

Poročilo o preskusu / Test Report

Št. / No.:

T251-0262/14

Datum / Date:

2014-03-20

Proizvod / Product Access control terminal (CAC3 Module) Type: AIO
Naročnik / Applicant MARGENTO R&D, družba za raziskave in razvoj elektronskega plačevanja in transakcijskih rešitev, d.o.o. Gospodovska cesta 84, 2000 Maribor, Slovenia
Proizvajalec / Manufacturer OPENWAYS SAS 6 Le prieure, 78810 Feucherolles, France
Blagovna znamka / Trade Mark /
Standardi – predpisi / Standards - regulations FCC Part 15, Subpart C

Listov / Pages 35
Vrsta preskusa / Test procedure EMC
Št. merjencev / No. of items tested 1
Mapa predmeta št. / Subject file No. C20131273
Kraj preskusa / Place of test SIQ Ljubljana, Laboratory for electromagnetics, Trpinčeva ul. 37 A, SI-1000 Ljubljana, Slovenia
Opomba / Remark /

Zaključek / Conclusion Preskušani proizvod ustreza zahtevam navedenih standardov. / Tested product complies with the requirements of stated standards. Rezultati preskusov se nanašajo samo na preskušan vzorec. / The test results relate only to the item tested. Datum prispetja vzorca / Date of receipt of test item: 2014-01-31 Datum izvedbe preskusov / Date of performance of tests: 2014-01-31 – 2014-02-24
--

Testni laboratorij je akreditiran pri Slovenski Akreditaciji, Reg. Št.:LP-009 /
Testing laboratory is accredited by Slovenian Accreditation, Reg. No.LP-009

Odgovoren za preskušanje / Responsible for the test

Damjan Repar

Vodja področja / Department Manager

Marjan Mak

CONTENTS	PAGE
1 GENERAL	3
1.1 EQUIPMENT UNDER TEST DESCRIPTION	3
1.2 LIST OF MEASUREMENTS PERFORMED	4
1.3 OCCUPIED BANDWIDTH MEASUREMENT	4
1.4 QUASI-PEAK DETECTOR	4
1.5 PEAK, RMS, AND AVERAGE DETECTORS	4
2 LIMITS	5
2.1 SUBPART C: INTENTIONAL RADIATORS	5
2.1.1 CONDUCTED EMISSION LIMITS:	5
2.1.2 RADIATED EMISSION LIMITS:	5
3 ALL TEST EQUIPMENT AND THEIR DESCRIPTION	6
3.1 GENERAL INFORMATION	6
3.2 OTHER INSTRUMENT INFORMATION AND AUXILIARY EQUIPMENT	7
4 GENERAL AND SPECIAL CONDITIONS DESCRIPTION	8
4.1 GENERAL CONDITION DESCRIPTION	8
4.1.1 TEST ARRANGEMENT FOR CONDUCTED EMISSIONS	8
4.1.2 TEST ARRANGEMENT FOR CONDUCTED EMISSIONS- FLOOR-STANDING EQUIPMENT	8
4.1.3 TEST ARRANGEMENT FOR RADIATED EMISSIONS TABLETOP EQUIPMENT	9
4.1.4 TEST ARRANGEMENT FOR RADIATED EMISSIONS FLOOR-STANDING EQUIPMENT	9
4.1.5 TEST ARRANGEMENT FOR FLOOR-STANDING EQUIPMENT	10
4.1.6 TEST ARRANGEMENT FOR FLOOR-STANDING EQUIPMENT	10
4.1.7 PLACEMENT AND MANIPULATION OF INTERCONNECT CABLING (OR WIRING) OF TABLETOP EQUIPMENT	10
4.1.8 TEST CONFIGURATION/ARRANGEMENT FOR COMBINATION FLOOR-STANDING AND TABLETOP EQUIPMENT	11
4.2 SPECIAL CONDITION DESCRIPTION	11
5 TEST SUMMARY	12
5.1 PURPOSE OF THE TEST	12
6 EMISSION TESTS	13
6.1 CONDUCTED EMISSION MEASUREMENT (INTENTIONAL RADIATOR)	13
6.2 BANDWIDTH OF THE EMISSION (INTENTIONAL RADIATOR)	14
6.2.1 TEST INSTRUMENTS	14
6.2.2 TEST PROCEDURE	14
6.2.3 TEST RESULTS	14
6.2.4 SUMMARY OF RESULTS	14
6.3 SPECTRUM MASK (INTENTIONAL RADIATOR)	16
6.3.1 TEST INSTRUMENTS	16
6.3.2 TEST PROCEDURE	16
6.3.3 TEST RESULTS	16
6.3.4 SUMMARY OF RESULTS	16
6.4 RADIATED EMISSION MEASUREMENT 9 kHz – 30 MHz (INTENTIONAL RADIATOR)	23
6.4.1 TEST INSTRUMENTS	23
6.4.2 TEST PROCEDURE	23
6.4.3 TEST RESULTS	23
6.4.4 SUMMARY OF RESULTS	23
6.5 RADIATED EMISSION MEASUREMENT 30 MHz – 1 GHz (INTENTIONAL RADIATOR)	27
6.5.1 TEST INSTRUMENTS	27
6.5.2 TEST PROCEDURE	27
6.5.3 TEST RESULTS	27
6.5.4 SUMMARY OF RESULTS	27
6.6 FREQUENCY TOLERANCE OF THE CARRIER SIGNAL	32
6.6.1 TEST REQUIREMENTS:	32
6.6.2 TEST RESULTS	32
7 PHOTOS OF THE ACTUAL MEASUREMENT PLACE AND EUT PLACEMENT	34

1 GENERAL

1.1 Equipment under test description

Access control terminal (CAC3 Module)

Type: AIO

Power supply: 3 - 10 V DC (battery)

Power supply used for testing: fully charged battery, 7.2 V DC

Protective class: III.

Operating frequency: 13,56 MHz

Maximum clock frequency: 80 MHz

NOTE: The same electronics might be integrated into different housings. The only difference between housing types is the bottom side shape of the housing to better integrate onto different lock profiles. Herebelow is reference of two such types, and others are possible also.

Different types of housing

1.2 List of measurements performed

PART 15 section	Test name
15.207	Conducted emission
15.209	Radiated emission
15.215	Bandwidth of the emission
15.225	Frequency tolerance

1.3 Occupied bandwidth measurement

Fundamental frequency	Minimum resolution bandwidth
9 kHz to 30 MHz	1 kHz
30 to 1000 MHz	10 kHz
1000 MHz to 40 GHz	100 kHz

1.4 Quasi-peak detector

Frequency range	Bandwidth (-6dB)
10 Hz to 20 kHz	Full range (wideband)
10 kHz to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz

1.5 Peak, rms, and average detectors

Frequency range	Bandwidth (-6dB)
10 Hz to 20 kHz	10, 100, 1000 Hz
10 kHz to 150 kHz	1 and 10 kHz
150 kHz to 30 MHz	1 and 10 kHz
30 MHz to 1 GHz	10 and 100 kHz
1 GHz to 40 GHz	0.1, 1.0 and 10 MHz

2 LIMITS

2.1 Subpart C: Intentional Radiators

2.1.1 Conducted emission limits:

Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.5	66 – 56*	56 – 46*
0.5 to 5.0	56	46
5.0 to 30.0	60	50

*Decreases with the logarithm of the frequency.

