

Testing Tomorrow's Technology

Application

For

**Part 2, Subpart J, Paragraph 2.907 Equipment Authorization of Certification for an
Intentional Radiator per Part 15, Subpart C, paragraphs 15.207, 15.209 and 15.247**

And

RSS-247 Issue 1 For Industry Canada

For the

Qmotion Incorporated

Model: QM140704

**FCC ID: 2ABLX-140704
IC:8832A-140704**

**UST Project: 15-0312
Issue Date: January 5, 2015**

Total Pages in This Report: 55

**3505 Francis Circle Alpharetta, GA 30004
PH: 770-740-0717 Fax: 770-740-1508
www.ustech-lab.com**

Testing Tomorrow's Technology

I certify that I am authorized to sign for the Test Agency and that all of the statements in this report and in the Exhibits attached hereto are true and correct to the best of my knowledge and belief:

US TECH (Agent Responsible For Test):

By: Alan Ghasiani

Name: Alan Ghasiani

Title: Compliance Engineer – President

Date January 5, 2015

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of US Tech. The results contained in this report are subject to the adequacy and representative character of the sample provided. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the Federal Government.

**3505 Francis Circle Alpharetta, GA 30004
PH: 770-740-0717 Fax: 770-740-1508
www.ustech-lab.com**

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABlx-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

MEASUREMENT TECHNICAL REPORT

COMPANY NAME: Qmotion Incorporated

MODEL: QM140704

FCC ID: 2ABlx-140704

IC: 8832A-140704

DATE: January 5, 2015

This report concerns (check one): Original grant Class II change

Equipment type: 2405-2480 MHz Transmitter Module

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? yes No

If yes, defer until: N/A
date

agrees to notify the Commission by N/A
date

of the intended date of announcement of the product so that the grant can be issued on that date.

Report prepared by:

US Tech
3505 Francis Circle
Alpharetta, GA 30004

Phone Number: (770) 740-0717
Fax Number: (770) 740-1508

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2ABLX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

Table of Contents

<u>Paragraph</u>	<u>Title</u>	<u>Page</u>
1 General Information		7
1.1 Purpose of this Report.....		7
1.2 Characterization of Test Sample		7
1.3 Product Description		7
1.4 Configuration of Tested System		8
1.5 Test Facility		8
1.6 Related Submittals		8
2 Tests and Measurements		10
2.1 Test Equipment		10
2.2 Modifications to EUT Hardware.....		11
2.3 Number of Measurements for Intentional Radiators (15.31(m))		11
2.4 Frequency Range of Radiated Measurements (Part 15.33)		11
2.4.1 Intentional Radiator.....		11
2.4.2 Unintentional Radiator		12
2.5 Measurement Detector Function and Bandwidth (CFR 15.35)		12
2.5.1 Detector Function and Associated Bandwidth		12
2.5.2 Corresponding Peak and Average Requirements.....		12
2.5.3 Pulsed Transmitter Averaging.....		12
2.6 EUT Antenna Requirements (CFR 15.203)		13
2.7 Restricted Bands of Operation (Part 15.205).....		14
2.8 Transmitter Duty Cycle (CFR 35 (c))		14
2.9 Intentional Radiator, Power Line Conducted Emissions (CFR 15.207)		15
2.10 Intentional Radiator, Radiated Emissions (CFR 15.209, 15.247(d)) (IC RSS 210, A2.9 (a))		15
2.11 Band Edge Measurements – (CFR 15.247 (d)).....		29
2.12 Six (6) dB Bandwidth per CFR 15.247(a)(2),.....		38
2.13 99% Occupied Bandwidth (IC RSS 247 5.7 & 5.2).....		42
2.14 Maximum Peak Conducted Output Power (CFR 15.247 (b) (3))		43
2.15 Power Spectral Density (CFR 15.247(e)) (IC RSS 247 5.1 & 5.2).....		47
2.16 Unintentional Radiator, Powerline Emissions (CFR 15.107)		51
2.17 Unintentional Radiator, Radiated Emissions (CFR 15.109).....		52
2.18 Measurement Uncertainty		55
2.18.1 Conducted Emissions Measurement Uncertainty		55
2.18.2 Radiated Emissions Measurement Uncertainty		55

US Tech Test Report: FCC Part 15 Certification/ RSS 247
FCC ID: 2AB LX-140704
IC: 8832A-140704
Test Report Number: 15-0312
Issue Date: January 5, 2015
Customer: Qmotion Incorporated
Model: QM140704

List of Figures

<u>Figures</u>	<u>Title</u>	<u>Page</u>
Figure 1.	Block Diagram of Test Configuration	13
Figure 2.	Antenna Conducted Emissions Low, Part 1	17
Figure 3.	Antenna Conducted Emissions Low, Part 2	18
Figure 4.	Antenna Conducted Emissions Low, Part 3	19
Figure 5.	Antenna Conducted Emissions Mid, Part 1	20
Figure 6.	Antenna Conducted Emissions Mid, Part 2	21
Figure 7.	Antenna Conducted Emissions Mid, Part 3	22
Figure 8.	Antenna Conducted Emissions High, Part 1	23
Figure 9.	Antenna Conducted Emissions High, Part 2	24
Figure 10.	Antenna Conducted Emissions High, Part 3	25
Figure 11.	Band Edge Compliance, Low Channel Delta – Peak	30
Figure 12.	Band Edge Compliance, Low Channel Delta - Average	31
Figure 13.	Radiated Restricted Band 2310 MHz to 2390 MHz, Peak	32
Figure 14.	Radiated Restricted Band 2310 MHz to 2390 MHz, Average	33
Figure 15.	Band Edge Compliance, High Channel Delta – Peak	34
Figure 16.	Band Edge Compliance, High Channel Delta – Average	35
Figure 17.	Radiated Restricted Band 2483.5 MHz to 2500 MHz, Peak	36
Figure 18.	Radiated Restricted Band 2483.5 MHz to 2500 MHz, Average	37
Figure 19.	Six dB Bandwidth - 15.247 - Low Channel	39
Figure 20.	Six dB Bandwidth - 15.247 - Mid Channel	40
Figure 21.	Six dB Bandwidth - 15.247 - High Channel	41
Figure 22.	Peak Antenna Conducted Output Power, Low Channel	44
Figure 23.	Peak Antenna Conducted Output Power, Mid Channel	45
Figure 24.	Peak Antenna Conducted Output Power, High Channel	46
Figure 25.	Peak Power Spectral Density, Low Channel	48
Figure 26.	Peak Power Spectral Density, Mid Channel	49
Figure 27.	Peak Power Spectral Density, High Channel	50

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2AB LX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

List of Tables

<u>Table</u>	<u>Title</u>	<u>Page</u>
Table 1.	EUT and Peripherals.....	9
Table 2.	Test Instruments	10
Table 3.	Number of Test Frequencies for Intentional Radiators.....	11
Table 4.	Allowed Antenna(s)	13
Table 5.	Spurious Radiated Emissions below 30 MHz.....	26
Table 6.	Peak Radiated Fundamental & Harmonic Emissions.....	27
Table 7.	Average Radiated Fundamental & Harmonic Emissions	28
Table 8.	Radiated Restricted Band 2310 MHz to 2390 MHz, Peak	32
Table 9.	Radiated Restricted Band 2310 MHz to 2390 MHz, Average	33
Table 10.	Radiated Restricted Band 2483.5 MHz to 2500 MHz, Peak.....	36
Table 11.	Radiated Restricted Band 2483.5 MHz to 2500 MHz, Average	37
Table 12.	Six (6) dB Bandwidth.....	38
Table 13.	20 dB Bandwidth and 99% Occupied Bandwidth	42
Table 14.	Peak Antenna Conducted Output Power per Part 15.247 (b) (3)	43
Table 15.	Power Spectral Density for Low, Mid and High Bands	47
Table 16.	Conducted Spurious Emissions 15.207 limits	51
Table 17.	Unintentional Radiator, Peak Radiated Emissions (CFR 15.109),	53
Table 18.	Unintentional Radiator, Peak Radiated Emissions (CFR 15.109),	54

List of Attachments

- Agency Agreement
- Application Forms
- Letter of Confidentiality
- Equipment Label(s)
- Block Diagram(s)
- Schematic(s)
- Test Configuration Photographs
- Internal Photographs
- External Photographs
- Antenna Exhibit
- Theory of Operation
- RF Exposure
- User's Manual

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2ABLX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

1 General Information

1.1 Purpose of this Report

This report is prepared as a means of conveying test results and information concerning the suitability of this exact product for public distribution according to the FCC Rules and Regulations Part 15, Section 247 and IC RSS 247 Issue 1.

1.2 Characterization of Test Sample

The sample used for testing was received by US Tech on December 21, 2015 in good operating condition.

1.3 Product Description

The Equipment Under Test (EUT) is the Qmotion Incorporated Model QM140704. ZigBee Honeycomb Shades (QM140704) are wireless window controlled shades based around the IEEE 802.15.4 standard and the Zigbee communications protocol. As such, many shades can be joined into a network and controlled by the push of a single remote button. Central control or mapping of this network of Honeycomb (cellular shaped construction) Shades is controlled by a coordinating router.

Antenna: 22AWG wire

Gain: <5.14 dBi

Modulation: O-QPSK (DTS)

Data Rate: 250 kbps (Max)

Output power: 18.72 dBm (Max)

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2ABLX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

1.4 Configuration of Tested System

The Test Sample was tested per *ANSI C63.4:2014, Methods of Measurement of Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz*, ANSI C63.10.2013, *American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices* and per FCC KDB Publication number 558074 D01 v03r03 for Digital Transmission Systems Operation Under section 15.247. Also FCC, KDB Publication No. 558074 was used as a test procedure guide.

A list of EUT and Peripherals is found in Table 1 below. A block diagram of the tested system is shown in Figure 1. Test configuration photographs are provided in separate Appendices

1.5 Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA 30004. This site has been fully described and registered with the FCC. Its designation number is 186022. Additionally this site has also been fully described and submitted to Industry Canada (IC), and has been approved under file number 9900A-1.

1.6 Related Submittals

The EUT is subject to the following FCC authorizations:

- a) Certification under section 15.247 as a transmitter.
- b) Verification under 15.101 as a digital device and receiver.

The Verification requirement shares many common report elements with the Certification report. Therefore, though this report is mostly intended to provide data for the Certification process, the Verification authorization report (part 15.107 and 15.109) for the EUT is included herein.

US Tech Test Report: FCC Part 15 Certification/ RSS 247
 FCC ID: 2ABLX-140704
 IC: 8832A-140704
 Test Report Number: 15-0312
 Issue Date: January 5, 2015
 Customer: Qmotion Incorporated
Model: QM140704

Table 1. EUT and Peripherals

PERIPHERAL MANUFACTURER.	MODEL NUMBER	SERIAL NUMBER	FCC ID:	CABLES P/D
Qmotion Incorporated	QM140704	Engineering Sample	FCC ID: 2ABLX-140704 (pending) IC: 8832A-140704 (pending)	N/A
Qmotion Incorporated (QRelay)	150404Z	Engineering Sample	FCC ID: 2ABLX-150404Z IC: 8832A-150404Z	N/A
Antenna See antenna details	--	--	--	--

U= Unshielded
 S= Shielded
 P= Power
 D= Data

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2ABLX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

2 Tests and Measurements

2.1 Test Equipment

The table below lists test equipment used to evaluate this product. Model numbers, serial numbers and their calibration status are indicated.

Table 2. Test Instruments

TEST INSTRUMENT	MODEL NUMBER	MANUFACTURER	SERIAL NUMBER	DATE OF LAST CALIBRATION
SPECTRUM ANALYZER	8593E	HEWLETT-PACKARD	3205A00124	1/6/2015
SPECTRUM ANALYZER	E4407B	AGILENT	US41442935	1/28/2015
LOOP ANTENNA	SAS-200/562	A.H. Systems	142	9/28/2015 2 yr.
BICONICAL ANTENNA	3110B	EMCO	9307-1431	8/25/2015 2 yr.
LOG PERIODIC ANTENNA	3146	EMCO	9110-3236	11/19/2014 2 yr.
HORN ANTENNA	3115	EMCO	9107-3723	7/8/2014 2 yr.
HORN ANTENNA	3116	EMO	9505-2255	1/27/2015 2 yr.
PRE-AMPLIFIER	8449B	HEWLETT-PACKARD	3008A00480	12/1/2015
PRE-AMPLIFIER	8477E	HEWLETT-PACKARD	1145A00307	12/3/2015

Note: The calibration interval of the above test instruments are 12 months unless stated otherwise and all calibrations are traceable to NIST/USA.

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2ABLX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

2.2 Modifications to EUT Hardware

No physical modifications were made by US Tech in order to bring the EUT into compliance with FCC Part 15, Subpart C Intentional Radiator Limits for the transmitter portion of the EUT or the Subpart B Unintentional Radiator Limits (Receiver and Digital Device) Requirements.

2.3 Number of Measurements for Intentional Radiators (15.31(m))

Measurements of intentional radiators or receivers shall be performed and reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in Table 3 below.

Table 3. Number of Test Frequencies for Intentional Radiators

Frequency Range over which the device operates	Number of Frequencies	Location in the Range of operation
1 MHz or less	1	Middle
1 to 10 MHz	2	1 near the top 1 near the bottom
Greater than 10 MHz	3	1 near top 1 near middle 1 near bottom

Because the EUT operates at 2405 MHz to 2480 MHz, 3 test frequencies were used.

2.4 Frequency Range of Radiated Measurements (Part 15.33)

2.4.1 Intentional Radiator

The spectrum shall be investigated for the intentional radiator from the lowest RF signal generated in the EUT, without going below 9 kHz to the 10th harmonic of the highest fundamental frequency generated or 40 GHz, whichever is the lowest.

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

2.4.2 Unintentional Radiator

For the digital device, an unintentional radiator, the frequency range shall be 30 MHz to 1000 MHz, or to 5 times the highest internal clock frequency.

2.5 Measurement Detector Function and Bandwidth (CFR 15.35)

The radiated and conducted emissions limits shown herein are based on the following:

2.5.1 Detector Function and Associated Bandwidth

On frequencies below 1000 MHz, the limits herein are based upon measurement equipment employing a CISPR Quasi-peak detector function and related measurement bandwidths (i.e. 9 kHz from 150 kHz to 30 MHz and 120 kHz from 30 MHz to 1000 MHz). Alternatively, measurements may be made with equipment employing a peak detector function as long as the same bandwidths specified for the Quasi-peak device are used.

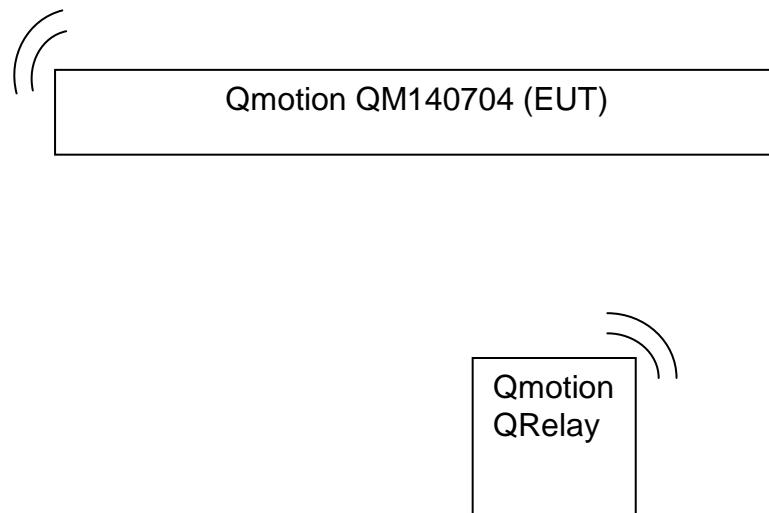
2.5.2 Corresponding Peak and Average Requirements

Above 1000 MHz, radiated limits are based on measuring instrumentation employing an average detector function. When average radiated emissions are specified there is also a corresponding Peak requirement, as measured using a peak detector, of 20 dB greater than the average limit. For all measurements above 1000 MHz the Resolution Bandwidth shall be at least 1 MHz.

2.5.3 Pulsed Transmitter Averaging

When the radiated emissions limit is expressed as an average value, and the transmitter is pulsed, the measured field strength shall be determined by applying a Duty Cycle Correction Factor based upon dividing the total ON time during the first 100 ms period by 100 ms (or by the period if less than 100 ms). The duty cycle may be expressed logarithmically in dB.

NOTE: If the transmitter was programmed to transmit at >98% duty cycle, then, wherever applicable (where the detection mode was AVG) the duty cycle factor calculated will be applied.


