

## JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101759

# FCC REPORT (WIFI)

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

## **Equipment Under Test (EUT)**

Product Name: Tablet

Model No.: Elite T8Plus

Trade mark: SKY DEVICES

FCC ID: 2ABOSSKYELIT8P

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 31 Aug., 2021

**Date of Test:** 31 Aug., to 28 Sep., 2021

Date of report issued: 29 Sep., 2021

Test Result: PASS\*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





**Version** 

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 29 Sep., 2021 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Mike DU

Test Engineer Tested by: Date: 29 Sep., 2021

Reviewed by: Date: 29 Sep., 2021

**Project Engineer** 





## **Contents**

|   |       |                                | Page                                   |
|---|-------|--------------------------------|----------------------------------------|
| 1 | cov   | /ER PAGE                       | 1                                      |
| 2 | VER   | SION                           | 2                                      |
| 3 | CON   | ITENTS                         | 3                                      |
| 4 |       | T SUMMARY                      |                                        |
|   | _     | IERAL INFORMATION              |                                        |
| 5 | GEN   | IERAL INFORMATION              | 5                                      |
|   | 5.1   | CLIENT INFORMATION             | 5                                      |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T.  | 5                                      |
|   | 5.3   | TEST ENVIRONMENT AND MODE      |                                        |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS   |                                        |
|   | 5.5   | MEASUREMENT UNCERTAINTY        |                                        |
|   | 5.6   | LABORATORY FACILITY            |                                        |
|   | 5.7   | LABORATORY LOCATION            |                                        |
|   | 5.8   | TEST INSTRUMENTS LIST          | 7                                      |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA | 8                                      |
|   | 6.1   | ANTENNA REQUIREMENT            | 8                                      |
|   | 6.2   | CONDUCTED EMISSION             | 9                                      |
|   | 6.3   | CONDUCTED OUTPUT POWER         | 12                                     |
|   | 6.4   | OCCUPY BANDWIDTH               | 13                                     |
|   | 6.5   | POWER SPECTRAL DENSITY         | 14                                     |
|   | 6.6   | BAND EDGE                      |                                        |
|   | 6.6.1 |                                |                                        |
|   | 6.6.2 |                                |                                        |
|   | 6.7   | SPURIOUS EMISSION              |                                        |
|   | 6.7.1 | 00.00000 =00000                |                                        |
|   | 6.7.2 | Radiated Emission Method       | 34                                     |
| 7 | TES   | T SETUP PHOTO                  | 41                                     |
| 8 | FUT   | CONSTRUCTIONAL DETAILS         | 42                                     |
| • |       |                                | ······································ |





4 Test Summary

| Test Items                                    | Section in CFR 47   | Test Data               | Result |
|-----------------------------------------------|---------------------|-------------------------|--------|
| Antenna requirement                           | 15.203 & 15.247 (b) | See Section 6.1         | Pass   |
| AC Power Line Conducted Emission              | 15.207              | See Section 6.2         | Pass   |
| Duty Cycle                                    | ANSI C63.10-2013    | Appendix A – 2.4G Wi-Fi | Pass   |
| Conducted Peak Output Power                   | 15.247 (b)(3)       | Appendix A – 2.4G Wi-Fi | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth | 15.247 (a)(2)       | Appendix A – 2.4G Wi-Fi | Pass   |
| Power Spectral Density                        | 15.247 (e)          | Appendix A – 2.4G Wi-Fi | Pass   |
| Conducted Band Edge                           | 45 247 (4)          | Appendix A – 2.4G Wi-Fi | Pass   |
| Radiated Band Edge                            | 15.247 (d)          | See Section 6.6.2       | Pass   |
| Conducted Spurious Emission                   | 15 205 8 15 200     | Appendix A – 2.4G Wi-Fi | Pass   |
| Radiated Spurious Emission                    | 15.205 & 15.209     | See Section 6.7.2       | Pass   |

#### Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





## 5 General Information

## 5.1 Client Information

| Applicant:                                                    | SKY PHONE LLC                                        |
|---------------------------------------------------------------|------------------------------------------------------|
| Address: 1348 Washington Av. Suite 350, Miami Beach, FL 33139 |                                                      |
| Manufacturer:                                                 | SKY PHONE LLC                                        |
| Address:                                                      | 1348 Washington Av. Suite 350, Miami Beach, FL 33139 |

## 5.2 General Description of E.U.T.

| Product Name:                                    | Tablet                                                                        |  |  |  |
|--------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|
| Model No.:                                       | Elite T8Plus                                                                  |  |  |  |
| Operation Frequency:                             | 2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)                                |  |  |  |
|                                                  | 2422MHz~2452MHz: 802.11n(HT40)                                                |  |  |  |
| Channel numbers:                                 | 11: 802.11b/802.11g/802.11(HT20)                                              |  |  |  |
|                                                  | 7: 802.11n(HT40)                                                              |  |  |  |
| Channel separation:                              | 5MHz                                                                          |  |  |  |
| Modulation technology: (IEEE 802.11b)            | Direct Sequence Spread Spectrum (DSSS)                                        |  |  |  |
| Modulation technology:<br>(IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM)                              |  |  |  |
| Data speed (IEEE 802.11b):                       | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                                                 |  |  |  |
| Data speed (IEEE 802.11g):                       | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps                  |  |  |  |
| Data speed (IEEE 802.11n):                       | Up to 150Mbps                                                                 |  |  |  |
| Antenna Type:                                    | Internal Antenna                                                              |  |  |  |
| Antenna gain:                                    | 1.5dBi                                                                        |  |  |  |
| Power supply:                                    | Rechargeable Li-ion Battery DC3.7V, 4000mAh                                   |  |  |  |
| AC adapter:                                      | Input: AC100-220V, 50/60Hz, 0.3A                                              |  |  |  |
| Test Commis Conditions                           | Output: DC 5.0V, 1500mA                                                       |  |  |  |
| Test Sample Condition:                           | The test samples were provided in good working order with no visible defects. |  |  |  |

| Operation Frequency each of channel for 802.11b/g/n(HT20) |           |         |           |         |           |         |           |
|-----------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                                                   | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                                         | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2                                                         | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3                                                         | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |

#### Note:

<sup>1.</sup> For 802.11n-HT40 mode, the channel number is from 3 to 9;

<sup>2.</sup> Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.



#### 5.3 Test environment and mode

| Operating Environment: |                                                         |
|------------------------|---------------------------------------------------------|
| Temperature:           | 24.0 °C                                                 |
| Humidity:              | 54 % RH                                                 |
| Atmospheric Pressure:  | 1010 mbar                                               |
| Test mode:             |                                                         |
| Transmitting mode      | Keep the EUT in continuous transmitting with modulation |

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

| Per-scan all kind of data rate, the follow list were the worst case. |          |  |  |  |  |
|----------------------------------------------------------------------|----------|--|--|--|--|
| Mode Data rate                                                       |          |  |  |  |  |
| 802.11b                                                              | 1Mbps    |  |  |  |  |
| 802.11g                                                              | 6Mbps    |  |  |  |  |
| 802.11n(HT20)                                                        | 6.5Mbps  |  |  |  |  |
| 802.11n(HT40)                                                        | 13.5Mbps |  |  |  |  |

## 5.4 Description of Support Units

The EUT has been tested as an independent unit.

### 5.5 Measurement Uncertainty

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | ±1.60 dB (k=2)       |
| Radiated Emission (9kHz ~ 30MHz)    | ±3.12 dB (k=2)       |
| Radiated Emission (30MHz ~ 1000MHz) | ±4.32 dB (k=2)       |
| Radiated Emission (1GHz ~ 18GHz)    | ±5.16 dB (k=2)       |
| Radiated Emission (18GHz ~ 40GHz)   | ±3.20 dB (k=2)       |

## 5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### • ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <a href="https://portal.a2la.org/scopepdf/4346-01.pdf">https://portal.a2la.org/scopepdf/4346-01.pdf</a>

## 5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.





## 5.8 Test Instruments list

| Radiated Emission:         |                 |                  |             |                        |                            |  |
|----------------------------|-----------------|------------------|-------------|------------------------|----------------------------|--|
| Test Equipment             | Manufacturer    | Model No.        | Serial No.  | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 3m SAC                     | ETS             | RFD-100          | Q1984       | 04-14-2021             | 04-13-2024                 |  |
| BiConiLog Antenna          | SCHWARZBECK     | VULB9163         | 9163-1246   | 03-07-2021             | 03-06-2022                 |  |
| Biconical Antenna          | SCHWARZBECK     | VUBA 9117        | 9117#359    | 06-17-2021             | 06-17-2022                 |  |
| Horn Antenna               | SCHWARZBECK     | BBHA9120D        | 912D-916    | 03-07-2021             | 03-06-2022                 |  |
| Broad-Band Horn<br>Antenna | SCHWARZBECK     | BBHA9170         | 1067        | 04-02-2021             | 04-01-2022                 |  |
| Broad-Band Horn<br>Antenna | SCHWARZBECK     | BBHA9170         | 1068        | 04-02-2021             | 04-01-2022                 |  |
| EMI Test Receiver          | Rohde & Schwarz | ESRP7            | 101070      | 03-03-2021             | 03-02-2022                 |  |
| Spectrum analyzer          | Rohde & Schwarz | FSP30            | 101454      | 03-03-2021             | 03-02-2022                 |  |
| Spectrum analyzer          | Keysight        | N9010B           | MY60240202  | 11-27-2020             | 11-26-2021                 |  |
| Simulated Station          | Anritsu         | MT8820C          | 6201026545  | 03-03-2021             | 03-02-2022                 |  |
| Low Pre-amplifier          | SCHWARZBECK     | BBV9743B         | 00305       | 03-07-2021             | 03-06-2022                 |  |
| High Pre-amplifier         | SKET            | LNPA_0118G-50    | MF280208233 | 03-07-2021             | 03-06-2022                 |  |
| Cable                      | Qualwave        | JYT3M-1G-NN-8M   | JYT3M-1     | 03-07-2021             | 03-06-2022                 |  |
| Cable                      | Qualwave        | JYT3M-18G-NN-8M  | JYT3M-2     | 03-07-2021             | 03-06-2022                 |  |
| Cable                      | Qualwave        | JYT3M-1G-BB-5M   | JYT3M-3     | 03-07-2021             | 03-06-2022                 |  |
| Cable                      | Bost            | JYT3M-40G-SS-8M  | JYT3M-4     | 04-02-2021             | 04-01-2022                 |  |
| EMI Test Software          | Tonscend        | TS+              |             | Version:3.0.0.1        |                            |  |
| 10m SAC                    | ETS             | RFSD-100-F/A     | Q2005       | 04-28-2021             | 04-27-2024                 |  |
| BiConiLog Antenna          | SCHWARZBECK     | VULB 9168        | 1249        | 04-02-2021             | 04-01-2022                 |  |
| BiConiLog Antenna          | SCHWARZBECK     | VULB 9168        | 1250        | 04-02-2021             | 04-01-2022                 |  |
| EMI Test Receiver          | R&S             | ESR 3            | 102800      | 04-08-2021             | 04-07-2022                 |  |
| EMI Test Receiver          | R&S             | ESR 3            | 102802      | 04-08-2021             | 04-07-2022                 |  |
| Low Pre-amplifier          | Bost            | LNA 0920N        | 2016        | 04-06-2021             | 04-05-2022                 |  |
| Low Pre-amplifier          | Bost            | LNA 0920N        | 2019        | 04-06-2021             | 04-05-2022                 |  |
| Cable                      | Bost            | JYT10M-1G-NN-10M | JYT10M-1    | 04-02-2021             | 04-01-2022                 |  |
| Cable                      | Bost            | JYT10M-1G-NN-10M | JYT10M-2    | 04-02-2021             | 04-01-2022                 |  |
| Test Software              | R&S             | EMC32            | \           | /ersion: 10.50.4       | 0                          |  |

