within the specification limits by more than the measurement uncertainty; the measured result indicates that the product tested complies with the specification limit.

The expanded uncertainty ($k = 2$) for radiated emissions from 30 to 1000 MHz has been determined to be: ± 4 dB at 10m and ± 5.4 dB at 3m

The expanded uncertainty ($k = 2$) for conducted emissions from 150 kHz to 30 MHz has been determined to be:

± 2.6 dB

3.0 EQUIPMENT UNDER TEST

3.1 Power configuration

Rated voltage:	<input checked="" type="checkbox"/> 100-240VAC <input type="checkbox"/> 230VAC <input type="checkbox"/> 400VAC <input type="checkbox"/> <input type="checkbox"/> VDC <input type="checkbox"/> Other:
Rated current:	<input type="checkbox"/> Amp.
Rated frequency:	<input checked="" type="checkbox"/> 50-60Hz <input type="checkbox"/> 60Hz
Power source:	<input type="checkbox"/> Internal battery <input checked="" type="checkbox"/> External power source
Battery:	<input type="checkbox"/> Nickel Cadmium <input type="checkbox"/> Alkaline <input type="checkbox"/> Nickel-Metal Hydride <input type="checkbox"/> Lithium-Ion

3.2 Antenna configuration

Antenna type:	<input checked="" type="checkbox"/> wire loop antenna <input type="checkbox"/> External
Antenna gain:	-9.7dBi

3.3 EUT Configuration

The equipment under test was operated during the measurement under the following conditions:

- Standby
- Continuous
- Continuous un-modulated
- Test program (customer specific)
- [REDACTED]

Operating modes of the EUT:

No.	Description
1	The EUT was powered 230VAC and was activated to transmit continuously modulated carrier except frequency error testing where a CW signal was transmitted. Channel 5 (403.65MHz) was utilized for testing. During Immunity testing the EUT MICS RF communication was established with the remote Implant Emulation (Avid) board.

Cables:

No.	Type	Length	Designation	Note
1	Not shielded USB Power cable	2m	Power Cable	

Support equipment/Services:

No.	Item	Description
1	Avid Board	Implant Emulation board used during MICS Communication Sessions testing.

General notes: None

3.4 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

- Normal

Temperature: 15-35 °C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

- Extreme

<input type="checkbox"/> Temperature:	+25 to +45 °C
<input checked="" type="checkbox"/> Temperature:	-20 to +55 °C
<input checked="" type="checkbox"/> AC power:	± 10%
<input type="checkbox"/> Battery:	As declared by the manufacturer

4.0 TEST CONDITIONS AND RESULTS

4.1 Effective Radiated Power at Fundamental

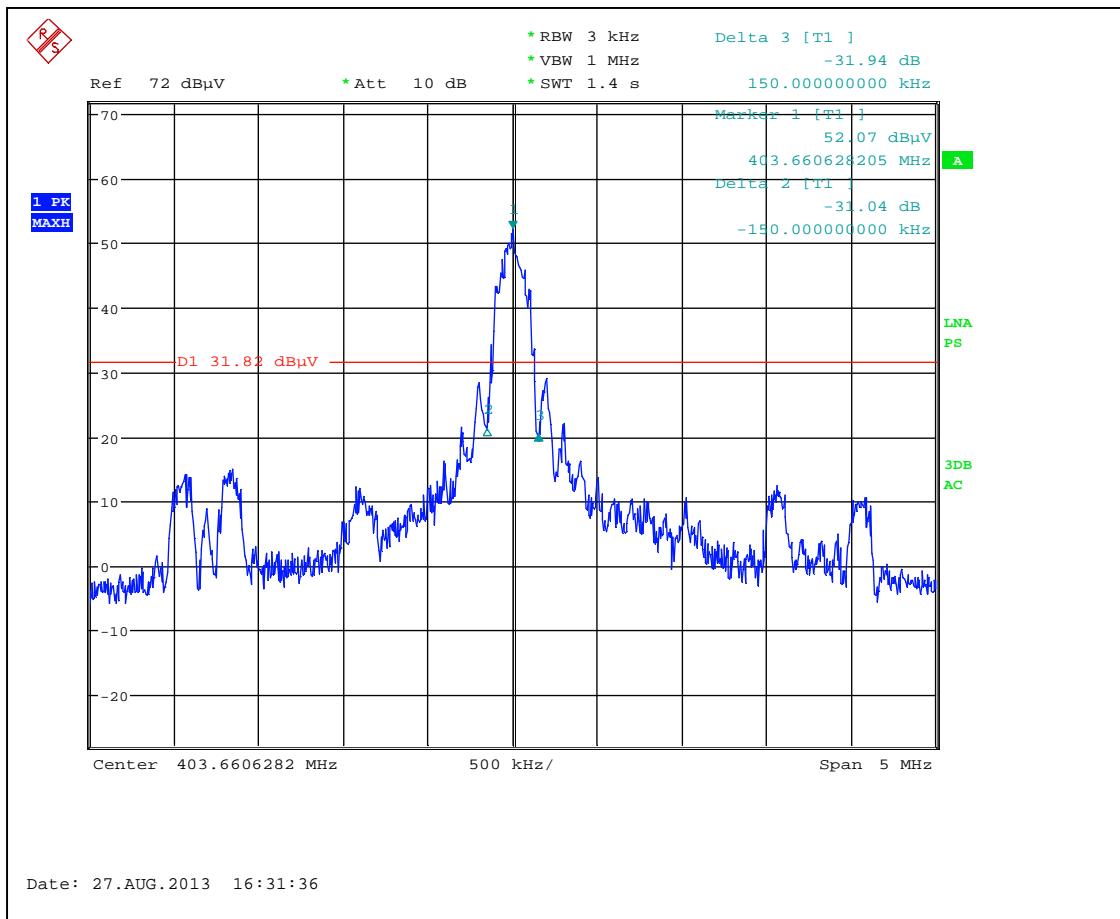
Test location: OATS Anechoic Chamber Other

Test distance: 10 meters 3 meters

Test result: **Pass**

Max. Emissions margin at fundamental: 2.0dB below the limits

Notes: Table 1 shows ERP Power at Fundamentals (substitution measurements).


Test Setup Photos

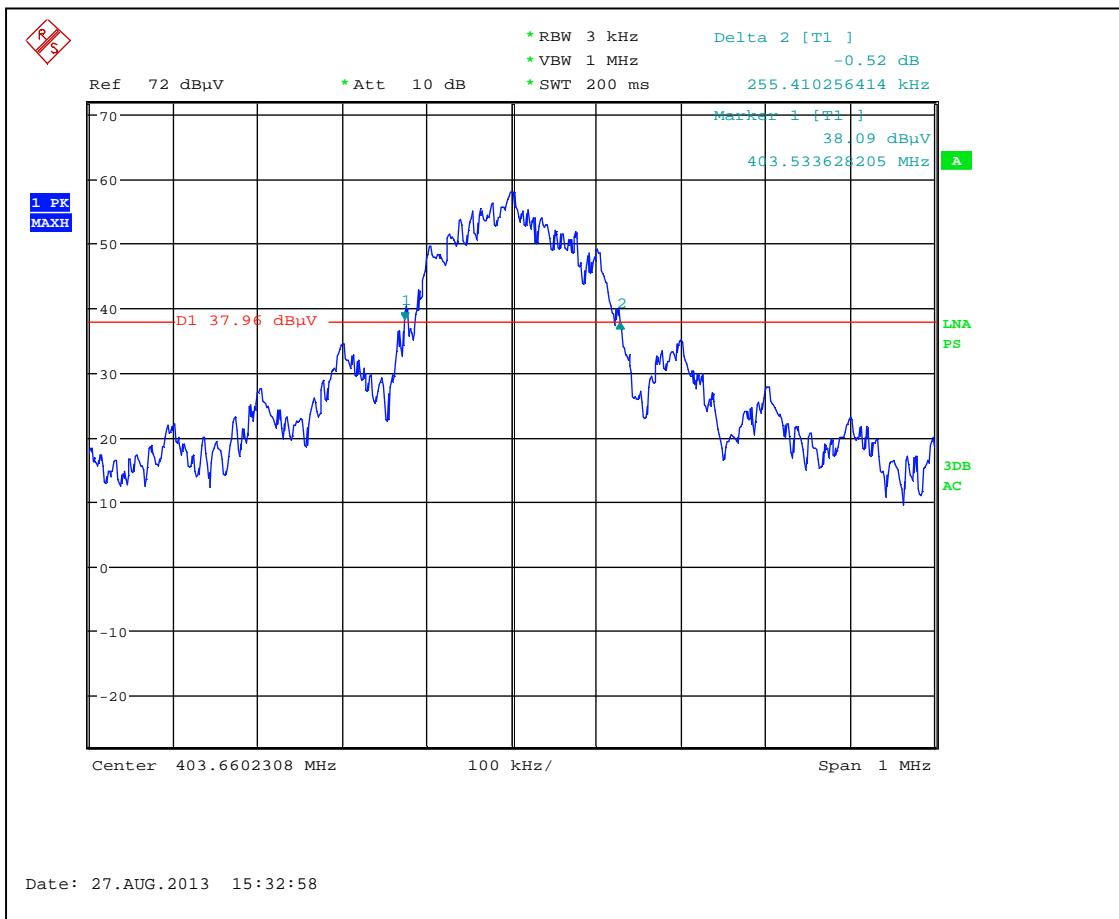
Date:	August 28, 2013	Result:	Pass
Standard:	EN ETSI 301 839-1		
Tested by:	Uri Spector		
Test Point:	Enclosure		
Operation mode:	See Page 7		
Note:	None		

Table 1

Frequency MHz	Antenna Polarity	Measured Emissions dB μ V	Substitution Antenna Power dBm	Substitution Antenna Gain dBi	Cable Loss dB	ERP Spur. Emissions dBm	Limit dBm	Margin dB
403.66	V	58.2	-20.3	0.0	0.5	-20.8	-16.0	-4.8
403.66	H	61.9	-17.5	0.0	0.5	-18.0	-16.0	-2.0

Graph 4.1.1

4.2 Bandwidth of Emissions


Center Frequency of operation MHz	Measured 20dB bandwidth kHz	Maximum bandwidth allowed kHz
403.66	255.4	300

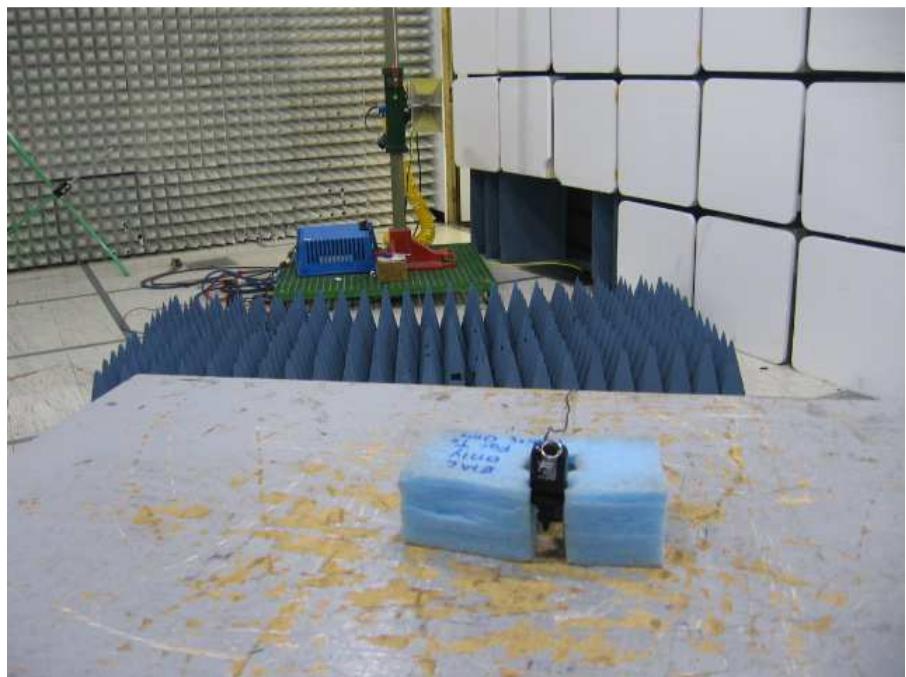
Graph 4.2.1 shows bandwidth of emissions

