

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

TEST REPORT

FCC ID: 2ABCS-A6102

Applicant : Truly Industrial (ShanWei) Ltd

Address : Truly Industrial Area, Shanwei City, Guangdong Province, People's

Republic of China

Equipment Under Test(EUT):

Name : 3D PAD

Model : A6102, A6100, N103D

In Accordance with: FCC PART 2; FCC PART 22H; FCC PART 24E

Report No : STI130621090-4

Date of Test : November 10. 2013- January 10, 2014

Date of Issue : January 10, 2014

Test Result: PASS

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

(Mark Zhu)

General Manager

The manufacture should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Certification Technology Service Co., Ltd. Or test done by Shenzhen Certification Technology Service Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Certification Technology Service Co., Ltd. Approvals in writing.

Contents

1.	Gen	eral Information	4
	1.1.	Description of Device (EUT)	4
	1.2.	Test Lab information	5
2.	Sum	nmary of test	6
	2.1.	Summary of test result	6
	2.2.	Assistant equipment used for test	6
	2.3.	Test mode	7
	2.4.	Test Environment Conditions	7
	2.5.	Measurement Uncertainty (95% confidence levels, k=2)	7
	2.6.	Test Equipment	8
3.	Con	ducted Output power	9
	3.1.	Block Diagram of Test Setup	9
	3.2.	Limit	9
	3.3.	Test Procedure	9
	3.4.	Test Result.	9
4.	Rad	iated Output power	10
	4.1.	Block Diagram of Test Setup	10
	4.2.	Limit	10
	4.3.	Test Procedure	10
	4.4.	Test Result.	11
5.	Occi	upied Bandwidth	12
	5.1.	B lock Diagram of Test Setup	12
	5.2.	Limit	12
	5.3.	Test Procedure	12
	5.4.	Test Result.	13
	5.5.	Orginal test data	13
6.	Freq	quency stability	17
	6.1.	Block Diagram of Test Setup	17
	6.2.	Limit	17
	6.3.	Test Procedure	17
	6.4.	Test Result.	18
7.	Con	ducted spurious emissions	20
	7.1.	Block Diagram of Test Setup	20
	7.2.	Limit	20
	7.3.	Test Procedure	20
	7.4.	Test Result	20
8.	Rad	liated Spurious emissions	27
	8.1.	Block Diagram of Test Setup	27
	8.2.	Limit	27
	8.3.	Test Procedure	27
	8.4.	Test Result	28
9.	Ban	d Edge Compliance	30
	9.1.	Block Diagram of Test Setup	30

Report No.: STI130621090-4

12.	Photos of EUT	38
11.	Test setup photo	36
	10.4. Test Result	34
	10.3. Test Procedure	33
	10.2. Limit	
	10.1. Block Diagram of Test Setup	
10.	Power line conducted emission	33
	9.4. Test Result	31
	9.3. Test Procedure	30
	9.2. Limit	30

Report No.: STI130621090-4

1. General Information

1.1. Description of Device (EUT)

EUT : 3D PAD Trade Name : TRULY

Model No. : A6102, A6100, N103D

DIFF. All model's the function, software and electric circuit are the

same, only with a model named different. The test model: A6102...

Power supply : DC 3.7V Supply by battery

DC 5V from adapter with AC 120V/60Hz adapter

Manufacturer: Ktec

Adapter : Model No.:KAS29A0500250D5

Radio Technology : NFC, Bluetooth 4.0, Bluetooth 2.1+EDR,

IEEE 802.11a,b,g,n/HT20,n/HT40, GSM 850/1900, WCDMA BAND II/V

Operation frequency : NFC:13.56MHz

IEEE 802.11a: 5745MHz-5825MHz IEEE 802.11b: 2412MHz-2462MHz IEEE 802.11g: 2412MHz-2462MHz IEEE 802.11n HT20: 2412-2462MHz, IEEE 802.11n HT40:2422-2452MHz

Bluetooth 4.0: 2402-2480MHz

Bluetooth 2.1+EDR: 2402-2480MHz GSM 850: 824.2MHz—848.8MHz GSM 1900: 1850.2MHz—1909.8MHz

WCDMA BAND II: 1852.4MHz—1907.6MHz WCDMA BAND V: 826.4MHz—846.6MHz

Modulation : IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK),

IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK), IEEE 802.11n: OFDM(64QAM, 16QAM, QPSK, BPSK),

Bluetooth 2.1+EDR: GFSK, π/4 DQPSK, 8-DPSK,

Bluetooth 4.0: GFSK,

GSM: GMSK, WCDMA: QPSK

Antenna Type : PIFA Antenna, max gain 1 dBi for WIFI,

PIFA Antenna, max gain 1 dBi for BT. PIFA Antenna, max gain 1.5 dBi for GSM

PIFA Antenna, max gain 1.5 dBi for WCDMA

Report No.: STI130621090-4

Applicant : Truly Industrial (ShanWei) Ltd

Address : Truly Industrial Area, Shanwei City, Guangdong Province,

People's Republic of China

Manufacturer : Truly Industrial (ShanWei) Ltd

Address : Truly Industrial Area, Shanwei City, Guangdong Province,

People's Republic of China

Note: This report only test for WCDMA, for other radio test see other test report.

1.2. Test Lab information

Shenzhen Certification Technology Service Co., Ltd.

2F, Building B, East Area of Nanchang Second Industrial Zone,

Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China

FCC Registered No.:197647

FCC ID: 2ABCS-A6102 Page 5 of 45

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results
	FCC PART 2: 2.1046	
Conducted Output power	FCC PART 22H: 22.913 (a)	PASS
	FCC PART 24E: 24.232 (c)	
De diete d'Oratoret orange (com /eion)	FCC PART 22H:22.913 (a)	PASS
Radiated Output power(erp/eirp)	FCC PART 24E:24.232(c)	PASS
	FCC PART 2: 2.1049	
Occupied bandwidth	FCC PART 22H: 22.917 (b)	PASS
	FCC PART 24E: 24.238 (b)	
	FCC PART 2: 2.1055	
Frequency stability	FCC PART 22H: 22.355	PASS
	FCC PART 24E: 24.235	
Conducted enurious emission	FCC PART 2: 2.1051	
Conducted spurious emission	FCC PART 22H: 22.917	PASS
(Antenna terminal)	FCC PART 24E: 24.238	
	FCC PART 2: 2.1053	
Radiated spurious emissions	FCC PART 22H: 22.917	PASS
	FCC PART 24E: 24.238	
D 1 1	FCC PART 22H: 22.917 (b)	DACC
Band edge compliance	FCC PART 24E: 24.238 (b)	PASS
Power Line Conducted Emission Test	FCC Part 15: 15.207	PASS
Fower Line Conducted Emission Test	ANSI C63.4: 2003	PASS