| Conducted Emission: |                        |                |                    |               |            |  |
|---------------------|------------------------|----------------|--------------------|---------------|------------|--|
| Test Equipment      | Manufacturer Model No. | Serial No.     | Cal. Date          | Cal. Due date |            |  |
| • •                 |                        |                |                    | (mm-dd-yy)    | (mm-dd-yy) |  |
| EMI Test Receiver   | Rohde & Schwarz        | ESCI 3         | 101189             | 03-03-2021    | 03-02-2022 |  |
| LISN                | Rohde & Schwarz        | ENV432         | 101602             | 04-06-2021    | 04-05-2022 |  |
| LISN                | Rohde & Schwarz        | ESH3-Z5        | 843862/010         | 06-18-2020    | 06-17-2022 |  |
| ISN                 | Schwarzbeck            | CAT3 8158      | #96                | 03-03-2021    | 03-02-2022 |  |
| ISN                 | Schwarzbeck            | CAT5 8158      | #166               | 03-03-2021    | 03-02-2022 |  |
| ISN                 | Schwarzbeck            | NTFM 8158      | #126               | 03-03-2021    | 03-02-2022 |  |
| RF Switch           | TOP PRECISION          | RSU0301        | N/A                | 03-03-2021    | 03-02-2022 |  |
| Cable               | Bost                   | JYTCE-1G-NN-2M | JYTCE-1            | 03-03-2021    | 03-02-2022 |  |
| Cable               | Bost                   | JYTCE-1G-BN-3M | JYTCE-2            | 03-03-2021    | 03-02-2022 |  |
| EMI Test Software   | AUDIX                  | E3             | Version: 6.110919b |               |            |  |

| Conducted method:       |              |           |             |                         |                             |  |  |
|-------------------------|--------------|-----------|-------------|-------------------------|-----------------------------|--|--|
| Test Equipment          | Manufacturer | Model No. | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |  |
| Spectrum Analyzer       | Keysight     | N9010B    | MY60240202  | 11-27-2020              | 11-26-2021                  |  |  |
| Vector Signal Generator | Keysight     | N5182B    | MY59101009  | 11-27-2020              | 11-26-2021                  |  |  |
| Analog Signal Generator | Keysight     | N5173B    | MY59100765  | 11-27-2020              | 11-26-2021                  |  |  |
| Power Detector Box      | MWRF-test    | MW100-PSB | MW201020JYT | 11-27-2020              | 11-26-2021                  |  |  |





| Simulated Station            | Rohde & Schwarz | CMW270     | 102335           | 11-27-2020 | 11-26-2021 |
|------------------------------|-----------------|------------|------------------|------------|------------|
| RF Control Box               | MWRF-test       | MW100-RFCB | MW200927JYT      | N/A        | N/A        |
| PDU                          | MWRF-test       | XY-G10     | N/A              | N/A        | N/A        |
| DC Power Supply              | Keysight        | E3642A     | MY60296194       | 11-27-2020 | 11-26-2021 |
| Temperature Humidity Chamber | ZhongZhi        | CZ-C-150D  | ZH16491          | 11-01-2020 | 10-31-2021 |
| Test Software                | MWRF-tes        | MTS 8310   | Version: 2.0.0.0 |            |            |

## 6 Test results and Measurement Data

## 6.1 Antenna requirement

| Standard requirement: | FCC Part 15 C Section 15.203 /247( | b) |
|-----------------------|------------------------------------|----|
|                       |                                    |    |

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

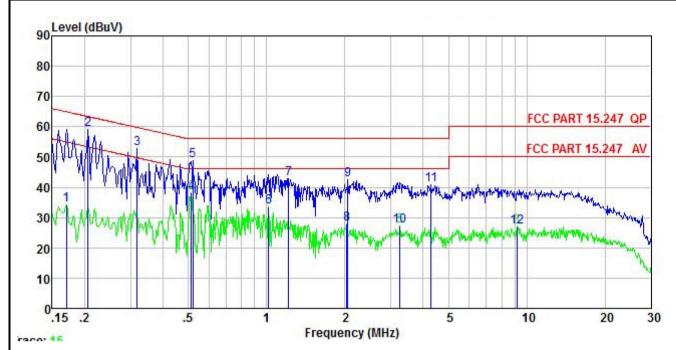
#### **E.U.T Antenna:**

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.5dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



## 6.2 Conducted Emission


|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | -             |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|--|--|
| Test Requirement:     | FCC Part 15 C Section 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 207                  |               |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |               |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |               |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |               |  |  |
| Limit:                | Fraguenov rango (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Limit (d             | dBuV)         |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quasi-peak           | Average       |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66 to 56*            | 56 to 46*     |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56                   | 46            |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                   | 50            |  |  |
|                       | * Decreases with the logarit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hm of the frequency. |               |  |  |
| Test procedure        | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement.</li> </ol> |                      |               |  |  |
| Test setup:           | LISN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st                   | er — AC power |  |  |
| Test Instruments:     | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |               |  |  |
| Test mode:            | Refer to section 5.3 for deta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ails                 |               |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |               |  |  |

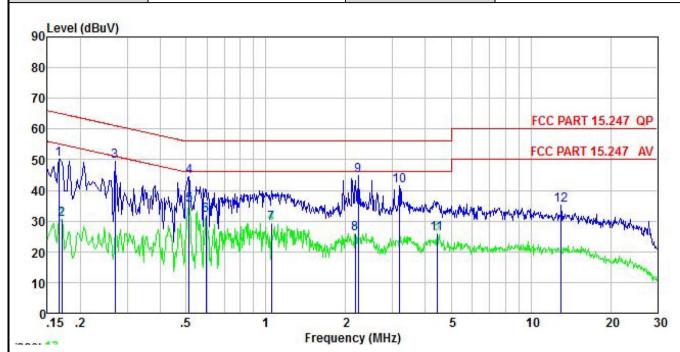
Page 9 of 42



#### **Measurement Data:**

| Product name:   | Tablet           | Product model: | Elite T8Plus          |
|-----------------|------------------|----------------|-----------------------|
| Test by:        | Mike             | Test mode:     | Wi-Fi Tx mode         |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Line                  |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp: 22.5℃ Huni: 55% |




|                                           | Freq  | Read<br>Level | LISN<br>Factor |           | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|-------|---------------|----------------|-----------|---------------|-------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| : <u>**</u>                               | MHz   | dBu∜          | <u>dB</u>      | <u>dB</u> | <u>ap</u>     | dBu∜  | dBu∜          | <u>ab</u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                         | 0.170 | 24.19         | 10.22          | -0.10     | 0.01          | 34.32 | 54.94         | -20.62        | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                                         | 0.206 | 49.09         | 10.23          | -0.17     | 0.04          | 59.19 | 63.36         | -4.17         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3                                         | 0.318 | 42.75         | 10.26          | -0.11     | 0.03          | 52.93 | 59.75         | -6.82         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4                                         | 0.513 | 28.10         | 10.29          | -0.35     | 0.03          | 38.07 | 46.00         | -7.93         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5                                         | 0.521 | 39.02         | 10.29          | -0.36     | 0.03          | 48.98 | 56.00         | -7.02         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6                                         | 1.016 | 22.70         | 10.32          | 0.44      | 0.05          | 33.51 | 46.00         | -12.49        | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7                                         | 1.216 | 32.32         | 10.32          | 0.24      | 0.10          | 42.98 | 56.00         | -13.02        | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8                                         | 2.033 | 17.80         | 10.33          | -0.32     | 0.20          | 28.01 | 46.00         | -17.99        | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 2.055 | 32.38         | 10.33          | -0.31     | 0.20          | 42.60 |               | -13.40        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                        | 3.258 | 16.83         | 10.36          | -0.16     | 0.07          | 27.10 | 46.00         | -18.90        | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11                                        | 4.292 | 30.51         | 10.40          | -0.01     | 0.08          | 40.98 |               | -15.02        | The state of the s |
| 12                                        | 9.156 | 14.44         | 10.57          | 1.80      | 0.11          | 26.92 |               |               | Äverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

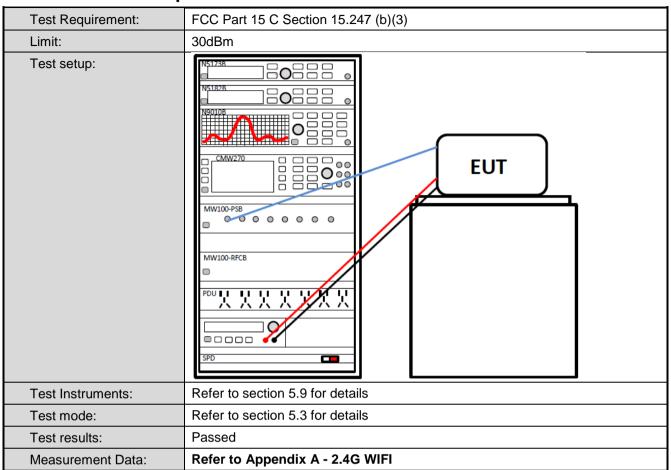
#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