US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2AB LX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

2.6 EUT Antenna Requirements (CFR 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. Only the antenna(s) listed in Table 4 will be used with this module.

Table 4. Allowed Antenna(s)

REPORT REFERENCE	MANUFACTURER	TYPE OF ANTENNA	MODEL	GAIN dB _i	TYPE OF CONNECTOR
1	Qmotion Incorporated	wire antenna	22 AWG wire antenna	<5.14	solder

Figure 1. Block Diagram of Test Configuration

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2ABLX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

2.7 Restricted Bands of Operation (Part 15.205)

Only spurious emissions can fall in the frequency bands of CFR 15.205. The field strength of these spurious cannot exceed the limits of 15.209. Radiated harmonics and other Spurious are examined for this requirement see paragraph 2.1

2.8 Transmitter Duty Cycle (CFR 35 (c))

Duty Cycle from Manufacture (see Theory of Operation) = 99 % = 0.66
Duty Cycle = $20 \log (0.66) = -3.6 \text{ dB}$

NOTE: The transmitter was programmed to transmit at >98% duty cycle, therefore wherever applicable (where the detection mode was AVG) the duty cycle factor calculated above will be applied.

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2ABLX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

2.9 Intentional Radiator, Power Line Conducted Emissions (CFR 15.207)

Since the EUT is battery powered, this test was not applied. The EUT can be powered by either 4 or 6 D-cell batteries. A pre-scan was performed to determine the worse-case configuration. There was no significant difference between the two configurations.

2.10 Intentional Radiator, Radiated Emissions (CFR 15.209, 15.247(d)) (IC RSS 210, A2.9 (a))

Radiated Spurious measurements: the EUT was placed into a continuous transmit mode of operation (>98% duty cycle) and tested per FCC KDB Publication 558074 and ANSI C63.10:2013. A preliminary scan was performed on the EUT to find signal frequencies that were caused by the transmitter part of the device. To obtain worse case results the EUT was tested in X, Y, and Z axes or in the orientation of normal operation if the device is designed to operate in a fixed position.

Radiated measurements were then conducted between the frequency range of 9KHz (or lowest frequency used/generated by the device) up to the tenth harmonic of the device (no greater than 40 GHz). In the band below 30 MHz a resolution bandwidth (RBW) of 9 kHz was used, emissions below 1 GHz were tested with a RBW of 120 KHz and emissions above 1 GHz were tested with a RBW of 1 MHz. All video bandwidth settings were at least three times the RBW value.

The EUT was investigated to CFR 15.209, General requirements for unwanted spurious emissions. The conducted spurious method as described below was used to investigate all other emissions emanating from the antenna port.

Conducted Spurious measurements: the EUT was put into a continuous-transmit mode of operation (>98% duty cycle) and tested per FCC KDB Publication 558074 for conducted out of band emissions emanating from the antenna port over the frequency range of 30 MHz to 25 GHz. A conducted scan was performed on the EUT to identify and record spurious signals that were related to the transmitter.

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

The conducted output power (in dBm) was recorded. The maximum transmit antenna gain in dBi was added to determine the EIRP level. The appropriate maximum ground reflection factor to the EIRP level, 6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz – 1000 MHz, and 0 dB for frequencies $>$ 1000 MHz, was also added to the EIRP calculation. The resultant EIRP level was then converted to an equivalent electric field strength using the following relationship:

$$E = EIRP - 20\log D + 104.8$$

Where:

E= electric field strength in dBuV/m

EIRP= equivalent isotropic radiated power in dBm

D= specified measurement distance in meters

The results are displayed in the plots below. Radiated emissions per CFR 15.209 were performed with to address the concerns of unwanted emissions that may radiate from the EUT cabinet, control circuits, or power leads. The results for this test can be found in section 2.18 below.

Note 1: The results below are compared to Peak limits. Average limits are met when the duty cycle factor, -3.6 dB, is applied to the peak recorded value.

Note 2: For emissions levels below 1000 MHz, the restricted band limits were applied to show worst case

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

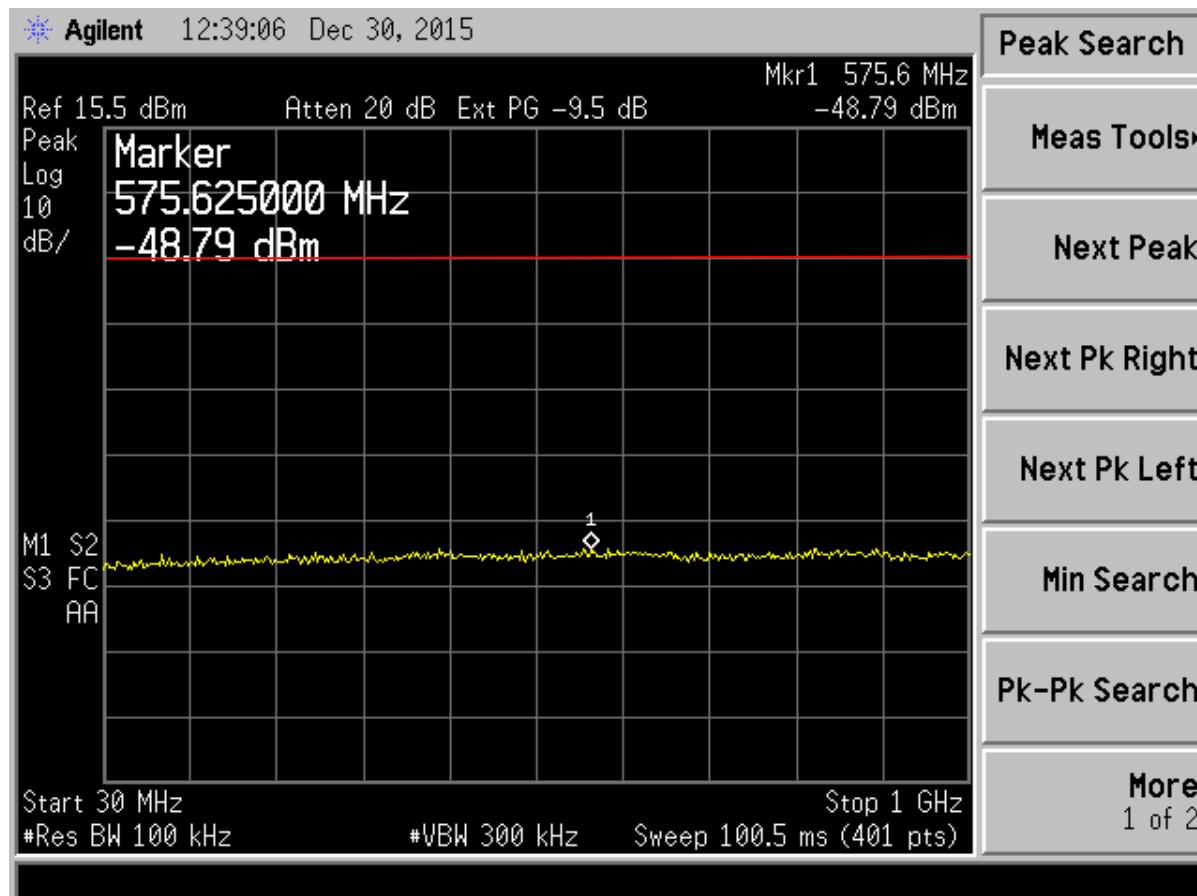
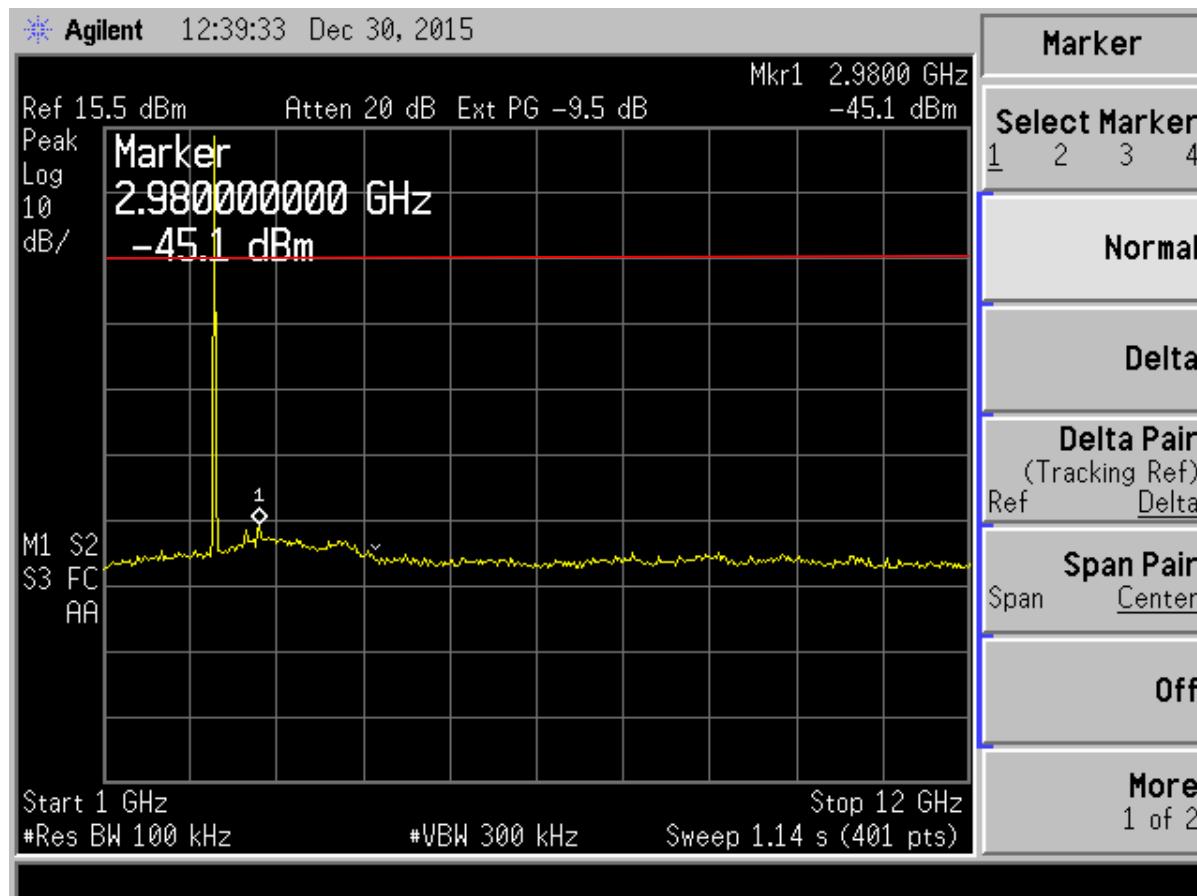



Figure 2. Antenna Conducted Emissions Low, Part 1

Note: The Ext PG is used to correct for cable loss and attenuator used. The reference level was set to the PSD value of the fundamental with a 100 kHz RBW. The red line is 20 dB down from the measured fundamental.

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

Figure 3. Antenna Conducted Emissions Low, Part 2

Note: The Ext PG is used to correct for cable loss and attenuator used. The reference level was set to the PSD value of the fundamental with a 100 kHz RBW. The red line is 20 dB down from the measured fundamental.

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

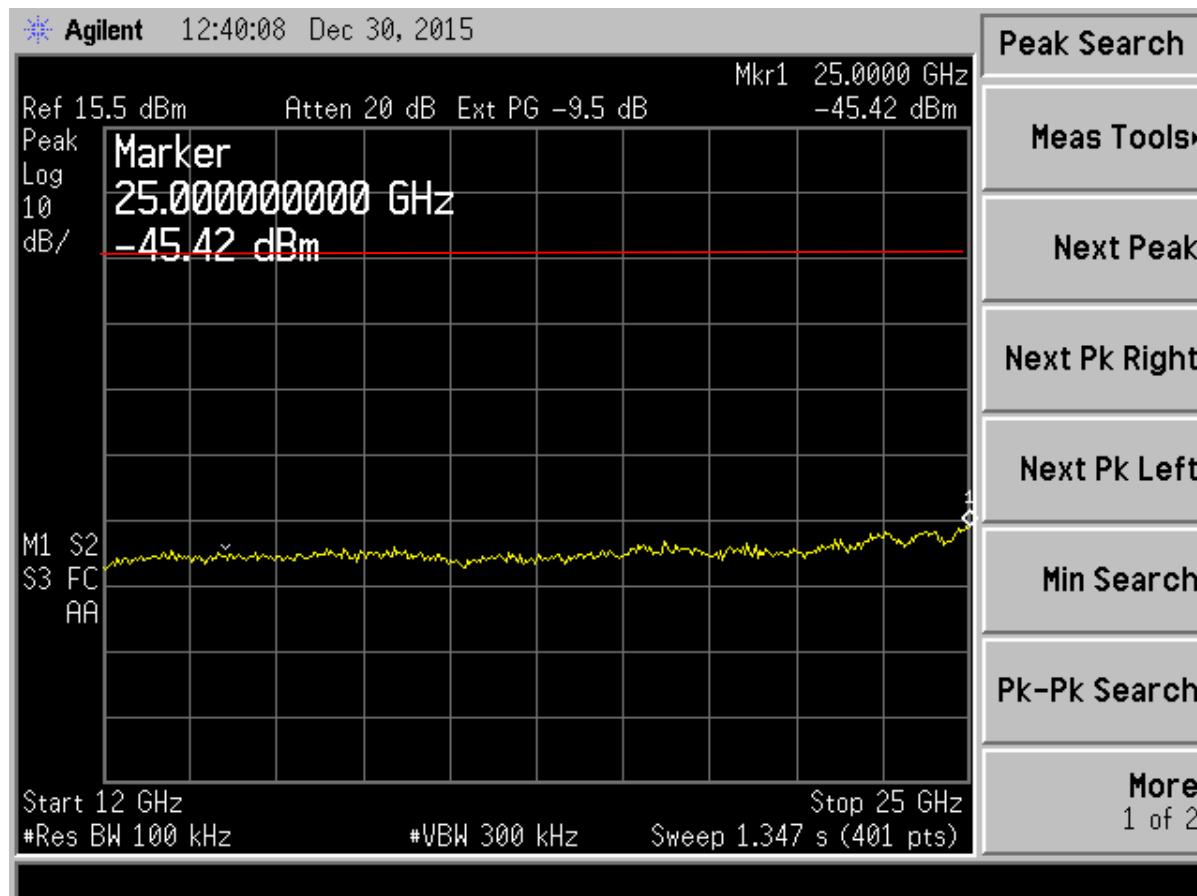
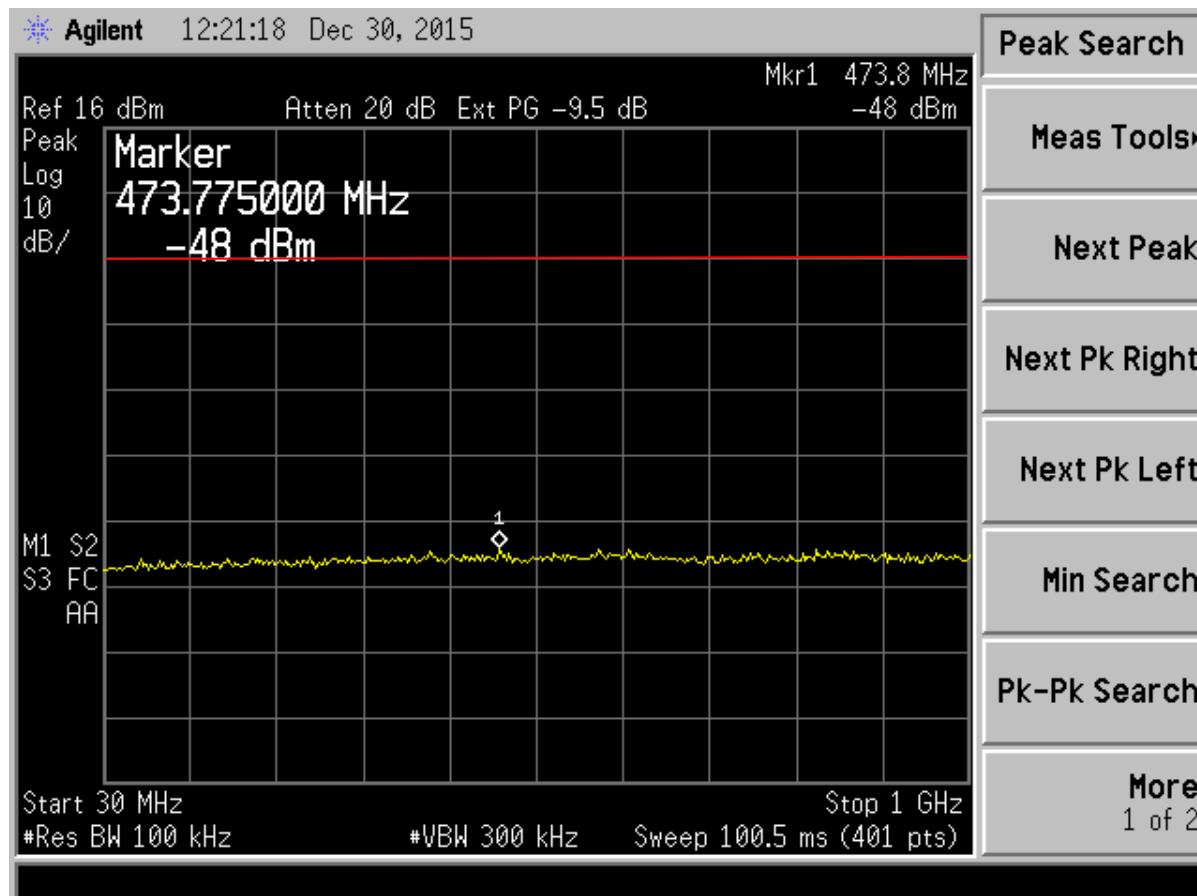



Figure 4. Antenna Conducted Emissions Low, Part 3

Note: The Ext PG is used to correct for cable loss and attenuator used. The reference level was set to the PSD value of the fundamental with a 100 kHz RBW. The red line is 20 dB down from the measured fundamental.

