
CINCH Systems

Door Bell Sensor

FCC 15.231:2017

Low Power Transmitter

Report # CINC0008.4

NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

2017-1-25

CERTIFICATE OF TEST

Last Date of Test: June 9, 2017
CINCH Systems
Model: Door Bell Sensor

Radio Equipment Testing

Standards

Specification	Method
FCC 15.231:2017	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	AC - Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

A handwritten signature in blue ink, appearing to read 'Matt Nuernberg'.

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission – Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

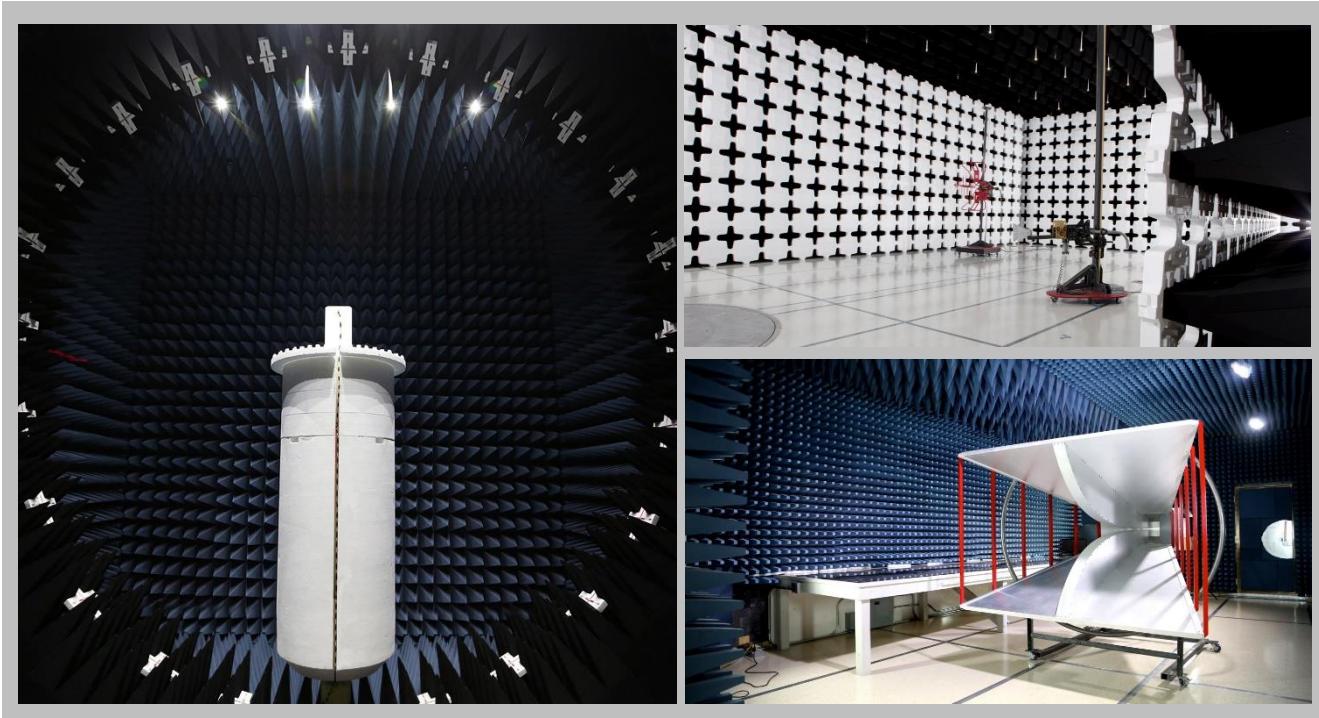
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:


<http://portlandcustomer.element.com/ts/scope/scope.htm>

<http://gsi.nist.gov/global/docs/cabs/designations.html>

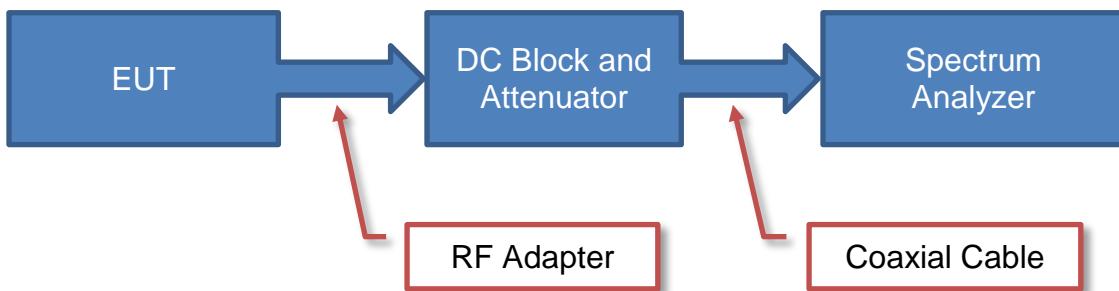
FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600
NVLAP					
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code: 201049-0	NVLAP Lab Code: 200629-0
Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1
BSMI					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R
VCCI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157