2.2. Assistant equipment used for test

Description	:	Adapter
Manufacturer		Ktec
Model No.		KAS29A0500250D5

FCC ID: 2ABCS-A6102 Page 6 of 45

2.3. Test mode

During all testing, EUT is in link mode with base station emulator at maximum power level in each test mode and channel as below:

Mode	Channel	Frequency(MHz)	
	4132	824.2	
UMTS BAND V	4182	836.6	
	4233	846.6	
	9262	1852.4	
UMTS BAND II	9400	1880.0	
	9538	1907.6	

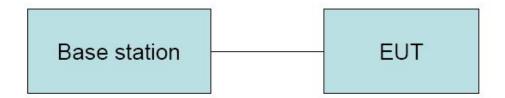
2.4. Test Environment Conditions

Temperature range	21-25℃
Humidity range	40-75%
Pressure range	86-106kPa

2.5. Measurement Uncertainty (95% confidence levels, k=2)

Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber	3.54dB	Polarize: V
(30MHz to 1GHz)	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber	2.08dB	Polarize: H
(1GHz to 25GHz)	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10-9	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2℃	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

FCC ID: 2ABCS-A6102 Page 7 of 45


2.6. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	Nov. 16, 13	1Year
Spectrum analyzer	Agilent	E4443A	MY46185649	Oct. 30, 13	1Year
Receiver	R&S	ESCI	100492	Oct. 30, 13	1Year
Receiver	R&S	ESCI	101202	Oct. 30, 13	1Year
Bilog Antenna	Sunol	JB3	A121206	Mar.12, 13	1Year
Horn Antenna	EMCO	3115	640201028-06	Mar.12, 13	1Year
Power Meter	Anritsu	ML2487A	6K00001491	Oct. 30, 13	1Year
ETS Horn Antenna	ETS	3160	SEL0076	Mar.12, 13	1Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	Mar.12, 13	1Year
Cable	Resenberger	N/A	No.1	Oct. 30, 13	1Year
Cable	SCHWARZBEC K	N/A	No.2	Oct. 30, 13	1Year
Cable	SCHWARZBEC K	N/A	No.3	Oct. 30, 13	1Year
Pre-amplifier	R&S	AFS42-00101 800-25-S-42	SEL0081	Oct. 30, 13	1Year
Pre-amplifier	R&S	AFS33-18002 650-30-8P-44	SEL0080	Oct. 30, 13	1Year
Base station	Agilent	E5515C	GB44300243	Oct. 30, 13	1 Year
Temperature controller	Terchy	MHQ	120	Oct. 30, 13	1Year
Power divider	Anritsu	K240C	020346	Oct. 30, 13	1 Year
Signal Generator	НР	83732B	VS3449051	Oct. 30, 13	1 Year
Attenuator	Agilent	8491B	MY39262165	Oct. 30, 13	1 Year

FCC ID: 2ABCS-A6102 Page 8 of 45

3. Conducted Output power

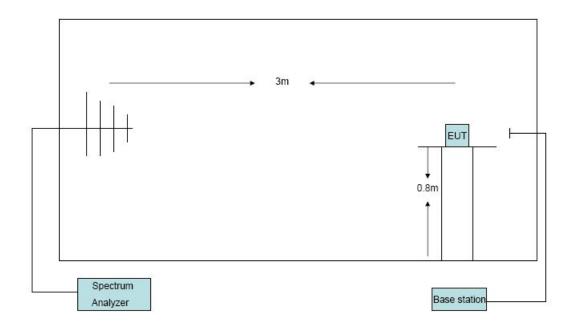
3.1. Block Diagram of Test Setup

3.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz	
38.5dBm(ERP)	33dBm(EIRP)	

3.3. Test Procedure

- (1) The EUT's RF output port was connected to base station.
- (2) A call is set up by the SS according to the generic call set up procedure
- (3) Set EUT at maximum power level through base station by power level command
- (4) Measure the maximum output power of EUT at each frequency band and mode by base station.


3.4. Test Result

EUT: 3D PAD	EUT: 3D PAD M/N:A6102 Power: DC 5V from adapter						
Ambient Temp	perature:24°C	Relative Humic	Relative Humidity: 62%				
Test date: 2013-11-26		Test site: RF sit	est site: RF site Tested by: Simple Guan				
Conclusion: P.	ASS						
Mode	Channel	PK Output	ERP	EIRP	Li	mit	
		Power(dBm)	(dBm)	(dBm)	ERP(dBm)	EIRP(dBm)	
WCDMA	4132	23.42	22.77	/	38.5	/	
BAND V	4182	23.28	22.63	/	38.5	/	
BAND V	4233	23.35	22.70	/	38.5	/	
WCDMA	9262	21.84	/	23.34	/	33	
BAND II	9400	21.73	/	23.23	/	33	
BANDII	9538	21.67	/	23.17	/	33	
Note: EIRP=Pk output power +Antenna Gain(1.5dBi);							
ERP=PK output power + Antenna Gain(1.5dBi) -2.15							

FCC ID: 2ABCS-A6102 Page 9 of 45

4. Radiated Output power

4.1. Block Diagram of Test Setup

4.2. Limit

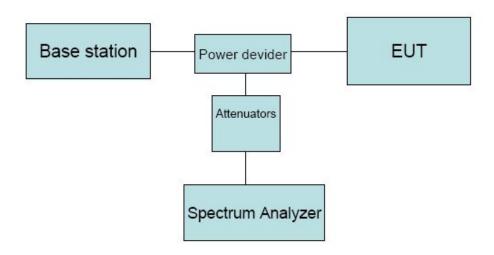
Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

4.3. Test Procedure

- The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RBW= 3MHz,VBW= 3MHz and peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. The highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations
- 3. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency lelow 1GHz) or Horn antenna(for frequency above 1GHz) at same location with same polarize of reveiver antenna and then a known power of each measure frequency from

FCC ID: 2ABCS-A6102 Page 10 of 45

S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain –Substitution antenna Loss(only for Dipole antenna) - Analyzer reading. Then the EUT's EIRP was calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP – 2.15


4.4. Test Result

EUT: 3D PAD M/N:A6102							
Power: DC 5V from adapter							
Ambient Temperature	60%						
Test date: 2013-11-26			Test site: RF site	Tested by: Simple Guan			
Conclusion: PASS							
Mode	Channel	LVL	Correction	ERP	EIRP		
		(dBm)	factor(dB)	(dBm)	(dBm)		
	4132	-6.35	30.42	21.92	/		
WCDMA BAND V	4182	-6.64	30.21	21.42	/		
	4233	-7.02	30.05	20.88	/		
	9262	-25.18	46.80	/	21.62		
WCDMA BAND II	9400	-25.36	46.45	/	21.09		
	9538	-25.75	46.58	/	20.83		
ERP=LVL + Correction factor -2.15							
EIRP=LVL+ Correction factor							

