

TEST REPORT

Dt&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042
Tel : 031-321-2664, Fax : 031-321-1664

1. Report No : DRTFCC2508-0052(1)

2. Customer

- Name (FCC) : MCNEX CO.,LTD / Name (ISED) : MCNEX CO., LTD
- Address (FCC) : MCNEX Tower, 13-39, Songdogwahak-ro 16 beon-gi Yeonsu-gu, Incheon, South Korea
- Address (ISED) : MCNEX Tower, 13-39, Songdogwahak-ro 16beon-gil, Yeonsu-gu Incheon 21984 Korea (Republic Of)

3. Use of Report : FCC & ISED Original Certification

4. Product Name / Model Name : CAMERA ASSY-BLTN CAM FR VIEW / BLTN CAM 25G FR

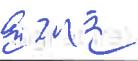
FCC ID : 2ABC6BLTN25F

IC : 11570A-BLTN25F

5. FCC regulation(s): Part 15.255

ISED Standard(s): RSS-210 Issue 11, RSS-Gen Issue 5

Test Method Used: ANSI C63.10-2020, KDB 364244 D01v01


6. Date of Test : 2025.03.28 ~ 2025.04.16

7. Testing Environment : Refer to appended test report.

8. Test Result : Refer to the attached test result.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test report is not related to KOLAS accreditation.

Affirmation	Tested by Name : JaeHun Yun 	Technical Manager Name : JaeJin Lee
-------------	---	---

2025 . 09 . 02 .

Dt&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description	Revised By	Reviewed By
DRTFCC2508-0052	Aug. 19, 2025	Initial issue	JaeHun Yun	JaeJin Lee
DRTFCC2508-0052(1)	Sep. 02, 2025	Add test firm registration No and RSS-Gen standard.	JaeHun Yun	JaeJin Lee

Table of Contents

1. General Information	4
1.1. Description of EUT.....	4
1.2. Declaration by the applicant / manufacturer.....	5
1.3. Testing Laboratory.....	5
1.4. Testing Environment	5
1.5. Measurement Uncertainty	5
1.6. Test Equipment List.....	6
2. Test Methodology	8
2.1. EUT configuration.....	8
2.2. EUT exercise	8
2.3. General test procedures.....	8
2.4. Instrument Calibration.....	8
2.5. Description of test modes	8
3. Antenna Requirements	9
4. SUMMARY OF TEST RESULTS	10
5. TEST RESULTS	11
5.1. Occupied Bandwidth (99%)	11
5.2. Equivalent Isotropic Radiated Power	13
5.3. Radiated spurious emissions	18
5.4. Frequency stability	24
5.5. AC line conducted emissions	27
APPENDIX I	29

1. General Information

1.1. Description of EUT

FCC Equipment Class	Part 15 Field Disturbance Sensor (FDS)
Product Name	CAMERA ASSY-BLTN CAM FR VIEW
Product Marketing Name (PMN)	LX3 BLTN CAM FR
Model Name(s)	BLTN CAM 25G FR
Hardware Version Identification Number (HVIN)	LX3 BLTN CAM FR
Firmware Version Identification Number (FVIN)	1.05
Serial Number	No specified
Power Supply	DC 12 V
Frequency Range	61.0 ~ 61.5 GHz
Max. RF Output Power (EIRP)	16.50 dBm
Modulation Type	FMCW
Antenna Specification	Antenna type: Serial Feeding Antenna Antenna gain(Max): 10.59 dBi

RADAR CERTIFICATION OPTIONS

- a. Any terrestrial radar transmitting in the 57-71 GHz frequency band can be certified under §15.255(c)(2) with a peak conducted output power limit of -10 dBm and a peak EIRP limit of 10 dBm.
- b. Any terrestrial radar transmitting within the 61.0-61.5 GHz ISM band segment, with a maximum EIRP output of 40 dBm (average) and 43 dBm (peak), can be certified under the §15.255(c)(2)(v) rules.
- c. Radars intended for operation onboard unmanned aircraft in the 60.0-64.0 GHz band segment can be certified under §15.255(b)(3) with a peak EIRP limit of 20 dBm and a required off-time of at least 16.5 milliseconds within any contiguous 33.0 millisecond interval.
- d. Terrestrial, including vehicular (in-cabin) radar devices in the 57.0-59.4 GHz band segment, can be certified under §15.255(c)(2)(i), with peak EIRP limits of 20 dBm for indoor operation and 30 dBm for outdoor operation.
- e. All terrestrial radar within the 57.0-61.56 GHz band segment can be certified under §15.255(c)(2)(ii), with a peak EIRP limit of 3 dBm with no off-time requirement, or 20 dBm with a corresponding off-time requirement of 16.5 milliseconds within any 33.0-millisecond interval.
- f. Any terrestrial radar operating within the 57.0-64.0 GHz band segment can be certified under §15.255(c)(2)(iii)(A), with a peak EIRP limit of 14 dBm and a corresponding off-time requirement of 25.5 milliseconds within any 33.0-millisecond interval.
- g. Permanent or temporary fixed radar intended solely for outdoor or other than in-cabin vehicular applications can be certified under §15.255(c)(2)(iii)(B) with a peak EIRP limit of 20 dBm and a corresponding off-time requirement of 16.5 milliseconds within any contiguous 33.0 millisecond interval.
- h. Pulsed radar applications with a maximum pulse duration of 6 nanoseconds and transmitting within the 57-64 GHz band segment can be certified under §15.255(c)(3), with an average EIRP limit of 13 dBm, a peak EIRP limit of 33 dBm, and a transmit duty cycle limit of 10%; in addition, the average integrated EIRP within the 61.5-64.0 GHz band must not exceed 5 dBm in any 0.3-microsecond interval.

1.2. Declaration by the applicant / manufacturer

N/A

1.3. Testing Laboratory

Dt&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of Part 2.948.