The shown limits in table shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

- For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- For all other carrier current systems: 1000 μ V within the frequency band 535-1705 kHz, as measured using a 50 μ H/50 ohms LISN.
- Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as appropriate.

2.1.2 Radiated emission limits:

Frequency Range (MHz)	Limits (dB μ V/m)		Test distance (m)
	VERTICAL	HORIZONTAL	
0,009 to 0,490	20*log(2400/F(kHz))	20*log(2400/F(kHz))	300
0,490 to 1,705	20*log(2400/F(kHz))	20*log(2400/F(kHz))	30
1,705 to 30,0	29.5	29.5	30
30 to 88	40**	40**	3
88 to 216	43.5**	43.5**	3
216 to 960	46**	46**	3
Above 960	54	54	3

** Except as provided in paragraph below, fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz.

Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

NOTE: For special limits refer to standard

3 ALL TEST EQUIPMENT AND THEIR DESCRIPTION

3.1 General information

Description	Model No.	SIQ No.	Last calibration	Calibrated until	Calibration period	Used
Rohde-Schwarz, AMN	ENV216	106765	2012-08	2014-08	24 months	
Rohde-Schwarz, RFI receiver	ESU8	105187	2013-10	2015-10	24 months	X
Rohde & Schwarz, Artificial main network	ESH2-Z5	106899	2013-05	2015-05	24 months	
Rohde & Schwarz, Loop antenna	HFH2-Z2	/	2013-09	2015-09	24 months	X
ETS, Anechoic chamber	3m	103949	2012-12	2014-12	24 months	X
EMCO, Antenna	model 3142	104351	2013-09	2015-09	24 months	X
EMCO, Antenna	model 3115	103002	2013-09	2015-09	24 months	
Heinrich Deisel, Turn table	DS 420.00	103337	NA	NA	NA	X
Antenna tower	/	/	NA	NA	NA	X
Controller for turn table and antenna tower	/	/	NA	NA	NA	X

3.2 Other instrument information and auxiliary equipment

Description	Model No.	Bandwidth	Detector functions	Antenna factors	Cable loss	Range
Rohde-Schwarz, RFI receiver	ESU8	200Hz, 9kHz, 120kHz, 1MHz	Peak, Q-peak, Average	/	/	20 Hz – 8 GHz
Hewlett Packard, RF Spectrum Analyzer	8593E	200Hz, 9kHz, 120kHz, 1MHz	Peak, Q-peak, Average	/	/	9 kHz – 26.5 GHz
Rohde & Schwarz, Artificial main network	ESH 2-Z5	/	/	/	/	9 kHz – 30 MHz
ETS, Anechoic chamber	3m	/	/	/	/	30 MHz – 18 GHz
EMCO, Antenna	model 3142	/	/	See tables below	/	26 MHz – 2 GHz
SIQ, Conducted emission cable	SIQ	/	/	/	See tables below	/
SIQ, Radiated emission cable	SIQ	/	/	/	See tables below	/

4 GENERAL AND SPECIAL CONDITIONS DESCRIPTION

4.1 General condition description

Interconnect and power cabling (or wiring)

4.1.1 Test arrangement for conducted emissions

- 4.1.1.1 Interconnecting cables that hang closer than 40 cm to the ground-plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 4.1.1.2 I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4.1.1.3 EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω.
LISN can be placed on top of, or immediately beneath, reference ground-plane.
 - 4.1.1.3.1 All other equipment powered from additional LISN(s).
 - 4.1.1.3.2 Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
 - 4.1.1.3.3 LISN at least 80 cm from nearest part of EUT chassis.
- 4.1.1.4 Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- 4.1.1.5 Non-EUT components of EUT system being tested.
- 4.1.1.6 Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- 4.1.1.7 Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground-plane.

4.1.2 Test arrangement for conducted emissions- floor-standing equipment

- 4.1.2.1 Excess I/O cables shall be bundled in the center. If bundling is not possible, the cables shall be arranged in serpentine fashion. Bundling shall not exceed 40 cm in length.
- 4.1.2.2 Excess power cords shall be bundled in the center or shortened to appropriate length.
- 4.1.2.3 I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. If bundling is not possible, the cable shall be arranged in serpentine fashion.
- 4.1.2.4 EUT and all cables shall be insulated, if required, from the ground-plane by up to 12 mm of insulating material.
- 4.1.2.5 EUT connected to one LISN. LISN can be placed on top of, or immediately beneath, the ground-plane.
 - 4.1.2.5.1 All other equipment powered from a second LISN or additional LISN(s).
 - 4.1.2.5.2 Multiple outlet strip can be used for multiple power cords of non-EUT equipment.

4.1.3 *Test arrangement for radiated emissions tabletop equipment*

- 4.1.3.1** Interconnecting cables that hang closer than 40 cm to the ground-plane shall be folded back and forth in the center, forming a bundle 30 to 40 cm long.
- 4.1.3.2** I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated if required using the correct terminating impedance. The total length shall not exceed 1 m.
- 4.1.3.3** If LISNs are kept in the test setup for radiated emissions, it is preferred that they be installed under the ground-plane with the receptacle flush with the ground-plane.
- 4.1.3.4** Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- 4.1.3.5** Non-EUT components of EUT system being tested.
- 4.1.3.6** Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- 4.1.3.7** No vertical conducting plane used.
- 4.1.3.8** Power cords drape to the floor and are routed over to receptacle.

4.1.4 *Test arrangement for radiated emissions floor-standing equipment*

- 4.1.4.1** Excess I/O cables shall be bundled in center. If bundling is not possible, the cables shall be arranged in serpentine fashion. Bundling not to exceed 40 cm in length.
- 4.1.4.2** Excess power cords shall be bundled in the center or shortened to appropriate length.
- 4.1.4.3** I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. If bundling is not possible, the cable shall be arranged in a serpentine fashion.
- 4.1.4.4** EUT and all cables shall be insulated, if required, from the ground-plane by up to 12 mm of insulating material.
- 4.1.4.5** If LISNs are kept in the test setup for radiated emissions, it is preferred that they be installed under the ground-plane with the receptacle flush with the ground plane.