Notes: None

Graph 4.2.1

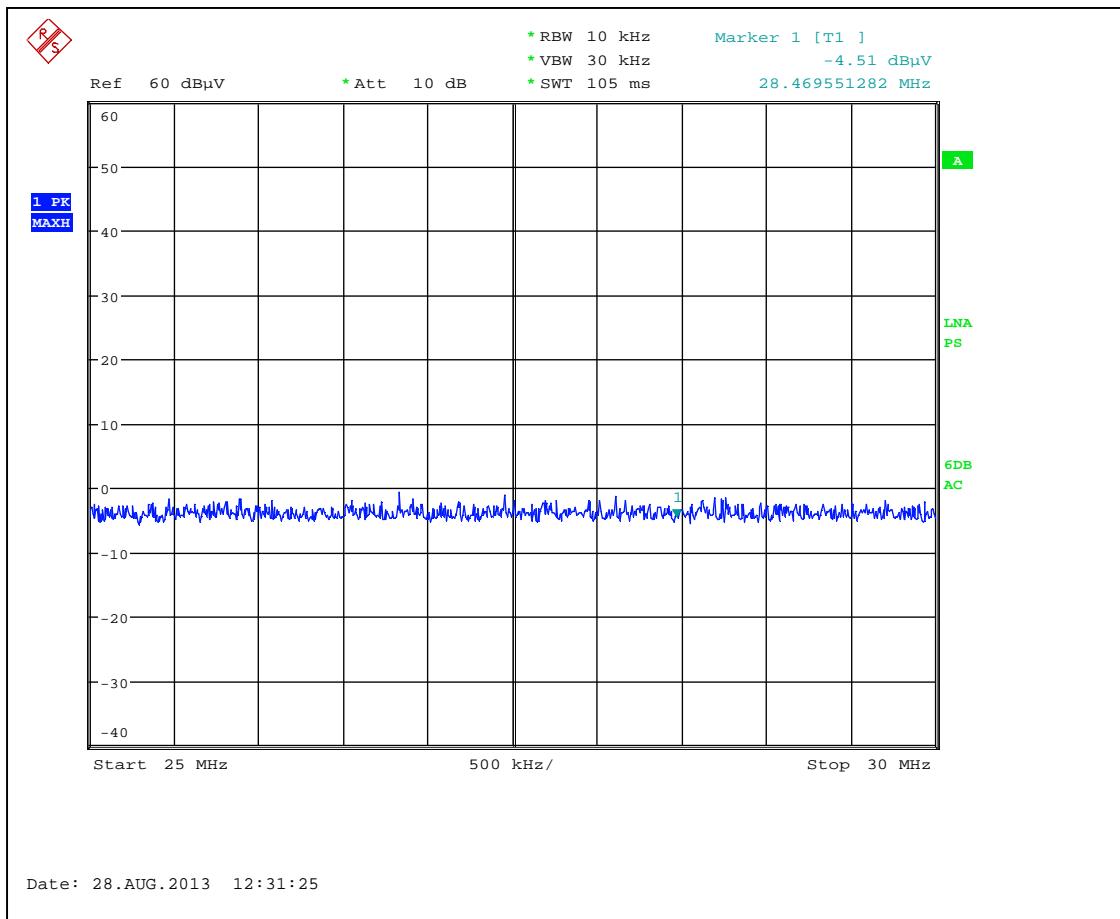
4.3 Radiated Spurious Emissions

Test location: OATS Anechoic Chamber

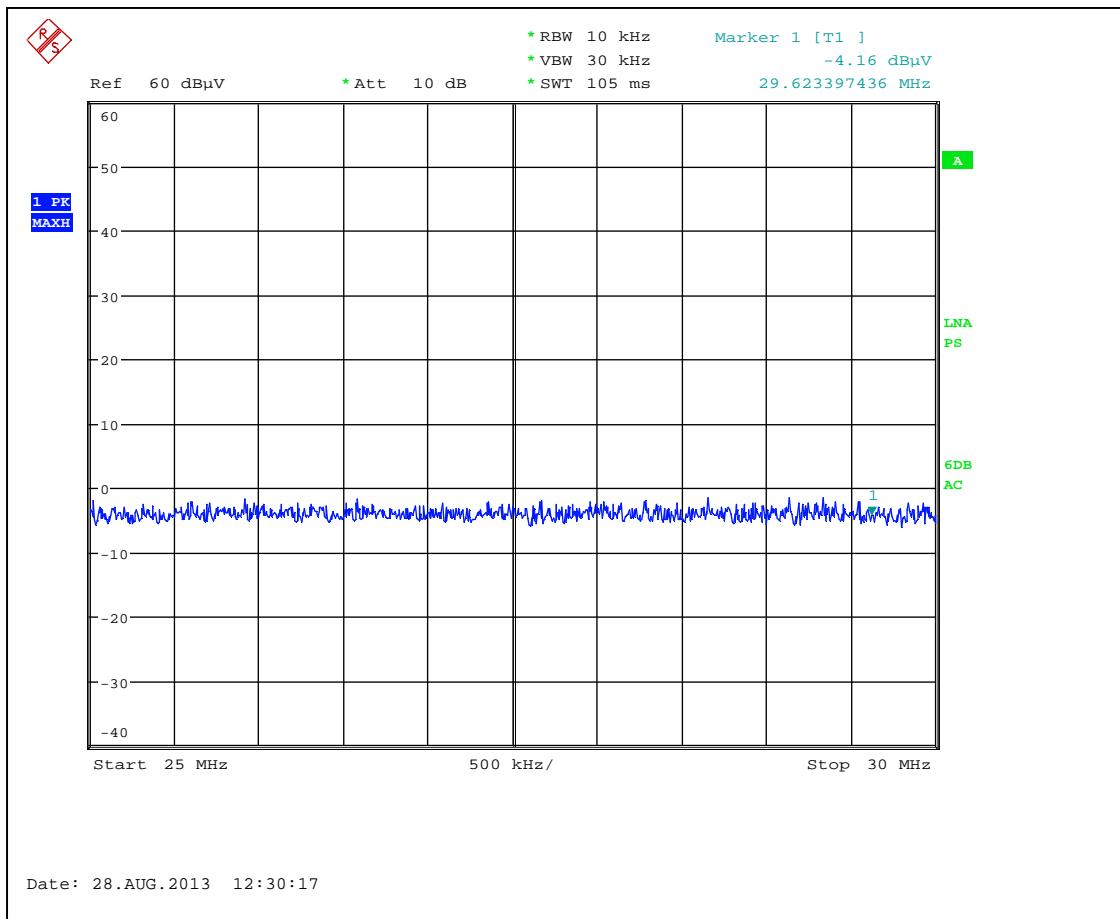


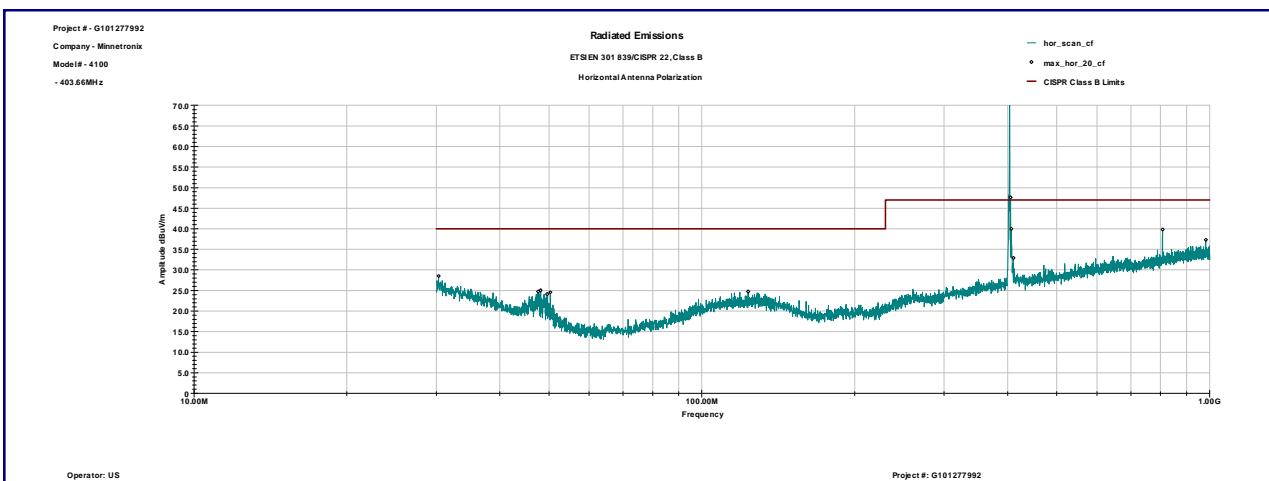
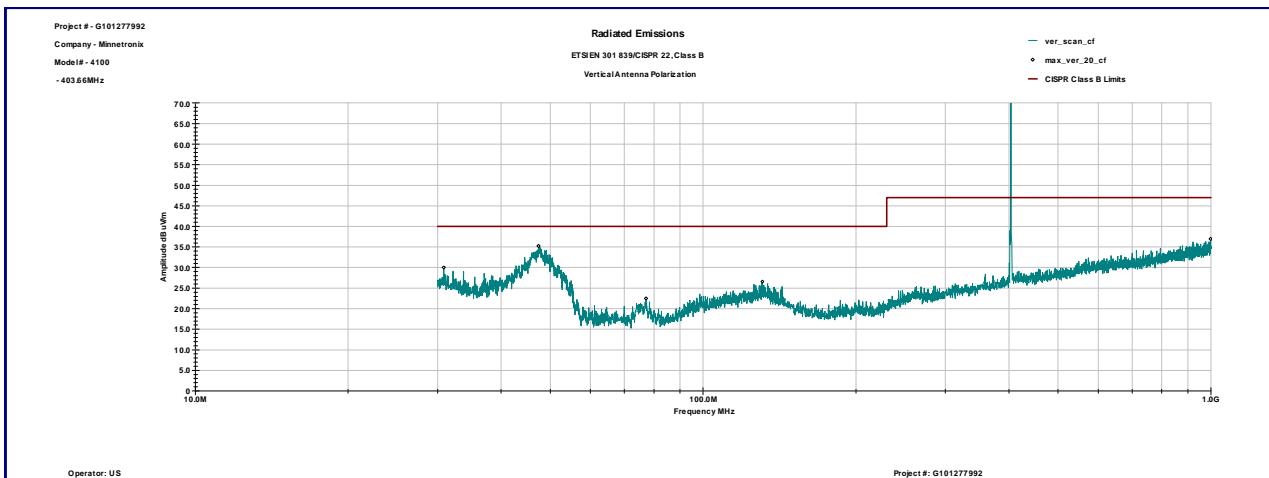
Test distance: 10 meters 3 meters

Test result: **Pass**

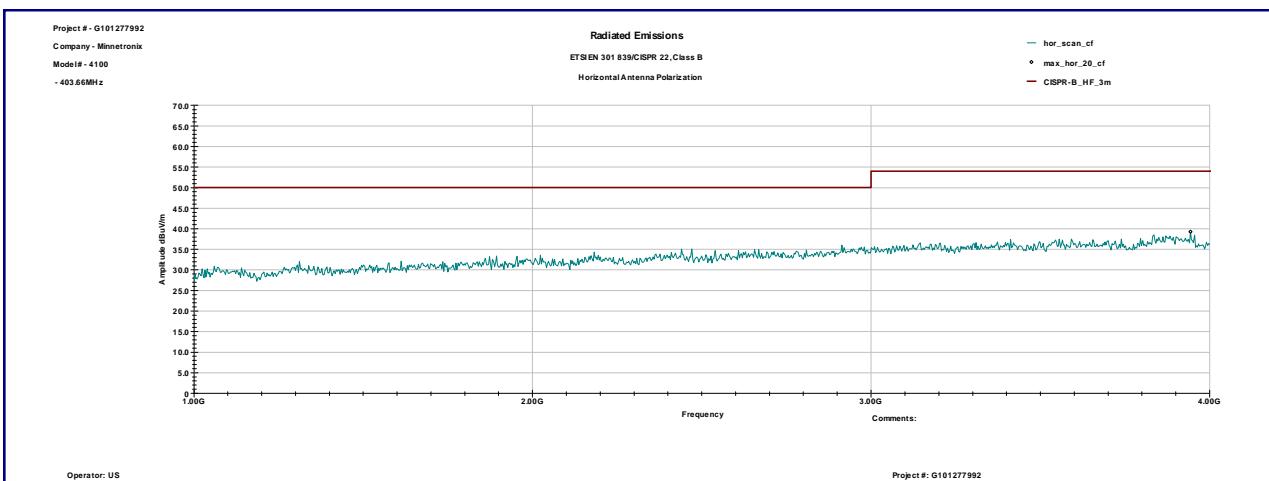
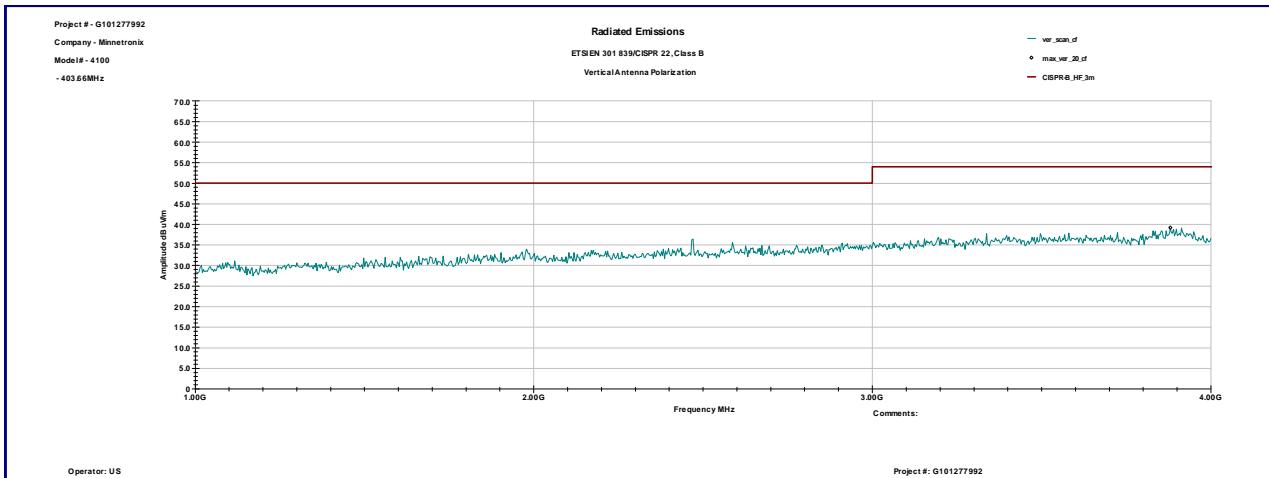

Frequency range: 25MHz-4GHz

Notes: Graphs 4.3.1- 4.3.4 show pre-scan radiated emissions
Emissions at fundamentals and below CISPR 22 Class B limits were excluded from substitution measurements.





Test Setup Photos

Graph 4.3.1
Vertical Antenna Polarity



Graph 4.3.2
Horizontal Antenna Polarity

Graph 4.3.3

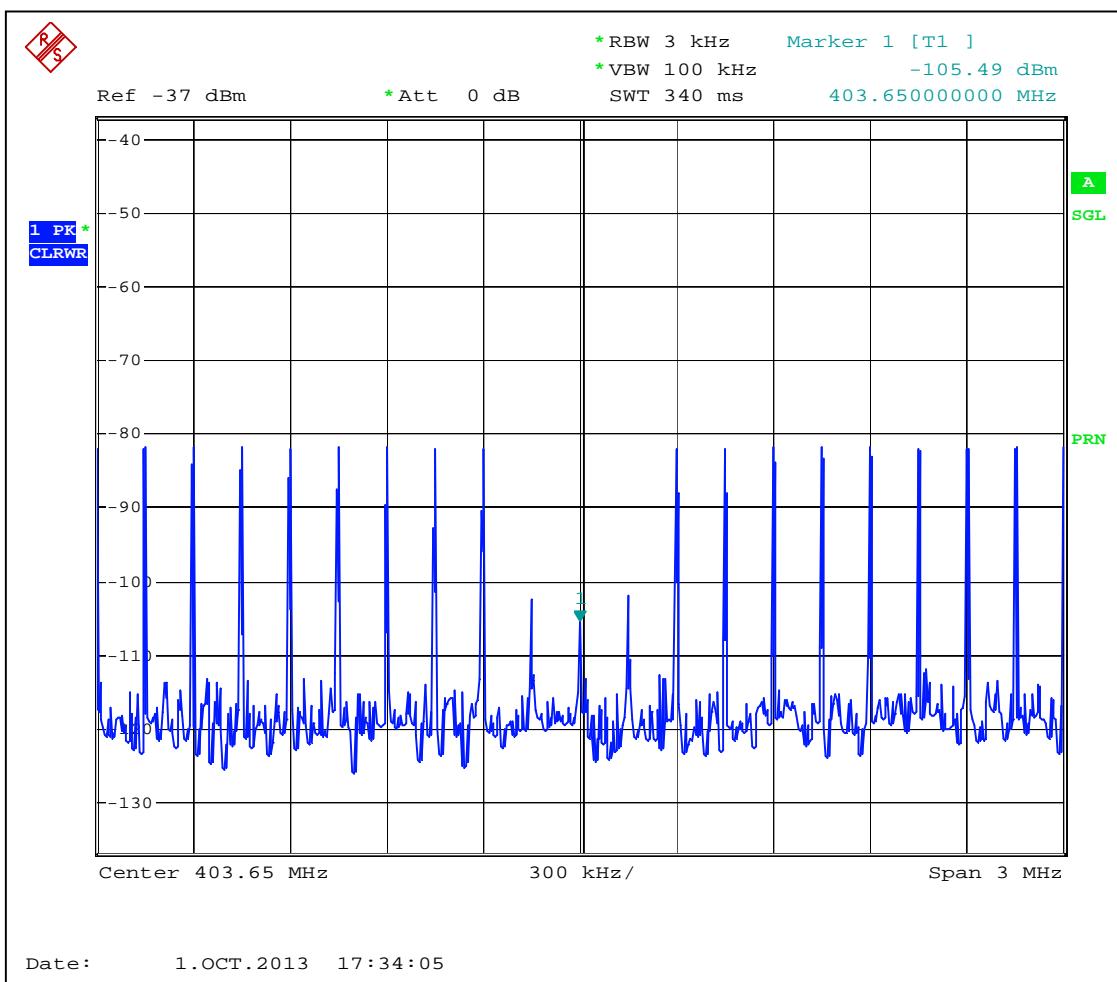
Graph 4.3.4

4.4 Frequency Error

Table 4.4.1

Temperature Degree C	Output Frequency MHz	Frequency Deviation kHz	Frequency Stability ppm	Frequency error limit ppm	Test Result
-20	403.6567	7.4	18.3	±100	Pass
0	403.6571	7.0	17.3	±100	Pass
15	403.6590	5.1	12.6	±100	Pass
25	403.6641	0.0	0.0	±100	Pass
35	403.6698	5.7	14.1	±100	Pass
55	403.6713	7.2	17.8	±100	Pass