- FCC & ISED MRA Designation No. : KR0034
- FCC Test Firm Registration No. : 704742
- ISED#: 5740A

www.dtnc.net

Telephone	:	+ 82-31-321-2664
-----------	---	------------------

FAX	:	+ 82-31-321-1664
-----	---	------------------

1.4. Testing Environment

Ambient Condition	
▪ Temperature	+20 °C ~ +22 °C
▪ Relative Humidity	+40 % ~ +43 %

1.5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.10-2020. All measurement uncertainty values are shown with a coverage factor of $k = 2$ to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Radiated emission (1 GHz Below)	5.0 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz ~ 18 GHz)	4.8 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (18 GHz Above)	5.0 dB (The confidence level is about 95 %, $k = 2$)

1.6. Test Equipment List

Type	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal. Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	24/06/03	25/06/03	US47360812
Spectrum Analyzer	Agilent Technologies	N9020A	24/06/03	25/06/03	MY46471622
Spectrum Analyzer	Rohde Schwarz	FSW85	24/06/14	25/06/14	101778
Receiver	Rohde Schwarz	ESCI3	24/06/04	25/06/04	100798
Thermohygrometer	XIAOMI	MHO-C201	24/11/27	25/11/27	00089675
Thermohygrometer	BODYCOM	BJ5478	25/01/13	26/01/13	120612-1
Thermohygrometer	BODYCOM	BJ5478	24/12/05	25/12/05	120612-2
Thermohygrometer	BODYCOM	BJ5478	24/06/05	25/06/05	N/A
Multimeter	FLUKE	17B	24/11/27	25/11/27	26030065WS
Signal Generator	Rohde Schwarz	SMBV100A	24/12/10	25/12/10	255571
Signal Generator	ANRITSU	MG3695C	24/11/29	25/11/29	173501
DC Power Supply	Agilent Technologies	6654A	24/06/05	25/06/05	MY40000801
DC Power Supply	SM techno	SDP30-5D	24/06/05	25/06/05	305DMG291
Loop Antenna	ETS-Lindgren	6502	24/11/08	25/11/08	00060496
Hybrid Antenna	Schwarzbeck	VULB 9160	24/12/13	25/12/13	3362
PreAmplifier	H.P	8447D	24/12/11	25/12/11	2944A07774
Horn Antenna	ETS	3117	24/06/04	25/06/04	00143278
PreAmplifier	tsj	MLA-0118-B01-40	24/11/26	25/11/26	1852267
Horn Antenna	A.H.Systems	SAS-574	24/06/11	25/06/11	155
PreAmplifier	tsj	MLA-1840-J02-45	24/06/03	25/06/03	16966-10728
Horn Antenna	MI Wave	RX ANT-5 261U+410U	24/06/18	25/06/18	108
PreAmplifier	Norden Millimeter Inc.	NA4060G50N8P12	24/12/13	26/12/13	1003
Horn Antenna	MI Wave	RX ANT-6 261V+410V	24/06/18	25/06/18	110
PreAmplifier	ERAVABT	SBL-5037533550-151-E1-ET	24/12/13	25/12/13	10394-01
Horn Antenna	MI Wave	RX ANT-7 261E	24/06/18	25/06/18	112
Harmonic mixer	Rohde Schwarz	FS-Z90	24/06/14	25/06/14	101714
Horn Antenna	MI Wave	RX ANT-8 261F	24/06/18	25/06/18	114
Harmonic mixer	Rohde Schwarz	FS-Z140	24/06/14	25/06/14	101009
Horn Antenna	MI Wave	RX ANT-9 261G	24/06/18	25/06/18	116
Harmonic mixer	Rohde Schwarz	FS-Z220	24/06/14	25/06/14	101012
Temp & Humi Test Chamber	SJ Science	SJ-TH-S50	24/12/06	25/12/06	SJ-TH-S50-131011
High Pass Filter	Wainwright Instruments	WHKX12-935-1000-15000-40SS	24/06/12	25/06/12	8
High Pass Filter	Wainwright Instruments	WHKX10-2838-3300-18000-60SS	24/06/12	25/06/12	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5-6SS	24/06/12	25/06/12	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	24/06/12	25/06/12	16012202
Attenuator	Aeroflex/Weinschel	56-3	24/06/12	25/06/12	Y2370
Attenuator	SMAJK	SMAJK-2-3	24/06/12	25/06/12	3
Attenuator	SMAJK	SMAJK-2-3	24/06/12	25/06/12	2
Level setting Attenuator	SAGE Millimeter	STA-30-15-M1	24/12/09	25/12/09	10390-01
Cable	HUBER+SUHNER	SUCOFLEX100	25/01/02	26/01/02	M-1
Cable	HUBER+SUHNER	SUCOFLEX100	25/01/02	26/01/02	M-2
Cable	Junkosha	MWX241/B	25/01/02	26/01/02	M-3
Cable	JUNFLON	J12J101757-00	25/01/02	26/01/02	M-7
Cable	HUBER+SUHNER	SUCOFLEX106	25/01/02	26/01/02	M-9
Cable	Dt&C	Cable	25/01/02	26/01/02	G-2
Cable	HUBER+SUHNER	SUCOFLEX 100	25/01/02	26/01/02	G-3
Cable	Dt&C	Cable	25/01/02	26/01/02	G-4

Cable	OMT	YSS21S	25/01/02	26/01/02	G-5
Cable	Junkosha	MWX241	25/01/02	26/01/02	mmW-1
Cable	Junkosha	MWX241	25/01/02	26/01/02	mmW-4
Cable	Junkosha	MWX261	25/01/02	26/01/02	mmW-7
Cable	Junkosha	MWX261	25/01/02	26/01/02	mmW-15
Cable	SAGE MILLIMETER Inc	SCW-1M1M024-F1	25/01/02	26/01/02	mmW-10
Cable	HUBER+SUHNER	SUCOFLEX 104	25/01/02	26/01/02	mmW-8
Cable	HUBER+SUHNER	SUCOFLEX 104	25/01/02	26/01/02	mmW-9
Test Software (Radiated)	tsj	EMI Measurement	NA	NA	Version 2.00.0185
3m Semi Anechoic Chamber	SYC	3m-SAC	24/06/14(NSA) 24/06/19(VSWR)	25/06/14(NSA) 25/06/19(VSWR)	3m-SAC-1
3m Semi Anechoic Chamber	SYC	3m-SAC	25/01/14(NSA) 25/01/17(VSWR)	26/01/14(NSA) 26/01/17(VSWR)	3m-SAC-2

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by Dt&C itself.