FCC ID: 2ABCS-A6102

5. Occupied Bandwidth

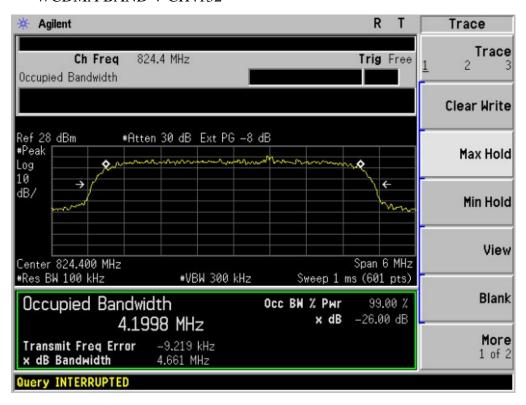
5.1. B lock Diagram of Test Setup

5.2. Limit

N/A

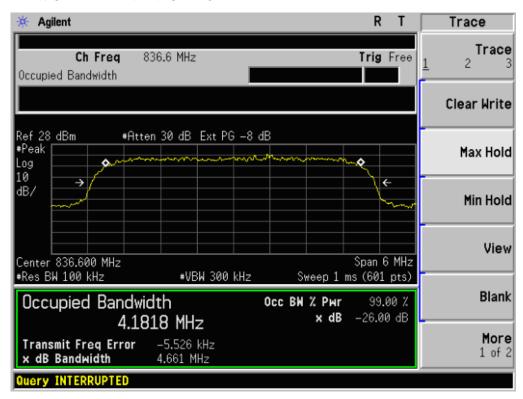
5.3. Test Procedure

- 1. The EUT' RF output port was connected to Spectrum Analyzer and Base Station via power divider.
- 2. Spectrum analyzer's occupied bandwidth measure function was used to measure 99% bandwidth and -26dBc bandwidth

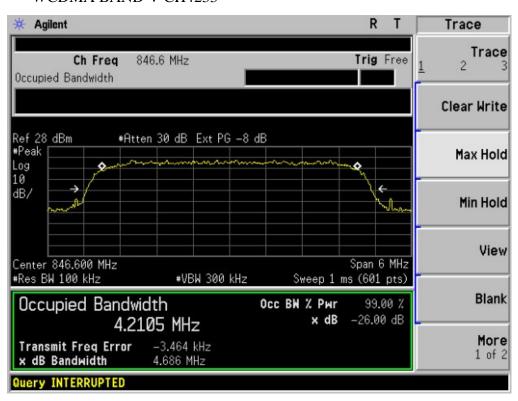

FCC ID: 2ABCS-A6102 Page 12 of 45

5.4. Test Result

EUT: 3D PAD M/N:A6102								
Power: DC 5V from adapter								
Ambient Temperature:23	3℃	Relative Humidity: 609	%					
Test date: 2013-11-26	Test site: RF site	Tested by: Simple Guan						
Mode	Channel	99% bandwidth -26dBc bandwi						
		(MHz)	(MHz)					
	4132	4.1998	4.661					
WCDMA BAND V	4182	4.1818	4.661					
	4233	4.2105	4.686					
	9262	4.1890	4.689					
WCDMA BAND II	9400	4.1590	4.597					
	9538	4.1775	4.666					

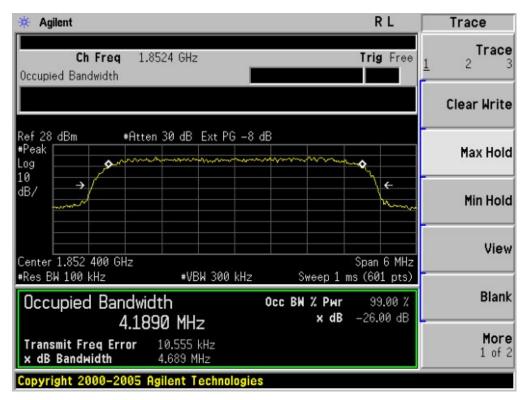

5.5. Orginal test data

WCDMA BAND V CH4132

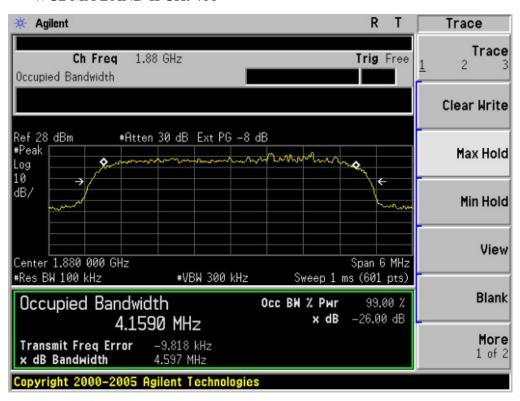


FCC ID: 2ABCS-A6102 Page 13 of 45

WCDMA BAND V CH4182

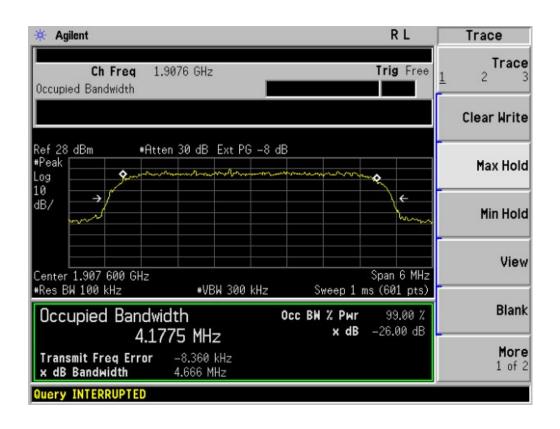


WCDMA BAND V CH4233



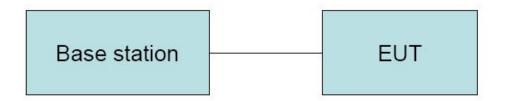
FCC ID: 2ABCS-A6102 Page 14 of 45

WCDMA BAND II CH9262



WCDMA BAND II CH9400

FCC ID: 2ABCS-A6102 Page 15 of 45


WCDMA BAND II CH9538

FCC ID: 2ABCS-A6102 Page 16 of 45

6. Frequency stability

6.1. Block Diagram of Test Setup

6.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
± 2.5 ppm	Must stay within the authorized
	frequency block

6.3. Test Procedure

Test Procedures for Temperature Variation:

- 1. The EUT was set up in the thermal chamber and connected with the base station.
- 2. With power OFF, the temperature was decreased to -10°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in 10°C step up to 45°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
- 4. If the EUT can not be turned on at -10°C, the testing lowest temperature will be raised in 10°C step until the EUT can be turned on.