Overhead cable trays and suspended ceilings

4.1.5 *Test arrangement for floor-standing equipment*

- 4.1.5.1 Only one vertical riser may be used where typical of system under test.
- 4.1.5.2 Excess power cord shall be bundled in the center or shortened to appropriate length.
- 4.1.5.3 EUT and cables shall be insulated from ground-plane by up to 12 mm. Where the manual has specified or there exists a code of practice for installation of the EUT, the test arrangement shall allow the use of this practice for the tests.
- 4.1.5.4 Power cords being measured connected to one LISN. All other system power cords powered through other LISN(s). A multiple receptacle strip may be used for other power cords.
- 4.1.5.5 For *conducted* tests, the LISNs may be placed on top of or immediately beneath and bonded directly to the ground-plane. For *radiated* tests, the LISN(s), if used, should be installed under, with the receptacle flush with the ground-plane.

4.1.6 *Test arrangement for floor-standing equipment*

- 4.1.6.1 Only one vertical riser may be used where typical of system under test.
- 4.1.6.2 Excess power cord shall be bundled in the center or shortened to appropriate length.
- 4.1.6.3 EUT and cables shall be insulated from ground-plane by up to 12 mm. Where the manual has specified or there exists a code of practice for installation of the EUT, the test arrangement shall allow the use of this practice for the tests.
- 4.1.6.4 Power cords being measured connected to one LISN. All other system power cords powered through other LISN(s). A multiple receptacle strip may be used for other power cords.
- 4.1.6.5 For *conducted* tests, the LISNs may be placed on top of or immediately beneath and bonded directly to the ground-plane. For *radiated* tests, the LISN(s), if used, should be installed under, with the receptacle flush with the ground-plane.

4.1.7 *Placement and manipulation of interconnect cabling (or wiring) of tabletop equipment*

- 4.1.7.1 LISN(s) may have to be positioned to the side of the table to meet the criterion that the LISN receptacle shall be 80 cm away from the EUT. LISN(s) may be above ground-plane only for conducted emission measurements.
- 4.1.7.2 Accessories, such as ac power adapter, if typically table-mounted, shall occupy peripheral positions as is applicable.
- 4.1.7.3 Accessories, which are typically floor-mounted, shall occupy a floor position directly below the portion of the EUT to which they are typically connected. T
- 4.1.7.4 Table length may be extended beyond 1.5 m with peripherals aligned with the back edge. The table depth may be extended beyond 1 m. The 40 cm distance to the vertical conducting plane shall be maintained for conducted emission testing.

Placement of wall-mounted equipment

4.1.8 *Test configuration/arrangement for combination floor-standing and tabletop equipment*

- 4.1.8.1 Interconnecting cables that hang closer than 40 cm to the ground-plane shall be folded back and forth in the center, forming a bundle 30 to 40 cm long.
- 4.1.8.2 I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated if required using the correct terminating impedance.
- 4.1.8.3 If LISNs are kept in the test setup for radiated emissions, it is preferred that they be installed under the ground-plane with the receptacle flush with the ground-plane.
- 4.1.8.4 Cables of hand-operated devices, such as keyboards, mice, etc., have to be placed as for normal use.
- 4.1.8.5 Non-EUT components of EUT system being tested.
- 4.1.8.6 I/O cable to floor-standing unit drapes to the ground-plane and shortened or excess bundled. Cables not reaching the metal ground-plane are draped to the height of the connector or 40 cm, whichever is lower.
- 4.1.8.7 Power cords and signal cables shall drape to the floor. No extension cords shall be used to the power receptacles.
- 4.1.8.8 The floor-standing unit can be placed under the table if its height permits.

4.2 *Special condition description*

If for some reason the above measurement conditions can't be met, the description below should be used as an appropriate measurement condition and placement.

(Description is written additionally as the measurements differ – all is within test procedure)

5 TEST SUMMARY

ANSI C63.4-2009; FCC Part 15, Subpart C	Test		Sample	
	Yes	Not	Pass	Fail
	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>

5.1 Purpose of the test

To determine whether the equipment under test fulfils the **ANSI C63.4-2009; FCC Part 15, Subpart C** requirements.

6 EMISSION TESTS

6.1 Conducted emission measurement (intentional radiator)

Not applicable due to battery power supply.

6.2 Bandwidth of the emission (intentional radiator)

Section 15.215 Additional provisions to the general radiated emission limitations

6.2.1 Test instruments

Description & Manufacturer	Model No.	SIQ No.	Last calibration	Calibrated until	Calibration period	Used
ETS, Anechoic chamber	3m	103949	2012-12	2014-12	24 months	X
Rohde-Schwarz, RFI receiver	ESU8	105187	2013-10	2015-10	24 months	X
R&S, Loop antenna	HFH2-Z2	/	2013-05	2015-05	24 months	X
Heinrich Deisel, Turn table	DS 420.00	103337	NA	NA	NA	X
Controller for turn table and antenna tower	/	/	NA	NA	NA	X
PC, HP Compaq	D330 uT	104245	/	/	/	

6.2.2 Test procedure

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground in an Anechoic Chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
2. The EUT was set 3 m away from the interference-receiving antenna.
3. Resolution bandwidth is set to a value greater than 5% of the allowed bandwidth. If no bandwidth specifications are given, the guidelines in pt. 1.4 are used