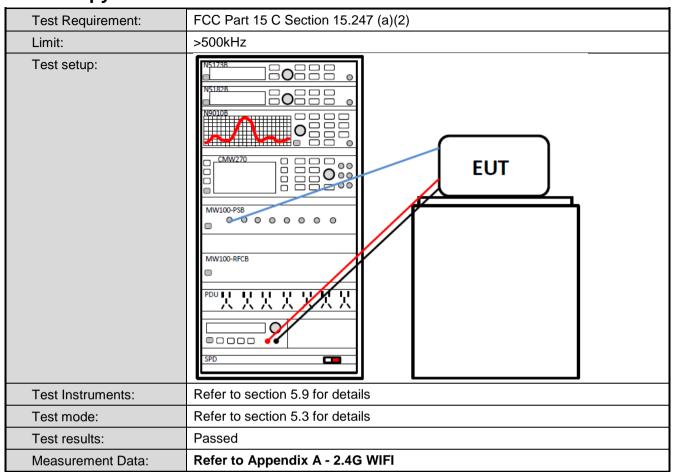
| Product name:   | Tablet           | Product model: | Elite T8Plus          |
|-----------------|------------------|----------------|-----------------------|
| Test by:        | Mike             | Test mode:     | Wi-Fi Tx mode         |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Neutral               |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp: 22.5℃ Huni: 55% |




|                                           | Freq   | Read<br>Level |           | Aux<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|--------|---------------|-----------|---------------|---------------|-------|---------------|---------------|---------|
| ,                                         | MHz    | dBu∜          | <u>dB</u> | <u>ab</u>     | <u>ap</u>     | —dBu√ | —dBu∜         | <u>ab</u>     |         |
| 1                                         | 0.166  | 39.99         | 10.20     | 0.01          | 0.01          | 50.21 | 65.16         | -14.95        | QP      |
| 2                                         | 0.170  | 20.28         | 10.20     | 0.01          | 0.01          | 30.50 | 54.94         | -24.44        | Average |
| 3                                         | 0.270  | 39.10         | 10.24     | 0.01          | 0.02          | 49.37 | 61.12         | -11.75        | QP      |
| 4                                         | 0.513  | 34.06         | 10.28     | 0.03          | 0.03          | 44.40 | 56.00         | -11.60        | QP      |
| 5                                         | 0.513  | 24.91         | 10.28     | 0.03          | 0.03          | 35.25 | 46.00         | -10.75        | Average |
| 6                                         | 0.595  | 21.68         | 10.29     | 0.04          | 0.02          | 32.03 | 46.00         | -13.97        | Average |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 1.049  | 18.65         | 10.31     | 0.09          | 0.06          | 29.11 | 46.00         | -16.89        | Average |
| 8                                         | 2.178  | 15.28         | 10.32     | 0.20          | 0.18          | 25.98 | 46.00         | -20.02        | Average |
| 9                                         | 2.237  | 34.18         | 10.33     | 0.21          | 0.17          | 44.89 | 56.00         | -11.11        | QP      |
| 10                                        | 3.190  | 30.62         | 10.35     | 0.36          | 0.07          | 41.40 | 56.00         | -14.60        | QP      |
| 11                                        | 4.430  | 14.85         | 10.39     | 0.58          | 0.08          | 25.90 | 46.00         | -20.10        | Average |
| 12                                        | 12.988 | 21.81         | 10.68     | 2.50          | 0.11          | 35.10 | 60.00         | -24.90        | QP      |

#### Notes:

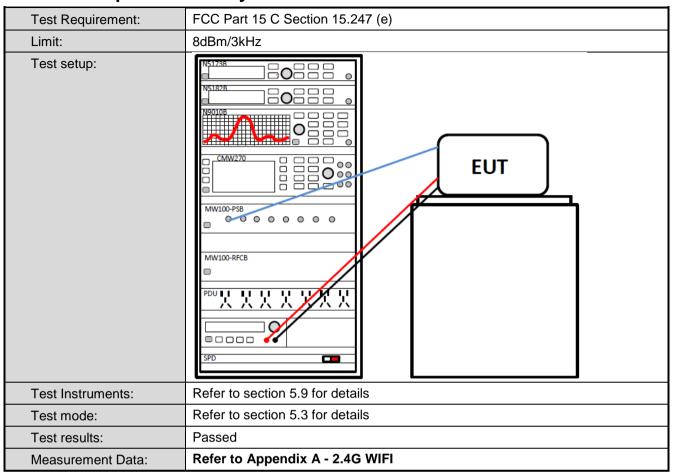
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.




## **6.3 Conducted Output Power**






## 6.4 Occupy Bandwidth



Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



## 6.5 Power Spectral Density



Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

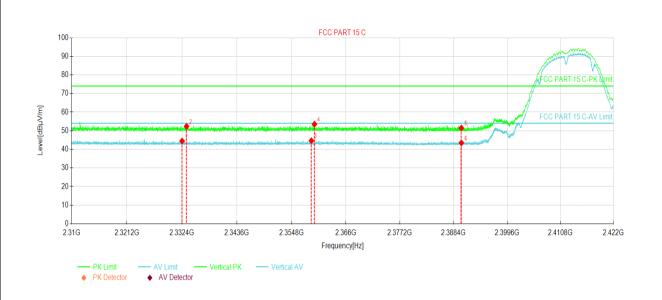


## 6.6 Band Edge

## 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Test setup:       | NS182B NS18B NS182B NS18B NS182B NS18B NS1B NS18B NS |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Measurement Data: | Refer to Appendix A - 2.4G WIFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |




### 6.6.2 Radiated Emission Method

| Test Requirement:     | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                        |                             |                      |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|-----------------------------|----------------------|--|--|--|
| Test Frequency Range: | 2310 MHz to 2390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) MHz and 24   | 83.5 MHz to 2          | 500 MHz                     |                      |  |  |  |
| Test Distance:        | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                        |                             |                      |  |  |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Detector       | RBW                    | VBW                         | Remark               |  |  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peak           | 1MHz                   | 3MHz                        | Peak Value           |  |  |  |
| Limit:                | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RMS            | 1MHz<br>nit (dBuV/m @  | 3MHz                        | Average Value Remark |  |  |  |
| LIIIII.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 54.00                  | OIII)                       | Average Value        |  |  |  |
|                       | Above 1GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 74.00                  |                             | Peak Value           |  |  |  |
| Test Procedure:       | <ol> <li>The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.</li> </ol> |                |                        |                             |                      |  |  |  |
|                       | 150cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Turntable)    | Ground Reference Plane | Antenna Antenna  Controller | Tower                |  |  |  |
| Test Instruments:     | Refer to section 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .9 for details |                        |                             |                      |  |  |  |
| Test mode:            | Refer to section 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .3 for details |                        |                             |                      |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                        |                             |                      |  |  |  |

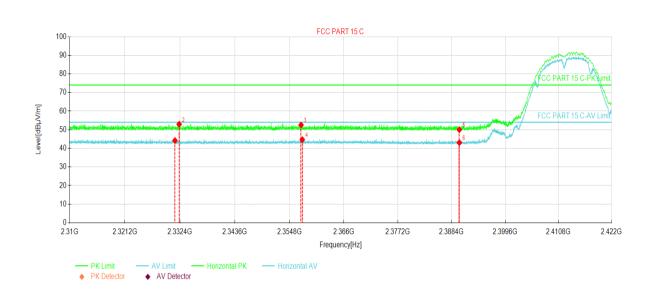


#### 802.11b mode:

| Product Name: | Tablet         | Product Model: | Elite T8Plus        |
|---------------|----------------|----------------|---------------------|
| Test By:      | Mike           | Test mode:     | 802.11b Tx mode     |
| Test Channel: | Lowest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |



| Suspected Data List∂ |         |           |           |        |           |         |        |           |
|----------------------|---------|-----------|-----------|--------|-----------|---------|--------|-----------|
| NO -                 | Freq.   | Reading   | Level     | Factor | Limit⊬    | Margin⊬ | Trace  | Doloritu  |
| NO.₽                 | [MHz]∂  | [dBµV/m]₽ | [dBµV/m]₽ | [dB]₽  | [dBµV/m]∂ | [dB]₽   | Trace₽ | Polarity∂ |
| 1₽                   | 2332.41 | 37.57₽    | 44.46₽    | 6.89₽  | 54.00₽    | 9.54₽   | AV₽    | Vertical₽ |
| 2↩                   | 2333.32 | 45.45₽    | 52.34₽    | 6.89₽  | 74.00₽    | 21.66₽  | PK₽    | Vertical₽ |
| 3₽                   | 2358.90 | 37.66₽    | 44.63₽    | 6.97₽  | 54.00₽    | 9.37₽   | AV₽    | Vertical₽ |
| 4₽                   | 2359.54 | 46.54₽    | 53.52₽    | 6.98₽  | 74.00₽    | 20.48₽  | PK₽    | Vertical₽ |
| 5₽                   | 2390.01 | 44.38₽    | 51.46₽    | 7.08₽  | 74.00₽    | 22.54₽  | PK₽    | Vertical₽ |
| 6₽                   | 2390.01 | 36.38₽    | 43.46₽    | 7.08₽  | 54.00₽    | 10.54₽  | AV₽    | Vertical₽ |