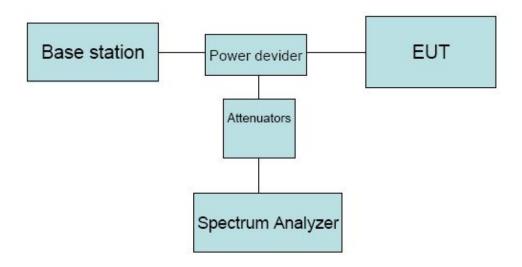
Test Procedures for Voltage Variation

- 1. The EUT was placed in a temperature chamber at 25±5° C and connected with the base station.
- 2. The power supply voltage to the EUT was varied from DC 5V to 3.5V
- 3. The variation in frequency was measured for the worst case.

FCC ID: 2ABCS-A6102 Page 17 of 45

6.4. Test Result

EUT: 3D PAD M/N:	A6102							
Power: DC 5V from adapter								
Ambient Temperature:2	3℃	Relative Humidity: 60%						
Test date: 2013-11-26		Test site: RF site	Tested by: Simple Guan					
Conclusion: PASS								
Mode	Voltage	Frequency error	frequency error					
	(V)	(Hz)	(ppm)					
	5V	27.92	0.033					
WCDMA DAND V	4.5V	31.46	0.038					
WCDMA BAND V	4V	37.83	0.045					
CH4182	3.5V	-32.48	-0.039					
	3V	30.64	0.037					
	5V	41.47	0.022					
WCDMA DAND II	4.5V	43.83	0.023					
WCDMA BAND II CH9400	4V	46.43	0.025					
	3.5V	-45.79	-0.024					
	3V	-43.84	-0.023					


FCC ID: 2ABCS-A6102 Page 18 of 45

Mode	Temperature	Frequency error	frequency error
	(℃)	(Hz)	(ppm)
	-10	37.25	0.045
	0	-34.83	-0.042
WCDMA BAND V	10	-35.28	-0.042
CH4182	20	-38.09	-0.046
CH4162	30	34.21	0.041
	40	29.48	0.035
	50	-41.52	-0.05
	-10	58.37	0.031
	0	49.64	0.026
WCDMA BAND II	10	61.33	0.033
CH9400	20	-55.42	-0.029
C119400	30	43.76	0.023
	40	58.25	0.031
	50	53.74	0.029

FCC ID: 2ABCS-A6102 Page 19 of 45

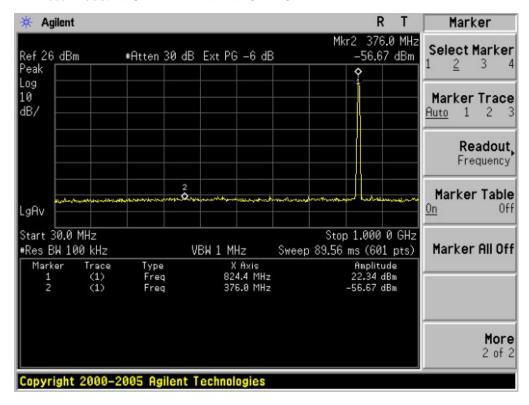
7. Conducted spurious emissions

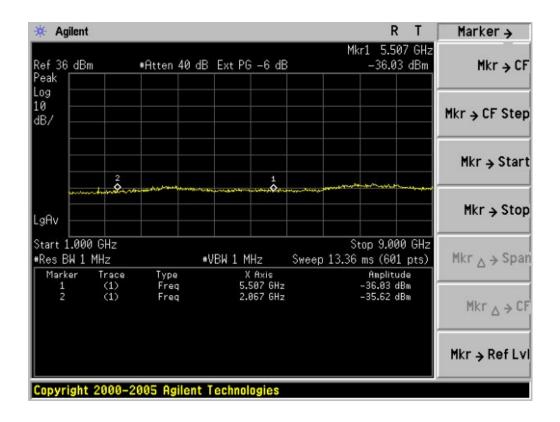
7.1. Block Diagram of Test Setup

7.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

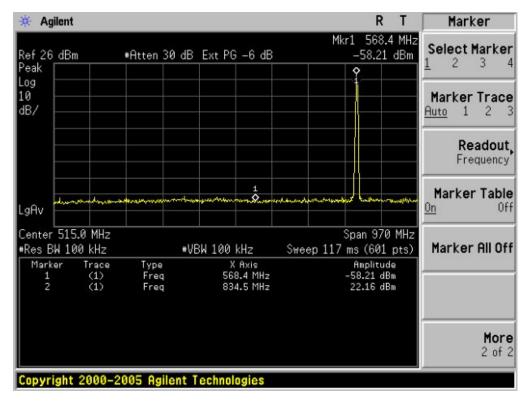
7.3. Test Procedure

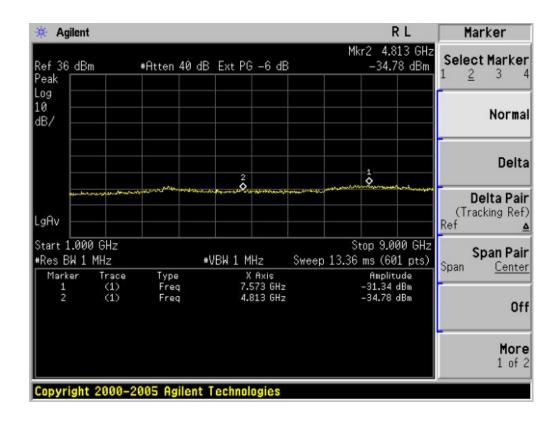

- 1. The EUT was connected to spectrum analyzer and base station via power divider.
- 2. The low, middle and high channels of each band and mode's spurious emissions for 30MHz to 10th Harmonic were measured by Spectrum analyzer.