Table 4.4.2


Input Voltage V	Input Voltage Description	Output Frequency MHz	Frequency Band MHz	Test Result
230	Nominal	403.6641	402-405	Pass
253	Upper Extreme	403.6641	402-405	Pass
207	Lower Extreme	403.6641	402-405	Pass

4.5 MICS Operation

The MICS communication sessions must meet operating requirements for Threshold Power Levels, Monitoring System Bandwidth, Scan Cycle Time, Minimum Channel Monitoring Period, Channel Access, Discontinuation of a MICS Session, and Use of Pre-Scanned Alternate Channel.

For these tests, a blocking band was created using the vector signal generator. A notch was created in the blocking band by removing some of the tones, or by lowering the output power of some of the tones in relation to the other. A second signal generator was used to generate a tone on specific channel. Below is an example plot of the blocking band at the EUT, including a single notch in the center.

Graph 4.5.1

System Threshold Power Levels

The monitoring threshold power level shall not be greater than the calculated level given by the equation, $10\log B(\text{Hz}) - 150(\text{dBm}/\text{Hz}) + G(\text{dBi})$, where B is the emissions bandwidth of the MICS communication session transmitter having the widest emissions bandwidth and G is the antenna gain of the medical implant programmer transmitter monitoring system.

Calculated Threshold Power: $10 \log(255.4\text{kHz}) - 150 + (-9.7) = -105.6\text{dBm}$

The blocking band was set to -102.6dBm (3dB above the calculated threshold level), with a notch left open at 403.65MHz . A tone was introduced at the center of the notch at -111.6dBm , and was stepped up to the threshold level, -105.6dBm . At each step, MICS communications session was initiated and the selected channel was observed.

Measured Threshold Power: -107.6dBm

Monitoring System Bandwidth

The monitoring system bandwidth measured at its 20dB down points shall be equal to, or greater than the emissions bandwidth of the intended transmission.

The blocking band was set to -102.6dBm (3dB above the calculated threshold level), with a notch left open at 403.65MHz . A tone was introduced at the frequencies corresponding to the 20dB down points of the fundamental emission, and was increased until the EUT no longer transmitted on the central frequency. At each step, a MICS communication session was initiated and the selected channel was observed. The difference between the values at which the EUT detects the center channel emission and the channel edge emissions should be less than 20dB in order for the order for the monitoring system bandwidth to be wider than the emission bandwidth.

$f_{low} = 403.522\text{MHz}$

$f_{high} = 403.777\text{MHz}$

$P_a = -105.3\text{dBm}$

$P_b = -94.7\text{dBm}$

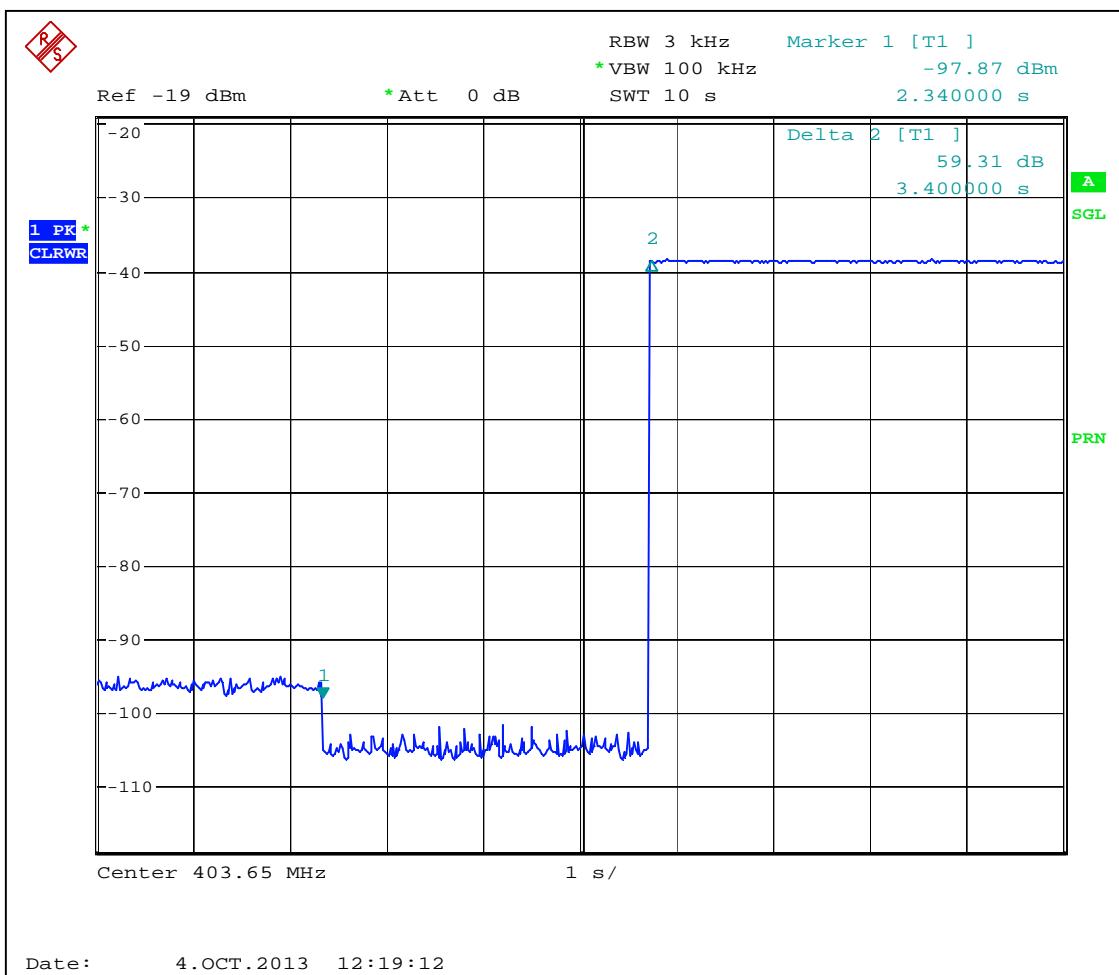
$P_c = -102.8\text{dBm}$

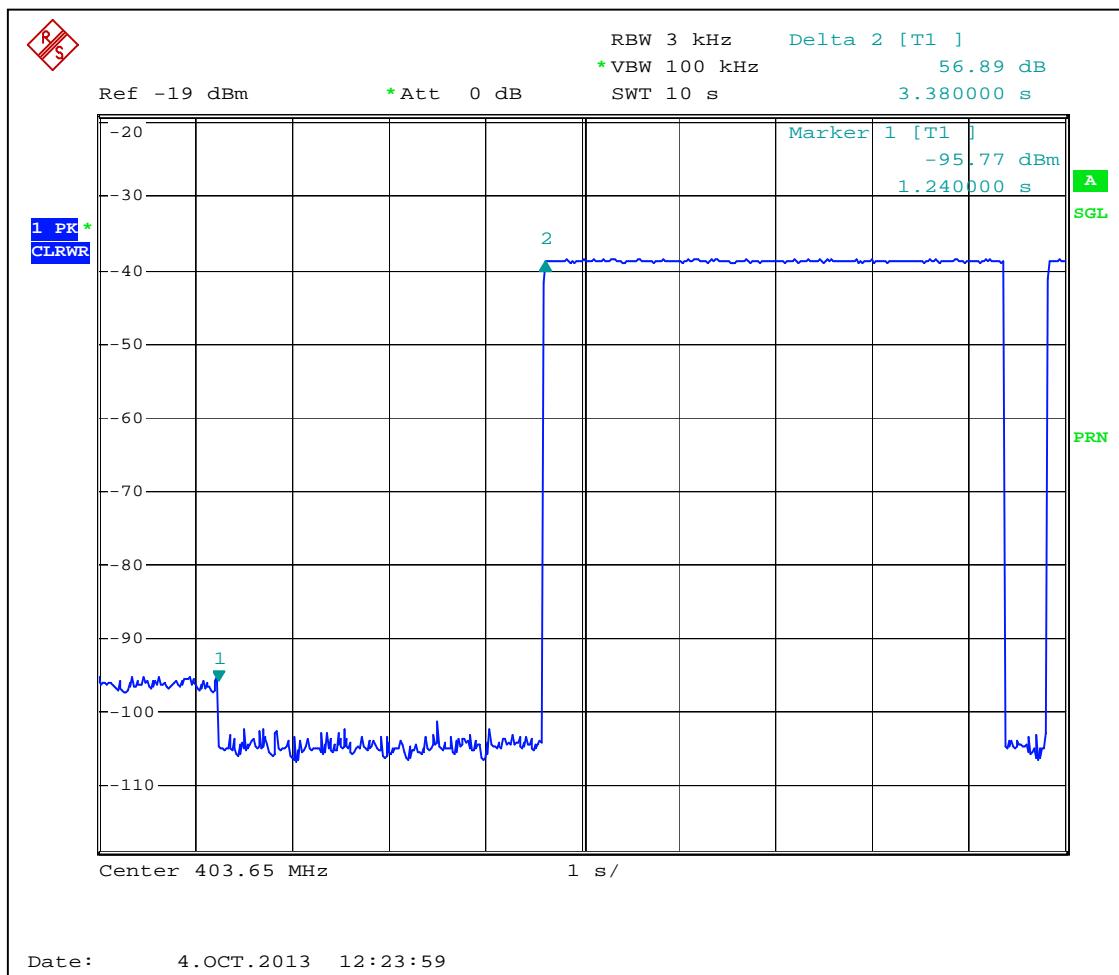
$D_1 = P_a - P_b = -105.3 - (-94.7) = -10.6\text{dB}$

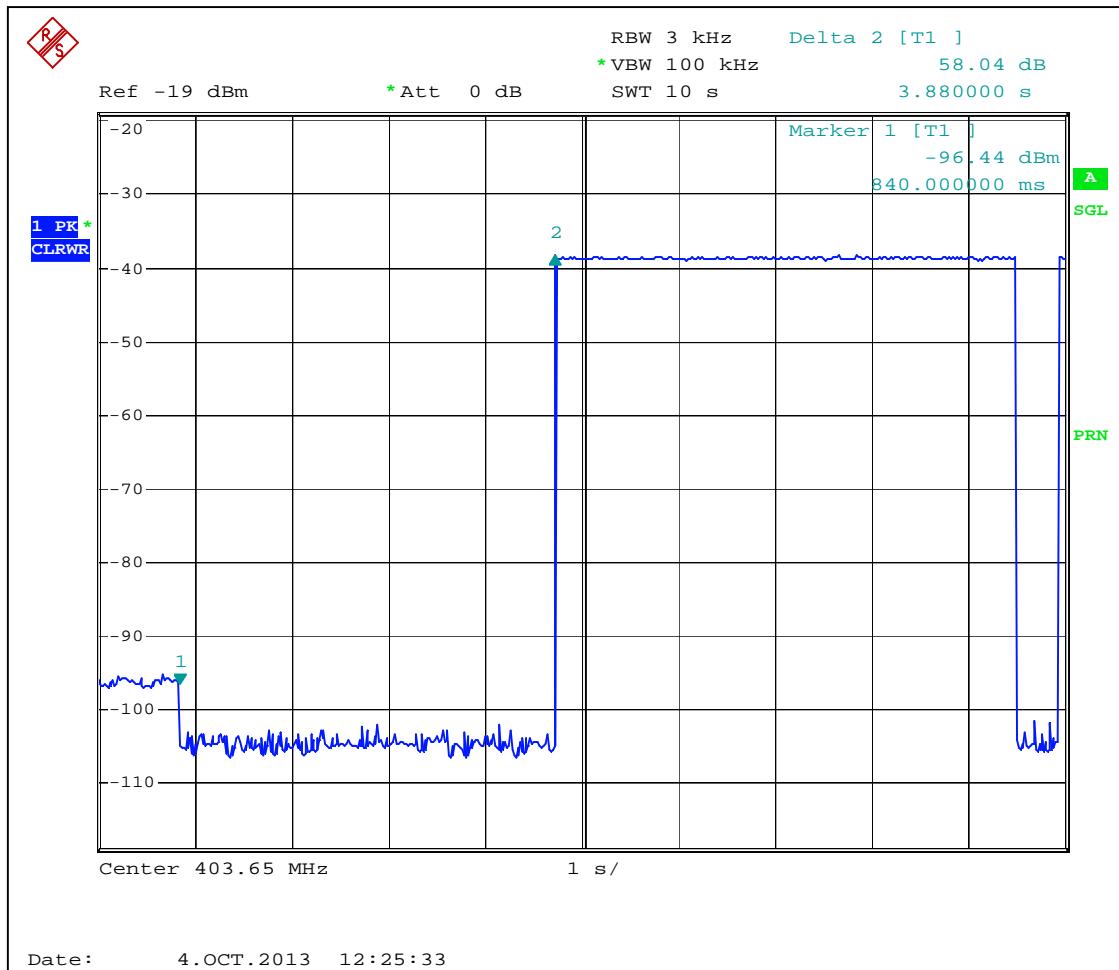
$D_2 = P_a - P_c = -105.3 - (-102.8) = -2.5\text{dB}$