### Remark:

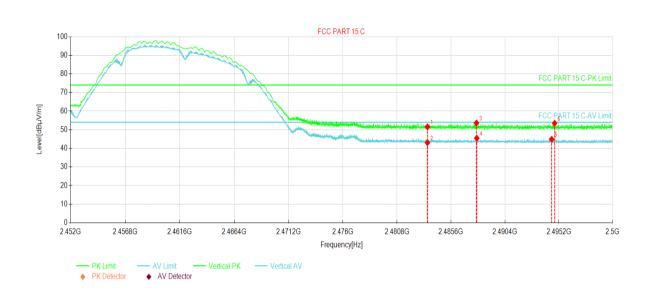
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Product Name: | Tablet         | Product Model: | Elite T8Plus         |
|---------------|----------------|----------------|----------------------|
| Test By:      | Mike           | Test mode:     | 802.11b Tx mode      |
| Test Channel: | Lowest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57% |




| Susp | Suspected Data List |           |           |        |           |         |        |             |  |
|------|---------------------|-----------|-----------|--------|-----------|---------|--------|-------------|--|
| NO - | Freq.⊌              | Reading   | Level     | Factor | Limit⊬    | Margin⊬ | Trace  | Delevitor   |  |
| NO.₽ | [MHz]∂              | [dBµV/m]₽ | [dBµV/m]₽ | [dB]∂  | [dBµV/m]∂ | [dB]∂   | Trace₽ | Polarity₽   |  |
| 1₽   | 2331.36             | 37.29₽    | 44.17₽    | 6.88₽  | 54.00₽    | 9.83₽   | AV₽    | Horizontal₽ |  |
| 2↩   | 2332.21             | 46.08₽    | 52.97₽    | 6.89₽  | 74.00₽    | 21.03₽  | PK₽    | Horizontal₽ |  |
| 3₽   | 2357.19             | 45.58₽    | 52.55₽    | 6.97₽  | 74.00₽    | 21.45₽  | PK₽    | Horizontal₽ |  |
| 4₽   | 2357.44             | 37.69₽    | 44.66₽    | 6.97₽  | 54.00₽    | 9.34₽   | AV₽    | Horizontal₽ |  |
| 5₽   | 2390.01             | 42.93₽    | 50.01₽    | 7.08₽  | 74.00₽    | 23.99₽  | PK₽    | Horizontal₽ |  |
| 6₽   | 2390.01             | 35.96₽    | 43.04₽    | 7.08₽  | 54.00₽    | 10.96₽  | AV₽    | Horizontal₽ |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 42



| Product Name: | Tablet          | Product Model: | Elite T8Plus         |
|---------------|-----------------|----------------|----------------------|
| Test By:      | Mike            | Test mode:     | 802.11b Tx mode      |
| Test Channel: | Highest channel | Polarization:  | Vertical             |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |



| Susp | Suspected Data List |                       |                     |                  |                     |                  |        |           |
|------|---------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| NO.₽ | Freq.↓<br>[MHz]↓    | Reading√<br>[dBµV/m]∞ | Level.<br>[dBµV/m]. | Factor⊬<br>[dB]⊬ | Limit⊍<br>[dBµV/m]⊍ | Margin↵<br>[dB]↵ | Trace₽ | Polarity  |
| 1₽   | 2483.50             | 43.87₽                | 51.56₽              | 7.69₽            | 74.00₽              | 22.44₽           | PK₽    | Vertical₽ |
| 2₽   | 2483.50             | 35.34₽                | 43.03₽              | 7.69₽            | 54.00₽              | 10.97₽           | AV₽    | Vertical₽ |
| 3₽   | 2487.86             | 45.90₽                | 53.62₽              | 7.72₽            | 74.00₽              | 20.38₽           | PK₽    | Vertical₽ |
| 4.₽  | 2487.89             | 37.70₽                | 45.42₽              | 7.72₽            | 54.00₽              | 8.58₽            | AV₽    | Vertical₽ |
| 5₽   | 2494.56             | 37.09₽                | 44.85₽              | 7.76₽            | 54.00₽              | 9.15₽            | AV₽    | Vertical₽ |
| 6↩   | 2494.82             | 45.73₽                | 53.49₽              | 7.76₽            | 74.00₽              | 20.51₽           | PK₽    | Vertical₽ |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

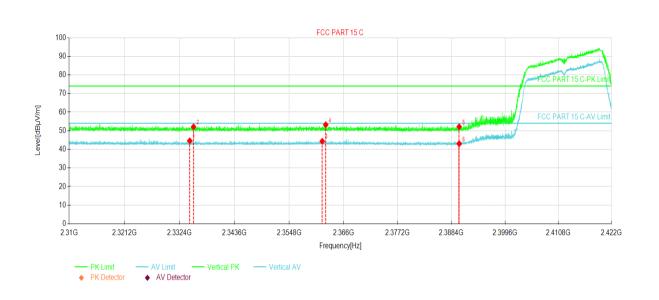
Page 19 of 42



| Product Name: | Tablet          | Product Model: | Elite T8Plus         |
|---------------|-----------------|----------------|----------------------|
| Test By:      | Mike            | Test mode:     | 802.11b Tx mode      |
| Test Channel: | Highest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |



| Suspe | Suspected Data List⊬ |           |           |        |           |         |        |               |
|-------|----------------------|-----------|-----------|--------|-----------|---------|--------|---------------|
| NO -  | Freq.⊌               | Reading   | Level     | Factor | Limit⊬    | Margin⊬ | Trace  | Doloritu      |
| NO.₽  | [MHz]∂               | [dBµV/m]₽ | [dBµV/m]∂ | [dB]∂  | [dBµV/m]∂ | [dB]∂   | Trace₽ | Polarity∂     |
| 1₽    | 2483.50              | 43.72₽    | 51.41₽    | 7.69₽  | 74.00₽    | 22.59₽  | PK₽    | Horizontale • |
| 2₽    | 2483.50              | 35.97₽    | 43.66₽    | 7.69₽  | 54.00₽    | 10.34₽  | AV₽    | Horizontale • |
| 3₽    | 2488.13              | 37.07₽    | 44.79₽    | 7.72₽  | 54.00₽    | 9.21₽   | AV₽    | Horizontal₽   |
| 4.₽   | 2488.79              | 45.93₽    | 53.65₽    | 7.72₽  | 74.00₽    | 20.35₽  | PK₽    | Horizontale • |
| 5₽    | 2494.00              | 36.68₽    | 44.44₽    | 7.76₽  | 54.00₽    | 9.56₽   | AV₽    | Horizontale • |
| 6₽    | 2494.15              | 45.26₽    | 53.02₽    | 7.76₽  | 74.00₽    | 20.98₽  | PK₽    | Horizontale - |


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 20 of 42

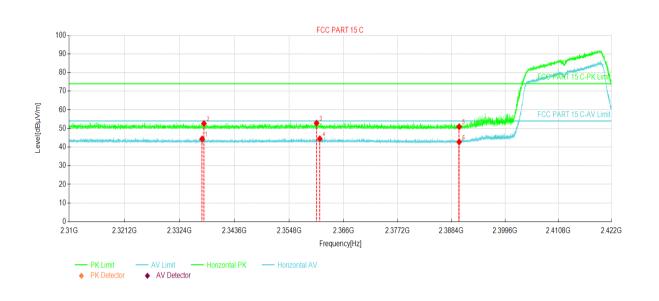


#### 802.11g mode:

| Product Name: | Tablet         | Product Model: | Elite T8Plus        |
|---------------|----------------|----------------|---------------------|
| Test By:      | Mike           | Test mode:     | 802.11g Tx mode     |
| Test Channel: | Lowest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |



| Susp | Suspected Data List∍ |                       |                     |                  |                     |                  |        |                       |  |
|------|----------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------------------|--|
| NO.₽ | Freq.√<br>[MHz]      | Reading√<br>[dBµV/m]∂ | Level.<br>[dBµV/m]. | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace∂ | Polarity∂             |  |
| 1₽   | 2334.45              | 37.69₽                | 44.58¢              | 6.89₽            | 54.00₽              | 9.42₽            | AV₽    | Vertical <sub>e</sub> |  |
| 2₽   | 2335.22              | 45.18₽                | 52.08₽              | 6.90₽            | 74.00₽              | 21.92₽           | PK₽    | Vertical₽             |  |
| 3₽   | 2361.60              | 37.38₽                | 44.36₽              | 6.98₽            | 54.00₽              | 9.64₽            | AV₽    | Vertical₽             |  |
| 4.₽  | 2362.33              | 46.22₽                | 53.21₽              | 6.99₽            | 74.00₽              | 20.79₽           | PK₽    | Vertical₽             |  |
| 5₽   | 2390.01              | 45.04₽                | 52.12₽              | 7.08₽            | 74.00₽              | 21.88₽           | PK₽    | Vertical₽             |  |
| 6₽   | 2390.01              | 35.93₽                | 43.01₽              | 7.08₽            | 54.00₽              | 10.99₽           | AV₽    | Vertical₽             |  |


#### Remark

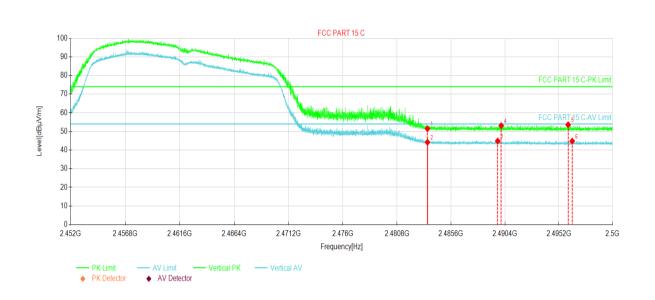
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 42



| Product Name: | Tablet         | Product Model: | Elite T8Plus         |
|---------------|----------------|----------------|----------------------|
| Test By:      | Mike           | Test mode:     | 802.11g Tx mode      |
| Test Channel: | Lowest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57% |




| Susp | Suspected Data List |                       |                     |                  |                     |                  |        |             |
|------|---------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| NO.₽ | Freq.⊬<br>[MHz]∂    | Reading√<br>[dBµV/m]∞ | Level.<br>[dBµV/m]. | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]∂ | Trace₽ | Polarity∉   |
| 1₽   | 2336.97             | 37.47₽                | 44.37₽              | 6.90₽            | 54.00₽              | 9.63₽            | AV₽    | Horizontal₽ |
| 2₽   | 2337.34             | 45.72₽                | 52.62₽              | 6.90₽            | 74.00₽              | 21.38₽           | PK₽    | Horizontal₽ |
| 3₽   | 2360.44             | 45.88₽                | 52.86₽              | 6.98₽            | 74.00₽              | 21.14₽           | PK₽    | Horizontal₽ |
| 4₽   | 2361.11             | 37.46₽                | 44.44₽              | 6.98₽            | 54.00₽              | 9.56₽            | AV₽    | Horizontal₽ |
| 5₽   | 2390.01             | 43.81₽                | 50.89₽              | 7.08₽            | 74.00₽              | 23.11₽           | PK₽    | Horizontal₽ |
| 6₽   | 2390.01             | 35.67₽                | 42.75₽              | 7.08₽            | 54.00₽              | 11.25₽           | AV₽    | Horizontal₽ |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 22 of 42