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

Figure 5. Antenna Conducted Emissions Mid, Part 1

Note: The Ext PG is used to correct for cable loss and attenuator used. The reference level was set to the PSD value of the fundamental with a 100 kHz RBW. The red line is 20 dB down from the measured fundamental

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

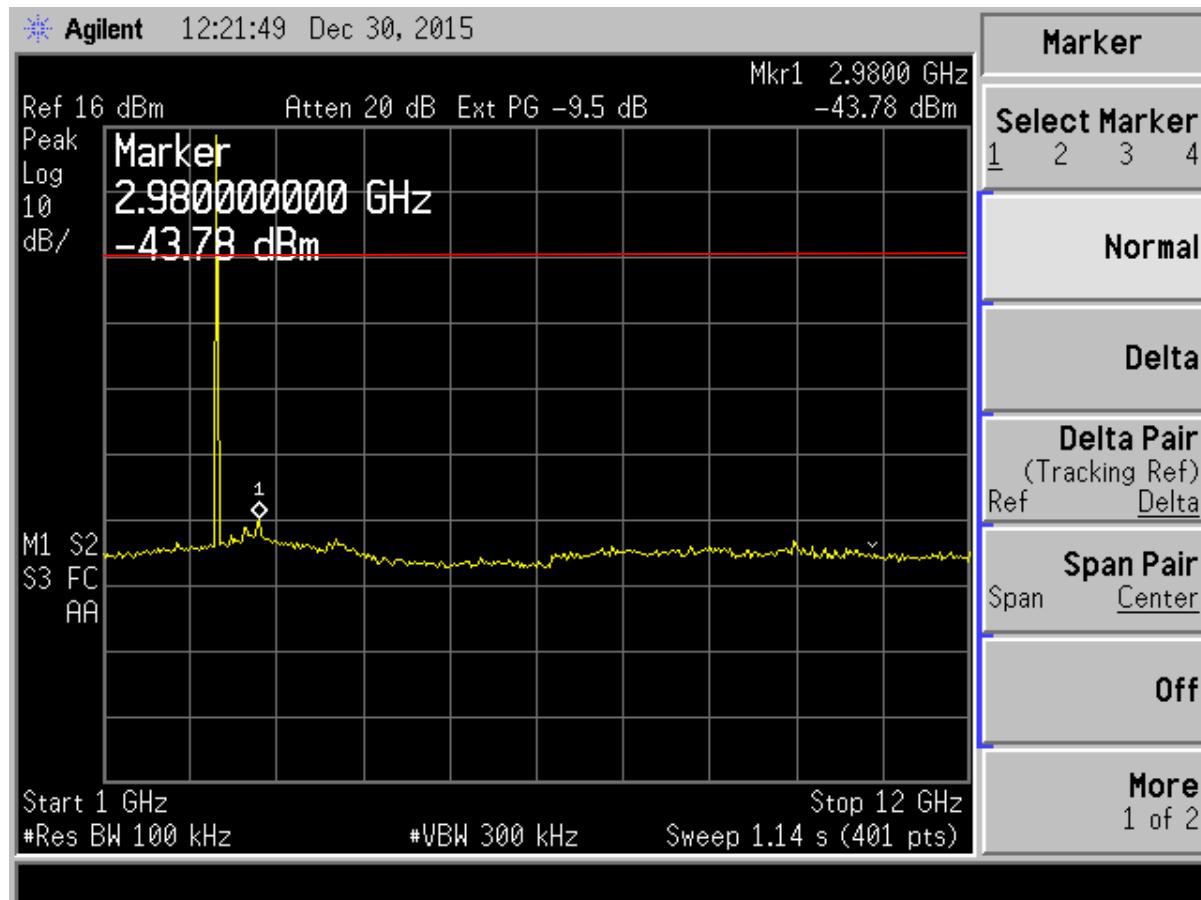


Figure 6. Antenna Conducted Emissions Mid, Part 2

Note: The Ext PG is used to correct for cable loss and attenuator used. The reference level was set to the PSD value of the fundamental with a 100 kHz RBW. The red line is 20 dB down from the measured fundamental

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

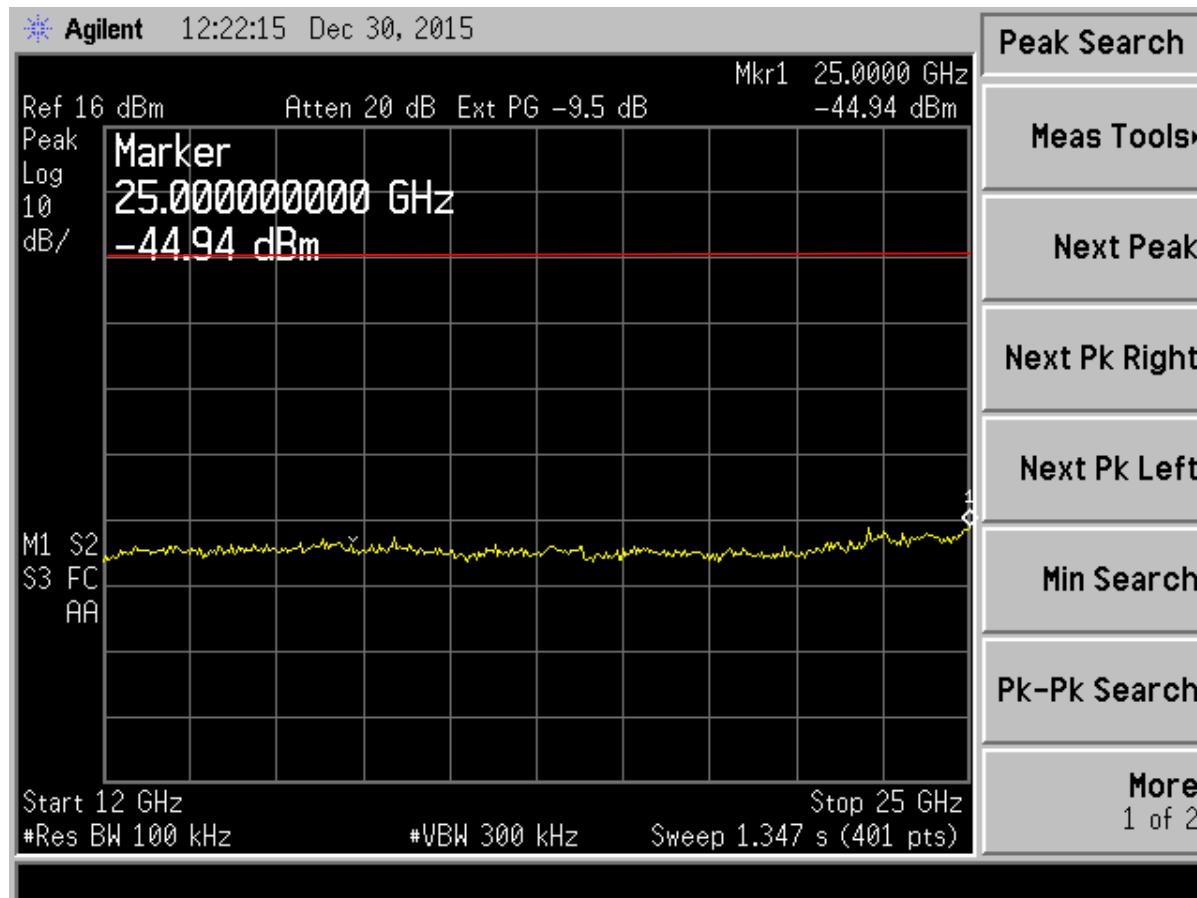


Figure 7. Antenna Conducted Emissions Mid, Part 3

Note: The Ext PG is used to correct for cable loss and attenuator used. The reference level was set to the PSD value of the fundamental with a 100 kHz RBW. The red line is 20 dB down from the measured fundamental

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

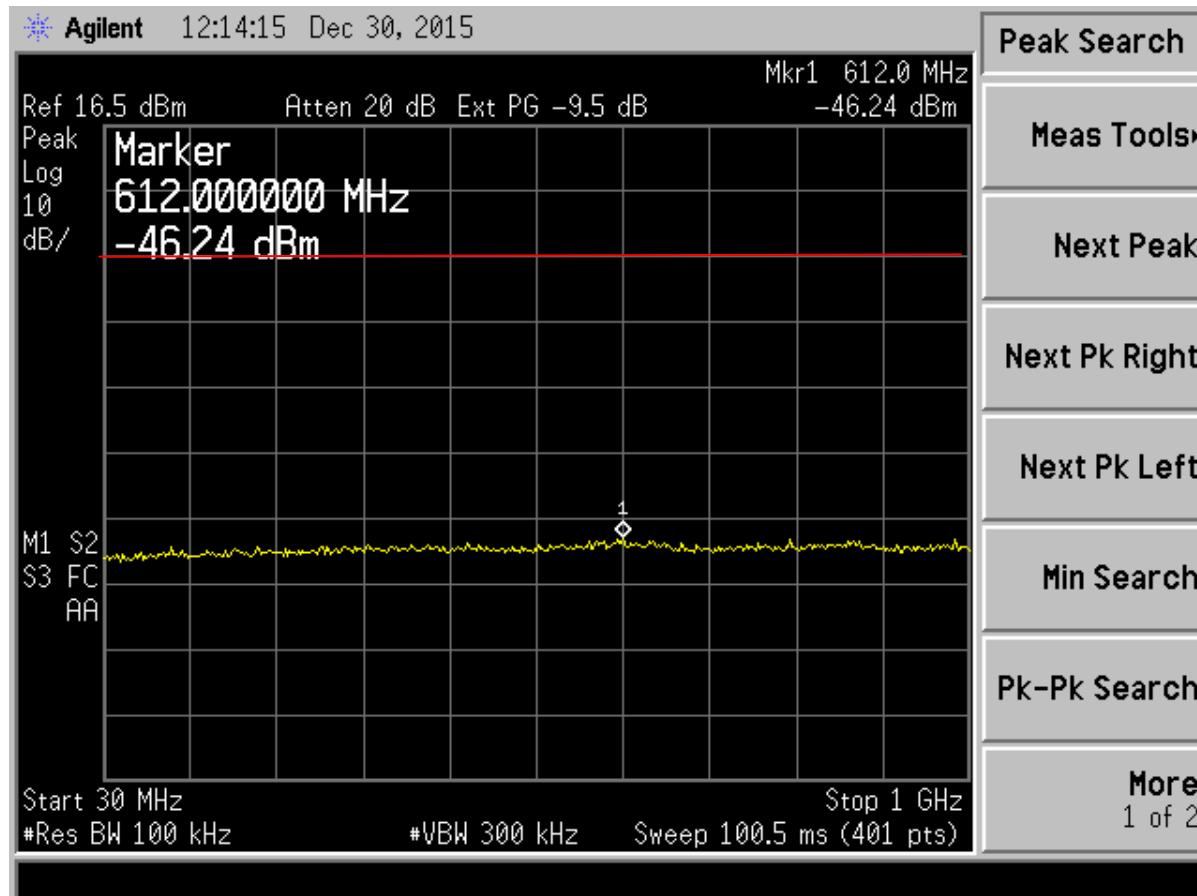
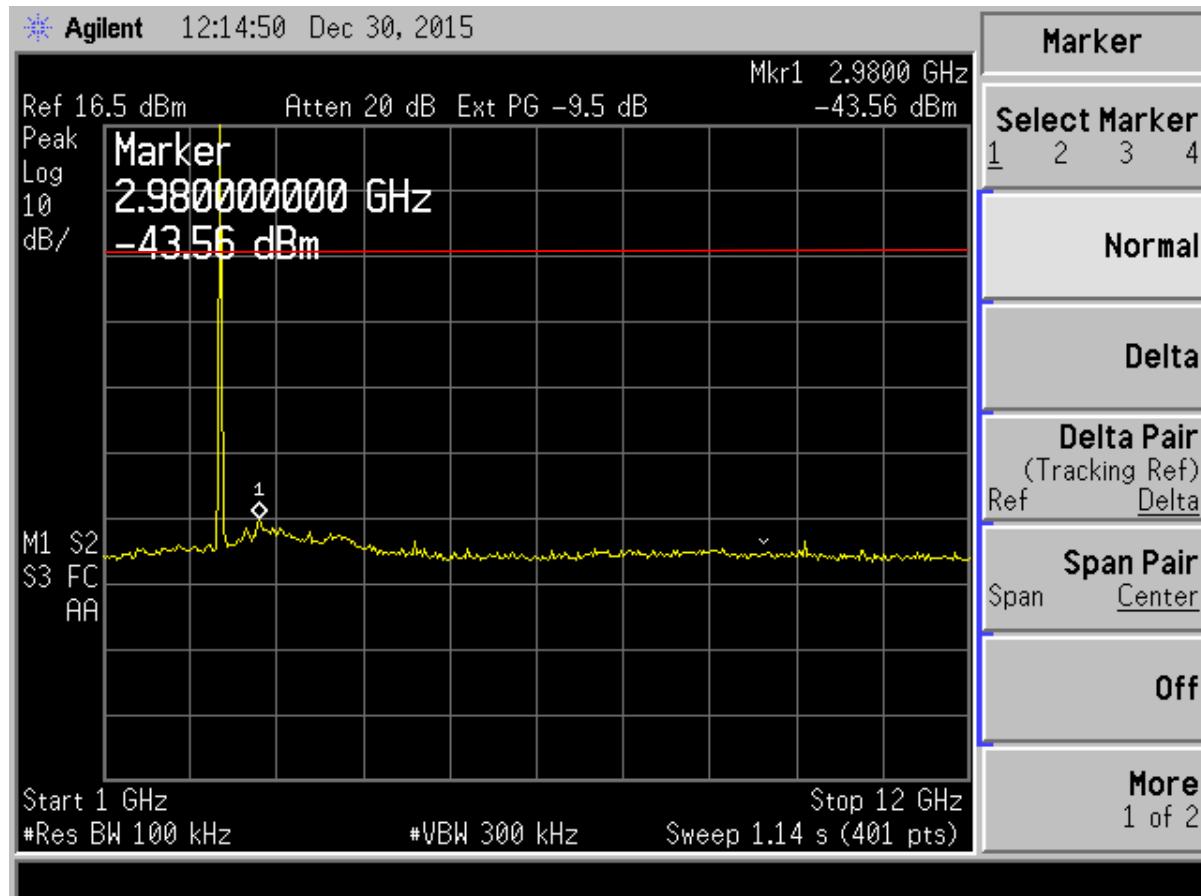



Figure 8. Antenna Conducted Emissions High, Part 1

Note: The Ext PG is used to correct for cable loss and attenuator used. The reference level was set to the PSD value of the fundamental with a 100 kHz RBW. The red line is 20 dB down from the measured fundamental

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

Figure 9. Antenna Conducted Emissions High, Part 2

Note: The Ext PG is used to correct for cable loss and attenuator used. The reference level was set to the PSD value of the fundamental with a 100 kHz RBW. The red line is 20 dB down from the measured fundamental

