

Excellence in Compliance Testing

Certification Exhibit

FCC ID: 2ABLX-150017

FCC Rule Part: 15.247

ACS Project Number: 15-0410

Manufacturer: Qmotion Incorporated
Model: QM150017

RF Exposure

General Information:

Applicant: Qmotion Incorporated
 Device Category: Mobile
 Environment: General Population/Uncontrolled Exposure

Technical Information:

Antenna Type: Wire Antenna
 Antenna Gain: 0dBi
 Maximum Transmitter Conducted Power: 19.47 dBm, 88.51 mW
 Maximum System EIRP: 19.47 dBm, 88.51 mW
 Exposure Conditions: Greater than 20 centimeters

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

MPE Calculator for Mobile Equipment Limits for General Population/Uncontrolled Exposure*							
Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm ²)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm ²)
2440	19.47	1.00	88.51	0	1.000	20	0.018