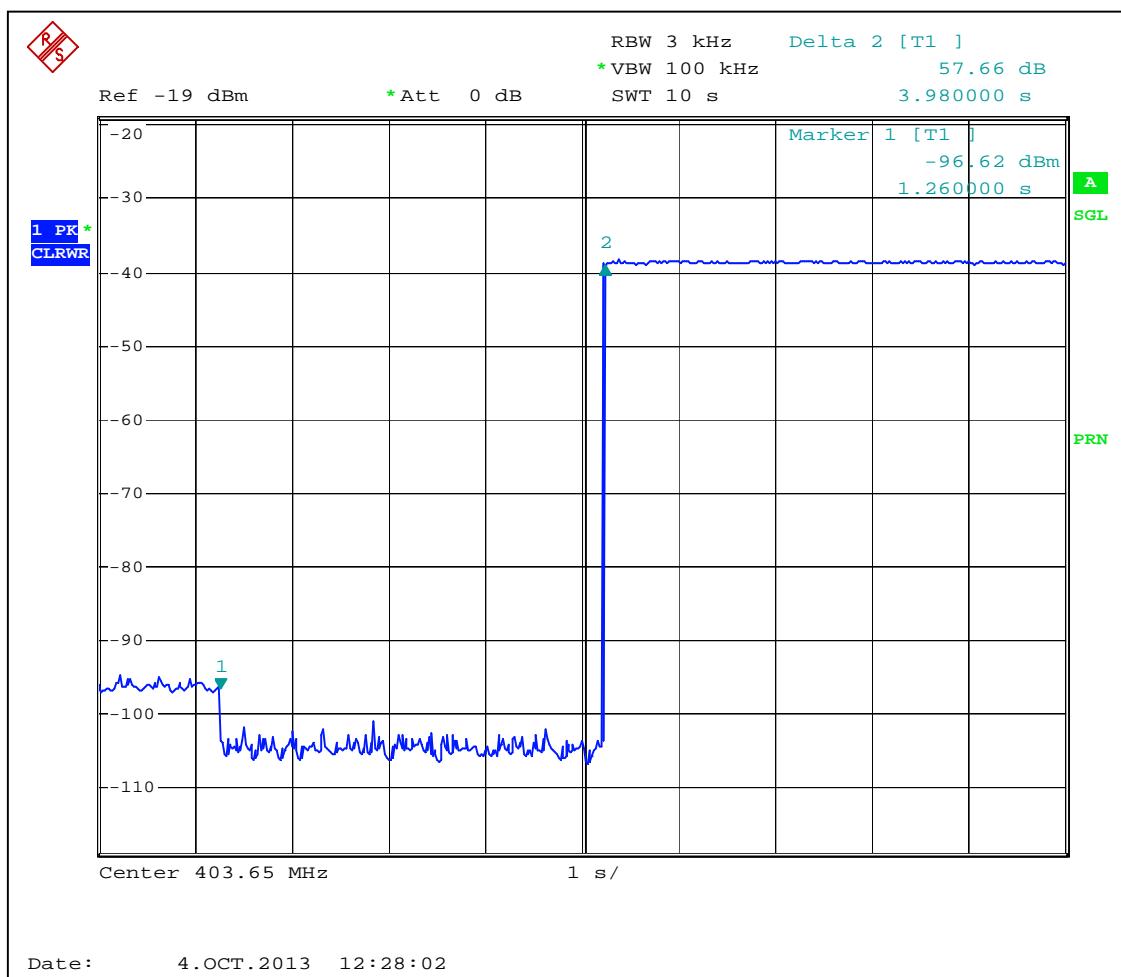
D_1 and D_2 are both less than 20dB

Test result: Pass

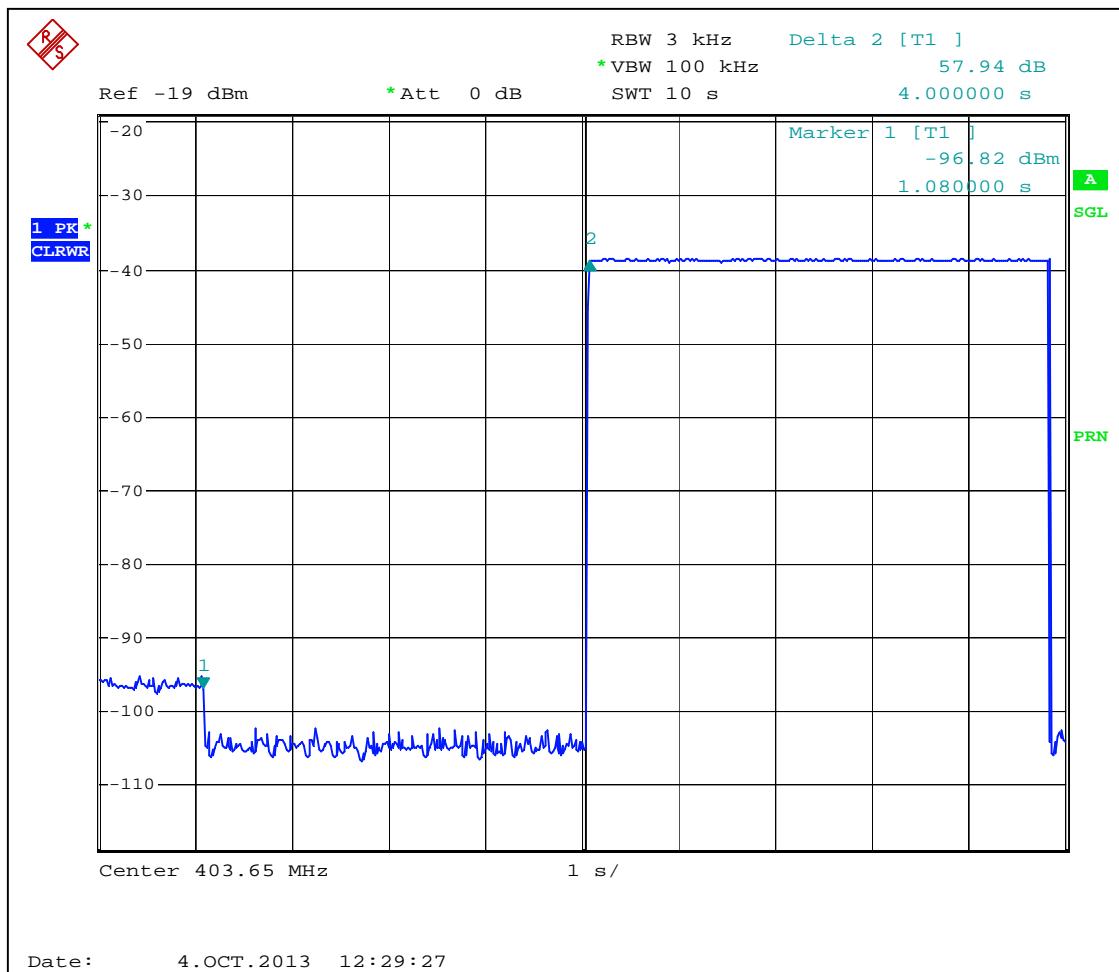

Scan Cycle Time


Within 5 seconds prior to initiating a communications session, circuitry associated with a medical implant programmer transmitter shall monitor all the channels in the 402-405MHz frequency band.


The blocking band was set to -102.6dBm (3dB above the calculated threshold level), with a notch left open at 403.65MHz. A tone was introduced at the center of the notch at -99.6dBm. The tone was removed and a MICS communications session was initiated. The time elapsed between removal of the CW tone and the start of the MICS session was recorded. The highest value was: **4.0sec**


Test result: Pass

Graph 4.5.2 Scan Cycle Time 1 (1.78 sec)



Graph 4.5.3 Scan Cycle Time 2 (820ms)

Graph 4.5.4 Scan Cycle Time 3 (1.64 sec)

Graph 4.5.5 Scan Cycle Time 4 (640ms)

Graph 4.5.6 Scan Cycle Time 5 (1.74sec)

Minimum Channel Monitoring Period

Each MICS channel shall be monitored for a minimum of 10 milliseconds during each scan cycle of 5 seconds or less.

The level of the out-of-operating-region disturbance was increased sufficiently high to prevent operation under any circumstances on a channel other than f_c as specified by the manufacturer. It was verified that the EUT transmits on f_c . The CW signal at frequency f_c was introduced at a level equal to the out-of-operating-region disturbance level. Then the out-of-operating-region disturbance was temporarily removed and the process was initiated and it was verified that the communications do not occur on f_c . The out-of-operating-region disturbance was reinserted at a level 3 dB above the level used before. It was verified that the EUT never communicates outside the EUT operating region at f_c after reinitiating communication.

The out of operating region disturbance signal was modulated with 0.1 ms pulse whose repetition frequency was adjusted to 100Hz corresponding to a silent period between pulses of 9.9 ms. This condition was monitored for several times, at least 10 attempts, and it was verified that the EUT did not select a channel in the blocking band over several attempts.

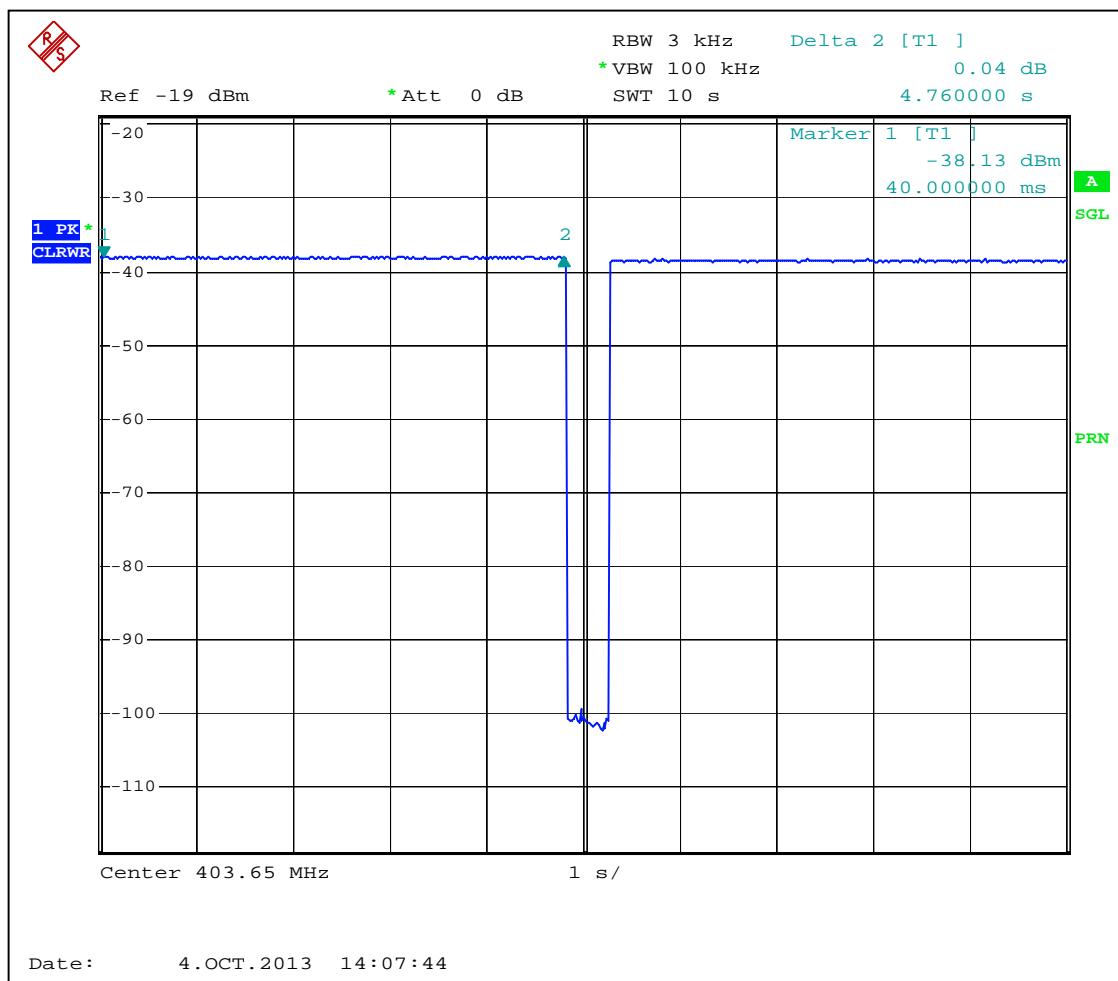
Test result: Pass

Channel Access

Immediate access is permitted on any channel having an ambient power level that is below the maximum threshold. If no channel having an ambient power below the maximum threshold is available, the equipment under test shall access and transmit on the least interfered channel.

The blocking band was set to -95.6dBm (10dB above the calculated threshold level), with a notch left open at 403.65MHz. A second notch was created at out-of operating-region by lowering the blocking tones by 7dB. A CW tone was introduced at the center of the channel at -108.6dB (3dB below the calculated threshold). A MICS communication session was then initiated and it was verified that the EUT transmitted only on the center frequency through several attempts. The CW tone at center frequency was then increased by 9dB to -99.6dBm, and it was verified that the EUT transmitted on the center frequency of the LIC channel over 10+ attempts.

Test result: Pass


Discontinuation of a MICS session

MICS shall cease transmission in the event the communication session is interrupted for a period of 5 seconds or more.

A MICS communication session was initiated, and the MICS implant was caused to cease transmission during the session. The time from when the implant ceased transmission until the programmer ceased communication was 4.76 seconds, as shown in the plot below. Communication was set on channel 5 (403.65MHz). Power was turned off block the implant transmission.