| Product Name: | Tablet          | Product Model: | Elite T8Plus         |
|---------------|-----------------|----------------|----------------------|
| Test By:      | Mike            | Test mode:     | 802.11g Tx mode      |
| Test Channel: | Highest channel | Polarization:  | Vertical             |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |



| Suspe | Suspected Data List∂ |           |           |        |           |         |        |           |  |
|-------|----------------------|-----------|-----------|--------|-----------|---------|--------|-----------|--|
| NO -  | Freq.⊌               | Reading   | Level     | Factor | Limit⊬    | Margin⊬ | Trace  | Dolority  |  |
| NO.₽  | [MHz]∂               | [dBµV/m]₽ | [dBµV/m]₽ | [dB]₽  | [dBµV/m]∂ | [dB]∂   | Trace₽ | Polarity∂ |  |
| 1₽    | 2483.50              | 43.76₽    | 51.45₽    | 7.69₽  | 74.00₽    | 22.55₽  | PK₽    | Vertical₽ |  |
| 2₽    | 2483.50              | 36.49₽    | 44.18₽    | 7.69₽  | 54.00₽    | 9.82₽   | AV₽    | Vertical₽ |  |
| 3₽    | 2489.75              | 37.14₽    | 44.87₽    | 7.73₽  | 54.00₽    | 9.13₽   | AV₽    | Vertical₽ |  |
| 4.₽   | 2490.07              | 45.38₽    | 53.11₽    | 7.73₽  | 74.00₽    | 20.89₽  | PK₽    | Vertical₽ |  |
| 5₽    | 2496.03              | 45.81₽    | 53.58₽    | 7.77₽  | 74.00₽    | 20.42₽  | PK₽    | Vertical₽ |  |
| 6₽    | 2496.40              | 37.03₽    | 44.81₽    | 7.78₽  | 54.00₽    | 9.19₽   | AV₽    | Vertical₽ |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

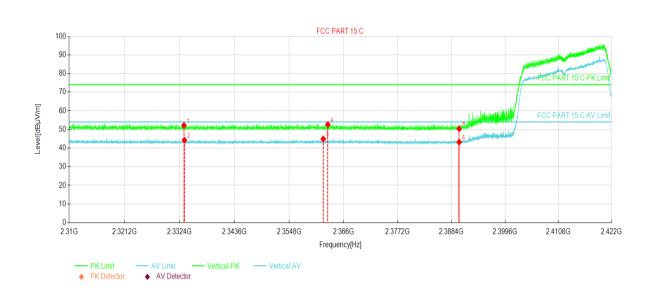
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Product Name: | Tablet          | Product Model: | Elite T8Plus         |
|---------------|-----------------|----------------|----------------------|
| Test By:      | Mike            | Test mode:     | 802.11g Tx mode      |
| Test Channel: | Highest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |



| Susp | Suspected Data List |                       |                    |                  |                     |                  |        |             |
|------|---------------------|-----------------------|--------------------|------------------|---------------------|------------------|--------|-------------|
| NO.₽ | Freq.⊬<br>[MHz]∂    | Reading√<br>[dBµV/m]∞ | Level<br>[dBµV/m]₽ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∉   |
| 1₽   | 2483.50             | 44.31₽                | 52.00₽             | 7.69₽            | 74.00₽              | 22.00₽           | PK₽    | Horizontal₽ |
| 2₽   | 2483.50             | 36.67₽                | 44.36₽             | 7.69₽            | 54.00₽              | 9.64₽            | AV₽    | Horizontal₽ |
| 3₽   | 2487.72             | 37.15₽                | 44.87₽             | 7.72₽            | 54.00₽              | 9.13₽            | AV₽    | Horizontal₽ |
| 4.₽  | 2488.01             | 46.41₽                | 54.13₽             | 7.72₽            | 74.00₽              | 19.87₽           | PK₽    | Horizontal₽ |
| 5₽   | 2494.30             | 37.20₽                | 44.96₽             | 7.76₽            | 54.00₽              | 9.04₽            | AV₽    | Horizontal₽ |
| 6₽   | 2494.46             | 45.04₽                | 52.80₽             | 7.76₽            | 74.00₽              | 21.20₽           | PK₽    | Horizontal₽ |


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 24 of 42



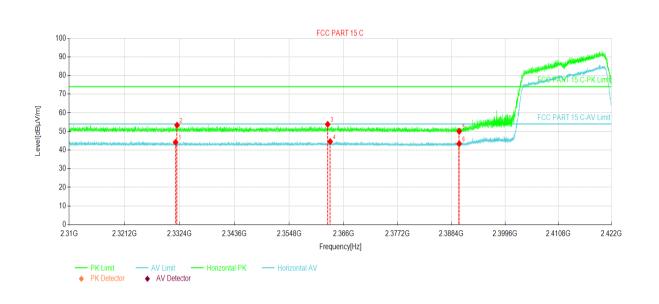
#### 802.11n(HT20):

| Product Name: | Tablet         | Product Model: | Elite T8Plus          |
|---------------|----------------|----------------|-----------------------|
| Test By:      | Mike           | Test mode:     | 802.11n(HT20) Tx mode |
| Test Channel: | Lowest channel | Polarization:  | Vertical              |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57%   |



| Susp | Suspected Data List∍ |           |           |        |           |         |        |           |
|------|----------------------|-----------|-----------|--------|-----------|---------|--------|-----------|
| NO.  | Freq.                | Reading   | Level     | Factor | Limit⊬    | Margin⊬ | Trace  | Doloritu  |
| NO.₽ | [MHz]∂               | [dBµV/m]₽ | [dBµV/m]₽ | [dB]₽  | [dBµV/m]∂ | [dB]₽   | Trace₽ | Polarity∂ |
| 1₽   | 2333.26              | 45.28₽    | 52.17₽    | 6.89₽  | 74.00₽    | 21.83₽  | PK₽    | Vertical₽ |
| 2↩   | 2333.38              | 37.34₽    | 44.23₽    | 6.89₽  | 54.00₽    | 9.77₽   | AV₽    | Vertical₽ |
| 3₽   | 2361.81              | 37.90₽    | 44.88₽    | 6.98₽  | 54.00₽    | 9.12₽   | AV₽    | Vertical₽ |
| 4.₽  | 2362.76              | 45.62₽    | 52.61₽    | 6.99₽  | 74.00₽    | 21.39₽  | PK₽    | Vertical₽ |
| 5₽   | 2390.01              | 43.20₽    | 50.28₽    | 7.08₽  | 74.00₽    | 23.72₽  | PK₽    | Vertical₽ |
| 6₽   | 2390.01              | 36.12₽    | 43.20₽    | 7.08₽  | 54.00₽    | 10.80₽  | AV₽    | Vertical₽ |

#### Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 25 of 42

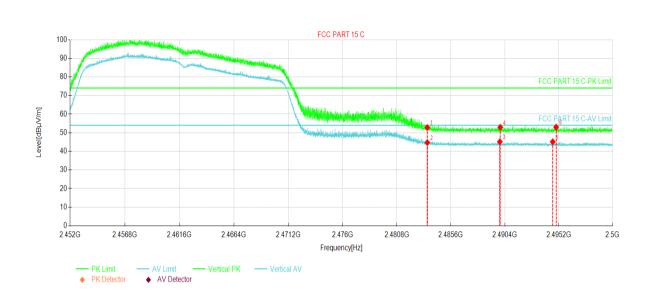
Project No.: JYTSZE2108127



| Product Name: | Tablet         | Product Model: | Elite T8Plus          |
|---------------|----------------|----------------|-----------------------|
| Test By:      | Mike           | Test mode:     | 802.11n(HT20) Tx mode |
| Test Channel: | Lowest channel | Polarization:  | Horizontal            |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57%  |



| Susp | Suspected Data List∍ |           |           |         |           |         |        |             |
|------|----------------------|-----------|-----------|---------|-----------|---------|--------|-------------|
| NO - | Freq.⊬               | Reading   | Level     | Factor⊬ | Limit⊬    | Margin⊬ | Trace  | Dolority    |
| NO.₽ | [MHz]∂               | [dBµV/m]₽ | [dBµV/m]₽ | [dB]∂   | [dBµV/m]∂ | [dB]₽   | Trace₽ | Polarity₽   |
| 1₽   | 2331.57              | 37.30₽    | 44.18₽    | 6.88₽   | 54.00₽    | 9.82₽   | AV₽    | Horizontal₽ |
| 2↩   | 2331.86              | 46.47₽    | 53.36₽    | 6.89₽   | 74.00₽    | 20.64₽  | PK₽    | Horizontal₽ |
| 3₽   | 2362.73              | 46.83₽    | 53.82₽    | 6.99₽   | 74.00₽    | 20.18₽  | PK₽    | Horizontal₽ |
| 4₽   | 2363.24              | 37.55₽    | 44.54₽    | 6.99₽   | 54.00₽    | 9.46₽   | AV₽    | Horizontal₽ |
| 5₽   | 2390.01              | 42.95₽    | 50.03₽    | 7.08₽   | 74.00₽    | 23.97₽  | PK₽    | Horizontal₽ |
| 6₽   | 2390.01              | 36.31₽    | 43.39₽    | 7.08₽   | 54.00₽    | 10.61₽  | AV₽    | Horizontal₽ |