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

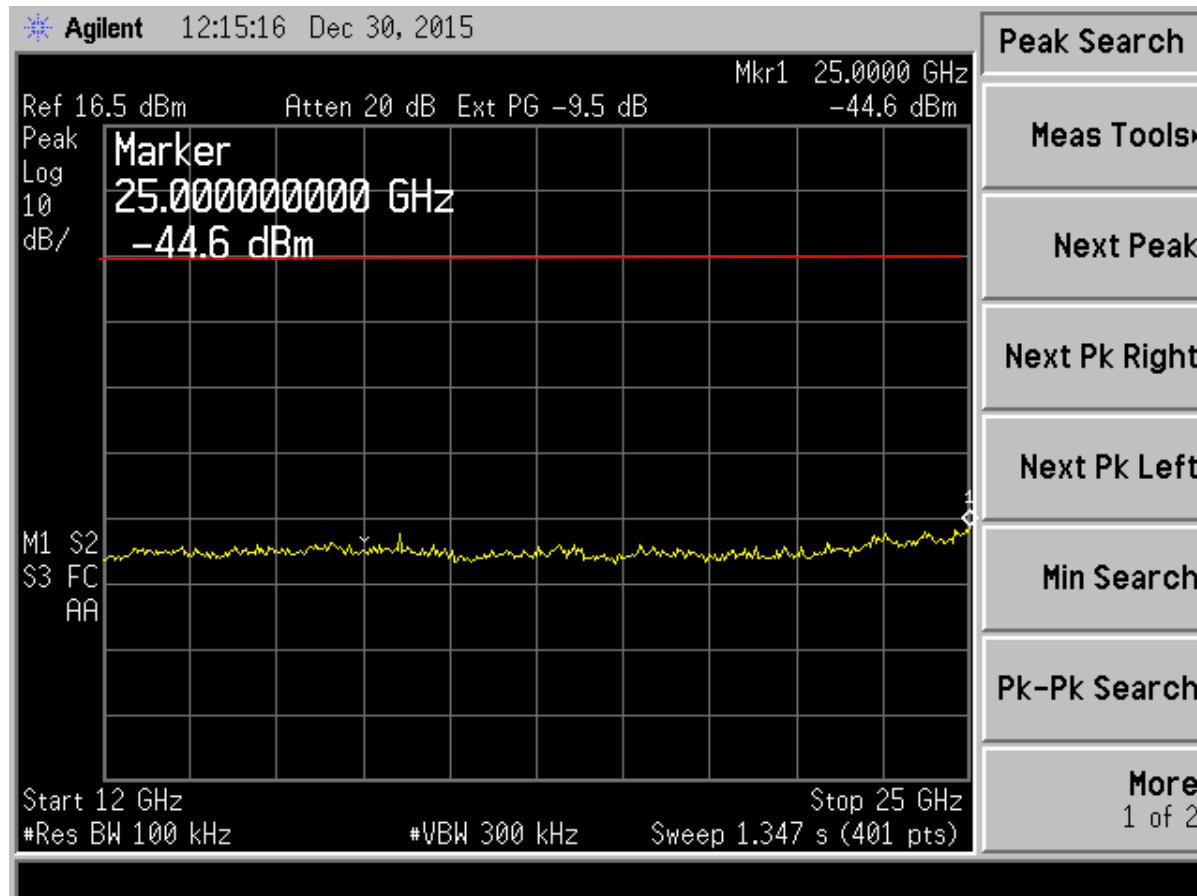


Figure 10. Antenna Conducted Emissions High, Part 3

Note: The Ext PG is used to correct for cable loss and attenuator used. The reference level was set to the PSD value of the fundamental with a 100 kHz RBW. The red line is 20 dB down from the measured fundamental

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

Table 5. Spurious Radiated Emissions below 30 MHz

9 kHz to 30 MHz, 15.209 limits							
Test: Radiated Emissions				Client: Qmotion Incorporated			
Project: 15-0312				Model: QM140704			
Frequency (MHz)	Test Data (dB _{UV})	AF+CA-AMP (dB/m)	Results (dB _{UV} /m)	AVG Limits (dB _{UV} /m)	Antenna Distance/Polarization	Margin (dB)	Detector PK, or AVG
No emissions found greater than 20 dB from the applicable limit from the lowest clock frequency (9 kHz) to 30 MHz.							

Sample Calculation: N/A

Test Date: December 28, 2015

Tested By

Signature: Hossein Rahnama

Name: Hossein Rahnama

US Tech Test Report: FCC Part 15 Certification/ RSS 247
 FCC ID: 2ABLX-140704
 IC: 8832A-140704
 Test Report Number: 15-0312
 Issue Date: January 5, 2015
 Customer: Qmotion Incorporated
 Model: QM140704

Table 6. Peak Radiated Fundamental & Harmonic Emissions

Test: FCC Part 15, Para 15.209, 15.247(d)					Client: Qmotion Incorporated			
Project: 15-0312					Model: QM140704			
Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/Polarization	Margin (dB)	Detector Mode
Low - Channel								
2405.00	77.20	-	31.97	109.17	-	3.0m./VERT	-	PK
4810.00	49.69	-	5.53	55.22	74.0	3.0m./VERT	18.8	PK
7215.00	59.61	-	8.06	67.67	89.2	3.0m./VERT	21.5	PK
9620.00	50.29	-	8.24	58.53	89.2	3.0m./VERT	30.6	PK
12030.00	46.52	-	15.87	62.39	74.0	3.0m./VERT	11.6	PK
Mid - Channel								
2440.00	70.95	-	32.24	103.19	-	3.0m./VERT	-	PK
4880.00	54.14	-	5.82	59.96	74.0	3.0m./VERT	14.0	PK
7320.00	53.78	-	8.52	62.30	74.0	3.0m./VERT	11.7	PK
High - Channel								
2480.00	56.30	-	32.24	88.54	-	3.0m./VERT	-	PK

1. (*) Falls within the restricted bands of CFR 15.205. Limits based on CFR15.209 & 20 dB relaxation for peak measurements of CFR 15.35.
2. No other signals detected within 20 dB of specification limit. Harmonics investigated up to the 10th harmonic
3. (~)Measurements taken at 1 meter were extrapolated to 3 meter using a factor of (-9.5 dB).
4. The EUT was placed in three orthogonal positions and the transmitter was in constant broadcast mode, with a duty cycle of greater than 98%. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Sample Calculation at 2405.00 MHz:

Magnitude of Measured Frequency	77.20	dBuV
+Antenna Factor + Cable Loss+ Amplifier Gain	31.91	dB/m
Corrected Result	109.17	dBuV/m

Test Date: December 31, 2015

Tested By

Signature:

Name: Carrie Ingram

US Tech Test Report:
 FCC ID:
 IC:
 Test Report Number:
 Issue Date:
 Customer:
 Model:

FCC Part 15 Certification/ RSS 247
 2ABLX-140704
 8832A-140704
 15-0312
 January 5, 2015
 Qmotion Incorporated
 QM140704

Table 7. Average Radiated Fundamental & Harmonic Emissions

Test: FCC Part 15, Para 15.209, 15.247(d)					Client: Qmotion Incorporated			
Project: 15-0312					Model: QM140704			
Frequency (MHz)	Test Data (dBuV)	Factor (dB)	AF+CA -AMP (dB/m)	Results (dBuV/m)	Limits (dBuV/m)	Antenna Distance/ Polarization	Margin (dB)	Detector Mode
Low - Channel								
2405.00	74.34	-	31.97	106.31	-	3.0m./VERT	-	AVG
4810.00	39.37	-	5.11	44.48	54.0	3.0m./VERT	9.5	AVG
7215.00	48.55	-	8.06	56.61	86.3	3.0m./VERT	29.7	AVG
9620.00	38.61	-	8.24	46.85	86.3	3.0m./VERT	39.5	AVG
12030.00	35.09	-	15.87	50.96	54.0	3.0m./VERT	3.0	AVG
Mid - Channel								
2440.00	68.81	-	32.24	101.05	-	3.0m./VERT	-	AVG
4880.00	44.22	-	5.82	50.04	54.0	3.0m./VERT	4.0	AVG
7320.00	43.33	-	8.52	51.85	54.0	3.0m./VERT	2.1	AVG
High - Channel								
2480.00	50.27	-	32.24	82.51	-	3.0m./VERT	-	AVG

1. (*) Falls within the restricted bands of CFR 15.205. Limits based on CFR15.209 & 20 dB relaxation for **peak** measurements of CFR 15.35.
2. No other signals detected within 20 dB of specification limit. Harmonics investigated up to the 10th harmonic
3. (~)Measurements taken at 1 meter were extrapolated to 3 meter using a factor of (-9.5 dB).
4. The EUT was placed in three orthogonal positions and the transmitter was in constant broadcast mode, with a duty cycle of greater than 98%. The emissions were measured with the receive antenna in vertical and horizontal polarizations. The data listed in the above table was worst case.

Sample Calculation at 2405.00 MHz:

Magnitude of Measured Frequency	74.34	dBuV
+Antenna Factor + Cable Loss+ Amplifier Gain – Duty Cycle	31.97	dB/m
Corrected Result	106.31 dBuV/m	

Test Date: December 31, 2015

Tested By

Signature:

Name: Carrie Ingram

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2ABLX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

2.11 Band Edge Measurements – (CFR 15.247 (d))

Band Edge measurements are made following the guidelines in FCC KDB Publication No. 558074 and ANSI C63.10-2013, with the EUT initially operating on the Lowest Channel and then operating on the Highest Channel within its band of operation. Radiated measurements are performed to demonstrate compliance with the requirement of 15.247(d) that all emissions outside of the band edges be attenuated by at least 20 dB when compared to its highest in-band value (contained in a 100 kHz band).

To capture the band edge, set the Spectrum Analyzer frequency span set to 2 MHz to capture the peak level of the emission operating on the channel closest to the band edge as well as any modulation products falling outside of the authorized band of operation. See figure and calculations below for more detail.