Test result: Pass

Graph 4.5.7

Use of the Pre-scanned Alternate Channel

Pre-scanned alternate channel operation is not implemented

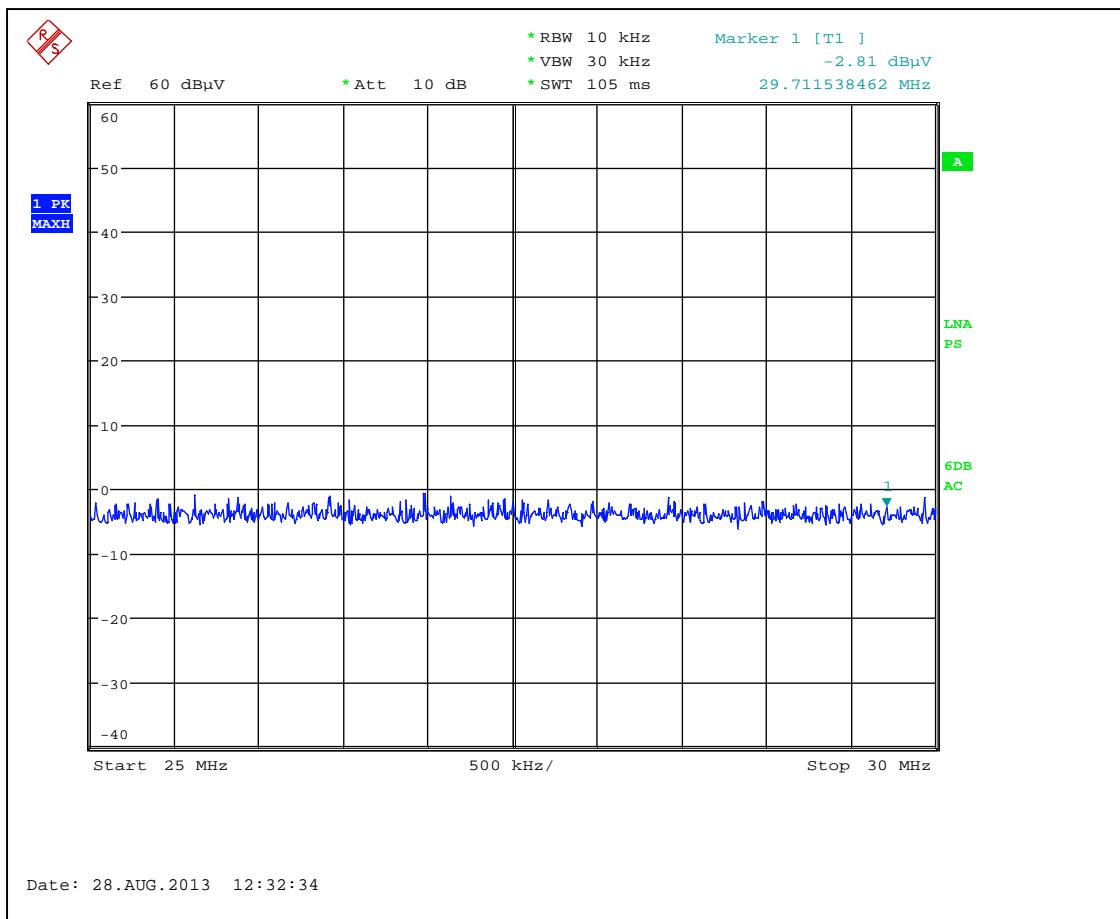
4.6 Receiver spurious emissions

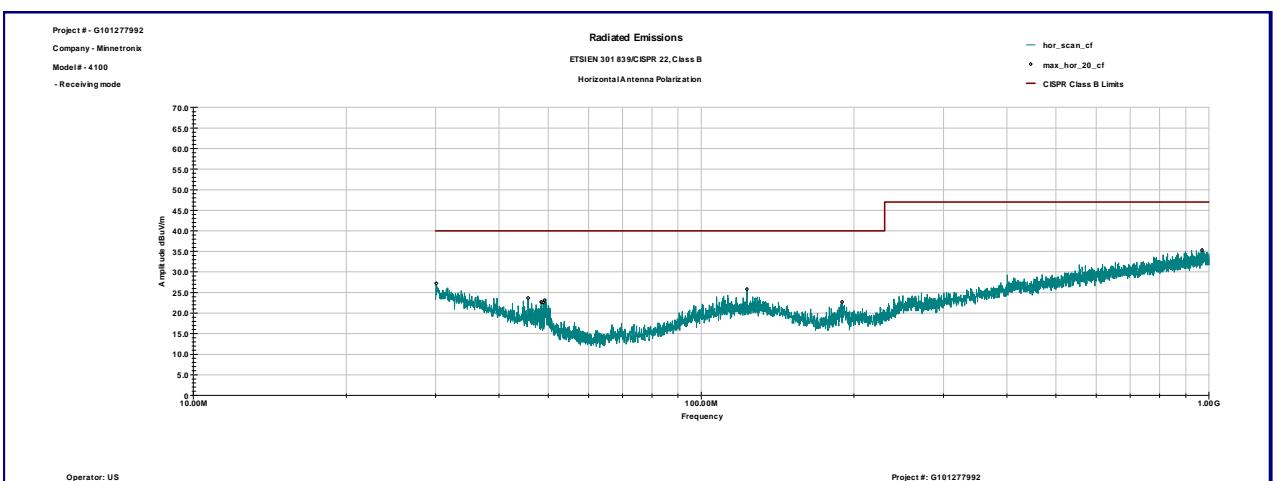
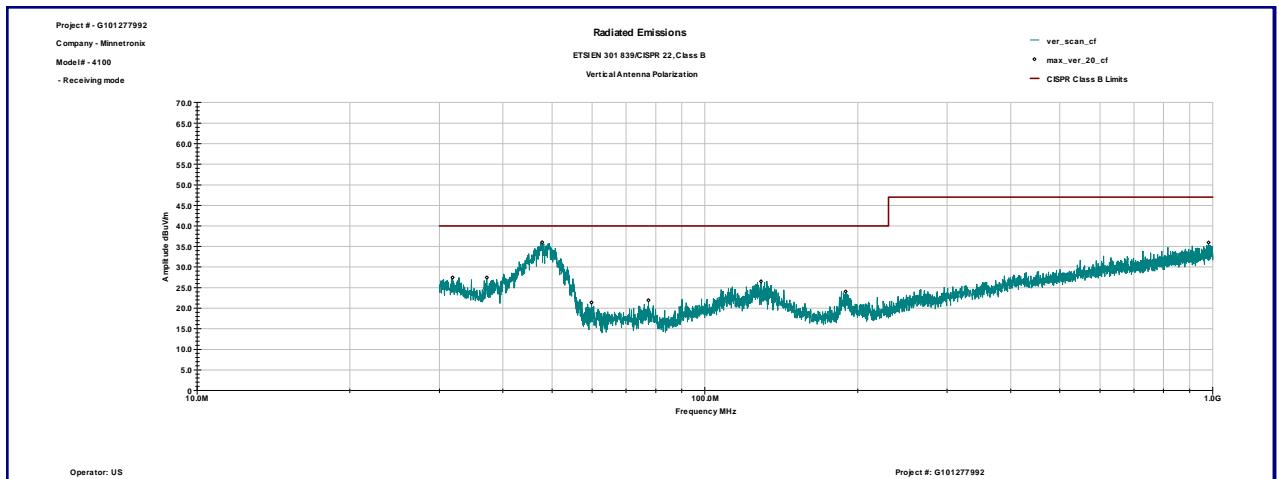
4.6.1 Enclosure radiated spurious emissions

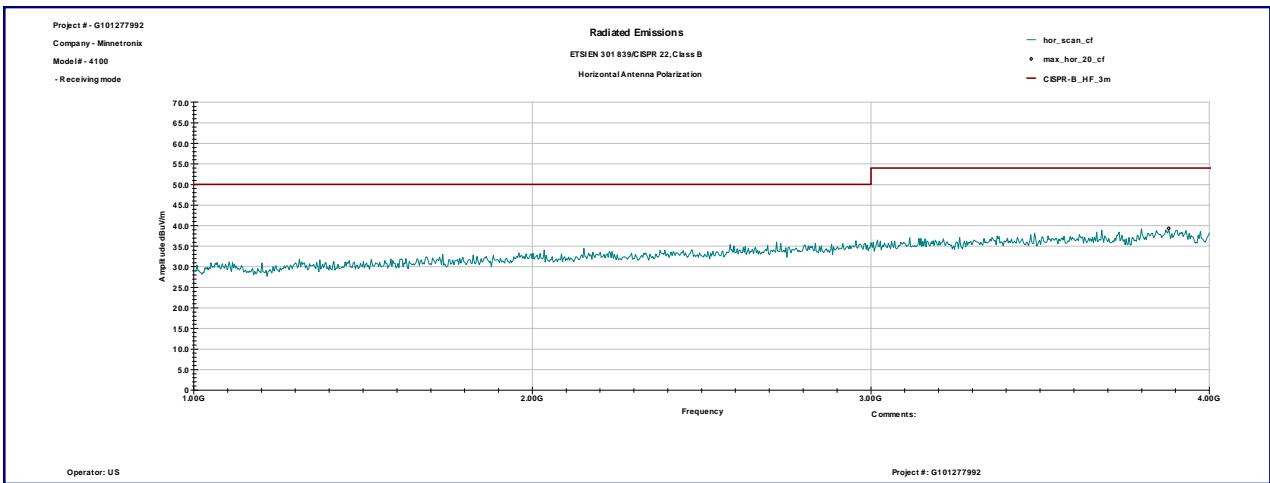
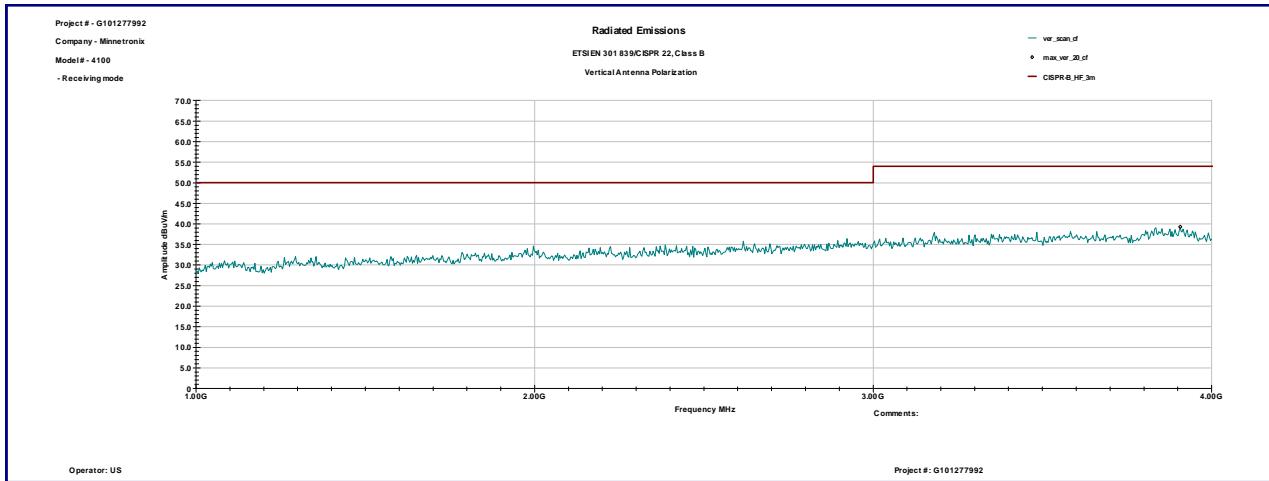
Test location: OATS Anechoic Chamber Other


Test result: **Pass**

Frequency range: 25MHz-4GHz


Notes: Graphs 4.6.1- 4.6.4 show pre-scan radiated emissions
Spurious emissions below CISPR 22 Class B limits were excluded from substitution measurements.