#### Remark

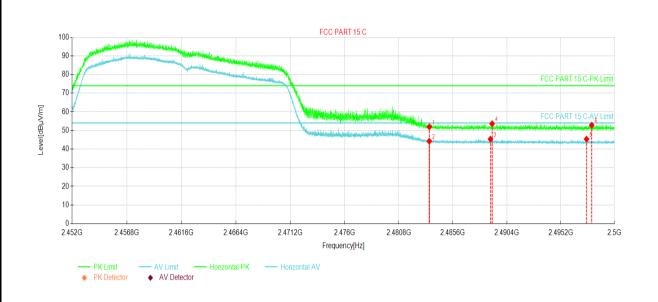
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 26 of 42



| Product Name: | Tablet          | Product Model: | Elite T8Plus          |
|---------------|-----------------|----------------|-----------------------|
| Test By:      | Mike            | Test mode:     | 802.11n(HT20) Tx mode |
| Test Channel: | Highest channel | Polarization:  | Vertical              |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57%   |




| Susp | ected Data | List∂     |           |         |           |         |        | -         |
|------|------------|-----------|-----------|---------|-----------|---------|--------|-----------|
| NO.₽ | Freq.      | Reading   | Level⊬    | Factor⊬ | Limitℯ    | Margin⊬ | Trace∂ | Polarity∂ |
| NO.₽ | [MHz]∂     | [dBµV/m]₽ | [dBµV/m]₽ | [dB]∂   | [dBµV/m]₽ | [dB]∂   | Hace   | Folality  |
| 1₽   | 2483.50    | 45.11₽    | 52.80₽    | 7.69₽   | 74.00₽    | 21.20₽  | PK₽    | Vertical₽ |
| 2₽   | 2483.50    | 37.02₽    | 44.71₽    | 7.69₽   | 54.00₽    | 9.29₽   | AV₽    | Vertical₽ |
| 3₽   | 2489.95    | 37.42₽    | 45.15₽    | 7.73₽   | 54.00₽    | 8.85₽   | AV₽    | Vertical₽ |
| 4.₽  | 2489.99    | 45.18₽    | 52.91₽    | 7.73₽   | 74.00₽    | 21.09₽  | PK₽    | Vertical₽ |
| 5₽   | 2494.66    | 37.36₽    | 45.12₽    | 7.76₽   | 54.00₽    | 8.88₽   | AV₽    | Vertical₽ |
| 6₽   | 2494.96    | 45.22₽    | 52.99₽    | 7.77₽   | 74.00₽    | 21.01₽  | PK₽    | Vertical₽ |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

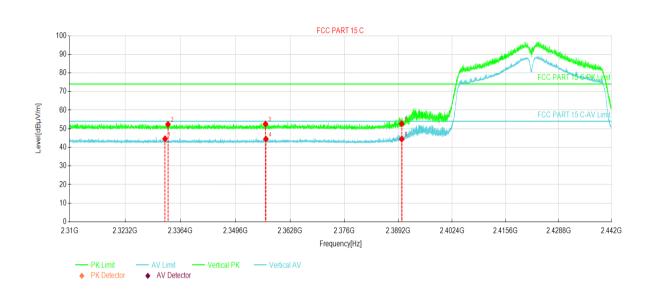
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Product Name: | Tablet          | Product Model: | Elite T8Plus          |
|---------------|-----------------|----------------|-----------------------|
| Test By:      | Mike            | Test mode:     | 802.11n(HT20) Tx mode |
| Test Channel: | Highest channel | Polarization:  | Horizontal            |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57%  |



| Suspected Data List |                  |                       |                     |                  |                     |                  |        | 4            |
|---------------------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|--------------|
| NO.₽                | Freq.⊬<br>[MHz]₽ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]⊲ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity     |
| 1₽                  | 2483.50          | 44.23₽                | 51.92₽              | 7.69₽            | 74.00₽              | 22.08₽           | PK₽    | Horizontal₽  |
| 2₄□                 | 2483.50          | 36.53₽                | 44.22₽              | 7.69₽            | 54.00₽              | 9.78₽            | AV₽    | Horizontal₽⊸ |
| 3₽                  | 2488.94          | 37.59₽                | 45.31₽              | 7.72₽            | 54.00₽              | 8.69₽            | AV₽    | Horizontal₽⊸ |
| 4₊□                 | 2489.08          | 45.87₽                | 53.59₽              | 7.72₽            | 74.00₽              | 20.41₽           | PK₽    | Horizontal₽⊸ |
| 5₽                  | 2497.50          | 37.55₽                | 45.33₽              | 7.78₽            | 54.00₽              | 8.67₽            | AV₽    | Horizontal₽⊸ |
| 6₽                  | 2497.96          | 45.00₽                | 52.79₽              | 7.79₽            | 74.00₽              | 21.21₽           | PK₽    | Horizontal₽⊸ |


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

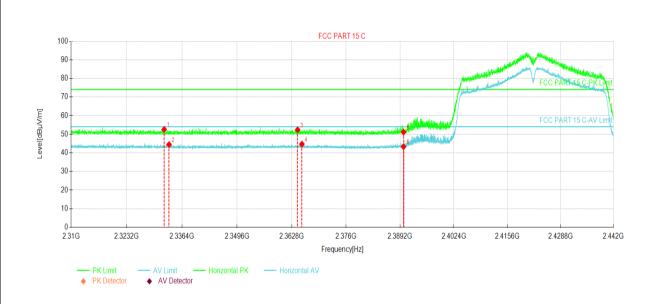


#### 802.11n(HT40):

| Product Name: | Tablet         | Product Model: | Elite T8Plus          |
|---------------|----------------|----------------|-----------------------|
| Test By:      | Mike           | Test mode:     | 802.11n(HT40) Tx mode |
| Test Channel: | Lowest channel | Polarization:  | Vertical              |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57%  |



| Suspected Data List |                  |                       |                     |                  |                     |                  |        | •         |
|---------------------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| NO.₽                | Freq.₽<br>[MHz]₽ | Reading√<br>[dBµV/m]∂ | Level⊬<br>[dBµV/m]⊬ | Factor⊬<br>[dB]⊮ | Limit⊬<br>[dBµV/m]⊮ | Margin⊬<br>[dB]∉ | Trace∂ | Polarity∂ |
| 1₽                  | 2332.72          | 37.71₽                | 44.60₽              | 6.89₽            | 54.00₽              | 9.40₽            | AV₽    | Vertical₽ |
| 2₽                  | 2333.43          | 45.45₽                | 52.34₽              | 6.89₽            | 74.00₽              | 21.66₽           | PK₽    | Vertical₽ |
| 3₽                  | 2356.87          | 45.55₽                | 52.52₽              | 6.97₽            | 74.00₽              | 21.48₽           | PK₽    | Vertical₽ |
| 4₽                  | 2356.97          | 37.52₽                | 44.49₽              | 6.97₽            | 54.00₽              | 9.51₽            | AV₽    | Vertical∉ |
| 5₽                  | 2390.02          | 45.56₽                | 52.64₽              | 7.08₽            | 74.00₽              | 21.36₽           | PK₽    | Vertical₽ |
| 6₽                  | 2390.02          | 37.37₽                | 44.45₽              | 7.08₽            | 54.00₽              | 9.55₽            | AV₽    | Vertical₽ |


#### Remark:

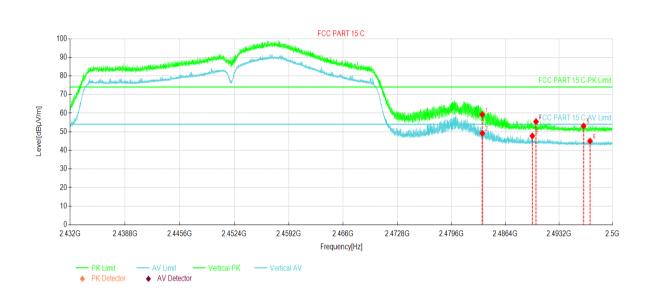
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 29 of 42



| Product Name: | Tablet         | Product Model: | Elite T8Plus          |
|---------------|----------------|----------------|-----------------------|
| Test By:      | Mike           | Test mode:     | 802.11n(HT40) Tx mode |
| Test Channel: | Lowest channel | Polarization:  | Horizontal            |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57%   |




| Susp | Suspected Data List |           |           |         |           |         |        |             |  |  |  |
|------|---------------------|-----------|-----------|---------|-----------|---------|--------|-------------|--|--|--|
| NO - | Freq.⊌              | Reading   | Level⊬    | Factor⊬ | Limit⊬    | Margin⊬ | Trace  | Delerity    |  |  |  |
| NO.₽ | [MHz]∂              | [dBµV/m]₽ | [dBµV/m]∂ | [dB]∂   | [dBµV/m]∂ | [dB]∂   | Trace∂ | Polarity∂   |  |  |  |
| 1₽   | 2332.12             | 45.68₽    | 52.57₽    | 6.89₽   | 74.00₽    | 21.43₽  | PK₽    | Horizontal. |  |  |  |
| 2₄□  | 2333.29             | 37.54₽    | 44.43₽    | 6.89₽   | 54.00₽    | 9.57₽   | AV₽    | Horizontal. |  |  |  |
| 3₽   | 2364.23             | 45.40₽    | 52.39₽    | 6.99₽   | 74.00₽    | 21.61₽  | PK₽    | Horizontal. |  |  |  |
| 4.₽  | 2365.27             | 37.68₽    | 44.68₽    | 7.00₽   | 54.00₽    | 9.32₽   | AV₄    | Horizontal. |  |  |  |
| 5↩   | 2390.02             | 44.03₽    | 51.11₽    | 7.08₽   | 74.00₽    | 22.89₽  | PK₽    | Horizontal. |  |  |  |
| 6₽   | 2390.02             | 36.23₽    | 43.31₽    | 7.08₽   | 54.00₽    | 10.69₽  | AV₽    | Horizontal₽ |  |  |  |