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

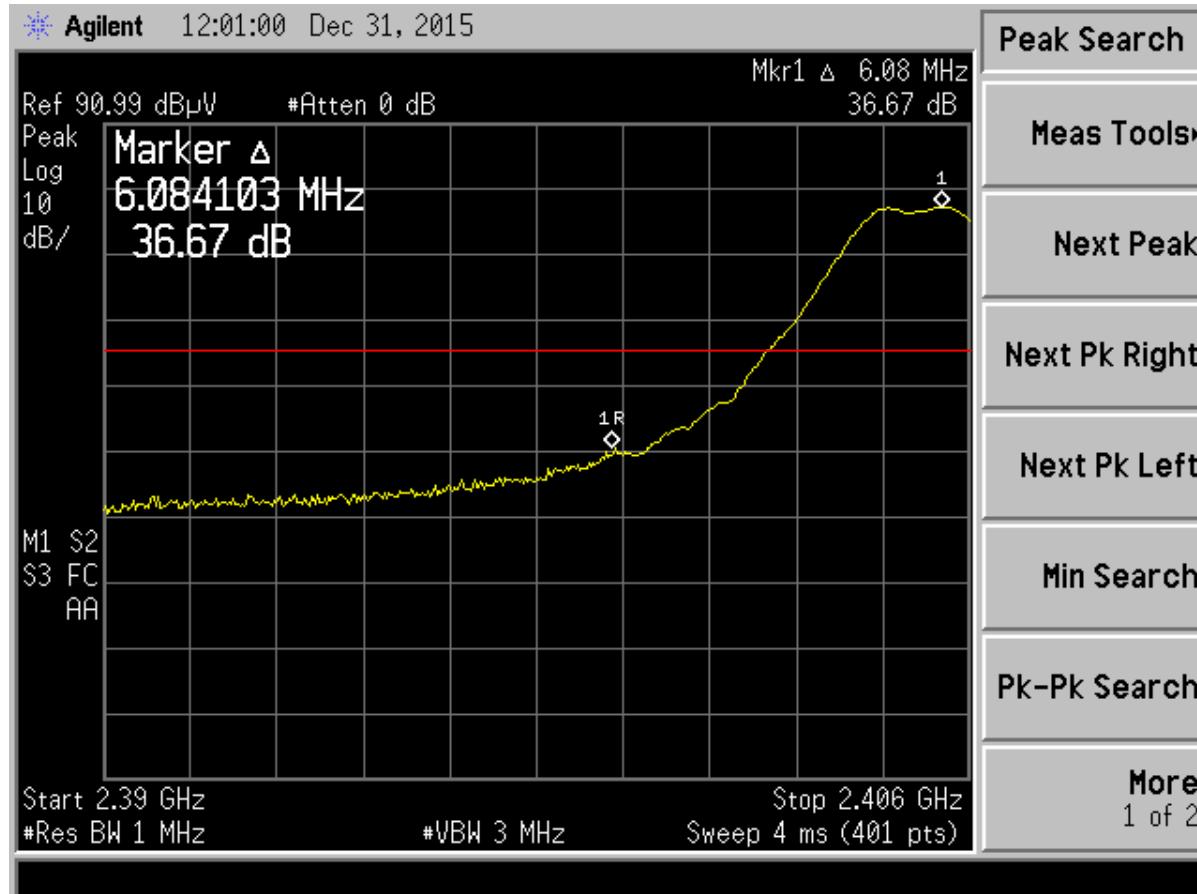


Figure 11. Band Edge Compliance, Low Channel Delta – Peak

Band Edge Limit	20.00	dB
Measured Delta	36.67	dB
Band Edge Margin	16.67	dB

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

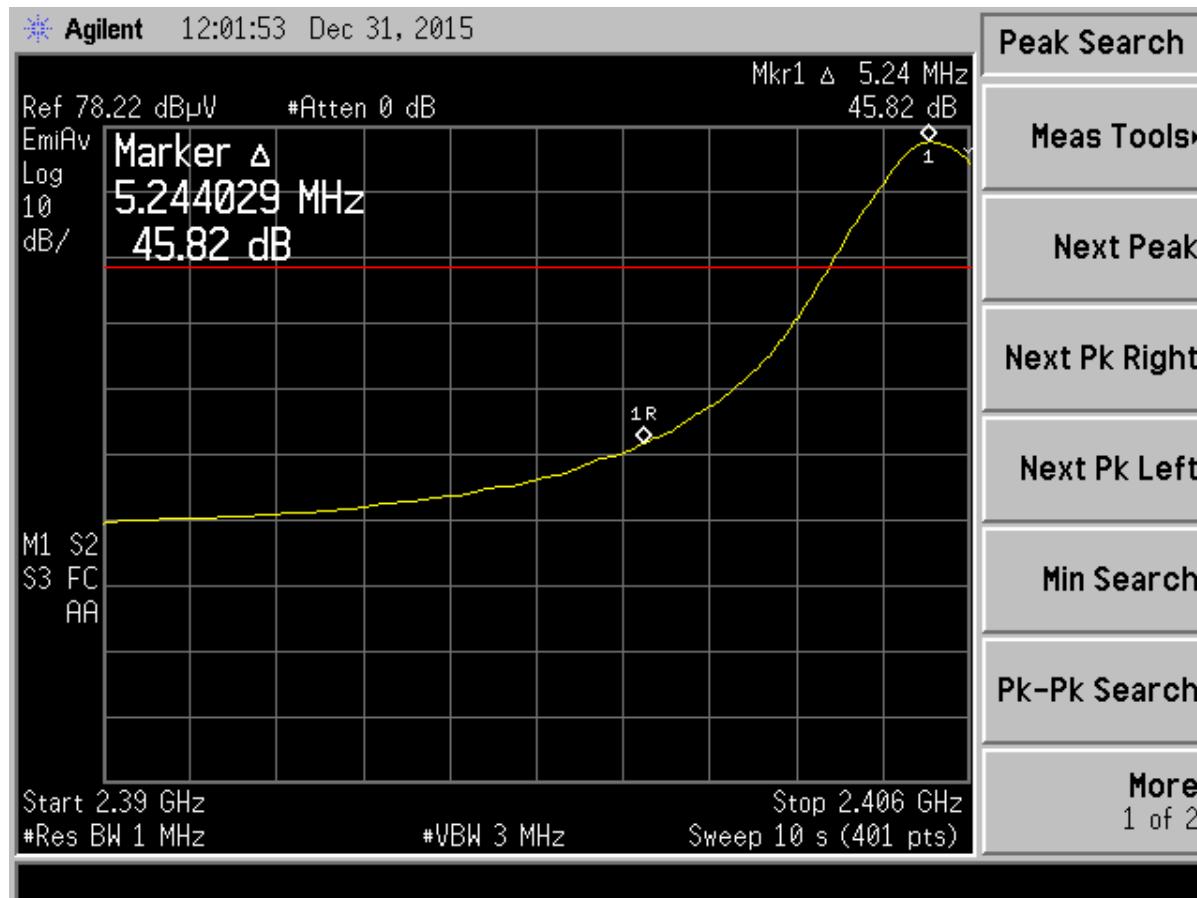
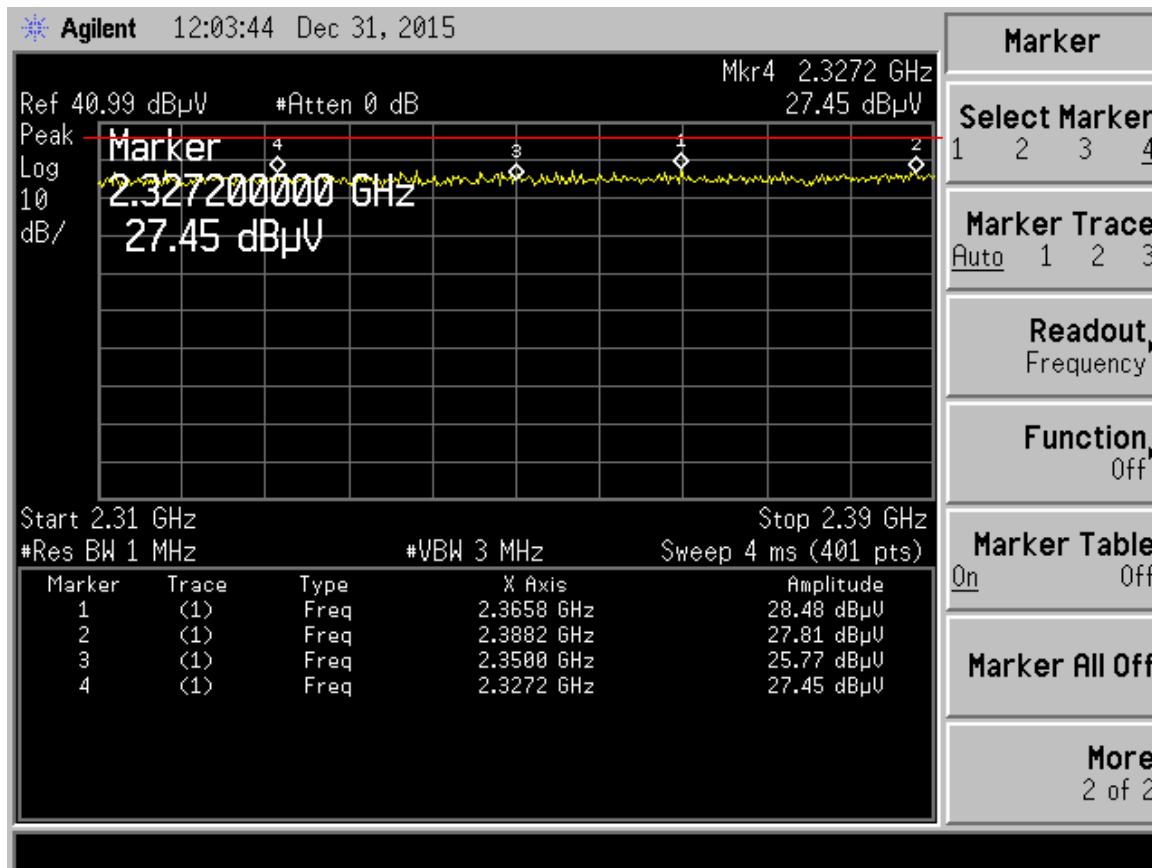


Figure 12. Band Edge Compliance, Low Channel Delta - Average

Band Edge Limit	20.00	dB
Measured Delta	45.82	dB
Band Edge Margin	25.82	dB

US Tech Test Report:
 FCC ID:
 IC:
 Test Report Number:
 Issue Date:
 Customer:
 Model:

FCC Part 15 Certification/ RSS 247
 2ABLX-140704
 8832A-140704
 15-0312
 January 5, 2015
 Qmotion Incorporated
 QM140704



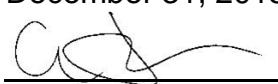

Figure 13. Radiated Restricted Band 2310 MHz to 2390 MHz, Peak

Table 8. Radiated Restricted Band 2310 MHz to 2390 MHz, Peak

2310 MHz to 2390 MHz Restricted Band Peak Measurements							
Test: Radiated Emissions				Client: Qmotion Incorporated			
Project: 15-0312				Model: QM140704			
Frequency (MHz)	Test Data (dB _{uv})	AF+CA-AMP (dB/m)	Results (dB _{uv} /m)	PK Limits (dB _{uv} /m)	Antenna Distance/ Polarization	Margin (dB)	Detector PK, or AVG
2365.80	28.48	31.76	60.24	74.0	3.0m./VERT	13.8	PK
2388.20	27.81	31.76	59.57	74.0	3.0m./VERT	14.4	PK
2350.00	25.77	31.59	57.36	74.0	3.0m./VERT	16.6	PK
2327.20	27.45	31.59	59.04	74.0	3.0m./VERT	15.0	PK

Test Date: December 31, 2015

Tested By

Signature:

Name: Carrie Ingram

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

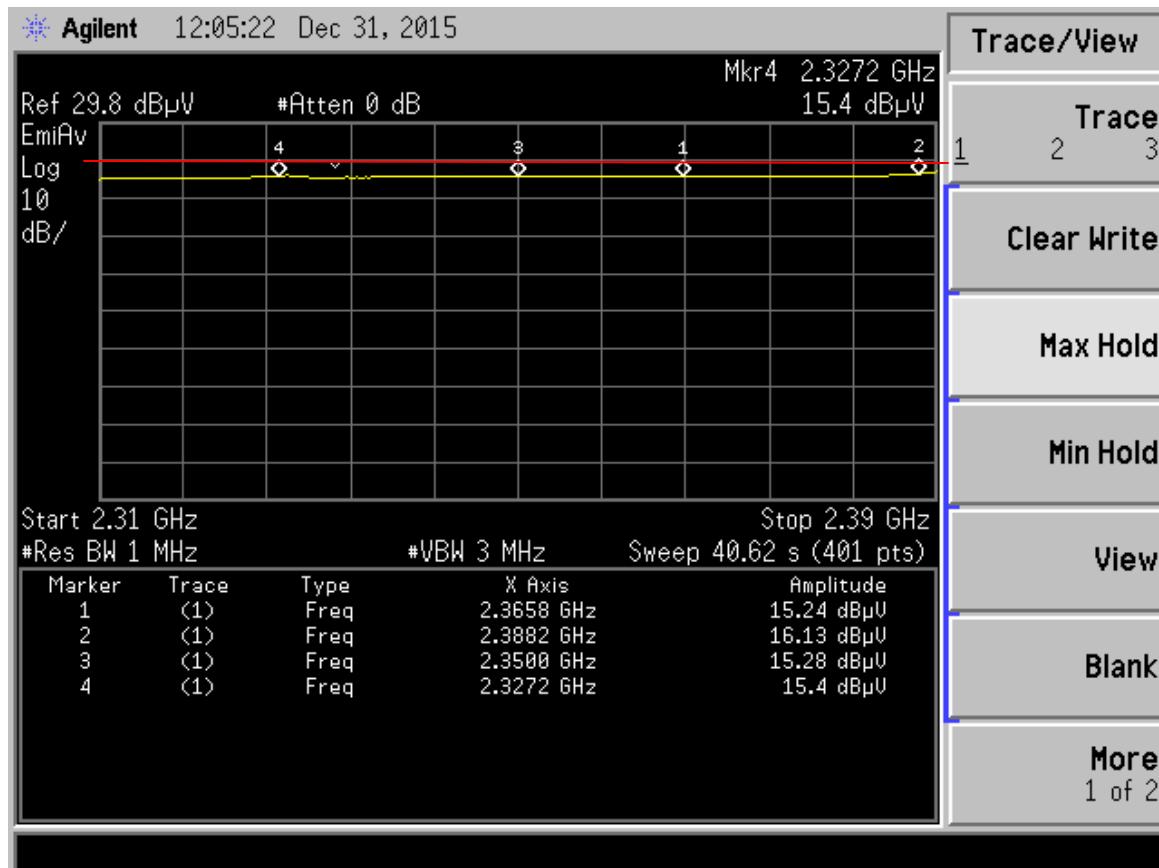


Figure 14. Radiated Restricted Band 2310 MHz to 2390 MHz, Average

Table 9. Radiated Restricted Band 2310 MHz to 2390 MHz, Average

2310 MHz to 2390 MHz Restricted Band Average Measurements							
Test: Radiated Emissions				Client: Qmotion Incorporated			
Project: 15-0312				Model: QM140704			
Frequency (MHz)	Test Data (dB μ V)	AF+CA-AMP (dB/m)	Results (dB μ V/m)	AVG Limits (dB μ V/m)	Antenna Distance/Polarization	Margin (dB)	Detector PK, or AVG
2365.80	15.24	31.76	47.00	54.0	3.0m./VERT	7.0	AVG
2388.20	16.13	31.76	47.89	54.0	3.0m./VERT	6.1	AVG
2350.00	15.28	31.59	46.87	54.0	3.0m./VERT	7.1	AVG
2327.20	15.40	31.59	46.99	54.0	3.0m./VERT	7.0	AVG

Test Date: December 31, 2015

Tested By

Signature:

Name: Carrie Ingram

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

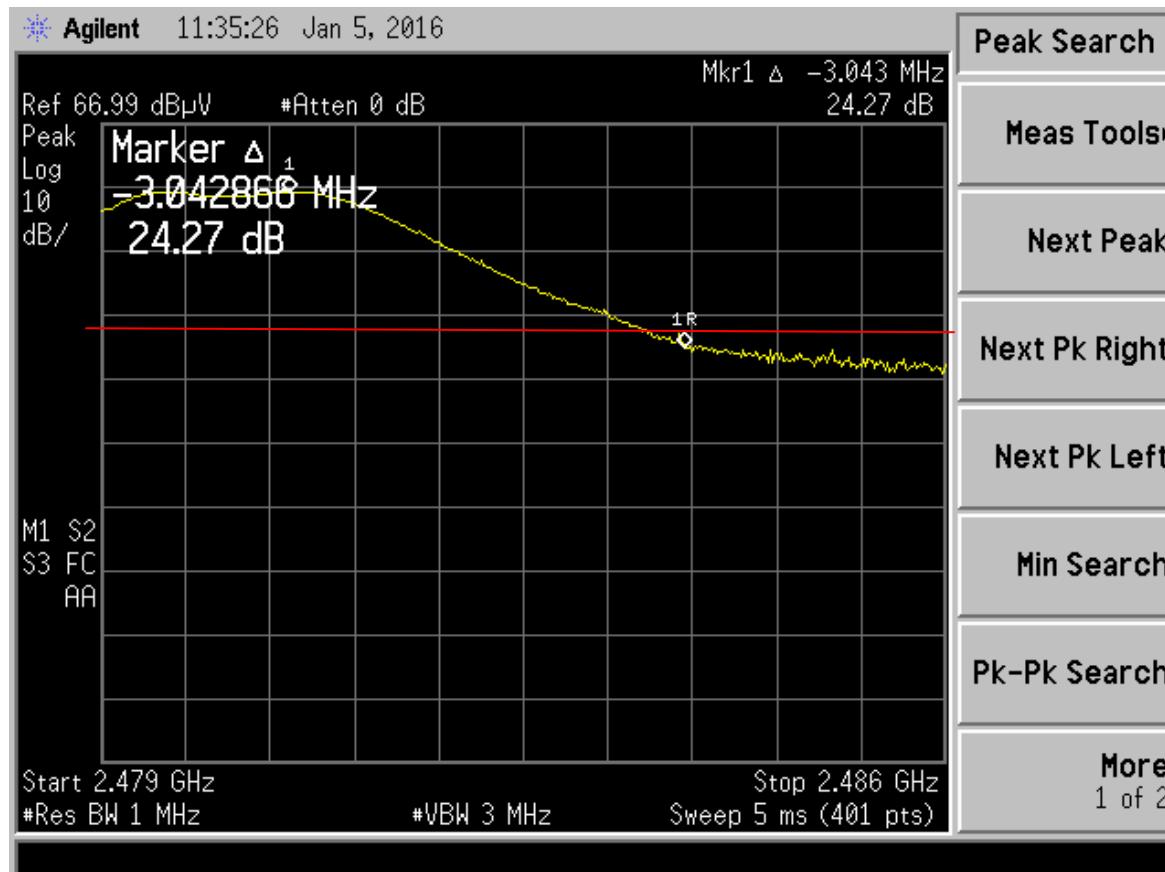


Figure 15. Band Edge Compliance, High Channel Delta – Peak

Band Edge Limit	20.00	dB
Calculated Result	24.27	dB
Band Edge Margin	4.27	dB

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

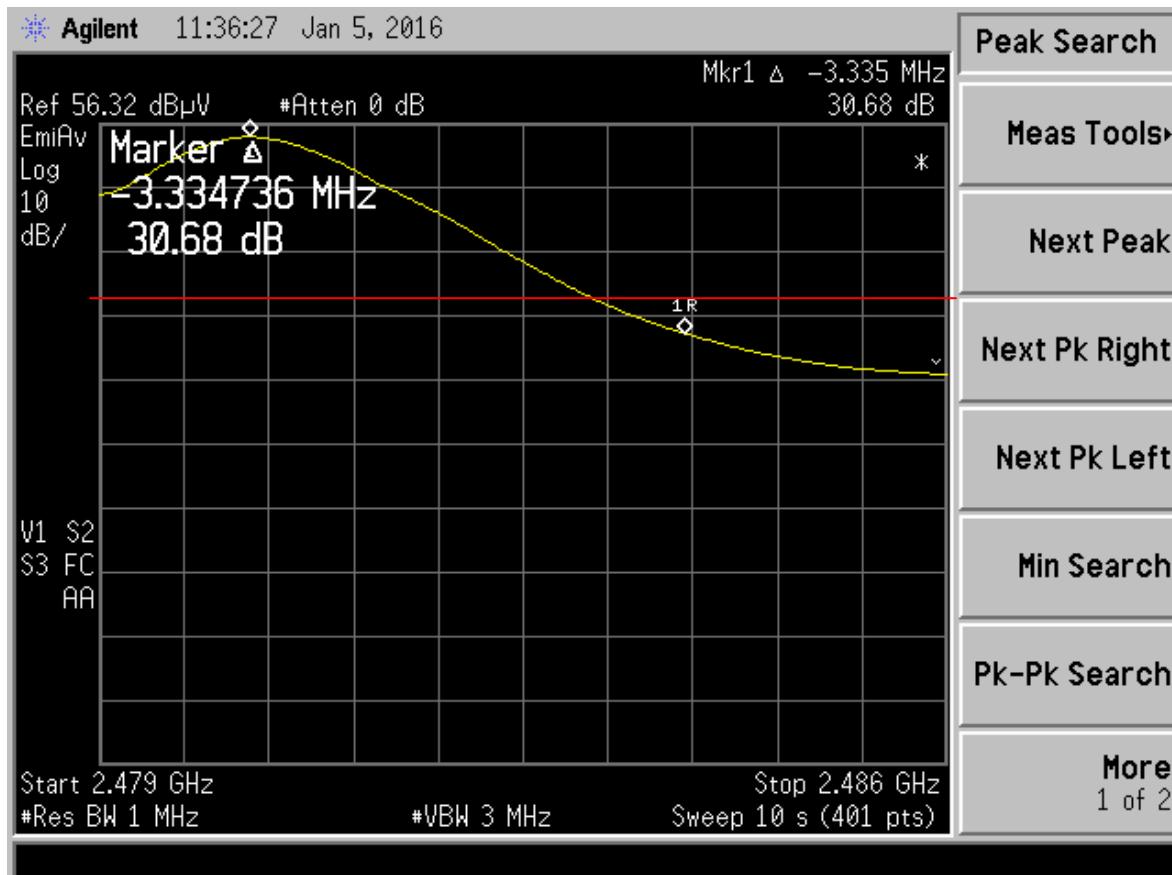
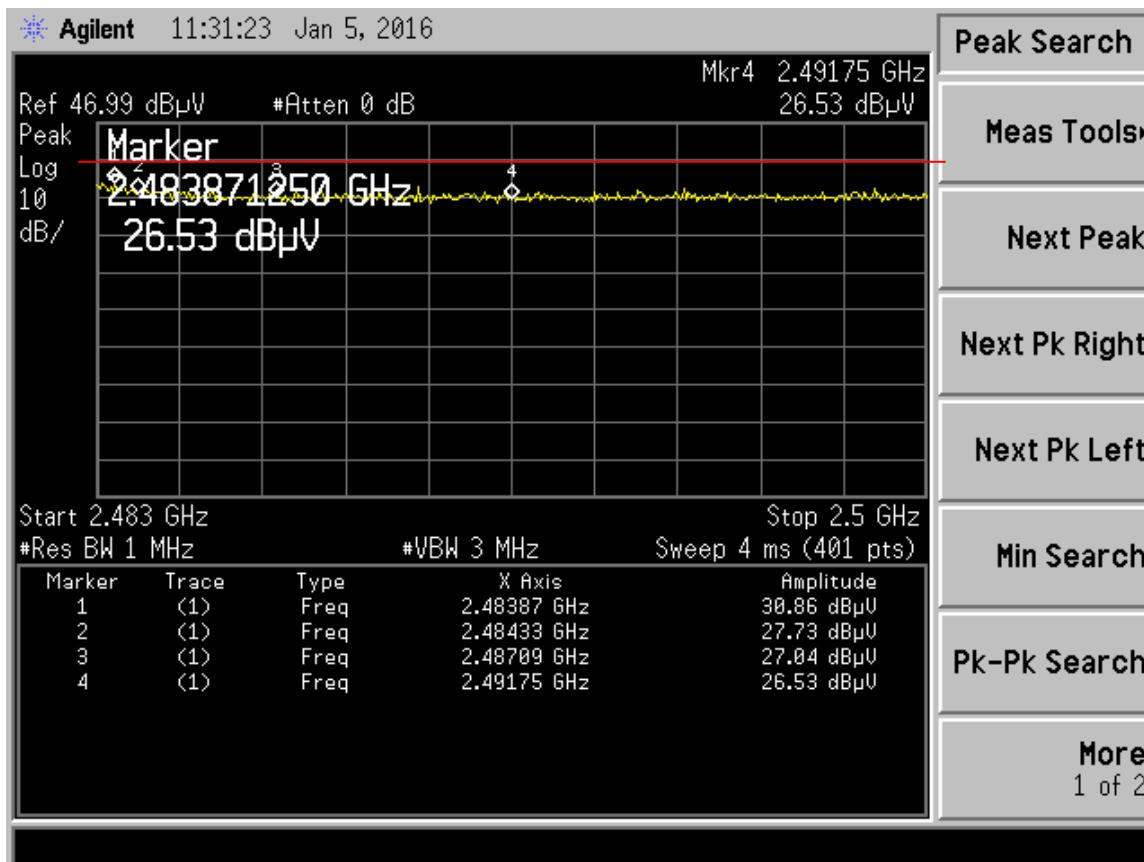