Graph 4.6.1
Vertical Antenna Polarity



Graph 4.6.2
Horizontal Antenna Polarity

Graph 4.6.3

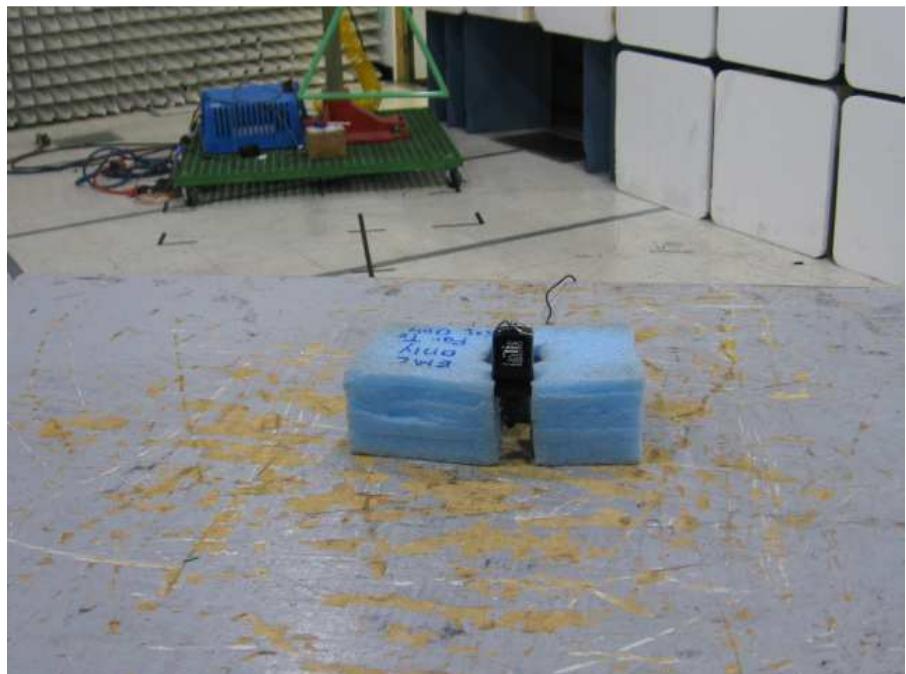
Graph 4.6.4

4.7 Radiated Emissions of ancillary equipment enclosure

Description of the test location

Test location: OATS Anechoic Chamber

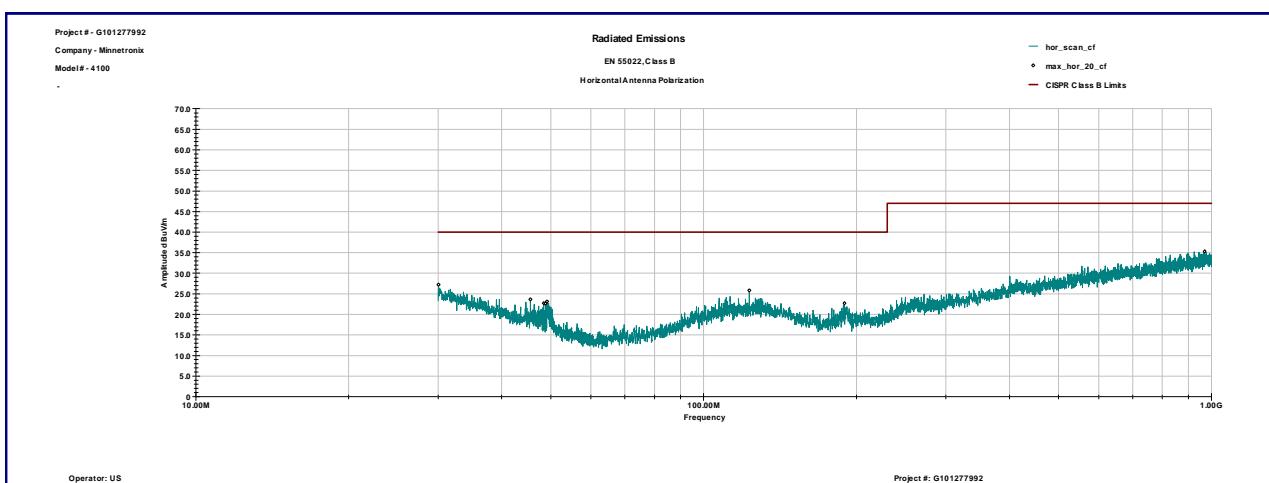
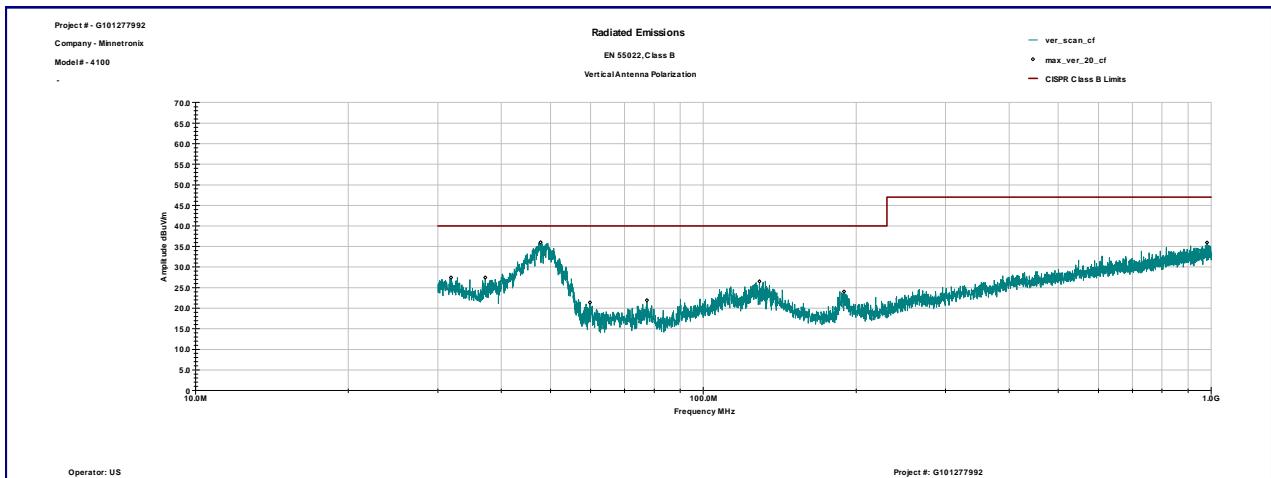
Test distance: 10 meters 3 meters


Test result: Pass

Frequency range: 30MHz-1000MHz

Max. Emissions margin: 4.0dB below the limits

Notes: The Radiated Emissions pre-scan was performed in the Anechoic chamber at 3m measurement distance (see Graph 4.7.1 and Table 4.7.1).



Test Setup Photos

Date:	August 28, 2013	Result:	Pass
Standard:	EN 55022, Class B		
Tested by:	Uri Spector		
Test Point:	Enclosure		
Operation mode:	See Page 7		
Note:	None		

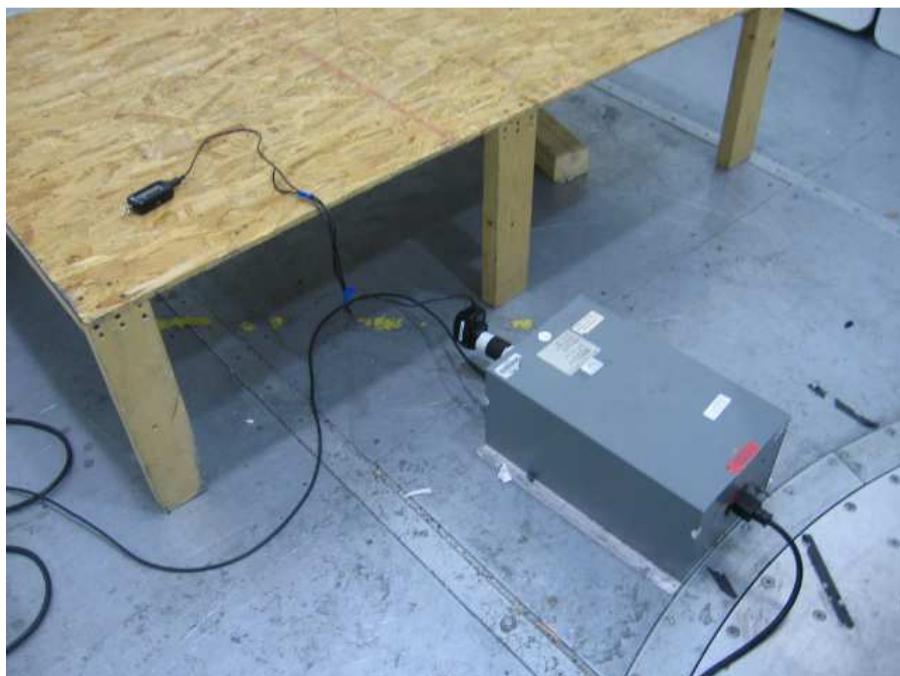
Table 4.7.1

Frequency	Ant. Polarity	Peak Reading dB μ V	Total C.F. dB1/m	Total at 3m dB μ V/m	Limit dB μ V/m	Margin dB
31.87 MHz	V	8.4	19.0	27.5	40.0	-12.5
37.204 MHz	V	11.3	16.1	27.5	40.0	-12.5
47.836 MHz	V	25.5	10.6	36.0	40.0	-4.0
59.819 MHz	V	14.2	7.2	21.4	40.0	-18.7
77.467 MHz	V	13.6	8.3	21.9	40.0	-18.1
128.95 MHz	V	12.5	14.0	26.5	40.0	-13.5
189.24 MHz	V	12.8	11.3	24.1	40.0	-15.9
30.069 MHz	H	7.1	20.2	27.3	40.0	-12.7
45.619 MHz	H	12.0	11.6	23.6	40.0	-16.4
49.187 MHz	H	13.1	10.0	23.1	40.0	-16.9
123.06 MHz	H	11.9	14.0	25.9	40.0	-14.1
189.4 MHz	H	11.4	11.3	22.7	40.0	-17.3

Graph 4.7.1

4.8 Conducted Emissions at AC port, DC port, and Telecommunication port

Test location: OATS Anechoic Chamber Other


Test result: Pass

Frequency range: 0.15MHz-30MHz

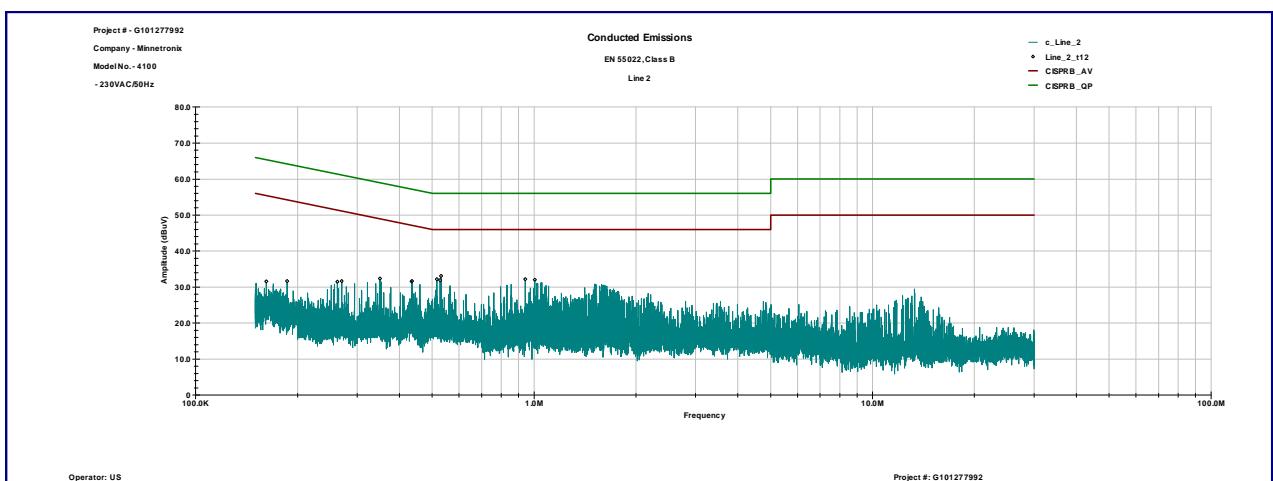
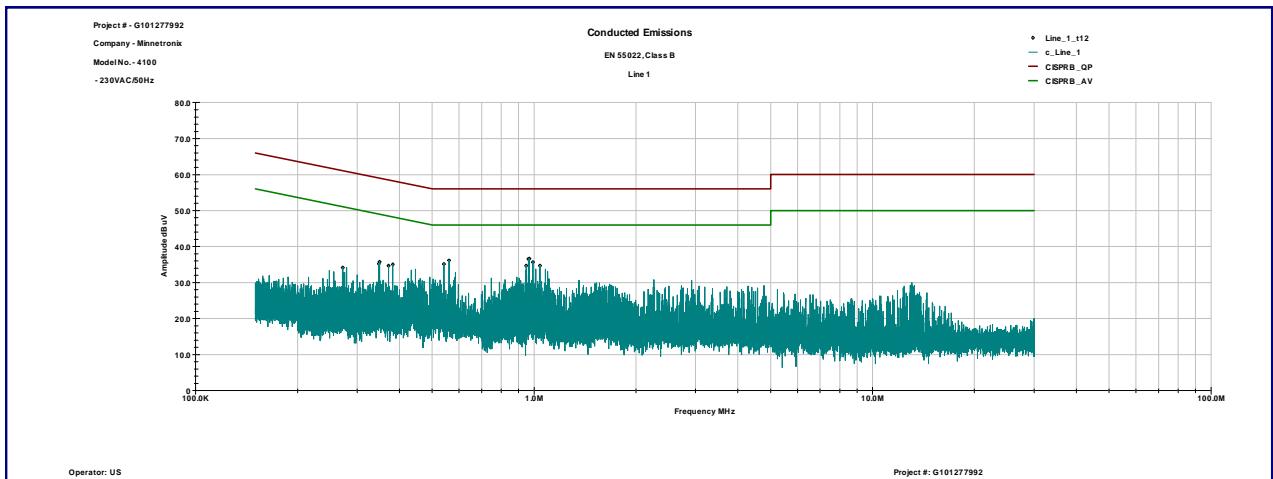
Max. Emissions margin: 9.4dB below the limits

Notes: The EUT does not have Telecommunication port.

Test Setup Photos

Date:	October 10, 2013	Result:	Pass
Standard:	EN 55022, Class B		
Tested by:	Uri Spector		
Test Point:	AC Port		
Operation mode:	See Page 7		
Note:	None		

Table 4.8.1



Line 1

Frequency	Peak dB μ V	QP Limit dB μ V	AVG Limit dB μ V	QP Margin dB	AVG Margin dB
272.02 KHz	34.2	61.1	51.1	-26.9	-16.9
347.65 KHz	35.2	59.0	49.0	-23.8	-13.8
349.35 KHz	35.8	59.0	49.0	-23.2	-13.2
371.51 KHz	34.7	58.5	48.5	-23.8	-13.8
382.44 KHz	35.0	58.2	48.2	-23.2	-13.2
541.16 KHz	35.1	56.0	46.0	-20.9	-10.9
560.81 KHz	36.2	56.0	46.0	-19.9	-9.9
947.66 KHz	34.7	56.0	46.0	-21.3	-11.3
961.38 KHz	36.5	56.0	46.0	-19.5	-9.5
968.25 KHz	36.6	56.0	46.0	-19.4	-9.4
991.04 KHz	35.6	56.0	46.0	-20.4	-10.4
1.0403 MHz	34.7	56.0	46.0	-21.3	-11.3

Line 2

Frequency	Peak dB μ V	QP Limit dBmV	AVG Limit dBmV	QP Margin dB	AVG Margin dB
161.73 KHz	31.6	65.4	55.4	-33.8	-23.8
186.16 KHz	31.6	64.2	54.2	-32.6	-22.6
262.17 KHz	31.5	61.4	51.4	-29.9	-19.9
269.99 KHz	31.6	61.1	51.1	-29.5	-19.5
350.44 KHz	32.4	59.0	49.0	-26.6	-16.6
434.25 KHz	31.5	57.2	47.2	-25.6	-15.6
435.81 KHz	31.7	57.1	47.1	-25.5	-15.5
515.85 KHz	32.2	56.0	46.0	-23.8	-13.8
527.77 KHz	31.9	56.0	46.0	-24.1	-14.1
530.59 KHz	33.1	56.0	46.0	-22.9	-12.9
940.6 KHz	32.2	56.0	46.0	-23.8	-13.8
1.0048 MHz	32.0	56.0	46.0	-24.0	-14.0

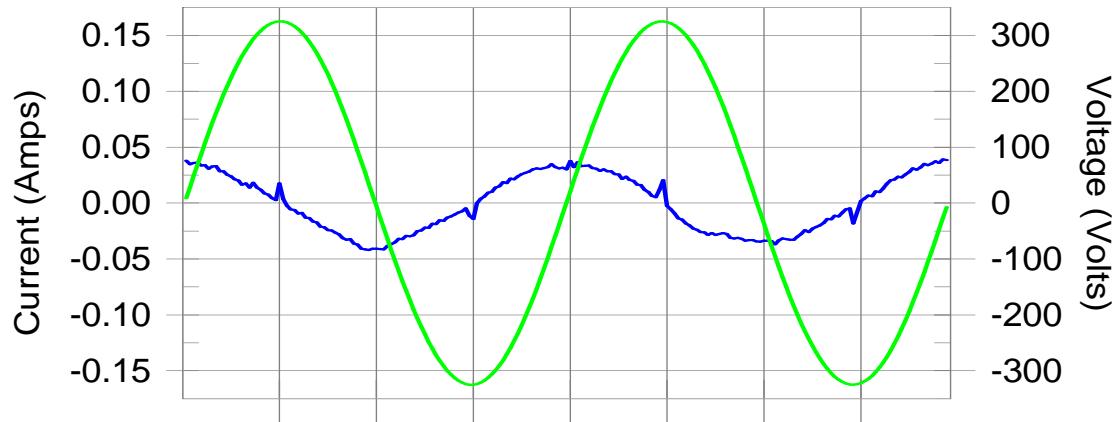
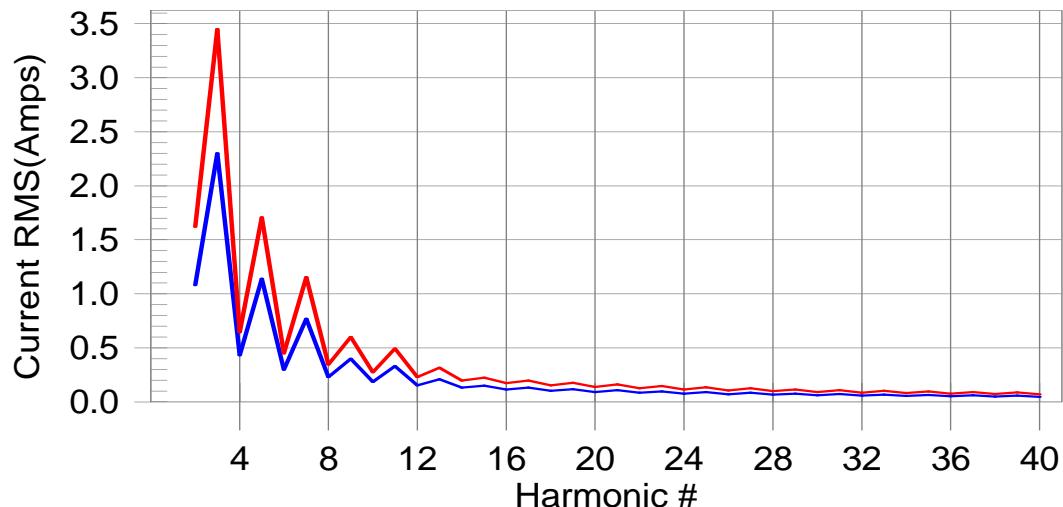
Graph 4.8.1