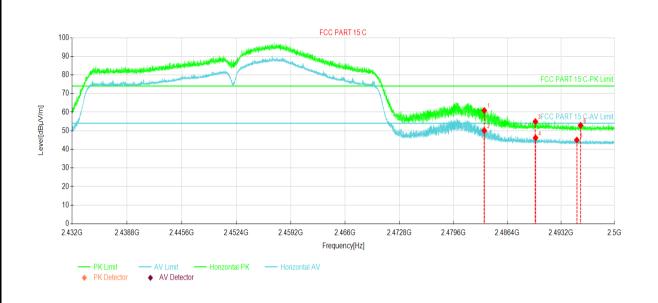
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 30 of 42



| Product Name: | Tablet          | Product Model: | Elite T8Plus          |
|---------------|-----------------|----------------|-----------------------|
| Test By:      | Mike            | Test mode:     | 802.11n(HT40) Tx mode |
| Test Channel: | Highest channel | Polarization:  | Vertical              |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57%  |




| Susp | Suspected Data List∂ |           |           |         |           |         |        |           |  |  |  |
|------|----------------------|-----------|-----------|---------|-----------|---------|--------|-----------|--|--|--|
| NO - | Freq.⊬               | Reading   | Level⊬    | Factor⊬ | Limit⊬    | Margin⊬ | Trace  | Doloritu  |  |  |  |
| NO.₽ | [MHz]∂               | [dBµV/m]₽ | [dBµV/m]₽ | [dB]∂   | [dBµV/m]∂ | [dB]∂   | Trace₽ | Polarity₽ |  |  |  |
| 1₽   | 2483.50              | 51.54₽    | 59.23₽    | 7.69₽   | 74.00₽    | 14.77₽  | PK₽    | Vertical₽ |  |  |  |
| 2↩   | 2483.50              | 41.46₽    | 49.15₽    | 7.69₽   | 54.00₽    | 4.85₽   | AV₽    | Vertical₽ |  |  |  |
| 3₽   | 2489.82              | 40.01₽    | 47.74₽    | 7.73₽   | 54.00₽    | 6.26₽   | AV₽    | Vertical₽ |  |  |  |
| 4₽   | 2490.29              | 47.69₽    | 55.42₽    | 7.73₽   | 74.00₽    | 18.58₽  | PK₽    | Vertical₽ |  |  |  |
| 5₽   | 2496.32              | 45.32₽    | 53.09₽    | 7.77₽   | 74.00₽    | 20.91₽  | PK₽    | Vertical₽ |  |  |  |
| 6₽   | 2497.14              | 37.21₽    | 44.99₽    | 7.78₽   | 54.00₽    | 9.01₽   | AV₽    | Vertical₽ |  |  |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 31 of 42



| Product Name: | Tablet          | Product Model: | Elite T8Plus          |  |
|---------------|-----------------|----------------|-----------------------|--|
| Test By:      | Mike            | Test mode:     | 802.11n(HT40) Tx mode |  |
| Test Channel: | Highest channel | Polarization:  | Horizontal            |  |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57%   |  |



| Susp | Suspected Data List |           |           |        |           |         |        |             |  |  |  |
|------|---------------------|-----------|-----------|--------|-----------|---------|--------|-------------|--|--|--|
| NO - | Freq.⊌              | Reading   | Level     | Factor | Limit⊬    | Margin⊬ | Trace  | Delerity    |  |  |  |
| NO.₽ | [MHz]∂              | [dBµV/m]∂ | [dBµV/m]∂ | [dB]∂  | [dBµV/m]∂ | [dB]∂   | Trace∂ | Polarity∂   |  |  |  |
| 1₽   | 2483.50             | 53.16₽    | 60.85₽    | 7.69₽  | 74.00₽    | 13.15₽  | PK₽    | Horizontal. |  |  |  |
| 2₽   | 2483.50             | 42.37₽    | 50.06₽    | 7.69₽  | 54.00₽    | 3.94₽   | AV₄    | Horizontal@ |  |  |  |
| 3₽   | 2489.96             | 47.17₽    | 54.90₽    | 7.73₽  | 74.00₽    | 19.10₽  | PK₽    | Horizontal@ |  |  |  |
| 4₽   | 2489.98             | 38.41₽    | 46.14₽    | 7.73₽  | 54.00₽    | 7.86₽   | AV₽    | Horizontal@ |  |  |  |
| 5₽   | 2495.21             | 37.23₽    | 45.00₽    | 7.77₽  | 54.00₽    | 9.00₽   | AV₽    | Horizontal@ |  |  |  |
| 6₽   | 2495.69             | 45.11₽    | 52.88₽    | 7.77₽  | 74.00₽    | 21.12₽  | PK₽    | Horizontal₽ |  |  |  |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

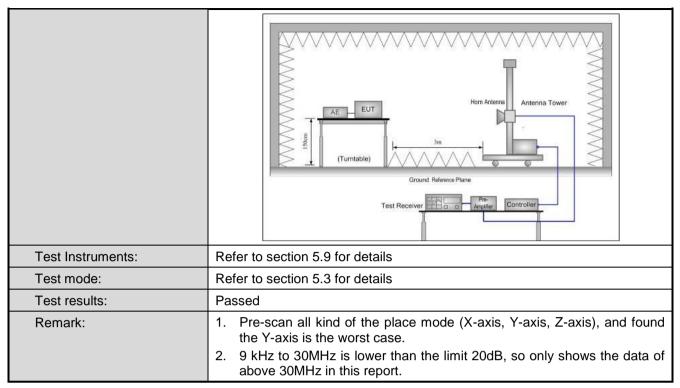
Page 32 of 42



## 6.7 Spurious Emission

## 6.7.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. |  |  |  |  |  |
| Test setup:       | NS1828 NS1828 NS1828 NS100PSB NMW100-PSB NMW100-PSB NMW100-PSB NMW100-PSB NMW100-PSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Measurement Data: | Refer to Appendix A - 2.4G WIFI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



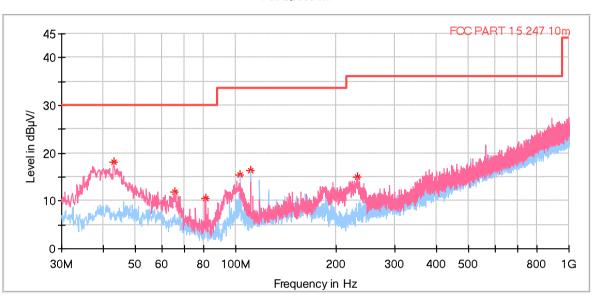
#### 6.7.2 Radiated Emission Method

| Test Requirement:     | Method<br>FCC Part 15 C Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ction 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .209 an                                                                                                                   | nd 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                          |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Frequency Range: | 9kHz to 25GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                          |  |
| Test Distance:        | 3m or 10m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                              |                                                                                                                                                                                                                                                                          |  |
| Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ctor                                                                                                                      | or RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   | BW                                                                                                           | Remark                                                                                                                                                                                                                                                                   |  |
| Receiver setup.       | 30MHz-1GHz Quasi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | 120KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   | 0KHz Quasi-peak Value                                                                                        |                                                                                                                                                                                                                                                                          |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                              |                                                                                                              | Peak Value                                                                                                                                                                                                                                                               |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S                                                                                                                         | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31                                                                                                                | ЛНz                                                                                                          | Average Value                                                                                                                                                                                                                                                            |  |
| Limit:                | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit                                                                                                                     | (dBuV/m @10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )m)                                                                                                               |                                                                                                              | Remark                                                                                                                                                                                                                                                                   |  |
|                       | 30MHz-88MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                              | uasi-peak Value                                                                                                                                                                                                                                                          |  |
|                       | 88MHz-216MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | 33.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | Quasi-peak Value                                                                                             |                                                                                                                                                                                                                                                                          |  |
|                       | 216MHz-960M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | 36.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   |                                                                                                              | uasi-peak Value                                                                                                                                                                                                                                                          |  |
|                       | 960MHz-1GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limi                                                                                                                      | 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m)                                                                                                                | Q                                                                                                            | uasi-peak Value                                                                                                                                                                                                                                                          |  |
|                       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LITTII                                                                                                                    | t (dBuV/m @3i<br>54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111)                                                                                                              |                                                                                                              | Remark<br>Average Value                                                                                                                                                                                                                                                  |  |
|                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                           | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                   | ,                                                                                                            | Peak Value                                                                                                                                                                                                                                                               |  |
| Test Procedure:       | 1. The EUT wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | as place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ed on                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a rot                                                                                                             | tating                                                                                                       | table 0.8m(below                                                                                                                                                                                                                                                         |  |
| Test Procedure:       | 1GHz)/1.5m(a (below 1GHz) 360 degrees 2. The EUT was away from the top of a visual 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to maximum reasonable 5. The test-rece Specified Bar 6. If the emission limit specified the EUT would see the surface of the s | above 10) or 3 me to detern s set 10 he interfe ariable-he height is termine the divertical t. pected e antenna table was ading. He will be repwould be would be would be set to determine the diversity of the set to determine the lettermine the le | GHz) a ter cha mine the meters rence-leight a varied he max turned em was turned with Maf the El sting corted. (e) re-tes | above the grounder (above eposition of the solution of the solution) and the solution of the s | ound 1GHz the hid z) or enna, the ter to of the ante as arr es fror ees to Dete Mode word ar eed ar ee emis ne us | at a 1 z). The ghest r 3 me which of our m field sinna are co 360 c ct Funce. was 10 and the pssions ing pea | O meter chamber table was rotated adiation. ters(above 1GHz) was mounted on meters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the extinuation and dB lower than the peak values of that did not have tak, quasi-peak or |  |
| Test setup:           | Below 1GHz  FUT  Turn Table  Ground Pla  Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10m ∢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i></i>                                                                                                           |                                                                                                              | nna Tower<br>h<br>nna                                                                                                                                                                                                                                                    |  |





Page 35 of 42




#### Measurement Data (worst case):

#### **Below 1GHz:**

| Product Name:   | Tablet         | Product Model: | Elite T8Plus          |  |
|-----------------|----------------|----------------|-----------------------|--|
| Test By:        | Mike           | Test mode:     | Wi-Fi Tx mode         |  |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Vertical & Horizontal |  |
| Test Voltage:   | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57%   |  |





## Critical\_Freqs.

| • | Frequency↓<br>(MHz)√ | MaxPeak↓<br>(dB µ V/m)₽ | Limit↓<br>(dB <b>μ V</b> /m)∂ | Margin↓<br>(dB)∉ | Height↓<br>(cm)⊬ | Pol₽ | Azimuth↓<br>(deg)∂ | Corr.↓<br>(dB/m)√ |
|---|----------------------|-------------------------|-------------------------------|------------------|------------------|------|--------------------|-------------------|
| F | 43.095000₽           | 18.11₽                  | 30.00₽                        | 11.89₽           | 100.0₽           | V₽   | 174.0₽             | -15.7↔            |
|   | 65.502000↔           | 11.85₽                  | 30.00₽                        | 18.15₽           | 100.0↩           | V₽   | 126.0₽             | -17.4₽            |
| • | 81.0220004           | 10.57₽                  | 30.00₽                        | 19.43₽           | 100.0₽           | V₽   | 0.0₽               | -20.1↔            |
| F | 103.138000₽          | 15.36₽                  | 33.50₽                        | 18.14₽           | 100.0₽           | H₽   | 259.0₽             | -18.6₽            |
| • | 110.5100004          | 16.27₽                  | 33.50₽                        | 17.23₽           | 100.0↵           | H₽   | 252.0₽             | -18.0∤            |
|   | 231.566000₽          | 15.03₽                  | 36.00₽                        | 20.97₽           | 100.0↵           | V₽   | 84.0₽              | -16.2∢            |