Figure 16. Band Edge Compliance, High Channel Delta – Average

Band Edge Limit	20.00	dB
Calculated Result	30.68	dB
Band Edge Margin	10.68	dB

US Tech Test Report:
 FCC ID:
 IC:
 Test Report Number:
 Issue Date:
 Customer:
 Model:

FCC Part 15 Certification/ RSS 247
 2ABLX-140704
 8832A-140704
 15-0312
 January 5, 2015
 Qmotion Incorporated
 QM140704



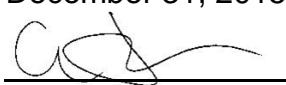

Figure 17. Radiated Restricted Band 2483.5 MHz to 2500 MHz, Peak

Table 10. Radiated Restricted Band 2483.5 MHz to 2500 MHz, Peak

2310 MHz to 2390 MHz Restricted Band Peak Measurements							
Test: Radiated Emissions				Client: Qmotion Incorporated			
Project: 15-0312				Model: QM140704			
Frequency (MHz)	Test Data (dB μ V)	AF+CA-AMP (dB/m)	Results (dB μ V/m)	PK Limits (dB μ V/m)	Antenna Distance/Polarization	Margin (dB)	Detector PK, or AVG
2483.87	30.86	32.24	63.10	74.0	3.0m./VERT	10.9	PK
2484.33	27.73	32.24	59.97	74.0	3.0m./VERT	14.0	PK
2487.09	27.04	32.24	59.28	74.0	3.0m./VERT	14.7	PK
2491.75	26.53	32.24	58.77	74.0	3.0m./VERT	15.2	PK

Test Date: December 31, 2015

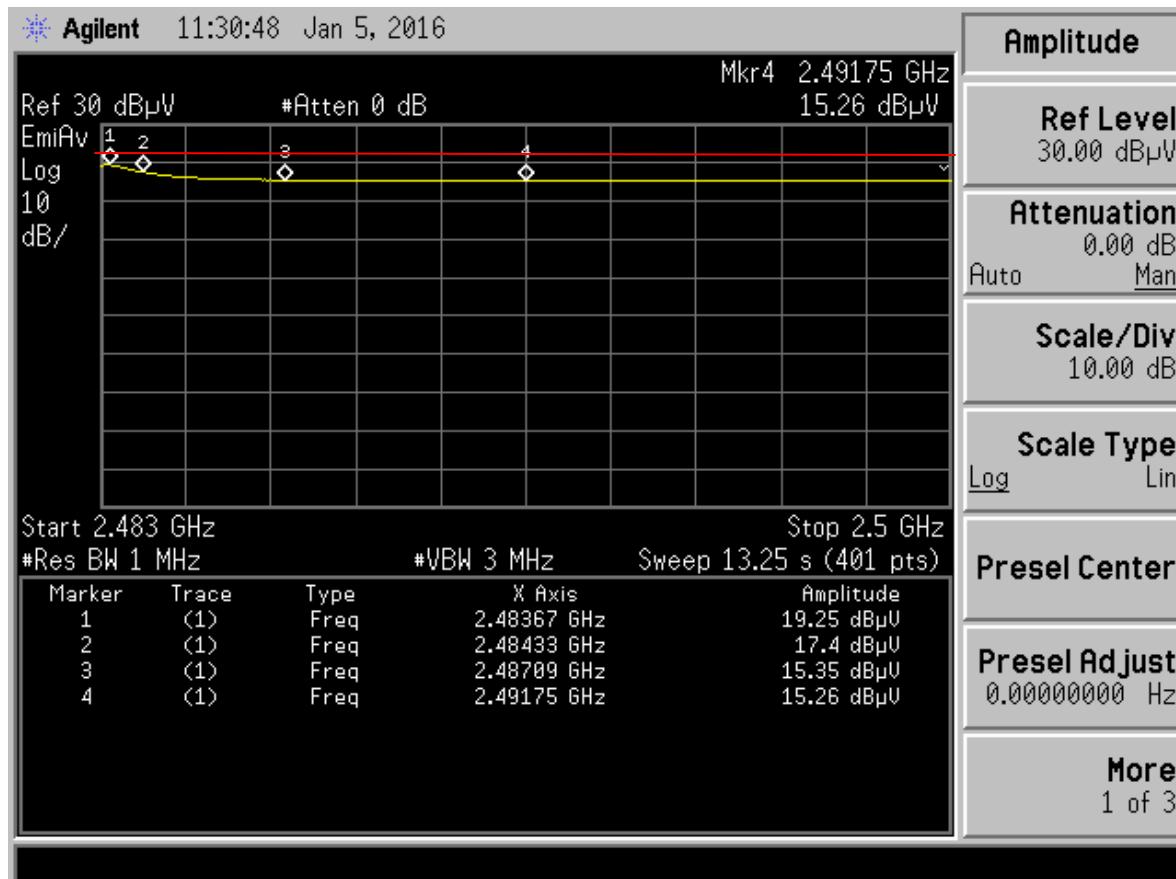
Tested By

Signature:

Name: Carrie Ingram

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704



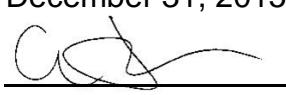

Figure 18. Radiated Restricted Band 2483.5 MHz to 2500 MHz, Average

Table 11. Radiated Restricted Band 2483.5 MHz to 2500 MHz, Average

2483.5 MHz to 2500 MHz Restricted Band Average Measurements							
Test: Radiated Emissions				Client: Qmotion Incorporated			
Project: 15-0312				Model: QM140704			
Frequency (MHz)	Test Data (dB μ V)	AF+CA-AMP (dB/m)	Results (dB μ V/m)	AVG Limits (dB μ V/m)	Antenna Distance/Polarization	Margin (dB)	Detector PK, or AVG
2483.67	19.25	32.24	51.49	54.0	3.0m./VERT	2.5	AVG
2484.33	17.40	32.24	49.64	54.0	3.0m./VERT	4.4	AVG
2487.09	15.35	32.24	47.59	54.0	3.0m./VERT	6.4	AVG
2491.75	15.26	32.24	47.50	54.0	3.0m./VERT	6.5	AVG

Test Date: December 31, 2015

Tested By

Signature:

Name: Carrie Ingram

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

2.12 Six (6) dB Bandwidth per CFR 15.247(a)(2),

The EUT antenna port was connected to a spectrum analyzer having a $50\ \Omega$ input impedance. Measurements were performed similar to the method of FCC, KDB Publication No. 558074 for a bandwidth of 6 dB. The RBW was set to 100 kHz and with the $VBW \geq 3^* RBW$. The results of this test are given in the table 12 below and Figures 19 -21 below.

Table 12. Six (6) dB Bandwidth

Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum FCC Bandwidth (MHz)
2405	1.593	0.500
2440	1.594	0.500
2480	1.651	0.500

Test Date: December 30, 2015

Tested By

Signature:

Name: Carrie Ingram

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

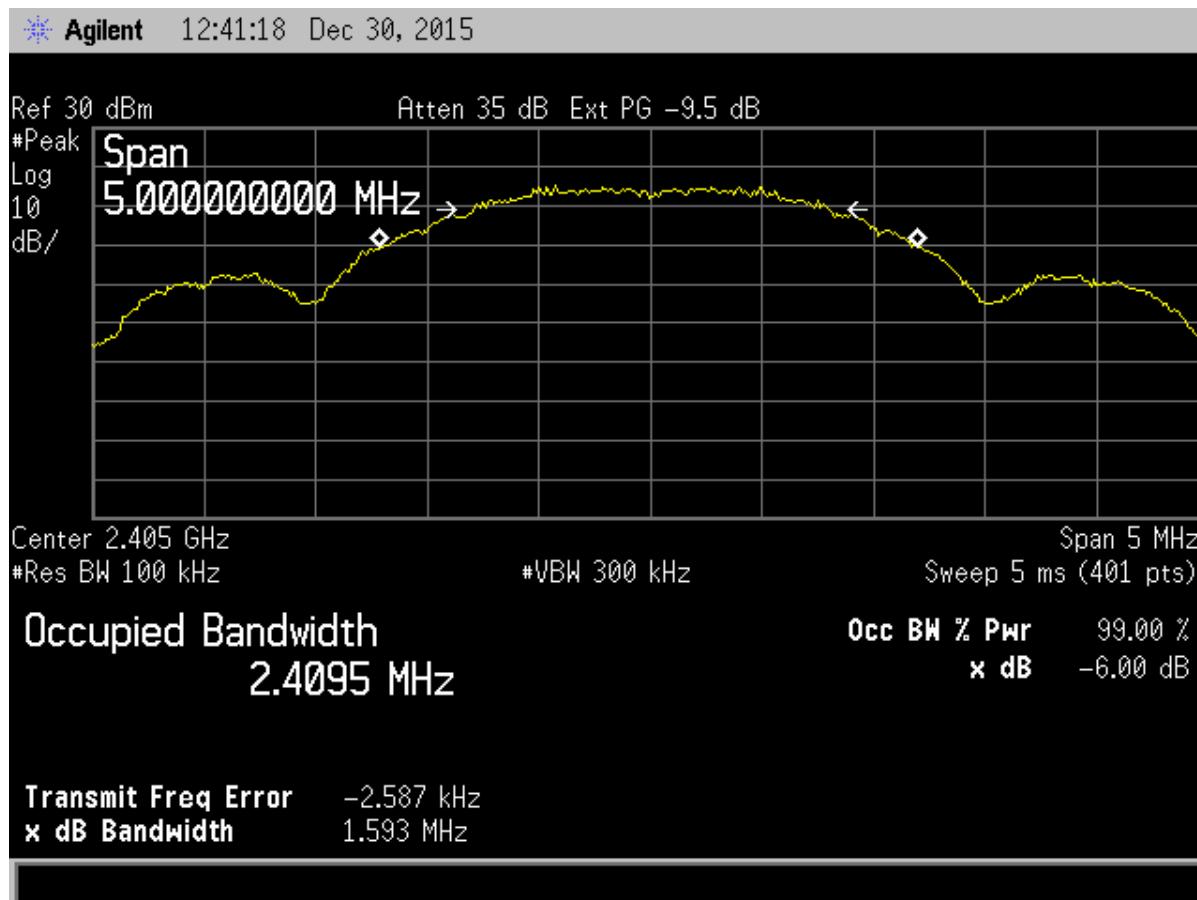


Figure 19. Six dB Bandwidth - 15.247 - Low Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

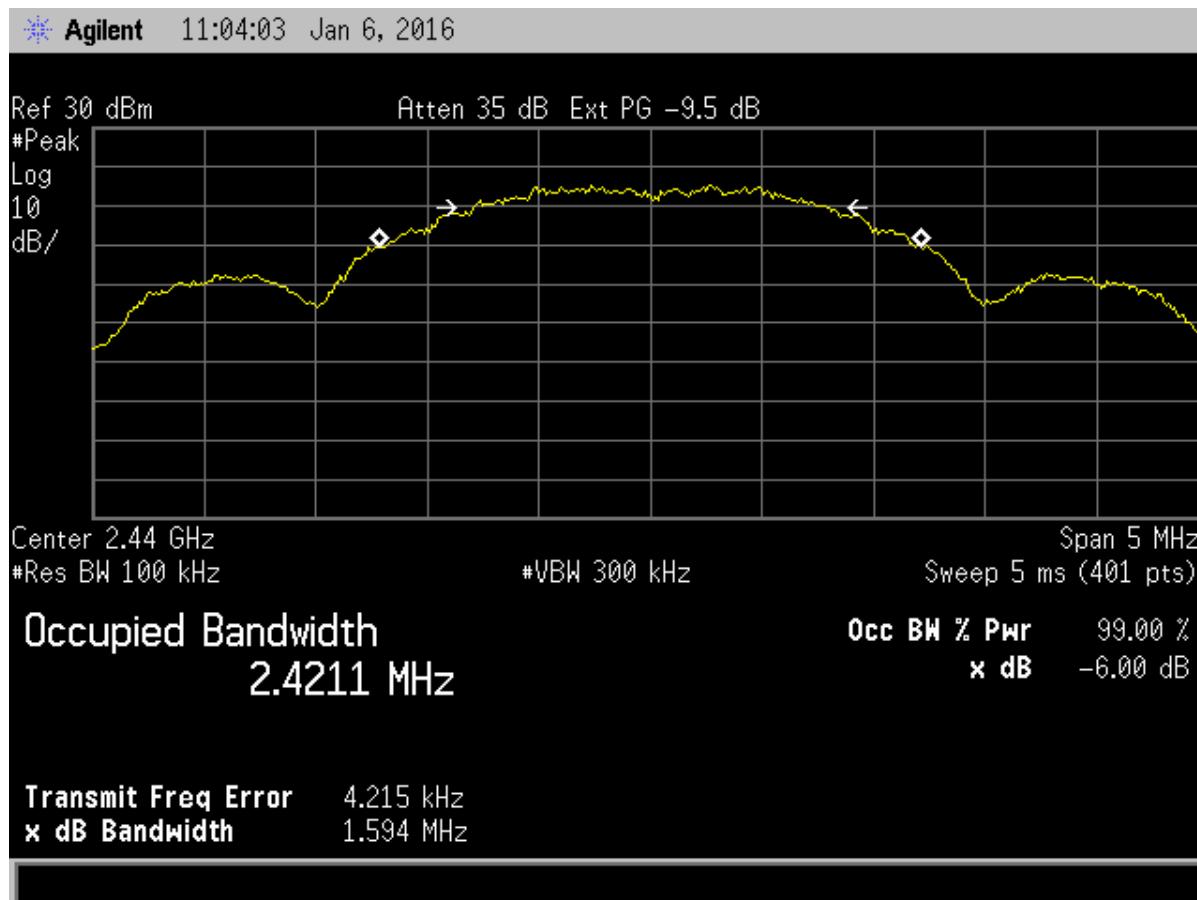


Figure 20. Six dB Bandwidth - 15.247 - Mid Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