7.4. Test Result

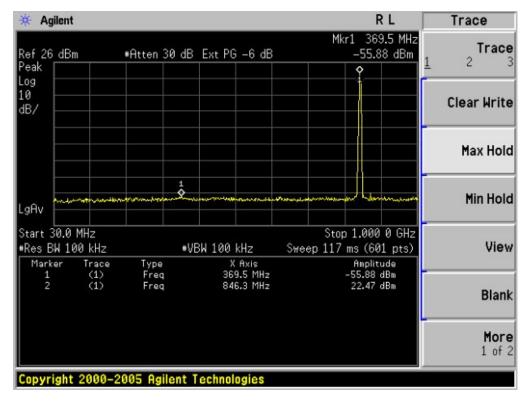
PASS

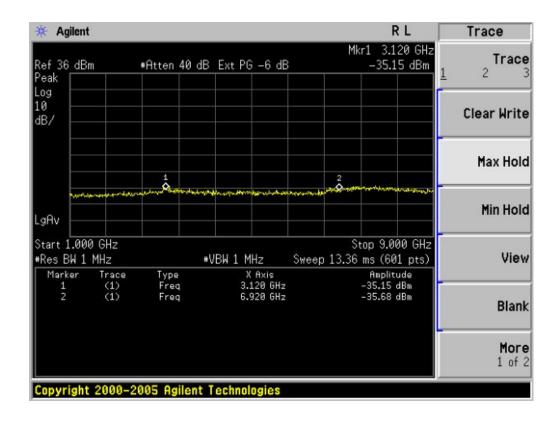
FCC ID: 2ABCS-A6102 Page 20 of 45


Test Mode: WCDMA BAND V CH4132

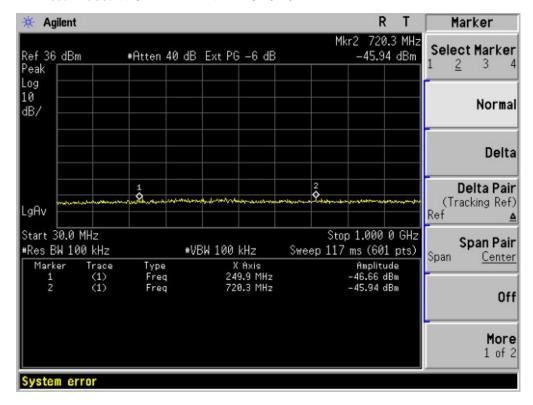


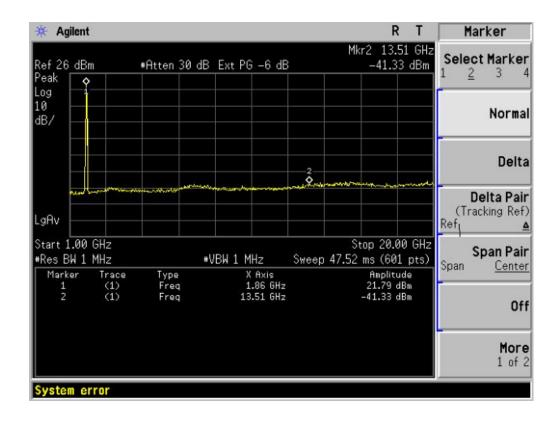
FCC ID: 2ABCS-A6102 Page 21 of 45


Test Mode: WCDMA BAND V CH4182

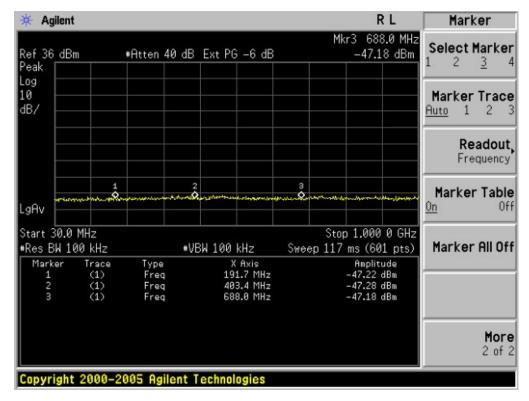


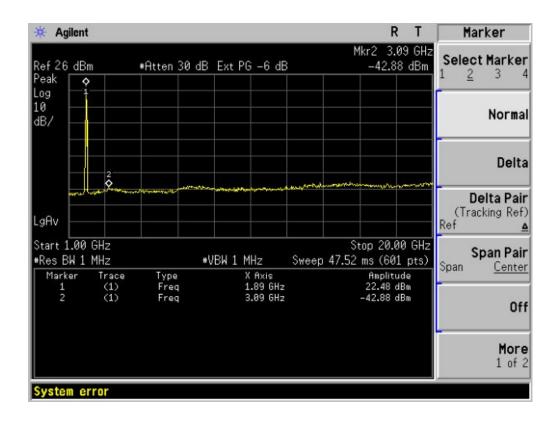
FCC ID: 2ABCS-A6102 Page 22 of 45


Test Mode: WCDMA BAND V CH4233

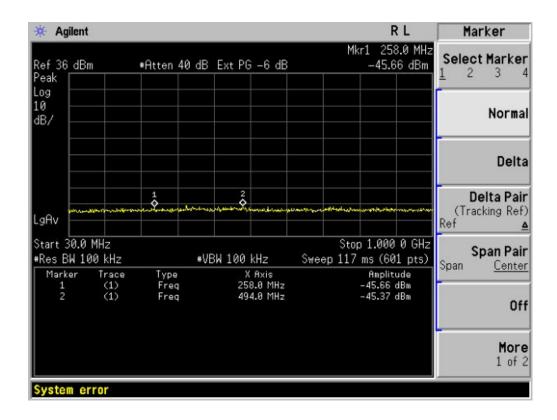


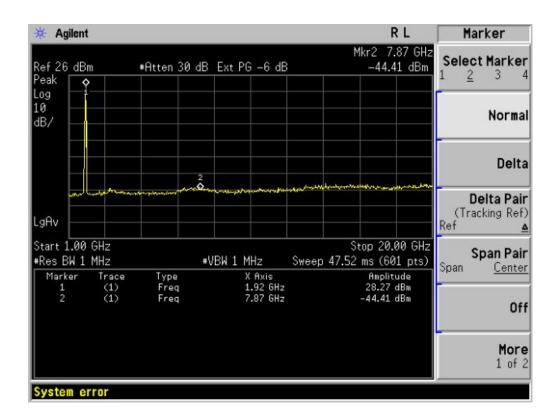
FCC ID: 2ABCS-A6102 Page 23 of 45


Test Mode: WCDMA BAND II CH9262

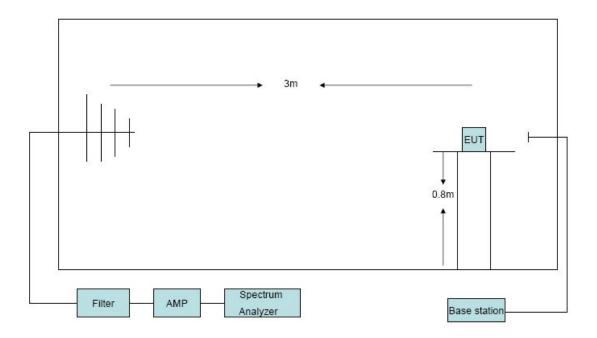


FCC ID: 2ABCS-A6102 Page 24 of 45


Test Mode: WCDMA BAND II CH9400



FCC ID: 2ABCS-A6102 Page 25 of 45


Test Mode: WCDMA BAND II CH9538

8. Radiated Spurious emissions

8.1. Block Diagram of Test Setup

8.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P)$ dB, in this case, -13dBm.