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





#### **Above 1GHz**

| Above 1GHz           |                      |              |                   |                        |                |              |  |
|----------------------|----------------------|--------------|-------------------|------------------------|----------------|--------------|--|
|                      |                      |              | 802.11b           |                        |                |              |  |
|                      |                      | Test ch      | annel: Lowest ch  | nannel                 |                |              |  |
| Detector: Peak Value |                      |              |                   |                        |                |              |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV) | Factor(dB)   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4824.00              | 59.85                | -9.46        | 50.39             | 74.00                  | 23.61          | Vertical     |  |
| 4824.00              | 58.03                | -9.46        | 48.57             | 74.00                  | 25.43          | Horizontal   |  |
|                      |                      | Dete         | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV) | Factor(dB)   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4824.00              | 56.93                | -9.46        | 47.47             | 54.00                  | 6.53           | Vertical     |  |
| 4824.00              | 52.77                | -9.46        | 43.31             | 54.00                  | 10.69          | Horizontal   |  |
|                      |                      | <del>-</del> |                   |                        |                |              |  |
|                      |                      |              | annel: Middle ch  |                        |                |              |  |
|                      |                      | Det          | tector: Peak Valu |                        | B.4            |              |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV) | Factor(dB)   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4874.00              | 60.03                | -9.11        | 50.92             | 74.00                  | 23.08          | Vertical     |  |
| 4874.00              | 58.18                | -9.11        | 49.07             | 74.00                  | 24.93          | Horizontal   |  |
|                      |                      | Dete         | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV) | Factor(dB)   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4874.00              | 56.55                | -9.11        | 47.44             | 54.00                  | 6.56           | Vertical     |  |
| 4874.00              | 53.09                | -9.11        | 43.98             | 54.00                  | 10.02          | Horizontal   |  |
|                      |                      | Test cha     | annel: Highest cl | hannel                 |                |              |  |
|                      |                      | Det          | tector: Peak Valu | ie                     |                |              |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV) | Factor(dB)   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4924.00              | 59.60                | -8.74        | 50.86             | 74.00                  | 23.14          | Vertical     |  |
| 4924.00              | 57.89                | -8.74        | 49.15             | 74.00                  | 24.85          | Horizontal   |  |
|                      |                      | Dete         | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)   | Read Level<br>(dBuV) | Factor(dB)   | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4924.00              | 56.09                | -8.74        | 47.35             | 54.00                  | 6.65           | Vertical     |  |
| 4924.00              | 52.63                | -8.74        | 43.89             | 54.00                  | 10.11          | Horizontal   |  |

#### Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

<sup>1.</sup> Final Level = Receiver Read level + Factor.

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





| 802.11g                      |                      |            |                   |                        |                |              |  |
|------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|
| Test channel: Lowest channel |                      |            |                   |                        |                |              |  |
|                              | Detector: Peak Value |            |                   |                        |                |              |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4824.00                      | 59.19                | -9.46      | 49.73             | 74.00                  | 24.27          | Vertical     |  |
| 4824.00                      | 57.90                | -9.46      | 48.44             | 74.00                  | 25.56          | Horizontal   |  |
|                              |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4824.00                      | 55.89                | -9.46      | 46.43             | 54.00                  | 7.57           | Vertical     |  |
| 4824.00                      | 52.40                | -9.46      | 42.94             | 54.00                  | 11.06          | Horizontal   |  |
|                              |                      |            |                   |                        |                |              |  |
|                              |                      |            | 1 84: 1 11 1      |                        |                |              |  |

|   |                      |                      | Test ch    | annel: Middle ch  | annel                  |                |              |  |  |
|---|----------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|--|
|   | Detector: Peak Value |                      |            |                   |                        |                |              |  |  |
|   | Frequency<br>(MHz)   | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| ſ | 4874.00              | 58.94                | -9.11      | 49.83             | 74.00                  | 24.17          | Vertical     |  |  |
| ſ | 4874.00              | 57.78                | -9.11      | 48.67             | 74.00                  | 25.33          | Horizontal   |  |  |
| I |                      |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |  |
|   | Frequency<br>(MHz)   | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| Ī | 4874.00              | 55.42                | -9.11      | 46.31             | 54.00                  | 7.69           | Vertical     |  |  |
| I | 4874.00              | 52.05                | -9.11      | 42.94             | 54.00                  | 11.06          | Horizontal   |  |  |
|   |                      |                      |            |                   |                        |                |              |  |  |

| Test channel: Highest channel |                      |            |                   |                        |                |              |  |  |
|-------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|--|
| Detector: Peak Value          |                      |            |                   |                        |                |              |  |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4924.00                       | 59.23                | -8.74      | 50.49             | 74.00                  | 23.51          | Vertical     |  |  |
| 4924.00                       | 58.09                | -8.74      | 49.35             | 74.00                  | 24.65          | Horizontal   |  |  |
| Detector: Average Value       |                      |            |                   |                        |                |              |  |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4924.00                       | 55.65                | -8.74      | 46.91             | 54.00                  | 7.09           | Vertical     |  |  |
| 4924.00                       | 52.47                | -8.74      | 43.73             | 54.00                  | 10.27          | Horizontal   |  |  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





|                    |                      |            | 802.11n(HT20)     |                        |                |              |
|--------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|
|                    |                      |            | annel: Lowest ch  |                        |                |              |
|                    | T                    | Det        | tector: Peak Valu |                        | T              | T            |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4824.00            | 58.81                | -9.46      | 49.35             | 74.00                  | 24.65          | Vertical     |
| 4824.00            | 57.82                | -9.46      | 48.36             | 74.00                  | 25.64          | Horizontal   |
|                    |                      | Dete       | ctor: Average Va  | lue                    |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4824.00            | 55.71                | -9.46      | 46.25             | 54.00                  | 7.75           | Vertical     |
| 4824.00            | 52.16                | -9.46      | 42.70             | 54.00                  | 11.30          | Horizontal   |
|                    |                      |            |                   |                        |                |              |
|                    |                      |            | annel: Middle ch  |                        |                |              |
|                    |                      | Det        | ector: Peak Valu  | ie                     | T              |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4874.00            | 59.23                | -9.11      | 50.12             | 74.00                  | 23.88          | Vertical     |
| 4874.00            | 57.98                | -9.11      | 48.87             | 74.00                  | 25.13          | Horizontal   |
|                    |                      | Dete       | ctor: Average Va  | lue                    |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4874.00            | 56.19                | -9.11      | 47.08             | 54.00                  | 6.92           | Vertical     |
| 4874.00            | 51.85                | -9.11      | 42.74             | 54.00                  | 11.26          | Horizontal   |
|                    |                      |            |                   |                        |                |              |
|                    |                      | Test cha   | annel: Highest ch | nannel                 |                |              |
|                    |                      | Det        | ector: Peak Valu  | ıe                     |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4924.00            | 59.38                | -8.74      | 50.64             | 74.00                  | 23.36          | Vertical     |
| 4924.00            | 58.33                | -8.74      | 49.59             | 74.00                  | 24.41          | Horizontal   |
|                    |                      | Dete       | ctor: Average Va  | lue                    |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4924.00            | 55.86                | -8.74      | 47.12             | 54.00                  | 6.88           | Vertical     |
| 4924.00            | 52.29                | -8.74      | 43.55             | 54.00                  | 10.45          | Horizontal   |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





|                    |                      |            | 802.11n(HT40)     |                        |                |              |
|--------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|
|                    |                      | Test ch    | annel: Lowest ch  | nannel                 |                |              |
|                    | 1                    | Det        | tector: Peak Valu |                        | 1              |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4844.00            | 58.84                | -9.32      | 49.52             | 74.00                  | 24.48          | Vertical     |
| 4844.00            | 58.61                | -9.32      | 49.29             | 74.00                  | 24.71          | Horizontal   |
|                    |                      | Dete       | ctor: Average Va  | lue                    |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4844.00            | 55.51                | -9.32      | 46.19             | 54.00                  | 7.81           | Vertical     |
| 4844.00            | 52.09                | -9.32      | 42.77             | 54.00                  | 11.23          | Horizontal   |
|                    |                      |            |                   |                        |                |              |
|                    |                      | Test ch    | annel: Middle ch  | annel                  |                |              |
|                    |                      | Det        | tector: Peak Valu | ie                     |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4874.00            | 58.98                | -9.11      | 49.87             | 74.00                  | 24.13          | Vertical     |
| 4874.00            | 58.27                | -9.11      | 49.16             | 74.00                  | 24.84          | Horizontal   |
|                    |                      | Dete       | ctor: Average Va  | lue                    |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4874.00            | 55.56                | -9.11      | 46.45             | 54.00                  | 7.55           | Vertical     |
| 4874.00            | 52.48                | -9.11      | 43.37             | 54.00                  | 10.63          | Horizontal   |
|                    |                      | Tost ob    | annel: Highest cl | aannal                 |                |              |
|                    |                      |            | tector: Peak Valu |                        |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4904.00            | 59.02                | -8.90      | 50.12             | 74.00                  | 23.88          | Vertical     |
| 4904.00            | 58.56                | -8.90      | 49.66             | 74.00                  | 24.34          | Horizontal   |
| 4004.00            | 00.00                | L          | ctor: Average Va  |                        | 24.04          | Tionzontai   |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
|                    | ` ′                  | 0.00       | 46.81             | 54.00                  | 7.19           | Vertical     |
| 4904.00            | 55.71                | -8.90      | 40.01             | J <del>1</del> .00     | 1.13           | v Ci licai   |

<sup>1.</sup> Final Level = Receiver Read level + Factor.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.