4.9 Harmonic Current Emissions

Date:	November 26, 2013	Result:	Pass
Tested by:	Ivaylo Nadarliyski		
Standard:	IEC 61000-3-2		
Test Point:	AC Input		
Operation mode:	See Page 5		
Note:	None		

Test Parameters

Frequency Range:	50Hz – 2000Hz
Observation Period:	Tobs = 10 min
Classification:	<input checked="" type="checkbox"/> Class A <input type="checkbox"/> Class B <input type="checkbox"/> Class C <input type="checkbox"/> Class D



Notes: None

Harmonics – Class-A per Ed. 3.2 (2009)(Run time)

EUT: PoP 4100 (s/n EMC 001D BR1616) (ps Model EA1015-AR s/n: 32300017) Tested by:
Ivaylo Nadarliyski
Test category: Class-A per Ed. 3.2 (2009) (European limits) Test Margin: 100
Test date: 11/26/2013 Start time: 10:38:08 AM End time: 10:48:29 AM
Test duration (min): 10 Data file name: H-000530.cts_data
Comment: Comments
Customer: Minnetronix

Test Result: Pass Source qualification: Normal

Current & voltage waveforms**Harmonics and Class A limit line****European Limits**

Test result: Pass Worst harmonic was #0 with 0.00% of the limit.

Current Test Result Summary (Run time)

EUT: PoP 4100 (s/n EMC 001D BR1616) (ps Model EA1015-AR s/n: 32300017) Tested by:
Ivaylo Nadarliyski

Test category: Class-A per Ed. 3.2 (2009) (European limits) Test Margin: 100
Test date: 11/26/2013 Start time: 10:38:08 AM End time: 10:48:29 AM

Test duration (min): 10 Data file name: H-000530.cts_data

Comment: Comments

Customer: Minnetronix

Test Result: Pass Source qualification: Normal

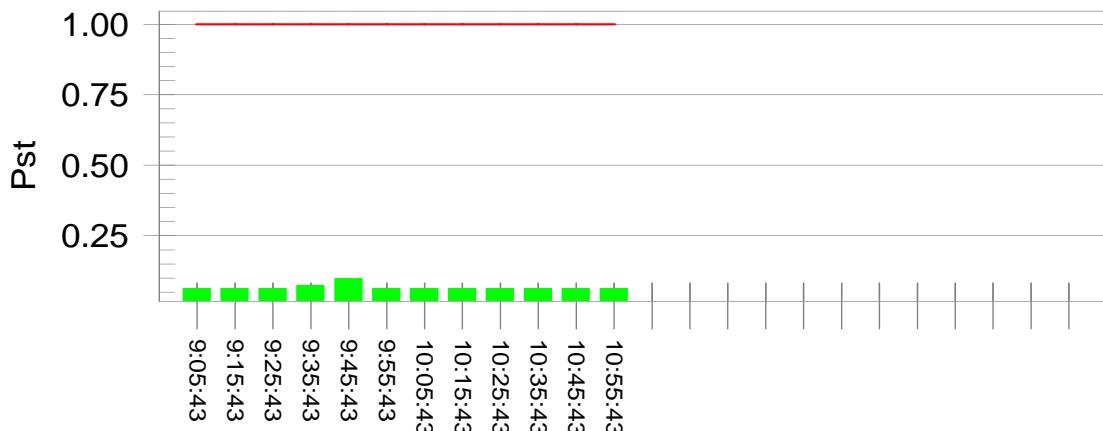
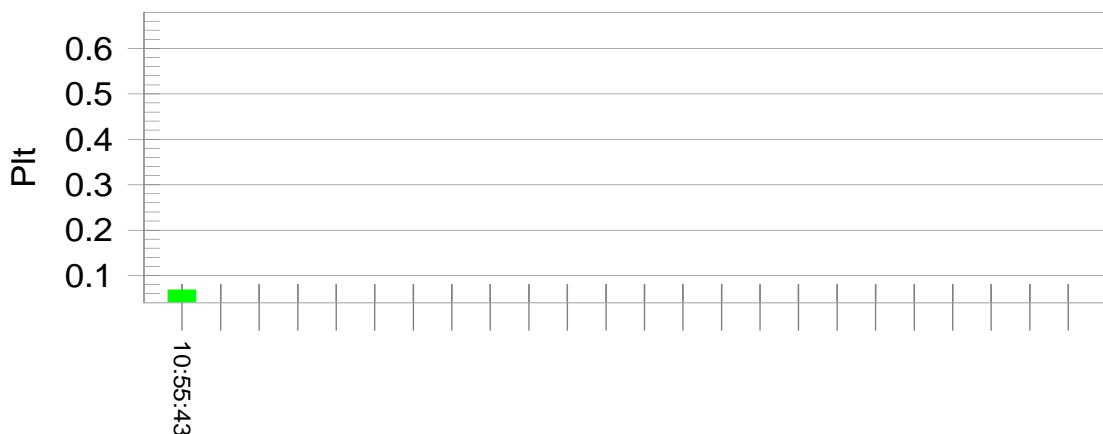
THC(A): 0.00 I-THD(%): 0.00 POHC(A): 0.000 POHC Limit(A): 0.320

Highest parameter values during test:

V_RMS (Volts):	229.84	Frequency(Hz):	50.00
I_Peak (Amps):	0.060	I_RMS (Amps):	0.026
I_Fund (Amps):	0.026	Crest Factor:	2.337
Power (Watts):	0.3	Power Factor:	0.054

Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.000	1.080	0.0	0.000	1.620	0.00	Pass
3	0.001	2.300	0.0	0.001	3.450	0.03	Pass
4	0.000	0.430	0.0	0.000	0.645	0.01	Pass
5	0.001	1.140	0.0	0.001	1.710	0.04	Pass
6	0.000	0.300	0.0	0.000	0.450	0.08	Pass
7	0.001	0.770	0.0	0.001	1.155	0.06	Pass
8	0.000	0.230	0.0	0.000	0.345	0.02	Pass
9	0.001	0.400	0.0	0.001	0.600	0.11	Pass
10	0.000	0.184	0.0	0.000	0.276	0.02	Pass
11	0.001	0.330	0.0	0.001	0.495	0.13	Pass
12	0.000	0.153	0.0	0.000	0.230	0.11	Pass
13	0.001	0.210	0.0	0.001	0.315	0.20	Pass
14	0.000	0.131	0.0	0.000	0.197	0.05	Pass
15	0.001	0.150	0.0	0.001	0.225	0.28	Pass
16	0.000	0.115	0.0	0.000	0.173	0.08	Pass
17	0.001	0.132	0.0	0.001	0.199	0.31	Pass
18	0.000	0.102	0.0	0.000	0.153	0.13	Pass
19	0.001	0.118	0.0	0.001	0.178	0.34	Pass
20	0.000	0.092	0.0	0.000	0.138	0.08	Pass
21	0.001	0.107	0.0	0.001	0.161	0.36	Pass
22	0.000	0.084	0.0	0.000	0.125	0.06	Pass
23	0.001	0.098	0.0	0.001	0.147	0.38	Pass
24	0.000	0.077	0.0	0.000	0.115	0.10	Pass
25	0.001	0.090	0.0	0.001	0.135	0.40	Pass
26	0.000	0.071	0.0	0.000	0.106	0.08	Pass
27	0.000	0.083	0.0	0.001	0.125	0.41	Pass
28	0.000	0.066	0.0	0.000	0.099	0.11	Pass
29	0.000	0.078	0.0	0.000	0.116	0.42	Pass
30	0.000	0.061	0.0	0.000	0.092	0.15	Pass
31	0.000	0.073	0.0	0.000	0.109	0.44	Pass
32	0.000	0.058	0.0	0.000	0.086	0.13	Pass
33	0.000	0.068	0.0	0.000	0.102	0.45	Pass
34	0.000	0.054	0.0	0.000	0.081	0.11	Pass
35	0.000	0.064	0.0	0.000	0.096	0.46	Pass
36	0.000	0.051	0.0	0.000	0.077	0.13	Pass
37	0.000	0.061	0.0	0.000	0.091	0.46	Pass
38	0.000	0.048	0.0	0.000	0.073	0.15	Pass
39	0.000	0.058	0.0	0.000	0.087	0.43	Pass
40	0.000	0.046	0.0	0.000	0.069	0.27	Pass

4.10 Voltage Fluctuations and Flicker



Date:	September 9, 2013	Result: Pass
Standard:	EN 61000-3-3	
Tested by:	Uri Spector	
Test Point:	AC Input	
Operation mode:	See Page 7	
Note:	None	

Test Parameters

Flicker Value:	<input checked="" type="checkbox"/> Pst <input checked="" type="checkbox"/> Plt
Observation Period:	$T_{obs} = 120 \text{ min}$
Relative Voltage Change:	<input checked="" type="checkbox"/> dc <input checked="" type="checkbox"/> dmax <input checked="" type="checkbox"/> d(t)

Notes: N/A

Test Result: Pass**Status: Test Completed****Pst_i and limit line****European Limits****Plt and limit line****Parameter values recorded during the test:****Vrms at the end of test (Volt): 229.80**

Highest dt (%):	0.55	Test limit (%):	3.30	Pass
Time(mS) > dt:	0.0	Test limit (mS):	500.0	Pass
Highest dc (%):	0.00	Test limit (%):	3.30	Pass
Highest dmax (%):	0.38	Test limit (%):	4.00	Pass
Highest Pst (10 min. period):	0.097	Test limit:	1.000	Pass
Highest Plt (2 hr. period):	0.069	Test limit:	0.650	Pass

4.11 Radiated, Radio-frequency, Electromagnetic Field

Description of the test location

Test location: Immunity Anechoic Chamber 3 meters Anechoic Chamber

Date:	October 4-7, 2013	Result:	Pass
Standard:	EN 61000-4-3		
Tested by:	Ivaylo Nadarliyski		
Test Point:	Four sides of EUT		
Operation mode:	See Page 7		
Note:	None		

Test specification

Frequency range:	<input checked="" type="checkbox"/> 80 MHz to 1000 MHz <input checked="" type="checkbox"/> 1.4 GHz to 2.7 GHz
Field strength:	<input checked="" type="checkbox"/> 3 V/m <input type="checkbox"/> 10 V/m
EUT - antenna separation:	<input checked="" type="checkbox"/> 2.5 m
Modulation:	<input checked="" type="checkbox"/> AM: 80 % <input checked="" type="checkbox"/> sinusoidal 1000Hz <input type="checkbox"/> PM duty cycle 50% 100Hz <input type="checkbox"/> 900 MHz Pulse Modulation
Frequency step:	<input checked="" type="checkbox"/> 1 % with 9 sec dwell time
Antenna polarisation:	<input checked="" type="checkbox"/> horizontal <input checked="" type="checkbox"/> vertical

Notes: The EUT lost MICS communication near 100MHz up to 1000MHz and did not re-establish communication until the application was restarted manually. According to the manufacturer this degradation is acceptable as long as it can be manually re-established.

Test Setup Photo

4.12 Electrostatic Discharge

Date:	November 14, 2013	Result:	Pass
Standard:	EN 61000-4-2		
Tested by:	Ivaylo Nadarliyski		
Test Point:	Enclosure		
Operation mode:	See Page 7		
Note:	None		

Test specification

Contact discharge voltage:	<input checked="" type="checkbox"/> 2 kV	<input checked="" type="checkbox"/> 4 kV	<input type="checkbox"/> 6 kV
Air discharge voltage:	<input checked="" type="checkbox"/> 2 kV	<input checked="" type="checkbox"/> 4 kV	<input checked="" type="checkbox"/> 6 kV
Discharge impedance:	<input checked="" type="checkbox"/> 330 Ω / 150 pF	<input type="checkbox"/> Other:	
Discharge factor:	<input checked="" type="checkbox"/> ≥ 1 sec.		
Number of discharges:	<input checked="" type="checkbox"/> ≥ 10 per each test level and polarity		
Type of discharge:	Direct Discharge	<input checked="" type="checkbox"/> Air Discharge	
		<input checked="" type="checkbox"/> Contact Discharge	
Polarity:	<input checked="" type="checkbox"/> Positive	<input checked="" type="checkbox"/> Negative	
Test Setup:	<input checked="" type="checkbox"/> see photo of the test set-up		
Discharge location:	<input checked="" type="checkbox"/> all external locations accessible by hand		
	<input checked="" type="checkbox"/> horizontal plate (HCP)	<input checked="" type="checkbox"/> vertical coupling plate (VCP)	

Notes: During application of +8kV Air Discharge to the edges of the display the whole display blinked momentary with the discharge. No degradations at all other settings. Per manufacturer, the Pocket Programmer has no Essential Performance. Therefore the momentary blink of the display during Electrostatic Discharge does not affect patient safety or compromise Essential Performance. Also indicators on the display signifying a loss of MICS connection or dropped pockets is acceptable and does not affect Essential Performance.