2. Test Methodology

The measurement procedures described in the ANSI C63.10-2020 was used in measurement of the EUT.

2.1. EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.255 under the FCC Rules Part 15 Subpart C.

2.3. General test procedures

Conducted Emissions

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector

Radiated Emissions

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes.

2.4. Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.5. Description of test modes

The EUT has been tested with all modes of operating conditions to determine the worst case emission characteristics. A test program is used to control the EUT for staying in continuous transmitting mode.

Test Mode	Description	Test Frequency(GHz)
Sweep Active	FMCW	61.25

3. Antenna Requirements

According to Part 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The antenna is permanently attached on the device.

Therefore this E.U.T complies with the requirement of Part 15.203

4. SUMMARY OF TEST RESULTS

FCC Part Section(s)	RSS section(s)	Test Description	Test Limit	Test Condition	Status Note 1
2.1049 (KDB 36244 D01 Section 6)	RSS-Gen[6.7]	Occupied Bandwidth (99%)	NA	Radiated	C
15.255(c)(2)(V)	RSS-210[J.2.1]	Equivalent Isotropic Radiated Power	< 43 dBm (Peak) < 40 dBm (Average)		C
15.255(d) 15.209	RSS-210[J.4] RSS-Gen[8.9]	Unwanted emissions	Refer to the section 5.3		C
15.255(f)	RSS-210[J.6]	Frequency Stability	Within the frequency band		C
15.207	RSS-Gen[8.8]	AC Line Conducted Emissions	Refer to the section 5.5	AC Line Conducted	NA Note 3
15.203	-	Antenna Requirements	Part 15.203 (Refer to the section 3)	-	C

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: Radiated emission measurement was performed in three orthogonal EUT positions and the worst case data was reported.

Note 3: This device is installed in a car. Therefore the power source is a battery of car.

5. TEST RESULTS

5.1. Occupied Bandwidth (99%)

Test Requirements and limit

KDB 364244 D01 Section 5

For other than pulsed radar transmitters, the fundamental emission bandwidth is presumed to be "...the width of a frequency band such that, below the lower and above the upper-frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean power of a given emission. Unless otherwise specified in an ITU-R Recommendation for the appropriate class of emission, the value of $\beta/2$ should be taken as 0.5%," as defined in §2.1(c) of the FCC rules. This is also known as the 99% occupied bandwidth (OBW).

RSS-Gen[6.7]

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99 % emission bandwidth, as calculated or measured.

Test Configuration:

Refer to the APPENDIX I.

Test Procedure:

ANSI C63.10-2020 – Section 9.4

The following procedure shall be used for measuring 99% power bandwidth:

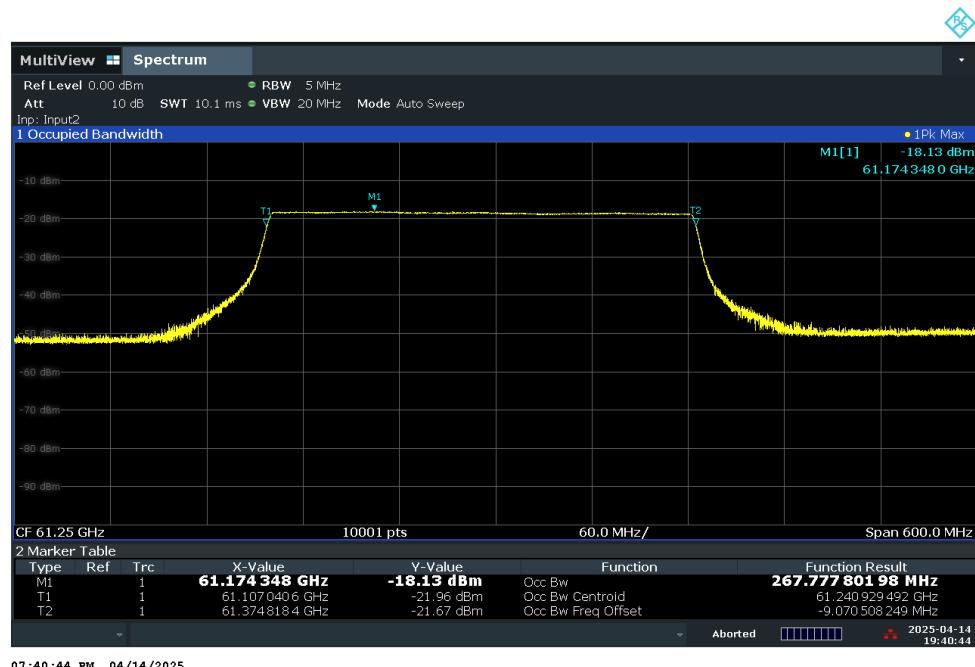
Use the following spectrum analyzer settings:

- 1) Span equal to approximately 1.5 times the OBW, centered on the carrier frequency
- 2) RBW, prefer 1% to 5% of OBW, or a minimum of 1 MHz if this is not possible due to a large OBW
- 3) VBW approximately $3 \times$ RBW
- 4) Set the reference level of the instrument as required to reduce the chance of the signal amplitude exceeding the maximum spectrum analyzer input mixer level for linear operation.
- 5) Sweep = No faster than coupled (auto) time.
- 6) Detector function = peak.
- 7) Trace = max-hold.

RSS-Gen[6.7]

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- Spectrum analyzer settings:


- 1) The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- 2) RBW = 1 ~ 5 % of the occupied bandwidth
- 3) VBW \geq 3 x RBW
- 4) Sweep = auto.
- 5) Detector function = peak.
- 6) Trace = max hold. Allow the trace to stabilize.