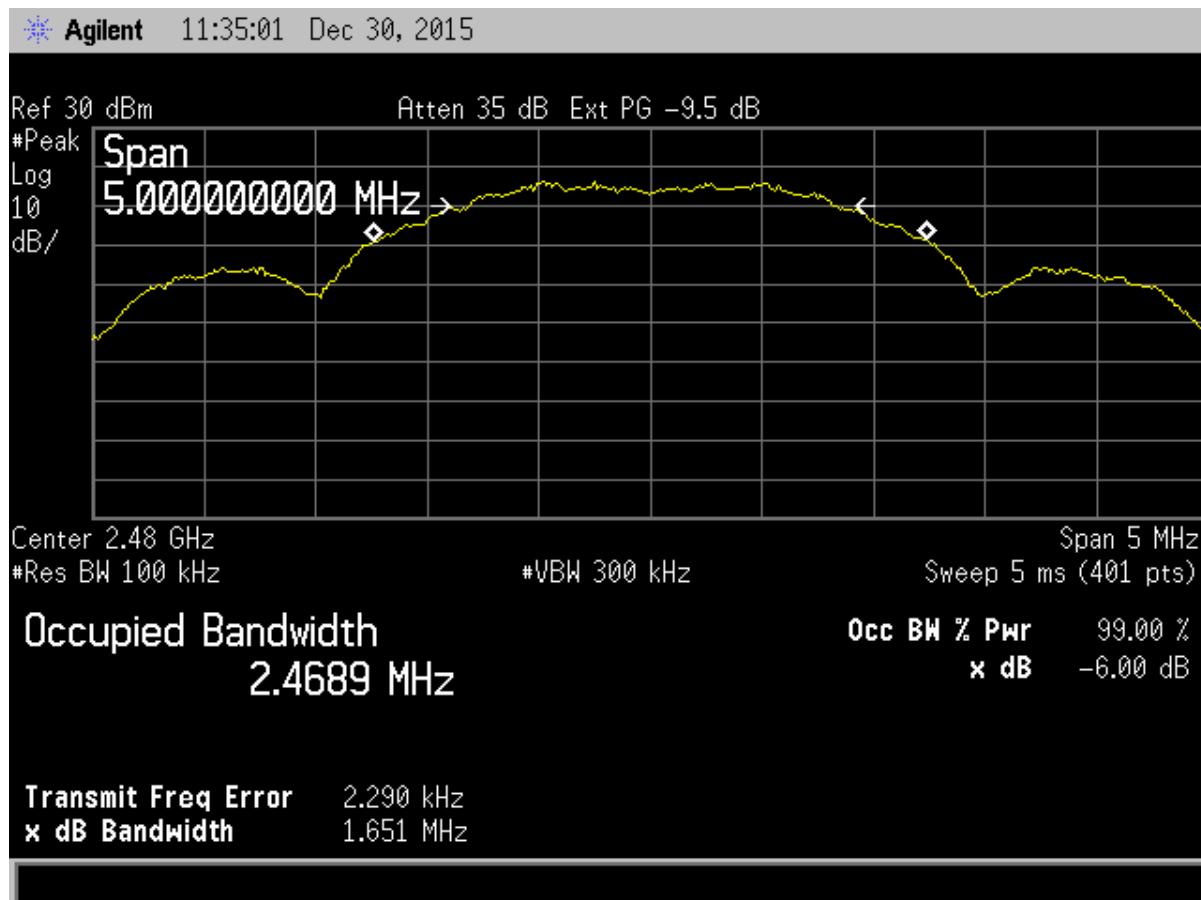


Figure 21. Six dB Bandwidth - 15.247 - High Channel

US Tech Test Report: FCC Part 15 Certification/ RSS 247
FCC ID: 2ABLX-140704
IC: 8832A-140704
Test Report Number: 15-0312
Issue Date: January 5, 2015
Customer: Qmotion Incorporated
Model: QM140704

2.13 99% Occupied Bandwidth (IC RSS 247 5.7 & 5.2)

These measurements were performed while the EUT was in a constant transmit mode. A method similar to the marker delta method was used to capture the points. The RBW was set to approximately 1/100 of the manufacturers claimed RBW and with the VBW \geq RBW. The results of this test are given in Table 13 and Figures 19-21, above.

Table 13. 20 dB Bandwidth and 99% Occupied Bandwidth

Frequency (MHz)	99% Occupied Bandwidth (MHz)
2405	2.410
2440	2.421
2480	2.468

Test Date: December 30, 2015

Tested By

Signature:

Name: Carrie Ingram

US Tech Test Report: FCC Part 15 Certification/ RSS 247
FCC ID: 2ABLX-140704
IC: 8832A-140704
Test Report Number: 15-0312
Issue Date: January 5, 2015
Customer: Qmotion Incorporated
Model: QM140704

2.14 Maximum Peak Conducted Output Power (CFR 15.247 (b) (3))

The transmitter was programmed to operate at a maximum output power across the bandwidth.

Peak power within the band 2405 MHz to 2480 MHz was measured per FCC KDB Publication 558074 as an Antenna Conducted test with a spectrum analyzer by connecting the spectrum analyzer directly, via a short RF cable, and attenuators to the antenna output terminals on the EUT. The spectrum analyzer was set for an impedance of 50Ω with the RBW set greater than the 6 dB bandwidth of the EUT, and the $VBW \geq RBW$. Peak antenna conducted output power is tabulated in the table below.

Table 14. Peak Antenna Conducted Output Power per Part 15.247 (b) (3)

Frequency of Fundamental (MHz)	Raw Test Data dBm	Converted Data (mW)	FCC Limit (mW Maximum)
2405	18.72	74.47	1000
2440	17.78	59.97	1000
2480	2.26	1.68	1000

Test Date: December 30, 2015 and January 5, 2016

Tested By

Signature:

Name: Carrie Ingram

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

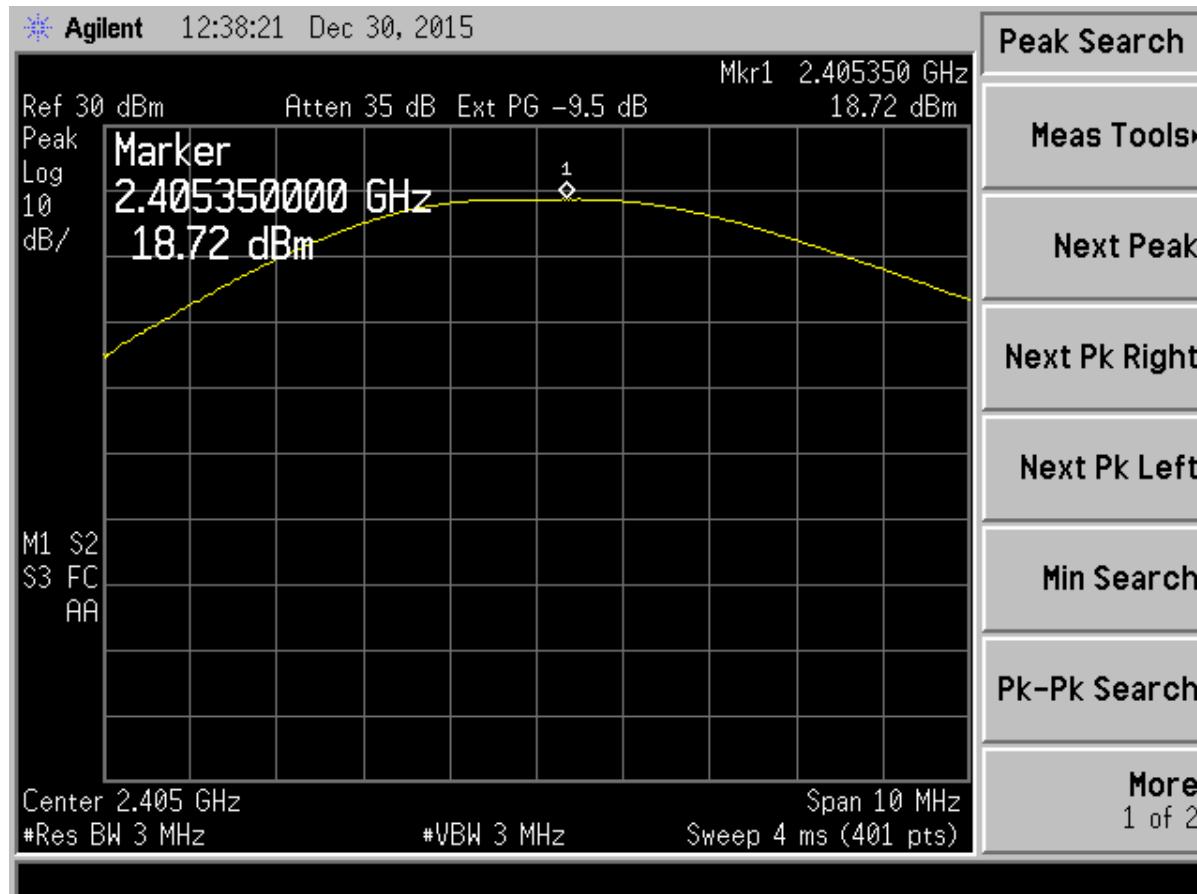
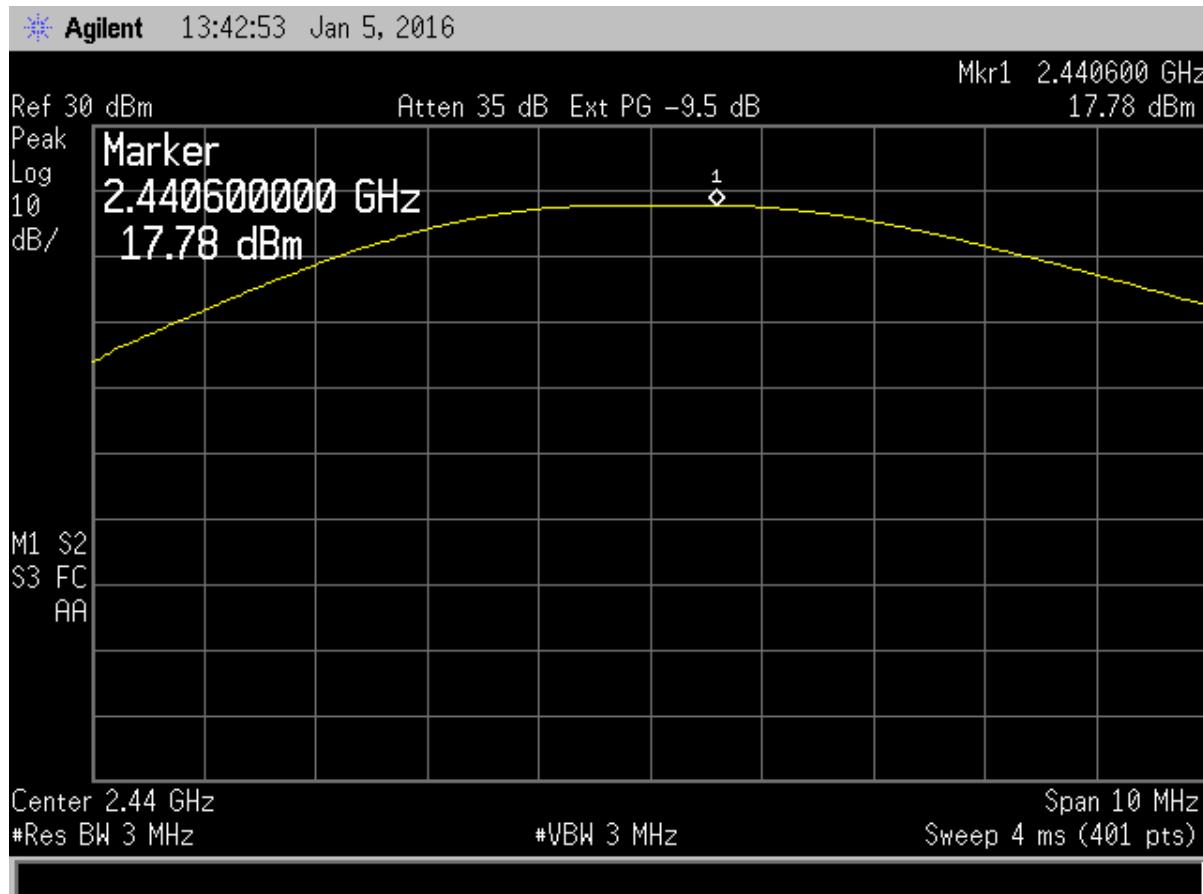



Figure 22. Peak Antenna Conducted Output Power, Low Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

Figure 23. Peak Antenna Conducted Output Power, Mid Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

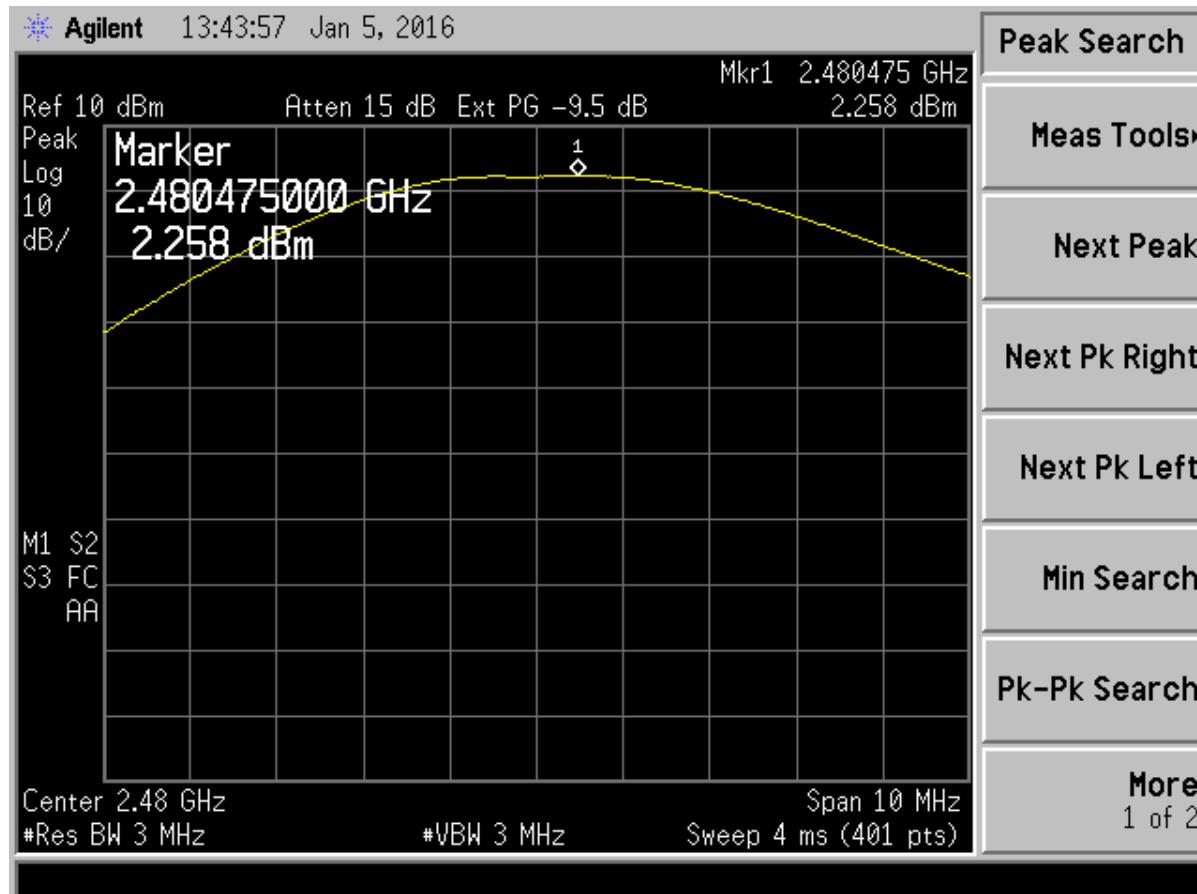


Figure 24. Peak Antenna Conducted Output Power, High Channel

US Tech Test Report: FCC Part 15 Certification/ RSS 247
FCC ID: 2ABLX-140704
IC: 8832A-140704
Test Report Number: 15-0312
Issue Date: January 5, 2015
Customer: Qmotion Incorporated
Model: QM140704

2.15 Power Spectral Density (CFR 15.247(e)) (IC RSS 247 5.1 & 5.2)

The transmitter was placed into a continuous mode of operation at all applicable frequencies. The measurements were performed per the procedures of FCC KDB Procedure 558074. The RBW was set to 3 kHz and the Video Bandwidth was set to \geq RBW. The span was set to 1.5 times the OBW.

In accordance with 15.247 (e), the power spectral density shall be no greater than +8 dBm per any 3 kHz band.

The following results show that all are less than +8 dBm per 3 kHz band.