Test Setup Photo

4.13 Electrical Fast Transients / Burst

Description of the test location

Test location: Shielded Room 3 meters Anechoic Chamber

Date:	October 8, 2013	Result:	Pass
Standard:	EN 61000-4-4		
Tested by:	Ivaylo Nadarliyski		
Test Point:	<input checked="" type="checkbox"/> L1 <input checked="" type="checkbox"/> L2 <input type="checkbox"/> L3 <input checked="" type="checkbox"/> N <input checked="" type="checkbox"/> G <input type="checkbox"/> I/O		
Operation mode:	See Page 7		
Note:	None		

Test specification

Coupling network:	<input checked="" type="checkbox"/> 0.5 kV <input type="checkbox"/> 1 kV <input type="checkbox"/> 2 kV
Coupling clamp:	<input type="checkbox"/> 0.5 kV <input type="checkbox"/> 1 kV
Burst frequency:	<input checked="" type="checkbox"/> 5.0 kHz
Coupling duration:	<input checked="" type="checkbox"/> ≥ 60 s
Polarity:	<input checked="" type="checkbox"/> positive <input checked="" type="checkbox"/> negative

Coupling points

Cable description:	AC Port	
Screening:	<input type="checkbox"/> screened	<input checked="" type="checkbox"/> unscreened
Status:	<input type="checkbox"/> passive	<input checked="" type="checkbox"/> active
Signal transmission:	<input type="checkbox"/> analogue	<input checked="" type="checkbox"/> digital
Length:	<input checked="" type="checkbox"/> 0.5m	
Cable description:		
Screening:	<input type="checkbox"/> screened	<input type="checkbox"/> unscreened
Status:	<input type="checkbox"/> passive	<input type="checkbox"/> active
Signal transmission:	<input type="checkbox"/> analogue	<input type="checkbox"/> digital
Length:	<input type="checkbox"/>	
Cable description:		
Screening:	<input type="checkbox"/> screened	<input type="checkbox"/> unscreened
Status:	<input type="checkbox"/> passive	<input type="checkbox"/> active
Signal transmission:	<input type="checkbox"/> analogue	<input type="checkbox"/> digital
Length:	<input type="checkbox"/>	

Notes: During the test no deviation was detected to the selected operation mode(s).

Test Setup Photo

4.14 RF common mode (Conducted Disturbances)

Description of the test location

Test location: Shielded Room 3 meters Anechoic Chamber

Date:	October 4, 2013	Result:	Pass
Standard:	EN 61000-4-6		
Tested by:	Ivaylo Nadarliyski		
Test Point:	<input checked="" type="checkbox"/> AC <input type="checkbox"/> I/O		
Operation mode:	See Page 7		
Note:	None		

Test specification

Frequency range:	<input checked="" type="checkbox"/> 0.15 MHz to 80 MHz
Test voltage:	<input checked="" type="checkbox"/> 3 V <input type="checkbox"/> 10 V RMS
Modulation:	<input checked="" type="checkbox"/> AM: 80 % <input checked="" type="checkbox"/> sinusoidal 1KHz
Frequency step:	<input checked="" type="checkbox"/> 1 % with 9 sec dwell time

Coupling points

Cable description :	AC Port	
Screening:	<input type="checkbox"/> screened	<input checked="" type="checkbox"/> unscreened
Status:	<input type="checkbox"/> passive	<input checked="" type="checkbox"/> active
Signal transmission:	<input type="checkbox"/> analogue	<input checked="" type="checkbox"/> digital
Length:	<input checked="" type="checkbox"/> 0.3m	
Cable description :		
Screening:	<input type="checkbox"/> screened	<input type="checkbox"/> unscreened
Status:	<input type="checkbox"/> passive	<input type="checkbox"/> active
Signal transmission:	<input type="checkbox"/> analogue	<input type="checkbox"/> digital
Length:	<input type="checkbox"/>	
Cable description :		
Screening:	<input type="checkbox"/> screened	<input type="checkbox"/> unscreened
Status:	<input type="checkbox"/> passive	<input type="checkbox"/> active
Signal transmission:	<input type="checkbox"/> analogue	<input type="checkbox"/> digital
Length:	<input type="checkbox"/>	
Cable description :		
Screening:	<input type="checkbox"/> screened	<input type="checkbox"/> unscreened
Status:	<input type="checkbox"/> passive	<input type="checkbox"/> active
Signal transmission:	<input type="checkbox"/> analogue	<input type="checkbox"/> digital
Length:	<input type="checkbox"/>	

Notes: During the test no deviation was detected to the selected operation mode(s).

Test Setup Photo

4.15 Voltage Dips and Voltage Interruptions

Date:	October 8, 2013	Result:	Pass
Standard:	EN 61000-4-11		
Tested by:	Ivaylo Nadarliyski		
Test Point:	AC Input		
Operation mode:	See Page 7		
Note:	None		

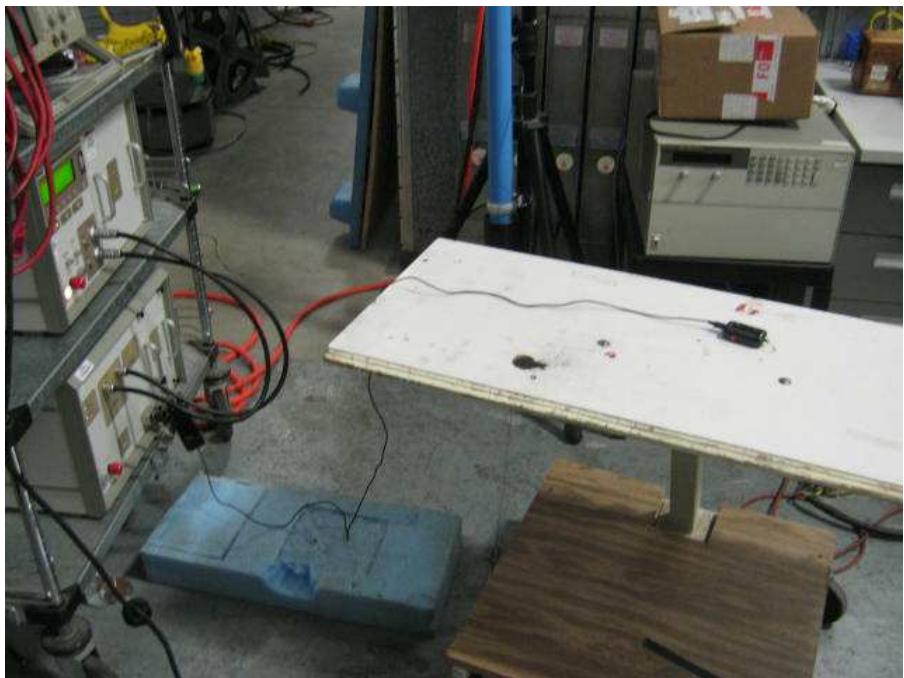
Test specification

Nominal Mains Voltage (V_N):	<input checked="" type="checkbox"/> 230 V AC <input type="checkbox"/> 120 V AC
Level of reduction (dip):	<input checked="" type="checkbox"/> 100%
Number of periods:	<input checked="" type="checkbox"/> 0.5
Phase angle:	<input checked="" type="checkbox"/> 0 ° <input type="checkbox"/> 90 ° <input checked="" type="checkbox"/> 180 ° <input checked="" type="checkbox"/> 270 °
Number of Interruptions:	<input checked="" type="checkbox"/> 3
Repetition:	<input checked="" type="checkbox"/> 15 sec
Level of reduction (dip):	<input checked="" type="checkbox"/> 100%
Number of periods:	<input checked="" type="checkbox"/> 1.0
Phase angle:	<input checked="" type="checkbox"/> 0 ° <input type="checkbox"/> 90 ° <input checked="" type="checkbox"/> 180 ° <input checked="" type="checkbox"/> 270 °
Number of Interruptions:	<input checked="" type="checkbox"/> 3
Repetition:	<input checked="" type="checkbox"/> 15 sec
Level of reduction (dip):	<input checked="" type="checkbox"/> 60%
Duration:	<input checked="" type="checkbox"/> 200mS
Phase angle:	<input checked="" type="checkbox"/> 0 ° <input type="checkbox"/> 90 ° <input checked="" type="checkbox"/> 180 ° <input checked="" type="checkbox"/> 270 °
Number of Interruptions:	<input checked="" type="checkbox"/> 3
Repetition:	<input checked="" type="checkbox"/> 15 sec
Level of reduction (dip):	<input checked="" type="checkbox"/> 30%
Duration:	<input checked="" type="checkbox"/> 500mS
Phase angle:	<input checked="" type="checkbox"/> 0 ° <input type="checkbox"/> 90 ° <input checked="" type="checkbox"/> 180 ° <input checked="" type="checkbox"/> 270 °
Number of Interruptions:	<input checked="" type="checkbox"/> 3
Repetition:	<input checked="" type="checkbox"/> 15 sec
Level of reduction (dip):	<input checked="" type="checkbox"/> 100%
Interruption duration:	<input checked="" type="checkbox"/> 5 sec
Phase angle:	<input checked="" type="checkbox"/> 0 ° <input type="checkbox"/> 90 ° <input checked="" type="checkbox"/> 180 ° <input checked="" type="checkbox"/> 270 °
Number of Interruptions:	<input checked="" type="checkbox"/> 3
Repetition:	<input checked="" type="checkbox"/> 15 sec

Notes: During the test no deviation was detected to the selected operation mode(s). During 5 sec interruption the EUT was powered from the internal battery and resumes operation from AC port.

4.16 Surges Immunity

Date:	October 9, 2013	Result: Pass
Standard:	EN 61000-4-5	
Tested by:	Ivaylo Nadarliyski	
Test Point:	<input checked="" type="checkbox"/> L1 <input type="checkbox"/> L2 <input type="checkbox"/> L3 <input checked="" type="checkbox"/> N <input type="checkbox"/> G <input type="checkbox"/> I/O	
Operation mode:	See Page 7	
Note:	None	


Test specification

Source impedance: 12 Ω + 9μF	<input type="checkbox"/> 0.5 kV	<input type="checkbox"/> 1 kV	<input type="checkbox"/> 2 kV	<input type="checkbox"/> 4 kV	<input type="checkbox"/> Other
Source impedance: 2 Ω + 18μF	<input checked="" type="checkbox"/> 0.5 kV	<input checked="" type="checkbox"/> 1 kV	<input type="checkbox"/> 2 kV	<input type="checkbox"/> 4 kV	<input type="checkbox"/> Other
Polarity:	<input checked="" type="checkbox"/> positive	<input type="checkbox"/> negative			
Phase angle:	<input checked="" type="checkbox"/> 0°	<input checked="" type="checkbox"/> 90°	<input checked="" type="checkbox"/> 180°	<input checked="" type="checkbox"/> 270°	
Line-to-ground surges for I/O lines:	<input type="checkbox"/> 0.5 kV	<input type="checkbox"/> 1 kV			
Repetition rate:	<input checked="" type="checkbox"/> 60 s				
Number of surges:	<input checked="" type="checkbox"/> 5 surges at each position				

Coupling points

Cable description:	AC Port	
Screening:	<input type="checkbox"/> screened	<input checked="" type="checkbox"/> unscreened
Status:	<input type="checkbox"/> passive	<input checked="" type="checkbox"/> active
Signal transmission:	<input type="checkbox"/> analogue	<input checked="" type="checkbox"/> digital
Length:	<input checked="" type="checkbox"/> 2m	
Cable description:		
Screening:	<input type="checkbox"/> screened	<input type="checkbox"/> unscreened
Status:	<input type="checkbox"/> passive	<input type="checkbox"/> active
Signal transmission:	<input type="checkbox"/> analogue	<input type="checkbox"/> digital
Length:	<input type="checkbox"/>	
Cable description:		
Screening:	<input type="checkbox"/> screened	<input type="checkbox"/> unscreened
Status:	<input type="checkbox"/> passive	<input type="checkbox"/> active
Signal transmission:	<input type="checkbox"/> analogue	<input type="checkbox"/> digital
Length:	<input type="checkbox"/>	

Notes: During the surge test, the EUT stopped charging due to the damage to the AC adapter, and EUT continue to operate from an internal battery. Per manufacturer, the Pocket Programmer has no Essential Performance. Therefore the damage to power adaptor during surge does not affect patient safety or compromise Essential Performance. Also indicators on the display signifying a loss of MICS connection or dropped pockets is acceptable and does not affect Essential Performance.

Test Setup Photo

5.0 TEST EQUIPMENT

DESCRIPTION	MANUFACTURER	MODEL	SERIAL NO.	INTERTEK ID	CAL DUE	USED
Spectrum Analyzer	R & S	ESU	100398	25283	12/19/2013	<input checked="" type="checkbox"/>
Spectrum Analyzer	R & S	FSP 40	100024	12559	11/29/2013	<input checked="" type="checkbox"/>
Bicono-Log Antenna	Schaffner-Teseq	CBL6112B	2468	9734	11/30/2013	<input checked="" type="checkbox"/>
Horn Antenna	EMCO	3115	6579	15580	07/18/2014	<input checked="" type="checkbox"/>
LISN	Fischer Custom Communications	FCC-LISN-50-25-2	2014	9665	04/23/2014	<input checked="" type="checkbox"/>
System	Quantum Change	TILE! Instrument Control	Ver. 3.4.K.29	15259	VBU	<input checked="" type="checkbox"/>
Pre-Amplifier	MITEQ	AMF-5D-00501800-28-13P	1122951	13475	11/01/2013	<input checked="" type="checkbox"/>
Environmental Chamber	ESPEC	ESX-4CA	0111386	24300	04/11/2014	<input checked="" type="checkbox"/>
Power Amplifier	IFI	SMX150	N987-0809	26024	VBU	<input checked="" type="checkbox"/>
Power Amplifier	Milmega	ASO104-30/30BB	980047	12665	VBU	<input checked="" type="checkbox"/>
Signal Generator	R & S	SMT 03	DE12157	9950	11/30/2013	<input checked="" type="checkbox"/>
Radiant Arrow Antenna	Amplifier Research	AT5080	304256	12723	VBU	<input checked="" type="checkbox"/>
ESD Simulator	Schaffner	NSG 438	311	17071	04/11/2014	<input checked="" type="checkbox"/>
Power Meter	HP	HP 437B	3215U11273	15237	05/20/2014	<input checked="" type="checkbox"/>
Power Sensor	HP	8482A	3318A26196	172159	07/16/2014	<input checked="" type="checkbox"/>
Power Source/Analyzer	California Instruments System	5001ix	55864, 55863, 55862, 72277	17668-17673	05/10/2014	<input checked="" type="checkbox"/>
Harmonic/Flicker Software	California Instruments	CTS 3.0	Ver. 3.2.0.30	12723	05/10/2014	<input checked="" type="checkbox"/>
EMC test set	Schaffner	Modula6100	34384	15546	08/30/2014	<input checked="" type="checkbox"/>
CDN	Fischer Custom Communications	FCC-801-M3-25	37	9970	09/03/2014	<input checked="" type="checkbox"/>
Surge Generator	Schaffner	NSG 2050	200717-600LU	19991	04/01/2014	<input checked="" type="checkbox"/>
Impulse Network Plugin	Schaffner	PNW 2050	200711-601LU	19993	04/01/2014	<input checked="" type="checkbox"/>