■ Test Results: Comply

Frequency(GHz)	Occupied Bandwidth(MHz)
61.25	267.778

■ Result plots**Occupied Bandwidth**

Tested Frequency: 61.25 GHz

5.2. Equivalent Isotropic Radiated Power

Test Requirements and limit

FCC Part 15.255(2)

(v) 61.0-61.5 GHz: For field disturbance sensors/radars that occupy 500 MHz bandwidth or less that are contained wholly within the frequency band 61.0-61.5 GHz, the average power of any emission, measured during the transmit interval, shall not exceed 40 dBm, and the peak power of any emission shall not exceed 43 dBm. In addition, the average power of any emission outside of the 61.0-61.5 GHz band, measured during the transmit interval, but still within the 57-71 GHz band, shall not exceed 10 dBm, and the peak power of any emission shall not exceed 13 dBm.

RSS-210[J.3.2]

(a) FDS devices that occupy a bandwidth of 500 MHz or less and where this bandwidth is contained wholly within the frequency band 61.0-61.5 GHz shall comply with the following limits: the equipment shall not exceed 40 dBm average e.i.r.p. and 43 dBm peak e.i.r.p. in the 61.0-61.5 GHz band. In addition, the average and peak e.i.r.p. of any emission outside of the band 61.0-61.5 GHz, but still within the band 57-71 GHz, shall not exceed 10 dBm average e.i.r.p. and 13 dBm peak e.i.r.p.

Test Configuration:

Refer to the APPENDIX I.

■ Test Procedure:**ANSI C63.10-2020 – Section 9.8****For radiated measurements:**

1) Place the measurement antenna at a measurement distance that is in the far-field of the measurement antenna, in the far-field of the EUT antenna, and meets the measurement distance requirements for final radiated measurements as specified in 9.1.4 of ANSI C63.10-2020.

Place the measurement antenna in the main beam of the EUT then maximize the fundamental emission using the procedures of 9.7 of ANSI C63.10-2020 , noting that multiple peaks can be found at different beam orientations and/or polarizations.

2) Place the measurement antenna in the main beam of the EUT then maximize the fundamental emission using the procedures of 9.7 of ANSI C63.10-2020, noting that multiple peaks can be found at different beam orientations and/or polarizations.

3) Correct the power reading from the spectrum analyzer for any external gain and/or attenuation between the measurement antenna and the spectrum analyzer. This is the power at the output of the measurement antenna

4) Calculate the EIRP from the power at the output of the measurement antenna using Equation (22), and then convert to linear form using Equation (24).

ANSI C63.10-2020 – Section 9.2.2

Calculate the EIRP from the radiated measurement in the far-field using Equation (22):

$$\text{EIRP} = 21.98 - 20\log(\lambda) + 20 \log(d_{\text{Mea}}) + P - G \quad (22)$$

EIRP is the equivalent isotropic radiated power, in dBm

λ is the wavelength of the emission under investigation [300/f(MHz)], in m

d_{Meas} is the measurement distance, in m

P is the power measured at the output of the measurement antenna, in dBm

G is the gain of the measurement antenna, in dBi

Far field distance (R_m)

$$R_m = 2D^2 / \lambda,$$

Where, D=the largest dimension of the antenna / λ =the wavelength of the emissions

Frequency Range(GHz)	λ (cm)	D (cm)	R _m (m)	Measurement Distance(m)
61.0 ~ 61.5	0.488	5.68	1.32	1.70

Test Results: Comply

Test Note.

1. The EIRP was measured in each axis EUT positions and the worst case data was reported.
2. For peak power measurement, a desensitization correction factor was applied to the measurement result.
3. Sample Calculation.

$$\text{EIRP} = 21.98 - 20\log(\lambda) + 20\log(d_{\text{Meas}}) + P - G + \text{DCF}$$

$$P(\text{dBm}) = \text{Measured level}(\text{dBm}) + \text{CF}(\text{dB})$$

Where,

λ is the wavelength of the emission under investigation [300/f(MHz)], in m

d_{Meas} is the measurement distance, in m

P is the power measured at the output of the measurement antenna, in dBm

G is the gain of the measurement antenna, in dBi

CF = Correction factor up to the connection to the measurement antenna / CF(dB) = Cable Loss(dB) + Attenuator Loss(dB) – Amplifier Gain(dB)

DCF = Desensitization Correction Factor

DCF Calculation

$$\alpha = \frac{1}{\sqrt{1 + \left(\frac{2\ln(2)}{\pi}\right)^2 \left(\frac{BW_{\text{Chirp}}}{T_{\text{Chirp}} B^2}\right)^2}}$$

α is the reduction in amplitude

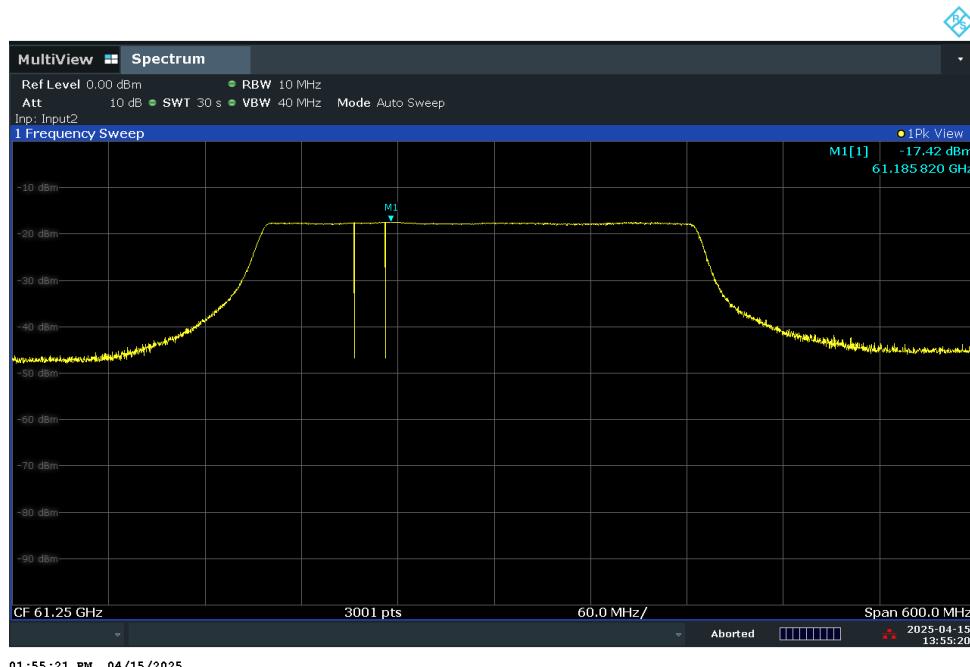
BW_{Chirp} is the FMCW Chirp Bandwidth

T_{Chirp} is the FMCW Chirp Time

B is the 3 dB IF Bandwidth = RBW

Chirp Bandwidth = 260 MHz, Chirp time = 21 us, RBW = 10 MHz, reduction in amplitude = 0.999