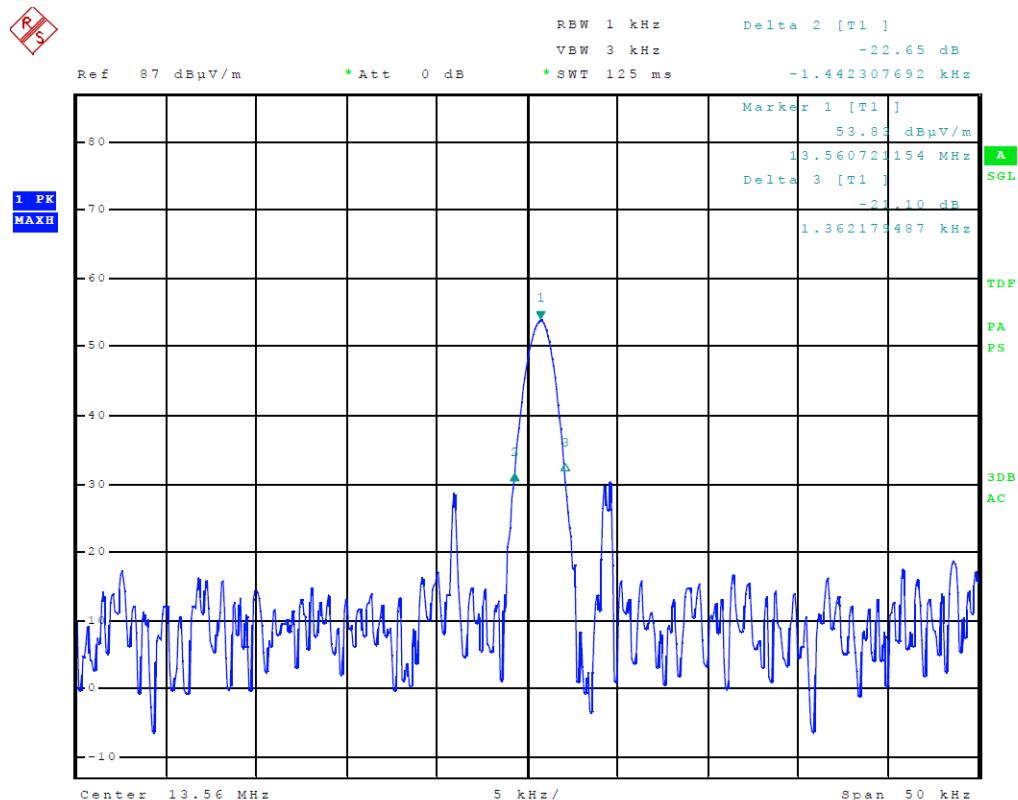
6.2.3 Test results

EUT	Access control terminal (CAC3 Module)	Type:	AIO
Mode:	Normal	Bandwidth:	2,804 kHz
Input voltage:	7,2 V DC (battery)	Date:	03.02.2014
Environmental conditions:	25±10°C, 55±30% RH	Tested by:	Damjan Repar

6.2.4 Summary of results

Device passed the requirements stated in ANSI C63.4, FCC Part 15, Subpart C.

6.2.4.1 Bandwidth of the emission at 3 m in an anechoic chamber


C20131273

03.Feb 14 07:38

Meas Type BANDWIDTH MEASUREMENT
Equipment under Test ACCESS CONTROL TERMINAL, Type CAC3 MODULE
Manufacturer OPENWAYS SAS
OP Condition Uin 7.2V BATTERY, NORMAL
Operator DAMJAN REPAR
Test Spec
180 DEG

Sweep Settings Screen A

Center Frequency	13.560000 MHz	Ref Level	87.000 dB μ V/m
Frequency Offset	0.000000 Hz	Ref Level Offset	0.000 dB
Span	50.000000 kHz	Ref Position	100.000 %
Start Frequency	13.535000 MHz	Level Range	100.000 dB
Stop Frequency	13.585000 MHz	RF Att	0.000 dB
RBW	1.000000 kHz		
VBW	3.000000 kHz	X-Axis	LIN
Sweep Time	125.00 ms	Y-Axis	LOG

Bandwidth of the emission: 2,804 kHz

6.3 Spectrum mask (intentional radiator)

Section 15.225 Operation within the band 13.110 – 14.010 MHz - pt.a – pt.d

6.3.1 Test instruments

Description & Manufacturer	Model No.	SIQ No.	Last calibration	Calibrated until	Calibration period	Used
ETS, Anechoic chamber	3m	103949	2012-12	2014-12	24 months	X
Rohde-Schwarz, RFI receiver	ESU8	105187	2013-10	2015-10	24 months	X
R&S, Loop antenna	HFH2-Z2	/	2013-05	2015-05	24 months	X
Heinrich Deisel, Turn table	DS 420.00	103337	NA	NA	NA	X
Controller for turn table and antenna tower	/	/	NA	NA	NA	X
PC, HP Compaq	D330 uT	104245	/	/	/	

6.3.2 Test procedure

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground in an Anechoic Chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
2. The EUT was set 3 m away from the interference-receiving antenna.
3. Frequencies with maximum emission were retested on OATS.
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.

6.3.3 Test results

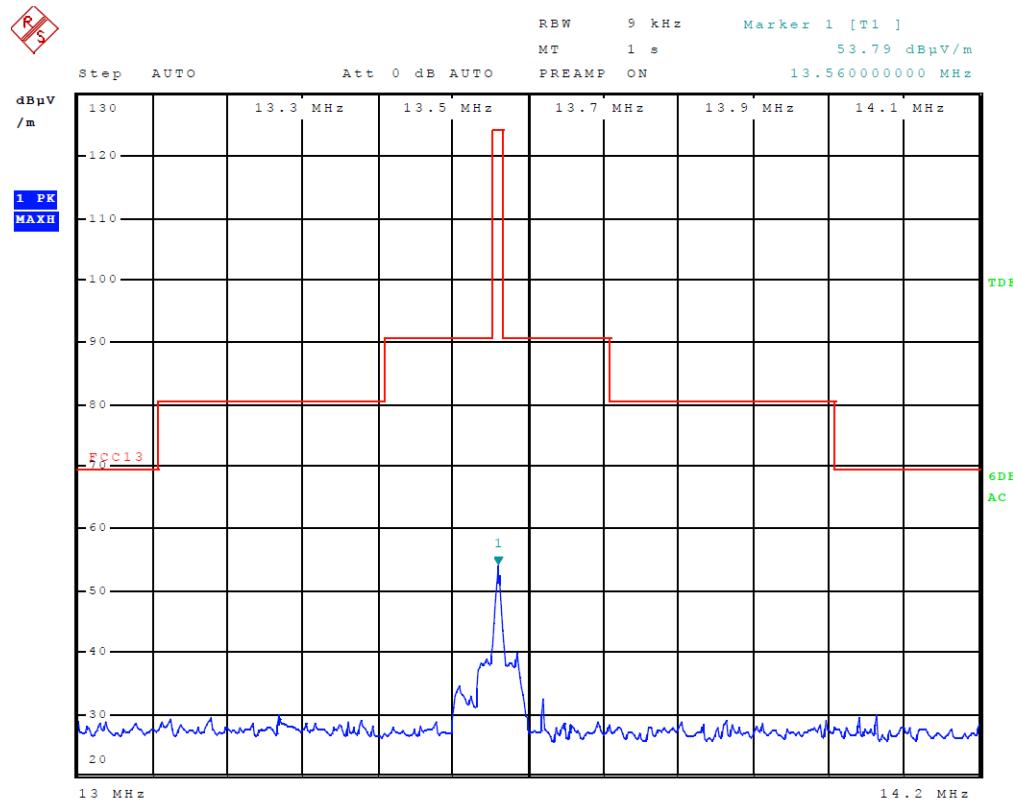
EUT	Access control terminal (CAC3 Module)	Type:	AIO
Mode:	Normal		
Input voltage:	7,2 V DC (battery)	Date:	31.01.2014 – 14.02.2014
Environmental conditions:	25±10°C, 55±30% RH	Tested by:	Damjan Repar

6.3.4 Summary of results

Device passed the requirements stated in ANSI C63.4, FCC Part 15, Subpart C.