Table 15. Power Spectral Density for Low, Mid and High Bands

Frequency (MHz)	Test Data (dBm/3 kHz)	FCC Limit (dBm/3 kHz)
2405	3.73	+8.0
2440	4.86	+8.0
2480	4.20	+8.0

Test Date: December 30, 2015

Tested By

Signature:

Name: Carrie Ingram

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

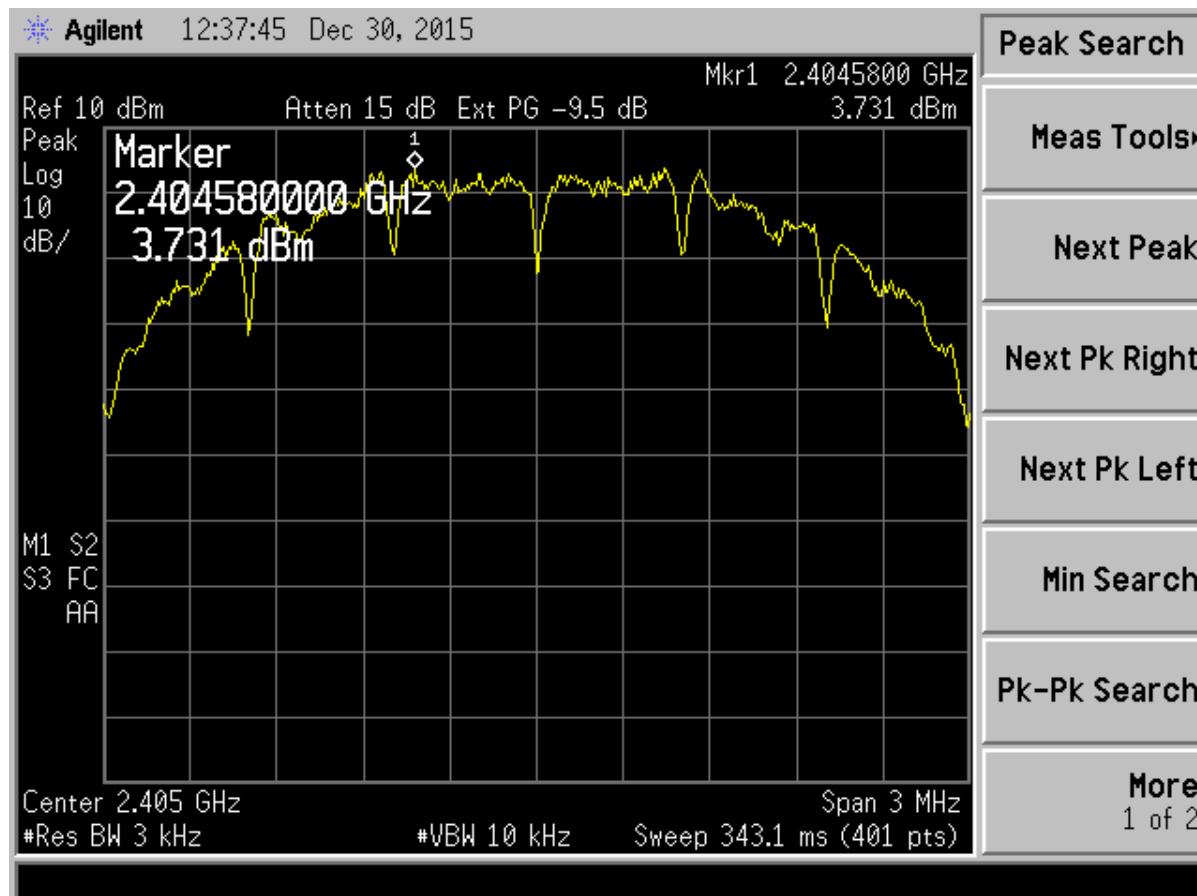


Figure 25. Peak Power Spectral Density, Low Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

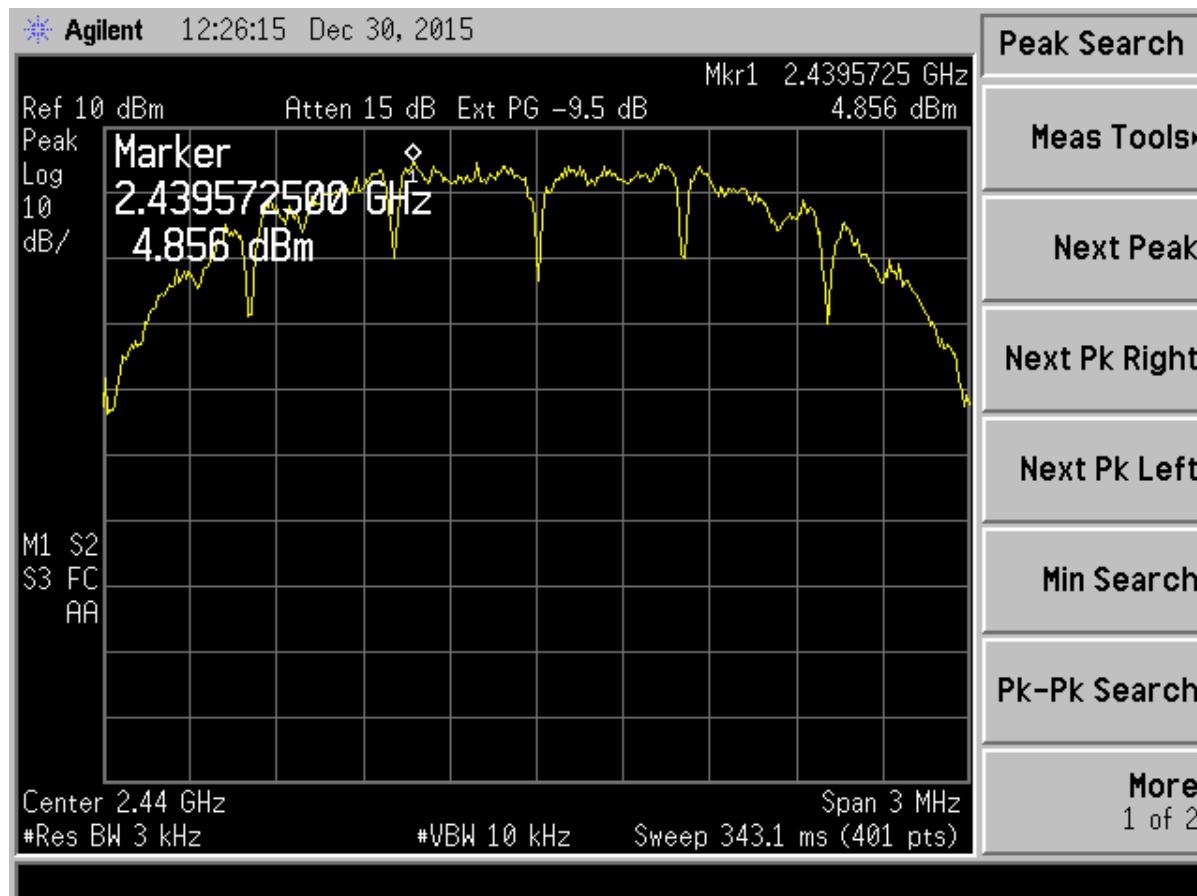


Figure 26. Peak Power Spectral Density, Mid Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

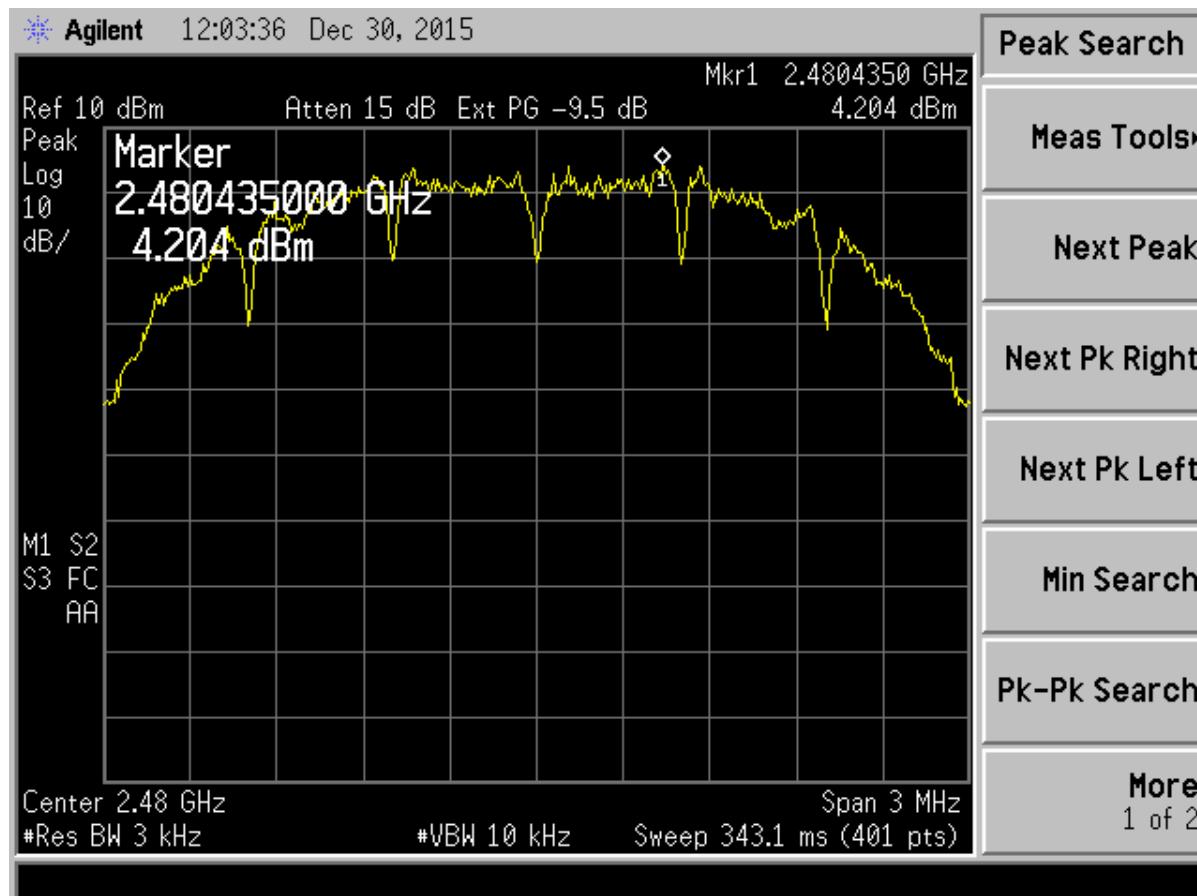


Figure 27. Peak Power Spectral Density, High Channel

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

2.16 Unintentional Radiator, Powerline Emissions (CFR 15.107)

The power line conducted voltage emission measurements have been carried out in accordance with CFR 15.107, per ANSI C63.4:2014, Paragraph 7, with a spectrum analyzer connected to a LISN and the EUT placed into a continuous mode of transmission.

Since the EUT is battery powered, this test was not applied. The EUT can be powered by either 4 or 6 D-cell batteries. A pre-scan was performed to determine the worse-case configuration. There was no significant difference between the two configurations.

NOTE: The test data provided in this section is to support the Verification requirement for the digital apparatus and the radio within.

Table 16. Conducted Spurious Emissions 15.207 limits

150KHz to 30 MHz						
Test: Power Line Conducted Emissions				Client: Qmotion Incorporated		
Project: 15-0312				Model: QM140704		
Frequency (MHz)	Test Data (dBuV)	LISN+CL-PA (dB)	Results (dBuV)	AVG Limits (dBuV)	Margin (dB)	Detector PK, QP, or AVG
The EUT is battery powered; therefore this test was not applicable.						

SAMPLE CALCULATION: N/A

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2ABLX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

2.17 Unintentional Radiator, Radiated Emissions (CFR 15.109)

Radiated emissions disturbance Measurements were performed with an instrument having both peak and quasi-peak detectors over the frequency range of 30 MHz to 12.5 GHz. Measurements of the radiated emissions were made with the receiver antenna at a distance of 3 m from the boundary of the test unit.

The test antenna was varied from 1 m to 4 m in height while watching the analyzers' display for the maximum magnitude of the signal at the test frequency. The antenna polarization (horizontal or vertical) and test sample azimuth were varied during the measurements to find the maximum field strength readings to record.

The worst-case radiated emission in the range of 30 MHz to 12.5 GHz was 4.9 dB below the limit at 903.8 MHz. This signal is found in Table 17. All other radiated emissions were 8.1 dB or more below the limit.

NOTE: The test data provided in this section is to support the Verification requirement for the digital apparatus and the radio within.

US Tech Test Report:
 FCC ID:
 IC:
 Test Report Number:
 Issue Date:
 Customer:
 Model:

FCC Part 15 Certification/ RSS 247
 2ABLX-140704
 8832A-140704
 15-0312
 January 5, 2015
 Qmotion Incorporated
 QM140704

**Table 17. Unintentional Radiator, Peak Radiated Emissions (CFR 15.109),
 30 MHz to 1000 MHz**

30 MHz to 1000 MHz with Class B Limits							
Test: Radiated Emissions				Client: Qmotion Incorporated			
Project: 15-0312				Model: QM140704			
Frequency (MHz)	Test Data (dBuV)	AF+CA-AMP (dB/m)	Results (dBuV/m)	QP Limits (dBuV/m)	Antenna Distance/Polarization	Margin (dB)	Detector PK, or QP
454.57	36.80	-0.59	36.21	46.0	3m./HORZ	9.8	QP
299.55	31.90	-2.92	28.98	46.0	3m./VERT	17.0	PK
349.51	31.90	-4.00	27.90	46.0	3m./VERT	18.1	PK
520.00	37.30	0.56	37.86	46.0	3m./VERT	8.1	PK
699.04	32.00	4.31	36.31	46.0	3m./VERT	9.7	PK
903.80	32.30	8.83	41.13	46.0	3m./VERT	4.9	PK

Tested from 30 MHz to 1 GHz

SAMPLE CALCULATION at 454.57 MHz:

Magnitude of Measured Frequency	36.80	dBuV
+ Cable Loss+ LISN Loss	-0.59	dB
=Corrected Result	36.21	dBuV
Limit	46.0	dBuV
-Corrected Result	36.21	dBuV
Margin	9.80	dB

Test Date: December 22, 2015

Tested By

Signature

Name: Hossein Rahnama

US Tech Test Report:
FCC ID:
IC:
Test Report Number:
Issue Date:
Customer:
Model:

FCC Part 15 Certification/ RSS 247
2ABLX-140704
8832A-140704
15-0312
January 5, 2015
Qmotion Incorporated
QM140704

**Table 18. Unintentional Radiator, Peak Radiated Emissions (CFR 15.109),
1 GHz to 12.5 GHz**

1 GHz to 12.5 GHz with Class B Limits							
Test: Radiated Emissions				Client: Qmotion Incorporated			
Project: 15-0312				Model: QM140704			
Frequency (MHz)	Test Data (dB _{BuV})	AF+CA-AMP (dB/m)	Results (dB _{BuV} /m)	AVG Limits (dB _{BuV} /m)	Antenna Distance/Polarization	Margin (dB)	Detector PK, or AVG
No emissions were detected within 20 dB of the limit.							

Tested from 1 GHz to 12.5 GHz

SAMPLE CALCULATION: N/A

Test Date: December 22, 2015

Tested By

Signature

Name: Hossein Rahnama

US Tech Test Report:	FCC Part 15 Certification/ RSS 247
FCC ID:	2ABLX-140704
IC:	8832A-140704
Test Report Number:	15-0312
Issue Date:	January 5, 2015
Customer:	Qmotion Incorporated
Model:	QM140704

2.18 Measurement Uncertainty

The measurement uncertainties given were calculated using the method detailed in CISPR 16-4. A coverage factor of $k=2$ was used to give a level of confidence of approximately 95%.

2.18.1 Conducted Emissions Measurement Uncertainty

Measurement Uncertainty (within a 95% confidence level) for this test is ± 2.78 dB.

The EUT is battery powered; therefore this tested was deemed inapplicable.

2.18.2 Radiated Emissions Measurement Uncertainty

For a measurement distance of 3 m the measurement uncertainty (with a 95% confidence level) for this test using a Biconical Antenna (30 MHz to 200 MHz) is ± 5.39 dB. This value includes all elements of measurement.

The measurement uncertainty (with a 95% confidence level) for this test using a Log Periodic Antenna (200 MHz to 1000 MHz) is ± 5.18 dB.

The measurement uncertainty (with a 95% confidence level) for this test using a Horn Antenna is ± 5.21 dB.