FMCW Desensitization Correction Factor = 0 dB


Peak e.i.r.p

Tested Frequency: 61.25 GHz

Measurement distance(D)	Frequency (GHz)	ANT Pol	λ (m)	Detector	Measured level (dBm)	CF (dB)	P (dBm)	G (dBi)	DCF (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1.7 m	61.186	V	0.0049	PK	-17.42	-14.37	-31.79	24.50	0.00	16.50	43.00	26.50

Peak e.i.r.p

Z axis & Ver

Average e.i.r.p

Tested Frequency: 61.25 GHz

Measurement distance(D)	Frequency (GHz)	ANT Pol	λ (m)	Detector	Measured level (dBm)	CF (dB)	P (dBm)	G (dBi)	DCF (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
1.7 m	61.250	V	0.0049	PK	-34.10	-14.36	-48.46	24.50	NA	-0.17	40.00	40.17

Average e.i.r.p

Z axis & Ver

Frequency Range: 57 ~ 61 GHz, 61.5 ~ 71 GHz
Test Note.
1. Sample Calculation.

$$E(\text{dBuV/m}) = \text{Measured level (dBuV)} + 107 + \text{TF(dB/m)}$$

where, E=field strength / TF(Total Factor) = Antenna Factor(dB/m) + Cable Loss(dB/m) + Attenuator Loss(dB) – Amplifier Gain(dB)

$$\text{EIRP(dBm)} = E(\text{dBuV/m}) + 20\log(D) - 104.7; \text{ where, D is measurement distance (in the far field region) in m.}$$

If the mixer is used, mixer loss was applied to the measured level by SA correction factor.

2. The peak results also meet the average limit.(10 dBm)
3. * Noise floor.
Tested frequency: 61.25 GHz

Measurement distance(D)	Frequency (MHz)	ANT Pol	Measured Level(dBm)	TF (dB/m)	E (dBuV/m)	Result-Peak (dBm)	Limit - Peak (dBm)	Margin (dB)
1.7 m	60 549.58	Z	-67.21	26.93	66.72	-33.37	13.00	46.37
1.7 m	63 556.21	Z	-61.67	28.22	73.55	-26.54	13.00	39.54
1.7 m	70 982.97	Z	-62.55	30.89	75.34	-24.75	13.00	37.75
-	-	-	-	-	-	-	-	-

Worst data plot (Measured Level: Noise floor)
Z axis & Ver

03:55:01 PM 04/15/2025

Aborted

2025-04-15

15:55:01

5.3. Radiated spurious emissions

Test Requirements and limit

FCC Part 15.255(d): Limits on spurious emissions

- (1) The power density of any emissions outside the 57-71 GHz band shall consist solely of spurious emissions.
- (2) Radiated emissions below 40 GHz shall not exceed the general limits in §15.209.
- (3) Between 40 GHz and 200 GHz, the level of these emissions shall not exceed 90 pW/cm² at a distance of 3 meters.
- (4) The levels of the spurious emissions shall not exceed the level of the fundamental emission.

RSS-210[J.4]

Any emissions outside the band 57-71 GHz shall consist solely of spurious emissions and shall not exceed:

- (a) the fundamental emission levels
- (b) the general field strength limits specified in RSS-Gen, General Requirements for Compliance of Radio Apparatus, for emissions below 40 GHz
- (c) 90 pW/cm² at a distance of 3 m for emissions between 40 GHz and 200 GHz

Part 15.209 & RSS-Gen[8.9]: General requirement

Frequency (MHz)	FCC Limit (uV/m)	ISED Limit (μA/m)	Measurement Distance (m)
0.009 – 0.490	2 400 / F (kHz)	6.37/F (F in kHz)	300
0.490 – 1.705	24 000 / F (kHz)	63.7/F (F in kHz)	30
1.705 – 30.0	30	0.08	30

Frequency (MHz)	FCC Limit (uV/m)	ISED Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	100	3
88 ~ 216	150 **	150	3
216 ~ 960	200 **	200	3
Above 960	500	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §15.231 and 15.241.

□ Test Configuration:

Refer to the APPENDIX I.

□ Test Procedure:**ANSI C63.10-2020 – Section 9.10 & 9.11**

The following procedure was used for measurement of the radiated spurious emissions.

- 1) The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements at above 1 GHz, the table height is 1.5 m
- 2) The table was rotated 360 degrees to determine the position of the highest radiation.
- 3) During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 0.5 ~ 3 meter away from the interference-receiving antenna.
- 4) For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 5) The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 6) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 7) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

- Spectrum analyzer settings:**1. Frequency Range: Below 1GHz**

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

2. Frequency Range: 1 ~ 40GHz**Peak Measurement**

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes

Average Measurement

RBW = 1 MHz, VBW ≥ Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz.

Detector = Peak, Sweep Time = Auto, Trace Mode = Max Hold until the trace stabilizes

3. Frequency Range: Above 40GHz

RBW = 1 MHz, VBW = 3 MHz, Detector = RMS, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes

Far field distance (R_m)

$$R_m = 2D^2 / \lambda,$$

Where, D=the largest dimension of the measurement antenna / λ =the wavelength of the emissions

Frequency Range(GHz)	λ (cm)	D(cm)	R _m (m)	Measurement Distance(m)
40 ~ 50	0.600	6.24	1.30	1.70
50 ~ 70	0.429	5.68	1.51	1.70
70 ~ 90	0.333	4.82	1.39	1.40
90 ~ 140	0.214	2.74	0.70	0.70
140 ~ 200	0.150	1.89	0.48	0.50

□ Test Results: Comply

Frequency Range: 9 kHz ~ 1 GHz

Test Note.