8.3. Test Procedure

- 1. The EUT was placed on an non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated spurious emissions from 30MHz to 10th harmonious of fundamental frequency were measured at 3m with a test antenna and a spectrum analyzer with RBW= 1MHz,VBW= 1MHz ,peak detector settings.
- 2. During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions (record as LVL) at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 3. Final spurious emissions levels were measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency below 1GHz) or Horn antenna (for frequency above 1GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from S.G. was

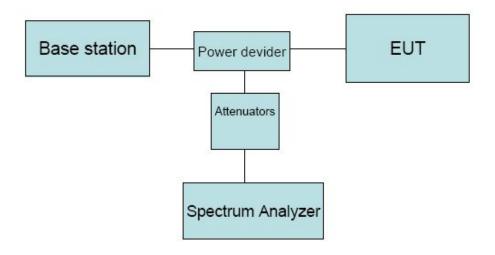
FCC ID: 2ABCS-A6102 Page 27 of 45

applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain -Substitution antenna Loss(only for Dipole antenna) - Analyzer reading. Then final

spurious emissions were calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP -2.15

8.4. Test Result

EUT:3D PAD	M/N:A6102							
Power: DC 5V	from adapter							
Test Date: 201	3-11-26	Test site: RF	Chamber	Tested by: Sin	Tested by: Simple Guan			
Ambient Temp	erature: 24°C	Relative Hur	nidity: 60%					
Conclusion: PASS								
Test result								
Test Mode:	WCDMA BAN	T	1					
Frequency	Antenna	LVL	Correction	Result	Limit	Margin		
(MHz)	polarization	(dBm)	factor(dB)	(ERP)(dBm)	(dBm)	(dB)		
1652.8	Н	-56.21	11.50	-46.86	-13.00	33.86		
1652.8	V	-53.72	10.56	-13.00	32.31			
Test Mode:	WCDMA BA	ND V CH418	32					
1673.2	Н	-57.83	-57.83 10.94 -49.04		-13.00	36.04		
2509.8	Н	/	1 1 1		-13.00	/		
1673.2	V	-51.49	10.90	-42.74	-13.00	29.74		
2509.8	V	/	/	/	-13.00	/		
Test mode: V	VCDMA BANI	D V CH4233						
1693.2	Н	-58.52	11.67	-49.00	-13.00	36.00		
2546.4	Н	/ / /			-13.00	/		
1693.2	V	-52.64	11.13	11.13 -43.66 -13.0		30.66		
2546.4	V	/	/	/	-13.00	/		


FCC ID: 2ABCS-A6102 Page 28 of 45

Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (EIRP)(dBm)	Limit (dBm)	Margin (dB)
3704.8	Н	-52.48	8.57	-43.91	-13.00	30.91
5550.6	Н	/	/	/	-13.00	/
3704.8	V	-48.29	8.37	-39.92	-13.00	26.92
5550.6	V	/	/	/	-13.00	/
Test Mode: V	WCDMA BAND	II CH940	0			
3760	Н	-51.53	8.75	-42.78	-13.00	29.78
5640	Н	/	/	/	-13.00	/
3760	V	-47.49	8.55	-38.94	-13.00	25.94
5640	540 V / / /		/	-13.00	/	
Test mode: W	CDMA BAND	II CH9538				
3815.2	Н	-53.64	8.94	-44.70	-13.00	31.70
5729.4	Н	/	/	/	-13.00	/
3815.2	V	-50.19	8.72	-41.47	-13.00	28.47
5729.4	V	/	/	/	-13.00	/

FCC ID: 2ABCS-A6102 Page 29 of 45

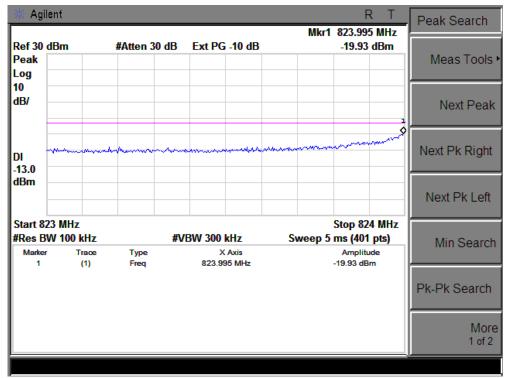
9. Band Edge Compliance

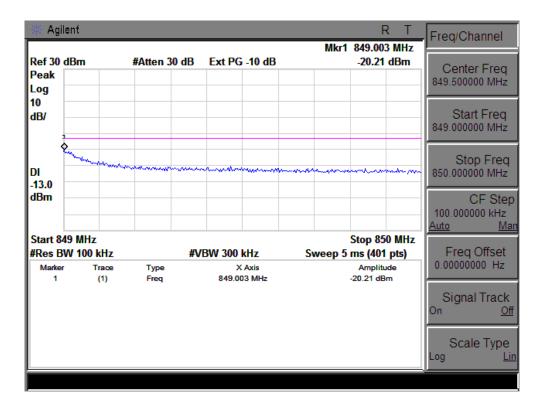
9.1. Block Diagram of Test Setup

9.2. Limit

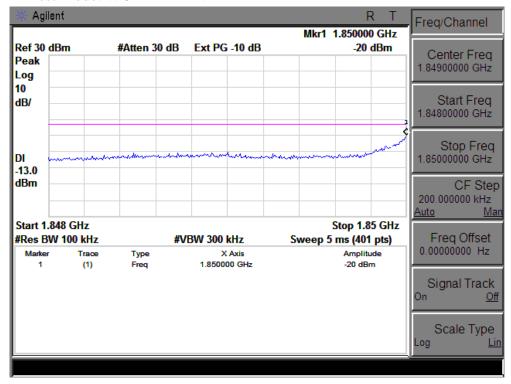
The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.

