

RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i) and §15.407(f), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b) of this chapter.

EUT Specification

EUT	802.11 abgn Dual Band Dual Radio Enterprise Access point with plastic shell and internal antenna
Frequency band (Operating)	<input checked="" type="checkbox"/> WLAN: 2.412GHz ~ 2.462GHz <input checked="" type="checkbox"/> WLAN: 5.15GHz ~ 5.25GHz <input type="checkbox"/> Others
Device category	<input type="checkbox"/> Portable (<20cm separation) <input checked="" type="checkbox"/> Mobile (>20cm separation) <input type="checkbox"/> Others
Exposure classification	<input type="checkbox"/> Occupational/Controlled exposure ($S = 5\text{mW/cm}^2$) <input checked="" type="checkbox"/> General Population/Uncontrolled exposure ($S=1\text{mW/cm}^2$)
Antenna diversity	<input type="checkbox"/> Single antenna <input checked="" type="checkbox"/> Multiple antennas <input type="checkbox"/> Tx diversity <input type="checkbox"/> Rx diversity <input checked="" type="checkbox"/> Tx/Rx diversity
Max. output power	IEEE 802.11b mode: 18.51dBm (71.0mW) IEEE 802.11g mode: 16.60dBm (45.7mW) draft 802.11n Standard-20 MHz Channel mode: 16.42 dBm (43.9mW) draft 802.11n Wide-40 MHz Channel mode: 15.90 dBm (38.9mW) IEEE 802.11a mode: 16.14dBm (41.1 mW) draft 802.11an Standard-20 MHz Channel mode:15.45 dBm(35.1mW) draft 802.11an Wide-40 MHz Channel mode: 15.54 dBm (35.8mW)
Antenna gain (Max)	Two PIFA antennas for 2.4GHz Gain 3.0 dBi and two PIFA antennas for 5 GHz Gain 4.0 dBi
Evaluation applied	<input checked="" type="checkbox"/> MPE Evaluation* <input type="checkbox"/> SAR Evaluation <input type="checkbox"/> N/A

Remark:

1. The maximum output power is 18.51dBm (71.0mW) at 2412MHz (with 2.00numeric antenna gain.); 16.14dBm (41.1mW) at 5240MHz (with 2.51numeric antenna gain.)
2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.
3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.
4. All two antennas are completely uncorrelated with each other.

Compliance Certification Services Inc.

Report No:C130809R03-RPB

FCC ID:
2ABKCDCWL7962AP50

Date of Issue :September 2, 2013

TEST RESULTS

No non-compliance noted.

Calculation

Given $E = \frac{\sqrt{30 \times P \times G}}{d}$ & $S = \frac{E^2}{3770}$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

P (mW) = P (W) / 1000 and

d (cm) = d (m) / 100

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2} \quad \text{Equation 1}$$

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

Maximum Permissible Exposure

Substituting the MPE safe distance using $d = 20$ cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

S = Power density in mW / cm²

Compliance Certification Services Inc.

Report No:C130809R03-RPB

FCC ID:
2ABKCDCWL7962AP50

Date of Issue :September 2, 2013

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
802.11b	2412-2462	18.51	3	20	0.0283	1
802.11g		16.60	3	20	0.0182	1
802.11 n(20MHz)		16.42	3	20	0.0175	1
802.11 n(40MHz)		15.90	3	20	0.0155	1
802.11a	5150-5250	16.14	4	20	0.0205	1
802.11 n(20MHz)		15.45	4	20	0.0175	1
802.11 n(40MHz)		15.54	4	20	0.0179	1

Note:

Both of the WLAN 2.4G&5.0G can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN 2.4G+WLAN 5.0G=0.0283+0.0205=0.0488

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)