6.3.4.1 Signal measurement at 3 m in an anechoic chamber

C20131273


31.Jan 14 14:15

Meas Type RADIATED EMISSION
Equipment under Test ACCESS CONTROL TERMINAL, Type CAC3 MODULE
Manufacturer OPENWAYS SAS
OP Condition Uin 7.2V BATTERY, NORMAL
Operator DAMJAN REPAR
Test Spec
180 DEG

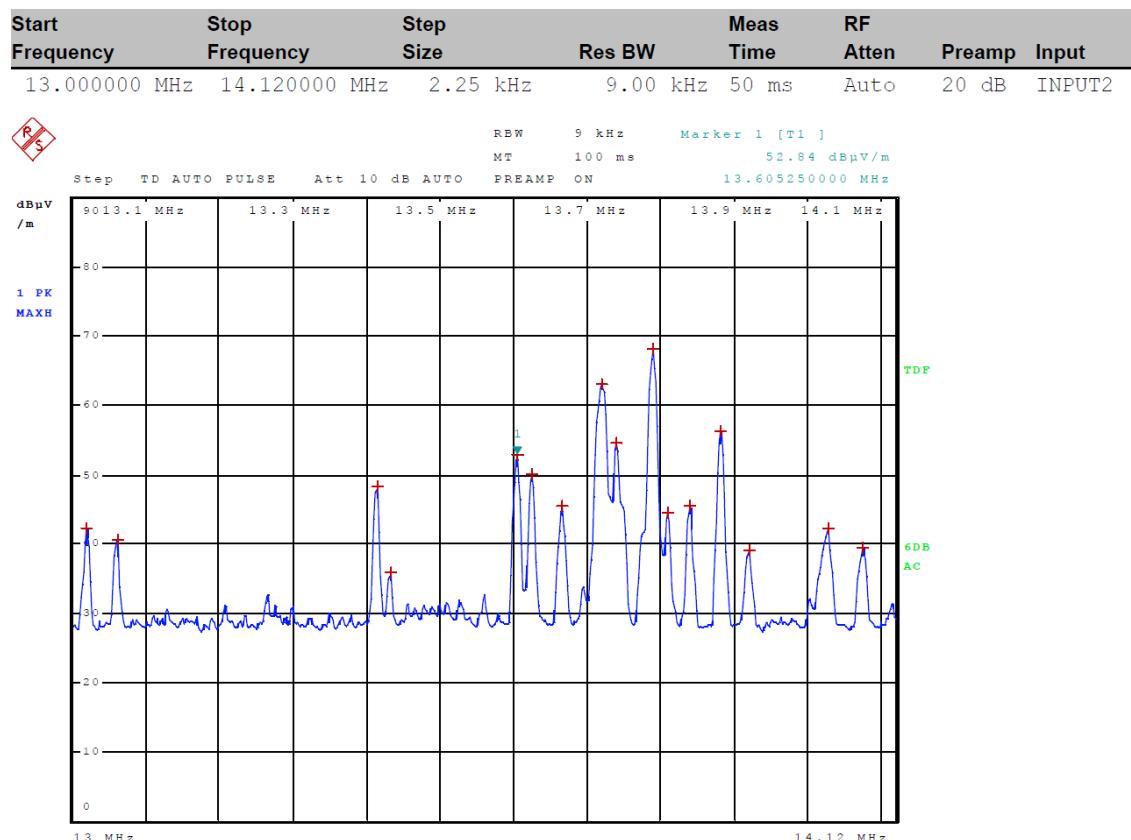
Stepped Scan (3 Ranges)

Scan Start: 13 MHz
Scan Stop: 14.2 MHz
Detector: Trace 1: MAX PEAK
Transducer: HFH2-Z2V

Start Frequency	Stop Frequency	Step Size	Res BW	Meas Time	RF Atten	Preamp	Input
13.000000 MHz	13.4996000 MHz	4.00 kHz	9.00 kHz	50 ms	Auto	20 dB	INPUT2
13.500000 MHz	13.5996000 MHz	4.00 kHz	9.00 kHz	1 s	Auto	20 dB	INPUT2
13.600000 MHz	14.200000 MHz	4.00 kHz	9.00 kHz	50 ms	Auto	20 dB	INPUT2

6.3.4.2 Signal measurement at 10 m on OATS

Background


C20140000

14.Feb 14 13:12

Meas Type radiated emission
Equipment under Test
Manufacturer MARGENTO
OP Condition background
Operator DAMJAN REPAR
Test Spec
OATS 10M

Time Domain Scan (1 Range)

Scan Start: 13 MHz
Scan Stop: 14.12 MHz
Detector: Trace 1: MAX PEAK
Transducer: HFH2-Z2V

C20140000

14.Feb 14 13:12

Meas Type radiated emission**Equipment under Test****Manufacturer** MARGENTO**OP Condition** background**Operator** DAMJAN REPAR**Test Spec**

OATS 10M

Final Measurement

Meas Time: 15 s

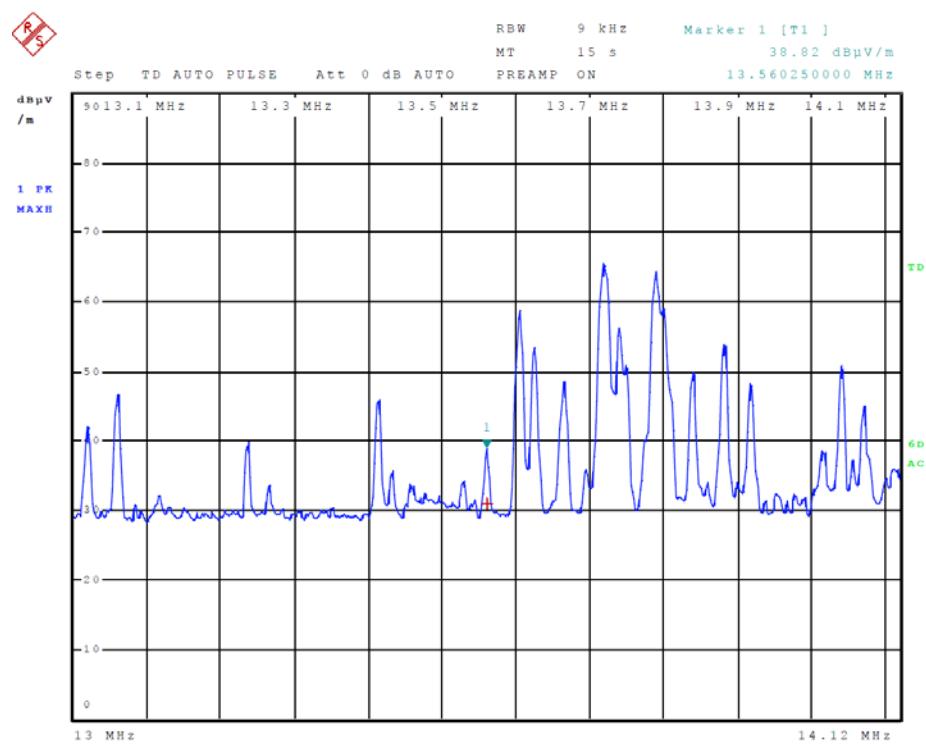
Margin: 15 dB

Peaks: 16

Trace	Frequency	Level (dB μ V/m)	Detector	Delta Limit/dB
1	13.018000000 MHz	42.31	Max Peak	
1	13.060750000 MHz	40.51	Max Peak	
1	13.414000000 MHz	48.26	Max Peak	
1	13.432000000 MHz	35.75	Max Peak	
1	13.605250000 MHz	52.84	Max Peak	
1	13.625500000 MHz	49.92	Max Peak	
1	13.666000000 MHz	45.53	Max Peak	
1	13.720000000 MHz	62.97	Max Peak	
1	13.740250000 MHz	54.64	Max Peak	
1	13.789750000 MHz	68.24	Max Peak	
1	13.810000000 MHz	44.56	Max Peak	
1	13.839250000 MHz	45.53	Max Peak	
1	13.882000000 MHz	56.30	Max Peak	
1	13.920250000 MHz	38.97	Max Peak	
1	14.028250000 MHz	42.23	Max Peak	
1	14.075500000 MHz	39.36	Max Peak	