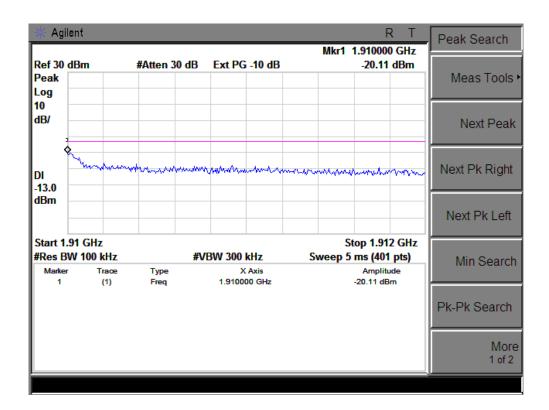
9.3. Test Procedure

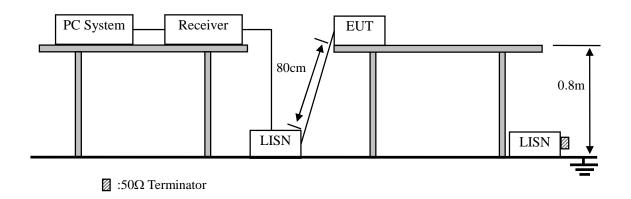

- $1. \ The \ EUT \ was \ connected \ to \ Spectrum \ Analyzer \ and \ Base \ Station \ via \ power \ divider.$
- 2. The band edges of low and high channels for the highest RF powers were measured.


FCC ID: 2ABCS-A6102 Page 30 of 45

9.4. Test Result


PASS


Test Mode: WCDMA BAND V


Test Mode: WCDMA BAND II

10. Power line conducted emission

10.1.Block Diagram of Test Setup

10.2.Limit

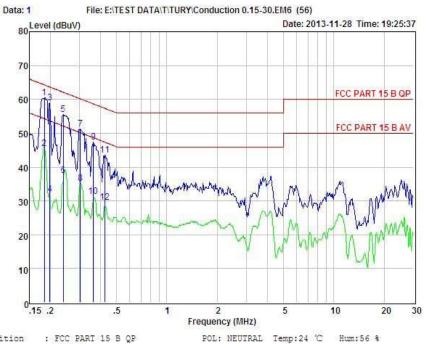
	Maximum RF Line Voltage				
Frequency	Quasi-Peak Level	Average Level			
	$dB(\mu V)$	$dB(\mu V)$			
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*			
500kHz ~ 5MHz	56	46			
5MHz ~ 30MHz	60	50			

Notes: 1. * Decreasing linearly with logarithm of frequency.

10.3.Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane.
- (2) Setup the EUT and simulator as shown in 10.1
- (3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N1), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2009 and ANSI C64.10:2009 on conducted Emission test.
- (4) The bandwidth of test receiver is set at 10KHz.
- (5) The frequency range from 150 KHz to 30MHz is checked.

FCC ID: 2ABCS-A6102 Page 33 of 45


^{2.} The lower limit shall apply at the transition frequencies.

10.4.Test Result

PASS. (See below detailed test data)

Shenzhen Certification Technology Service Co., Ltd. 2F, Building B, East Area of Nanchang Second Industrial Zone, Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China Fax: +86-755-26736857 Tel: 4006786199 Website: http://www.cessz.com/Email:Service@cessz.com/

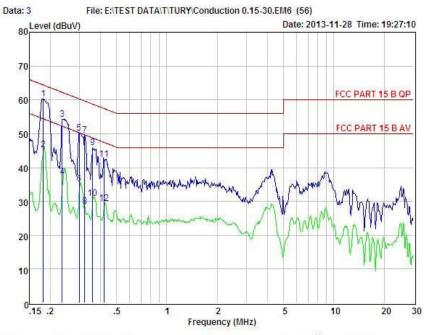
: FCC PART 15 B QP : 3D PAD Condition EUI

Model No : A6102 Test Mode : Link mode

Power : DC 5V From Adapter AC 120V/60Hz

Test Engineer: Simple

Remark


Item	Freq	Read	LISN Factor	Freamp Factor	Cable Lose	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.184	50.54	0.03	-9.72	0.10	60.39	64.28	-3.89	QP
2	0.184	35.54	0.03	-9.72	0.10	45,39	54.28	-8.89	Average
3	0.199	49.11	0.03	-9.72	0.10	58.96	63.67	-4.71	QP
4	0.199	22.11	0.03	-9.72	0.10	31.96	53.67	-21.71	Average
5	0.239	45.63	0.03	-9.72	0.10	55.48	62.13	-6.65	QP
6	0.239	27.63	0.03	-9.72	0.10	37.48	52.13	-14.65	Average
7	0.303	41.32	0.03	-9.72	0.10	51.17	60.15	-8.98	QP
8.	0.303	25.32	0.03	-9.72	0.10	35.17	50.15	-14.98	Average
9	0.363	37.56	0.03	-9.72	0.10	47.41	58.65	-11.24	QP
10	0.363	21.56	0.03	-9.72	0.10	31.41	48.65	-17.24	Average
11	0.426	33.76	0.03	-9.72	0.10	43.61	57.33	-13.72	QP
12	0.426	19.76	0.03	-9.72	0.10	29.61	47.33	-17.72	Average

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

FCC ID: 2ABCS-A6102 Page 34 of 45

Shenzhen Certification Technology Service Co., Ltd.
2F, Building B, East Area of Nanchang Second Industrial Zone,
Gushu 2nd Road, Bao'an District, Shenzhen 518126, P.R. China
Tel: 4006786199 Fax: +86-755-26736857 Website: http://www.cessz.com Email:Service@cessz.com

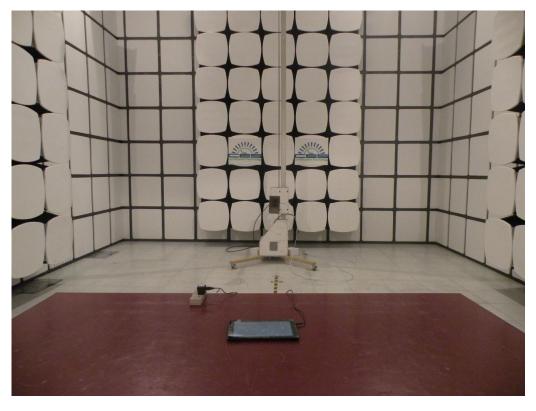
: FCC PARI 15 B QP POI : 3D PAD : A6102 : Link mode : DC 5V From Adapter AC 120V/60Hz Temp:24 °C Hum:56 % Condition POL: LINE