1. Radiated emissions below 30 MHz were greater than 20 dB below limit.

2. Information of DCF(Distance Correction Factor)

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

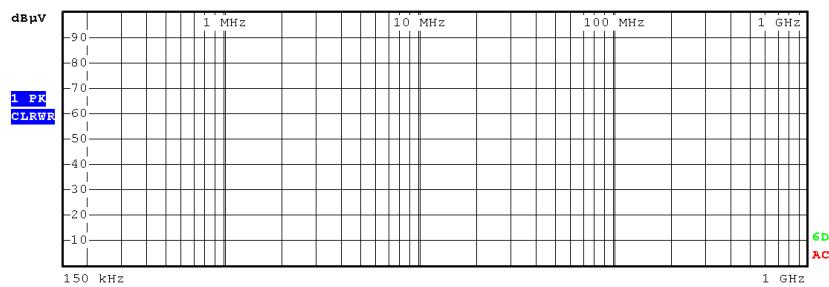
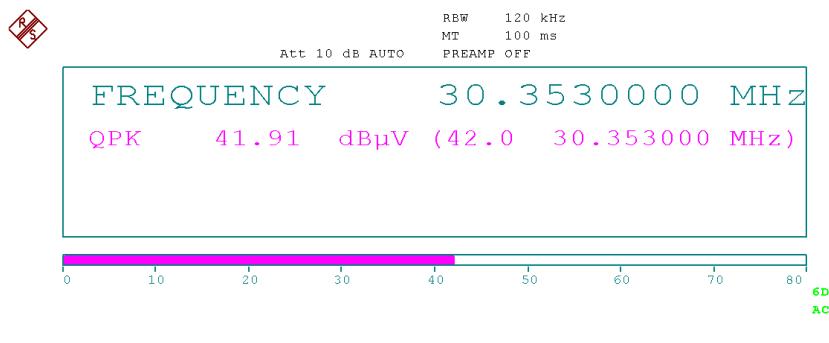
At frequencies below 30 MHz = $40 \log(\text{tested distance} / \text{specified distance})$

At frequencies at or above 30 MHz = $20 \log(\text{tested distance} / \text{specified distance})$

When distance factor is "NA", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit – Result / Result = Measured Level + TF + Distance factor / TF = AF + CL – AG



Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

4. * Noise floor.

Tested Frequency: 61.25 GHz

Frequency (MHz)	ANT Pol	Detector Mode	Measured Level(dBuV)	TF (dB/m)	DCF(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
30.353	V	QP	42.00	-9.60	NA	32.40	40.00	7.60
239.944	H	QP	40.70	-6.67	NA	34.03	46.00	11.97
941.881	H	QP	26.10	8.87	NA	34.97	46.00	11.03
959.986	H	QP	26.90	9.04	NA	35.94	46.00	10.06

Worst data plot (Measured Level)

Z axis & Ver

Frequency Range: 1 ~ 40 GHz

Test Note.

1. No other spurious and harmonic emissions were found above listed frequencies.

2. Information of DCF(Distance Correction Factor)

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

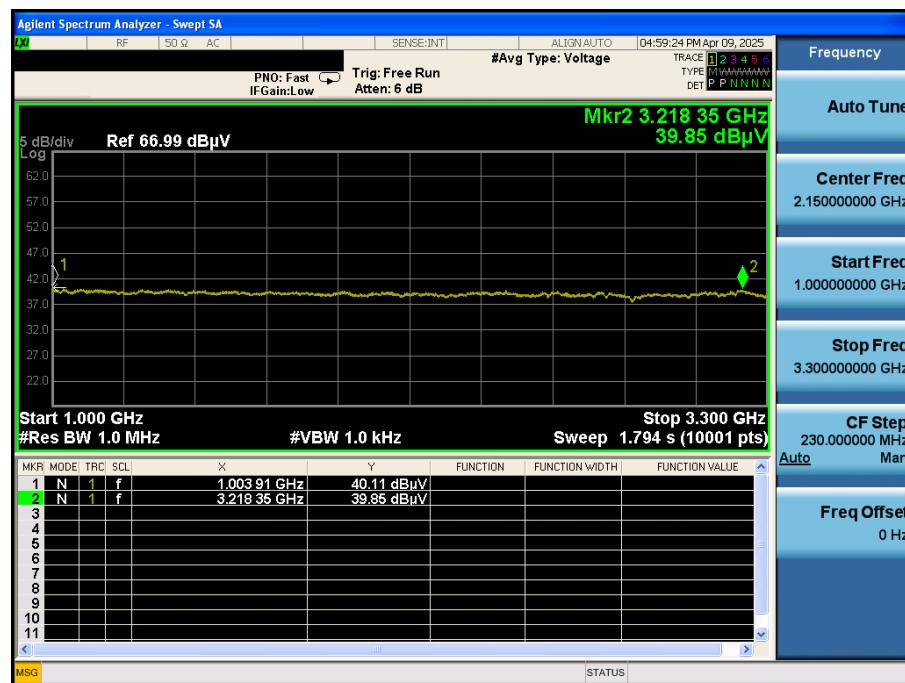
At frequencies at or above 30 MHz = $20 \log(\text{tested distance} / \text{specified distance})$

When distance factor is "NA", the measurements were performed at the specified distance and distance correction factor is not applied.

3. Sample Calculation.

Margin = Limit – Result / Result = Measured Level + TF + Distance correction factor / TF = AF + CL – AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain


4. * Noise floor.

Tested Frequency: 61.25 GHz

Frequency (MHz)	ANT Pol	Detector Mode	Measured Level(dBuV)	TF (dB/m)	DCF(dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
*3 218.35	V	AV	39.85	7.61	NA	47.46	54.00	6.54
*16 265.00	V	PK	44.67	16.26	-4.93	56.00	74.00	18.00
*17 086.00	V	AV	32.49	18.18	-4.93	45.74	54.00	8.26
*39 971.18	V	PK	45.84	17.01	-4.93	57.92	74.00	16.08
*39 999.34	V	AV	34.08	16.91	-4.93	46.06	54.00	7.94

Worst data plot (Measured Level: Noise floor)

Z axis & Ver

Frequency Range: 40 ~ 200 GHz

Test Note.