Operating mode

C20140000


14.Feb 14 13:18

Meas Type radiated emission
Equipment under Test
Manufacturer MARGENTO
OP Condition OPERATING F 13.56 MHZ
Operator DAMJAN REPAR
Test Spec
OATS 10M

Time Domain Scan (1 Range)

Scan Start: 13 MHz
Scan Stop: 14.12 MHz
Detector: Trace 1: MAX PEAK
Transducer: HFH2-Z2V

Start Frequency	Stop Frequency	Step Size	Res BW	Meas Time	RF Atten	Preamp	Input
13.000000 MHz	14.120000 MHz	2.25 kHz	9.00 kHz	50 ms	Auto	20 dB	INPUT2

C20140000

14.Feb 14 13:18

Meas Type radiated emission
Equipment under Test
Manufacturer MARGENTO
OP Condition OPERATING F 13.56 MHZ
Operator DAMJAN REPAR
Test Spec
OATS 10M

Final Measurement

Meas Time: 15 s
Margin: 15 dB
Peaks: 1

Trace	Frequency	Level (dB μ V/m)	Detector	Delta Limit/dB
1	13.560250000 MHz	30.93	Quasi Peak	

6.3.4.3 Calculations made from 10 m to 30 m distance

Section 15.225 Operation within the band 13.110 – 14.010 MHz.

(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.

At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade).

Measured value at 10 m.

Frequency (MHz)	Measured value at 10 m (dB μ V/m)	Limit at 10 m (dB μ V/m)
13,56	30.93	104

Calculated value from 10 m to 30 m.

Frequency (MHz)	Measured value at 10 m (dB μ V/m)	Calculated value at 30 m (dB μ V/m)	Limit at 30 m (dB μ V/m)
13,56	30.93	10.93	84

6.4 Radiated emission measurement 9 kHz – 30 MHz (intentional radiator)

Section 15.209 Radiated emission limits, general requirements

6.4.1 Test instruments

Description & Manufacturer	Model No.	SIQ No.	Last calibration	Calibrated until	Calibration period	Used
ETS, Anechoic chamber	3m	103949	2012-12	2014-12	24 months	X
Rohde-Schwarz, RFI receiver	ESU8	105187	2013-10	2015-10	24 months	X
R&S, Loop antenna	HFH2-Z2	/	2013-05	2015-05	24 months	X
Heinrich Deisel, Turn table	DS 420.00	103337	NA	NA	NA	X
Controller for turn table and antenna tower	/	/	NA	NA	NA	X
PC, HP Compaq	D330 uT	104245	/	/	/	

6.4.2 Test procedure

1. The EUT was placed on the top of a rotating table 0.8 meters above the ground in an Anechoic Chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
2. The EUT was set 3 m away from the interference-receiving antenna, which was mounted on the top of variable-height antenna tower.
3. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
4. The test-receiver system was set to PEAK and QUASI-PEAK Detect Function and Specified Bandwidth with Maximum Hold Mode.
5. The highest points would be re-tested one by one using the quasi-peak method.

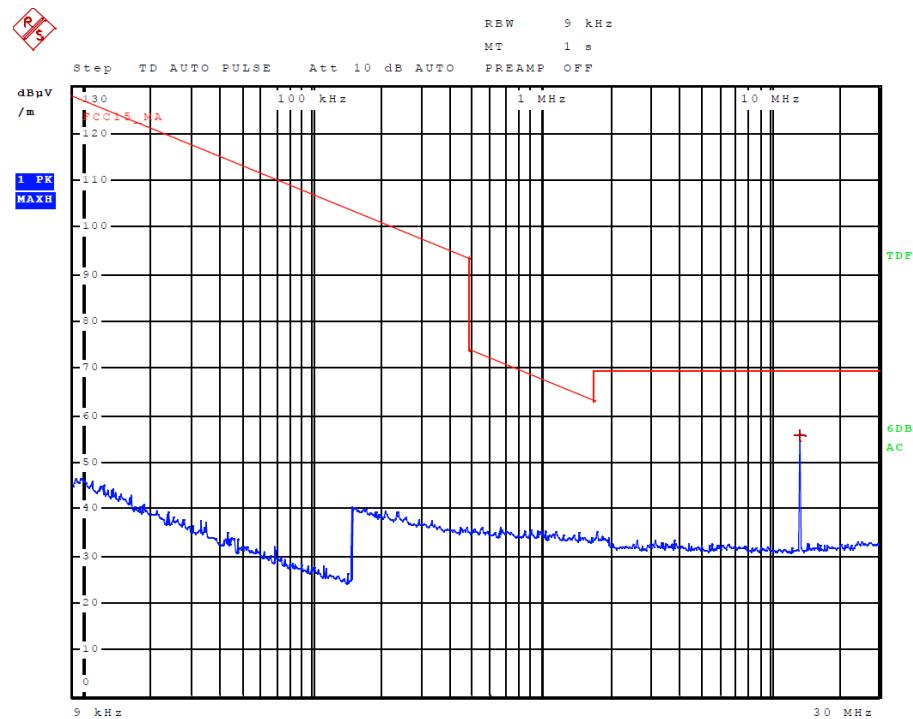
6.4.3 Test results

EUT	Access control terminal (CAC3 Module)	Type:	AIO
Mode:	Normal		
Input voltage:	7,2 V DC (battery)	Date:	24.02.2014
Environmental conditions:	25±10°C, 55±30% RH	Tested by:	Damjan Repar

6.4.4 Summary of results

Device passed the requirements stated in ANSI C63.4, FCC Part 15, Subpart C.