EUT Model No Test Mode

Power

Test Engineer: Simple


Remark


Item	Freq	Read	LISN Factor	Preamp Factor	Cable Lose	Level	Limit	Margin	Remark
	MHz	dBuV	dB	dB	dB	dBuV	dBuV	dBuV	
1	0.182	50.50	0.03	-9.72	0.10	60.35	64.42	-4.07	QP
2	0.182	35.50	0.03	-9.72	0.10	45.35	54,42	-9.07	Average
3	0.237	44.47	0.03	-9.72	0.10	54.32	62,22	-7.90	QP
4	0.237	27.47	0.03	-9.72	0.10	37.32	52.22	-14.90	Average
5	0.299	40.42	0.03	-9.72	0.10	50.27	60.28	-10.01	QP
6	0.299	25.42	0.03	-9.72	0.10	35.27	50.28	-15.01	Average
7	0.322	39.72	0.03	-9.72	0.10	49.57	59.66	-10.09	QP
8.	0.322	18.72	0.03	-9.72	0.10	28.57	49.66	-21.09	Average
9	0.360	36.02	0.03	-9.72	0.10	45,87	58.74	-12.87	QP
10	0.360	21.02	0.03	-9.72	0.10	30.87	48.74	-17.87	Average
11	0.419	32.58	0.03	-9.72	0.10	42.43	57.46	-15.03	QP
12	0.419	19.58	0.03	-9.72	0.10	29.43	47.46	-18.03	Average

Remarks: Level = Read + LISN Factor - Freamp Factor + Cable loss

11. Test setup photo

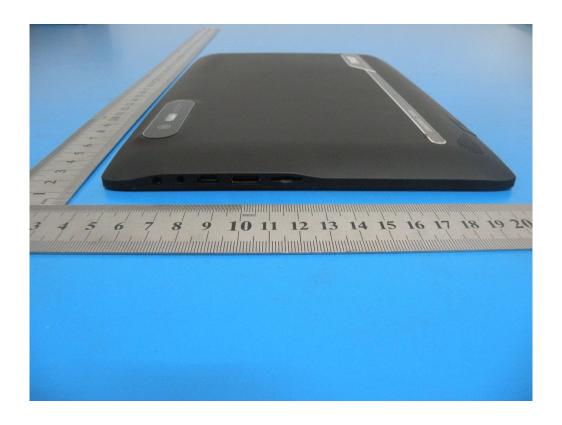
Photographs-Radiated Emission Test Setup in Chamber

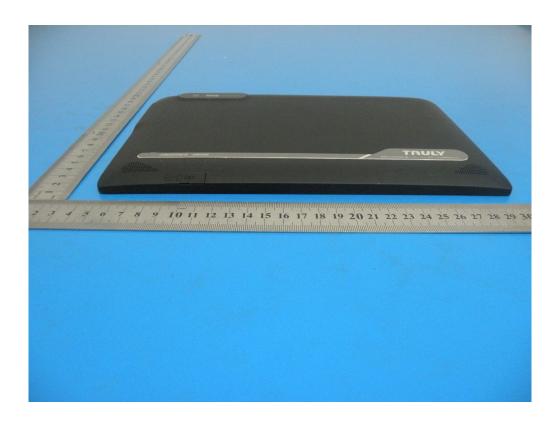
FCC ID: 2ABCS-A6102 Page 36 of 45

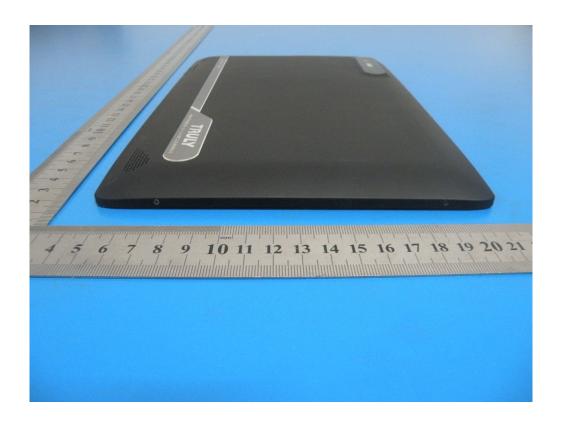
Photographs-Conducted Emission Test Setup

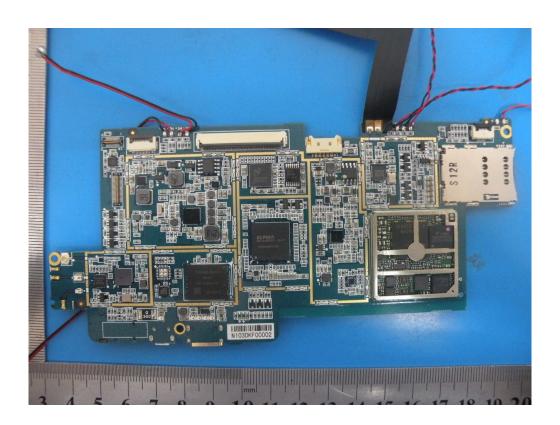
FCC ID: 2ABCS-A6102 Page 37 of 45

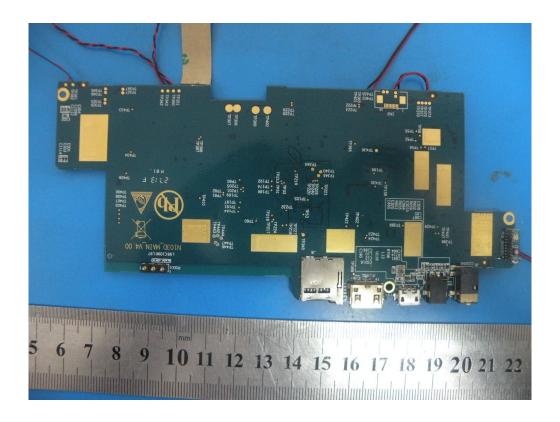
12. Photos of EUT

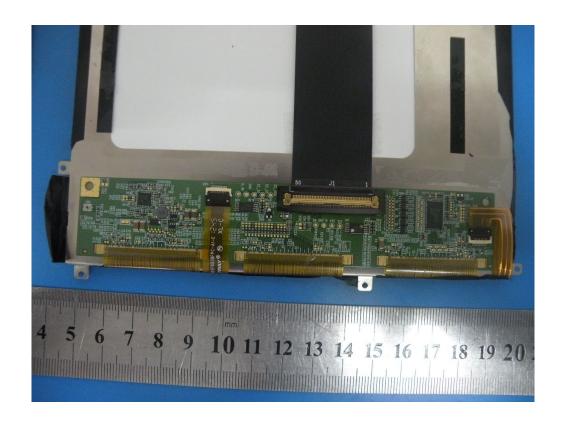





FCC ID: 2ABCS-A6102 Page 38 of 45




FCC ID: 2ABCS-A6102 Page 41 of 45



FCC ID: 2ABCS-A6102 Page 42 of 45

FCC ID: 2ABCS-A6102 Page 43 of 45

FCC ID: 2ABCS-A6102 Page 44 of 45

-----END OF THE REPORT-----

FCC ID: 2ABCS-A6102 Page 45 of 45