1. The radiated emissions were investigated up to 200GHz. And no other spurious and harmonic emissions were found above listed frequencies.
2. Sample Calculation.

$E(\text{dBuV/m}) = \text{Measured level (dBm)} + 107 + \text{TF(dB/m)}$

where, E =field strength / $\text{TF}(\text{Total Factor}) = \text{Antenna Factor(dB/m)} + \text{Cable Loss(dB/m)} + \text{Attenuator Loss(dB)} - \text{Amplifier Gain(dB)}$

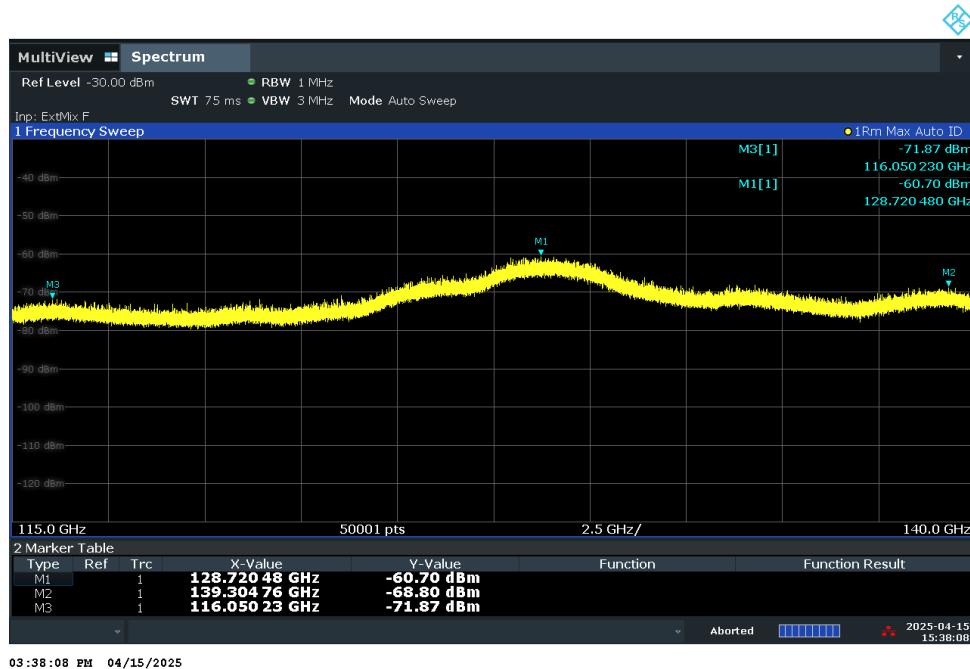
$\text{EIRP(dBm)} = E(\text{dBuV/m}) + 20\log(D) - 104.7$; where, D is measurement distance (in the far field region) in m.

$\text{PD} = \text{EIRP}_{\text{Linear}} / 4\pi D^2$

Where, $\text{PD} = \text{the power density at the distance specified by the limit, in W/m}^2$

$\text{EIRP}_{\text{Linear}} = \text{EIRP, in watts}$

$D = \text{is the distance at which the power density limit is specified, in m}$


If the mixer is used, mixer loss was applied to the measured level by SA correction factor.

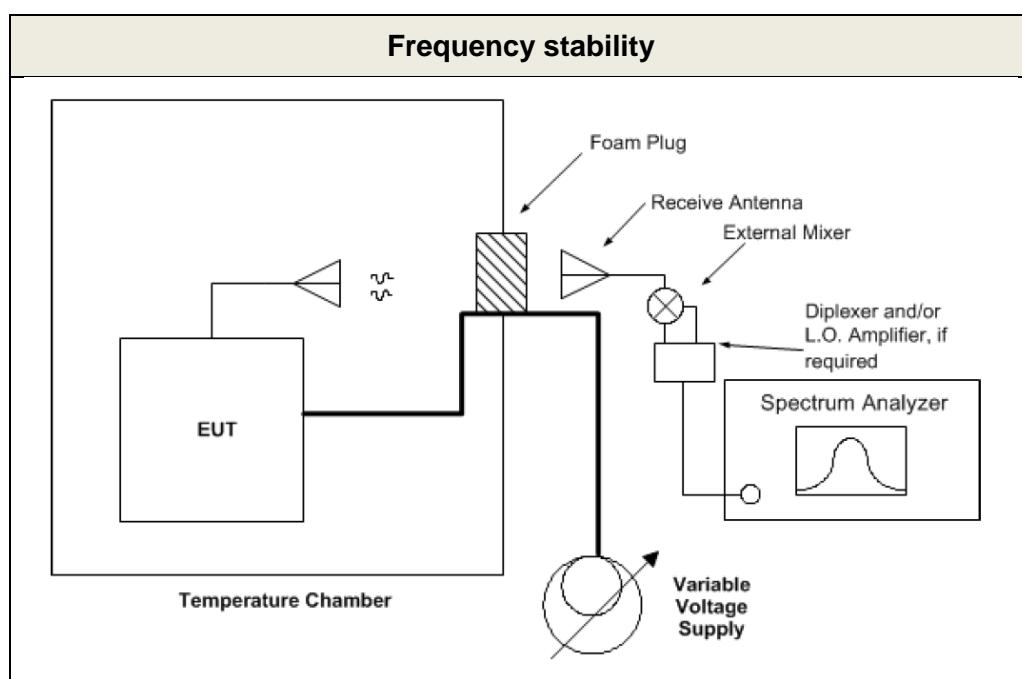
3. * Noise floor.