6.4.4.1 Measurement at 3 m in an anechoic chamber


24.Feb 14 08:22

Meas Type RADIATED EMISSION
Equipment under Test
Manufacturer
OP Condition
Operator
Test Spec

Time Domain Scan (2 Ranges)

Scan Start: 9 kHz
 Scan Stop: 30 MHz
 Detector: Trace 1: MAX PEAK
 Transducer: HFH2-Z2V

Start Frequency	Stop Frequency	Step Size	Res BW	Meas Time	RF Atten	Preamp	Input
9.000000 kHz	149.950000 kHz	50.00 Hz	200.00 Hz	100 ms	Auto	0 dB	INPUT2
150.000000 kHz	30.000000 MHz	2.25 kHz	9.00 kHz	50 ms	Auto	0 dB	INPUT2

24.Feb 14 08:22

Meas Type RADIATED EMISSION
Equipment under Test
Manufacturer
OP Condition
Operator
Test Spec

Final Measurement

Meas Time: 1 s
Margin: 20 dB
Subranges: 1

Trace	Frequency	Level (dB μ V/m)	Detector	Delta Limit/dB
1	13.560000000 MHz	55.55	Quasi Peak	-13.95

6.4.4.2 Calculations made from 3 m to 30 m distance

At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade).

Measured value at 3 m.

Frequency (MHz)	Measured value at 3 m (dB μ V/m)
13,56	55.55

Calculated value from 3 m to 30 m.

Frequency (MHz)	Extrapolation factor (dB/decade)	Calculated value at 30 m (dB μ V/m)	Limit at 30 m (dB μ V/m)
13,56	-40	15.55	84

NOTE: Antenna factor and cable loss are already included in measurement correction.

6.5 Radiated emission measurement 30 MHz – 1 GHz (intentional radiator)

Section 15.209 Radiated emission limits, general requirements

6.5.1 Test instruments

Description & Manufacturer	Model No.	SIQ No.	Last calibration	Calibrated until	Calibration period	Used
ETS, Anechoic chamber	3m	103949	2012-12	2014-12	24 months	X
Rohde-Schwarz, RFI receiver	ESU8	105187	2013-10	2015-10	24 months	X
EMCO, Antenna model 3142	104351	2013-09	2015-09	24 months	X	
EMCO, Antenna 3115	103002	2013-09	2015-09	24 months		
Heinrich Deisel, Turn table	DS 420.00	103337	NA	NA	NA	X
Antenna tower	/	/	NA	NA	NA	X
Controller for turn table and antenna tower	/	/	NA	NA	NA	X
PC, HP Compaq D330 uT	104245	/	/	/	/	

6.5.2 Test procedure

4. The EUT was placed on the top of a rotating table 0.8 meters above the ground in an Anechoic Chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
5. The EUT was set 3 m away from the interference-receiving antenna, which was mounted on the top of variable-height antenna tower.
6. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
7. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
8. The test-receiver system was set to PEAK and QUASI-PEAK Detect Function and Specified Bandwidth with Maximum Hold Mode.
9. The highest points would be re-tested one by one using the quasi-peak method.

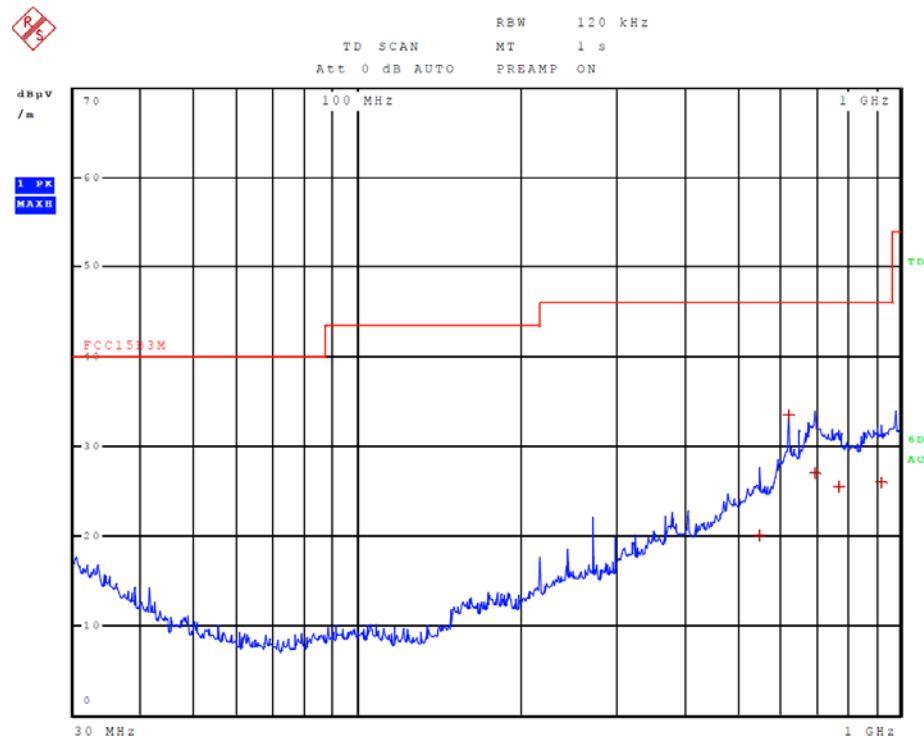
6.5.3 Test results

EUT	Access control terminal (CAC3 Module)	Type:	AIO
Mode:	Normal		
Input voltage:	7,2 V DC (battery)	Date:	24.02.2014
Environmental conditions:	25±10°C, 55±30% RH	Tested by:	Damjan Repar

6.5.4 Summary of results

Device passed the requirements stated in ANSI C63.4, FCC Part 15, Subpart C.

6.5.4.1 Signal measurement at 3 m in an anechoic chamber


C20131273

Meas Type RADIATED EMISSION
Equipment under Test CAC3 AIO Module
Manufacturer OPENWAYS SAS
OP Condition Uin 7.2 V battery supply, NORMAL
Operator DAMJAN REPAR
Test Spec
 VERTICAL 100 CM 270 DEG

Time Domain Scan (1 Range)

Scan Start: 30 MHz
 Scan Stop: 1 GHz
 Detector: Trace 1: MAX PEAK
 Transducer: 3142B3m

Start Frequency	Stop Frequency	Step Size	Res BW	Meas Time	RF Atten	Preamp	Input
30.000000 MHz	1.000000 GHz	30.00 kHz	120.00 kHz	10 ms	Auto	20 dB	INPUT2

C20131273

Meas Type RADIATED EMISSION
Equipment under Test CAC3 AIO Module
Manufacturer OPENWAYS SAS
OP Condition Uin 7.2 V battery supply, NORMAL
Operator DAMJAN REPAR