Measurement distance(D)	Frequency (MHz)	ANT Pol	Measured Level(dBm)	TF (dB/m)	E (dBuV/m)	EIRP (dBm)	Power Density (pW/cm ²)	Limit (pW/cm ²)
1.4 m	88 375.78	V	-75.01	46.01	78.00	-23.78	3.703	90.00
0.7 m	128 720.48	V	-60.70	47.93	94.23	-13.57	38.86	90.00
0.5 m	191 461.89	V	-63.80	51.94	95.14	-15.58	24.47	90.00

Worst data plot (Measured Level: Noise floor)

Z axis & Ver

5.4. Frequency stability


■ Test Requirements and limit

FCC Part 15.255(f): Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range -20 to + 50 degrees Celsius with an input voltage variation of 85 % to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

RSS-210[J.6]

Fundamental emissions shall be contained within the frequency bands specified in this annex during all conditions of operation when tested at the temperature and voltage variations specified for the frequency stability measurement in RSS-Gen.

■ Test Configuration:

■ Test Procedure:**ANSI C63.10-2020 – Section 9.5**

- 1) With the EUT at ambient temperature (approximately 25 °C) and voltage source set to the EUT nominal operating voltage (100 %), record the spectrum mask of the EUT emission on the spectrum analyzer.
- 2) Vary EUT power supply between 85% and 115% of nominal, and record the frequency excursion of the EUT emission mask.
- 3) Set the power supply to 100 % nominal setting, and raise EUT operating temperature to 50 °C. Record the frequency excursion of the EUT emission mask.
- 4) Repeat step 3) at each 10 °C increment down to -20 °C.

RSS-Gen[6.11]

Frequency stability is a measure of frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at an appropriate reference temperature and the rated supply voltage.

When the measurement method of transmitter frequency stability is not stated in the applicable RSS or reference standards, the following conditions apply:

- (a) The reference temperature for radio transmitters is +20°C (+68°F).
- (b) A hand-held device that is only capable of operating using internal batteries shall be tested at the battery's nominal voltage, and again at the battery's operating end-point voltage, which shall be specified by the equipment manufacturer. For this test, either a battery or an external power supply can be used.
- (c) The operating carrier frequency shall be set up in accordance with the manufacturer's published operation and instruction manual prior to the commencement of these tests. No adjustment of any frequency-determining circuit element shall be made subsequent to this initial set-up.

For licence-exempt devices, the following conditions apply:

- (a) at the temperatures of -20°C (-4°F), +20°C (+68°F) and +50°C (+122°F), and at the manufacturer's rated supply voltage
- (b) at the temperature of +20°C (+68°F) and at $\pm 15\%$ of the manufacturer's rated supply voltage

□ Test Results: Comply

Tested frequency: 61.25 GHz

VOLTAGE (%)	POWER (V DC)	TEMP (°C)	Measured low frequency(F_L)(GHz)	Measured high frequency(F_H)(GHz)
100%	12.00	+20(Ref)	61.107	61.375
100%		-30	61.107	61.375
100%		-20	61.107	61.375
100%		-10	61.107	61.375
100%		0	61.107	61.375
100%		+10	61.107	61.375
100%		+20	61.107	61.375
100%		+30	61.107	61.375
100%		+40	61.107	61.375
100%		+50	61.107	61.375
115%	13.80	+20	61.107	61.375
85%	10.20	+20	61.107	61.375

Note: Fundamental emissions were contained within the frequency bands.

5.5. AC line conducted emissions

- Test Requirements and limit**
- Test Requirements and limit**

Part 15.255(f) and RSS-Gen[8.8]

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Conducted Limit (dBuV)	
	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

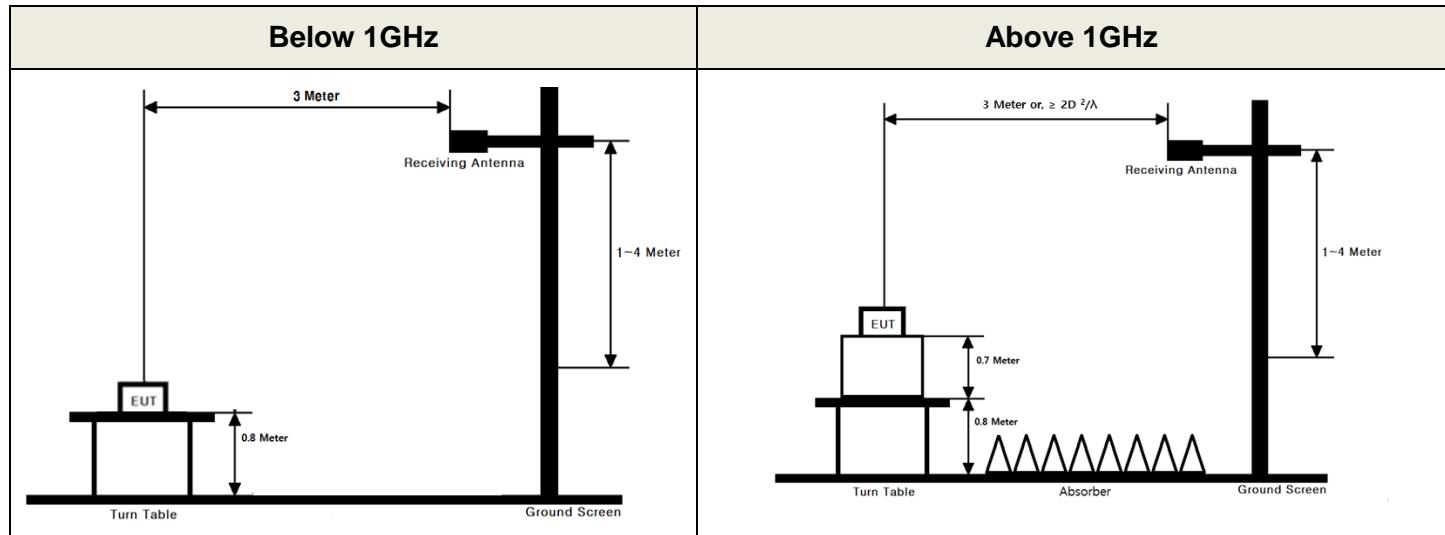
* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

■ Test Configuration:

See test photographs for the actual connections between EUT and support equipment.

■ Test Procedure:


Conducted emissions from the EUT were measured according to the ANSI C63.10-2020.

1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

■ Test Results: NA

APPENDIX I

Test set up diagrams

- END -