Test Spec

VERTICAL 100 CM 270 DEG

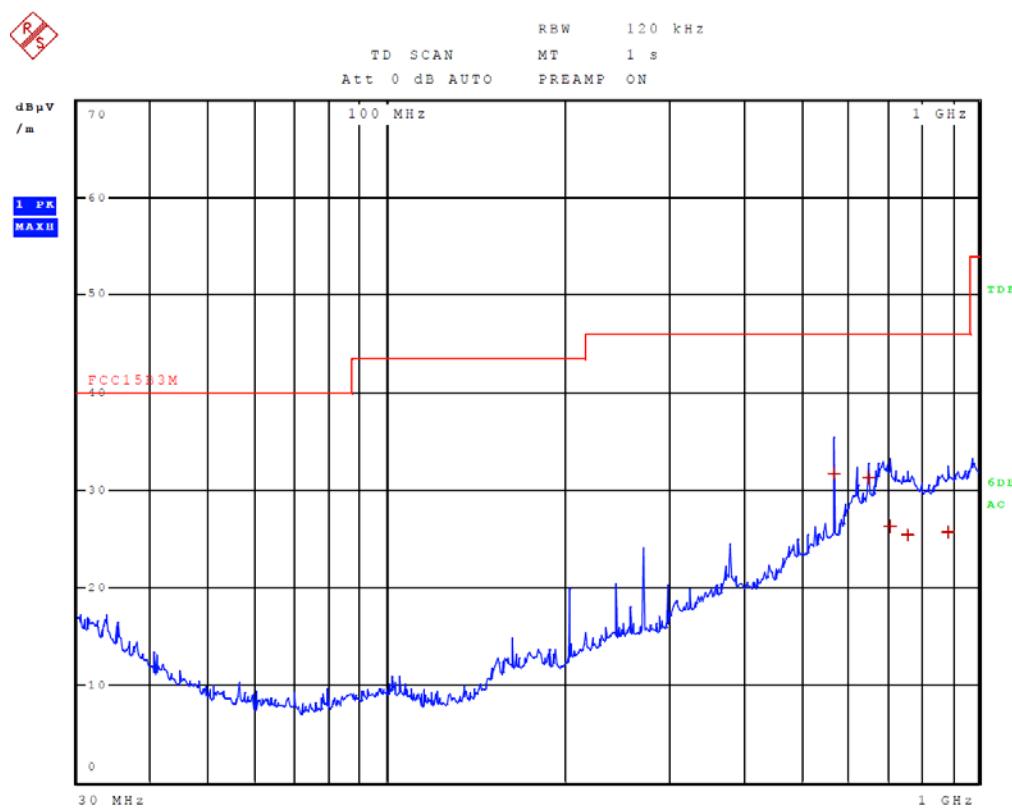
Final Measurement

Meas Time: 1 s
 Margin: 20 dB
 Subranges: 5

Trace	Frequency	Level (dB μ V/m)	Detector	Delta Limit/dB
1	623.790000000 MHz	33.40	Quasi Peak	-12.60
1	698.940000000 MHz	27.04	Quasi Peak	-18.96
1	925.650000000 MHz	25.94	Quasi Peak	-20.06
1	773.130000000 MHz	25.49	Quasi Peak	-20.51
1	551.010000000 MHz	20.08	Quasi Peak	-25.92

C20131273

Meas Type RADIATED EMISSION
Equipment under Test CAC3 AIO Module
Manufacturer OPENWAYS SAS
OP Condition Uin 7.2 V battery supply, NORMAL
Operator DAMJAN REPAR


Test Spec

HORIZONTAL 151 CM 0 DEG

Time Domain Scan (1 Range)

Scan Start: 30 MHz
 Scan Stop: 1 GHz
 Detector: Trace 1: MAX PEAK
 Transducer: 3142B3m

Start Frequency	Stop Frequency	Step Size	Res BW	Meas Time	RF Atten	Preamp	Input
30.000000 MHz	1.000000 GHz	30.00 kHz	120.00 kHz	10 ms	Auto	20 dB	INPUT2

C20131273

Meas Type RADIATED EMISSION
Equipment under Test CAC3 AIO Module
Manufacturer OPENWAYS SAS
OP Condition Uin 7.2 V battery supply, NORMAL
Operator DAMJAN REPAR

Test Spec

HORIZONTAL 151 CM 0 DEG

Final Measurement

Meas Time: 1 s
 Margin: 20 dB
 Subranges: 5

Trace	Frequency	Level (dB μ V/m)	Detector	Delta Limit/dB
1	569.550000000 MHz	31.68	Quasi Peak	-14.32
1	650.910000000 MHz	31.21	Quasi Peak	-14.79
1	709.230000000 MHz	26.26	Quasi Peak	-19.74
1	890.220000000 MHz	25.61	Quasi Peak	-20.39
1	758.340000000 MHz	25.38	Quasi Peak	-20.62

6.6 Frequency tolerance of the carrier signal

Section 15.225 Operation within the band 13.110 – 14.010 MHz - pt.e

6.6.1 Test requirements:

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

6.6.2 Test results

EUT	Access control terminal (CAC3 Module)	Type:	AIO
Mode:	Normal		
Input voltage:	7,2 V DC (fully charged battery)	Date:	21.02.2014
Environmental conditions:	25±10°C, 55±30% RH	Tested by:	Damjan Repar

Temperature (°C)	Supply voltage	Minutes after switch on	Frequency (MHz)	Allowed tolerance (kHz)	Measured tolerance (Hz)
50	New battery	0	13,560712	±1,356	20
	New battery	2	13,560744	±1,356	52
	New battery	5	13,560776	±1,356	84
	New battery	10	13,560776	±1,356	84
40	New battery	0	13,560680	±1,356	-12
	New battery	2	13,560712	±1,356	20
	New battery	5	13,560744	±1,356	52
	New battery	10	13,560734	±1,356	42
30	New battery	0	13,560692	±1,356	0
	New battery	2	13,560689	±1,356	-3
	New battery	5	13,560702	±1,356	10
	New battery	10	13,560698	±1,356	6
20	New battery	0	13,560686	±1,356	-6
	New battery	2	13,560692	±1,356	0
	New battery	5	13,560695	±1,356	3
	New battery	10	13,560692	-	Reference
10	New battery	0	13,560702	±1,356	10
	New battery	2	13,560698	±1,356	6
	New battery	5	13,560692	±1,356	0
	New battery	10	13,560686	±1,356	-6
0	New battery	0	13,560737	±1,356	45
	New battery	2	13,560698	±1,356	6
	New battery	5	13,560718	±1,356	26
	New battery	10	13,560705	±1,356	13
-10	New battery	0	13,560746	±1,356	54
	New battery	2	13,560737	±1,356	45
	New battery	5	13,560714	±1,356	22
	New battery	10	13,560711	±1,356	19
-20	New battery	0	13,560708	±1,356	16
	New battery	2	13,560718	±1,356	26
	New battery	5	13,560734	±1,356	42
	New battery	10	13,560724	±1,356	32

7 Photos of the actual measurement place and EUT placement**Figure 1: Radiated emission test – 30 MHz to 1 GHz****Figure 2: Radiated emission test – OATS measurements**

Figure 3: Radiated emission test – below 30 MHz