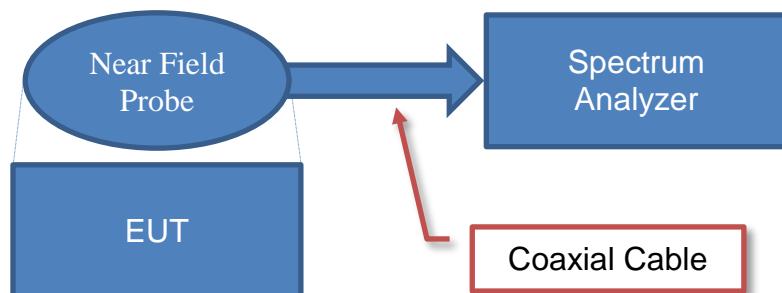
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

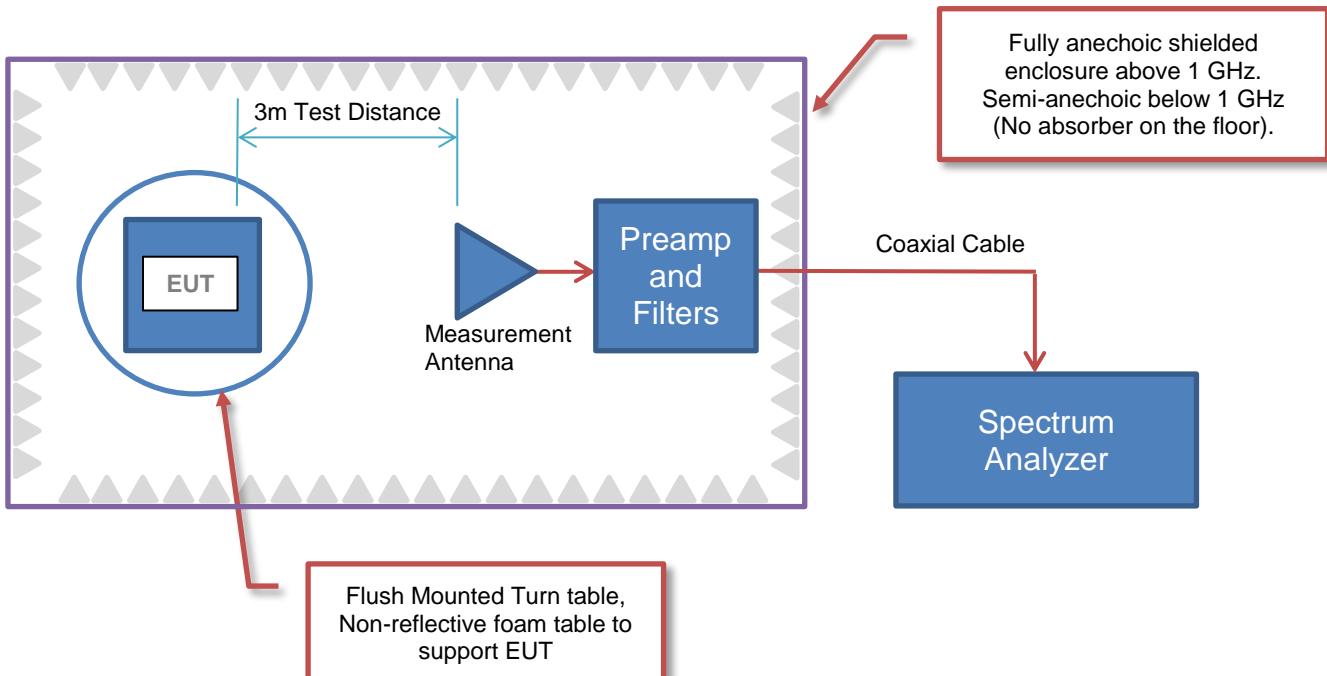
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.


A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


<u>Test</u>	<u>+ MU</u>	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	CINCH Systems
Address:	Suite 300 12075 43rd Street NE
City, State, Zip:	St. Michael, MN 55376
Test Requested By:	Jibril Aga
Model:	Door Bell Sensor
First Date of Test:	June 7, 2017
Last Date of Test:	June 9, 2017
Receipt Date of Samples:	June 7, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:
Doorbell sensor containing a low power transmitter which operates at 319.5 MHz utilizing AM modulation (OOK)
Testing Objective:
To demonstrate compliance of the periodic radio to FCC 15.231(b) requirements.

CONFIGURATIONS

Configuration CINC0008- 2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Door Bell (Normal)	CINCH Systems Inc.	QS1139-840	W:1227A4

Configuration CINC0008- 6

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Door Bell (CW)	CINCH Systems Inc.	QS1139-840	W:4042A2

MODIFICATIONS

2017-1-25

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	6/7/2017	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	6/7/2017	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	6/8/2017	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	6/9/2017	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 319.5MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0008 - 6

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	1000 MHz
-----------------	--------	----------------	----------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/6/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	12/1/2016	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/1/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = $N1L1 + N2L2 + \dots$

Where $N1$ is the number of type 1 pulses, $L1$ is length of type 1 pulses, $N2$ is the number of type 2 pulses, $L2$ is the length of type 2 pulses, etc.

Therefore, Duty Cycle = $(N1L1 + N2L2 + \dots)/100\text{mS}$ or T , whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec

Pulsewidth of Type 1 Pulse = 101.3 uSec

Pulsewidth of Type 2 Pulse = 465 uSec

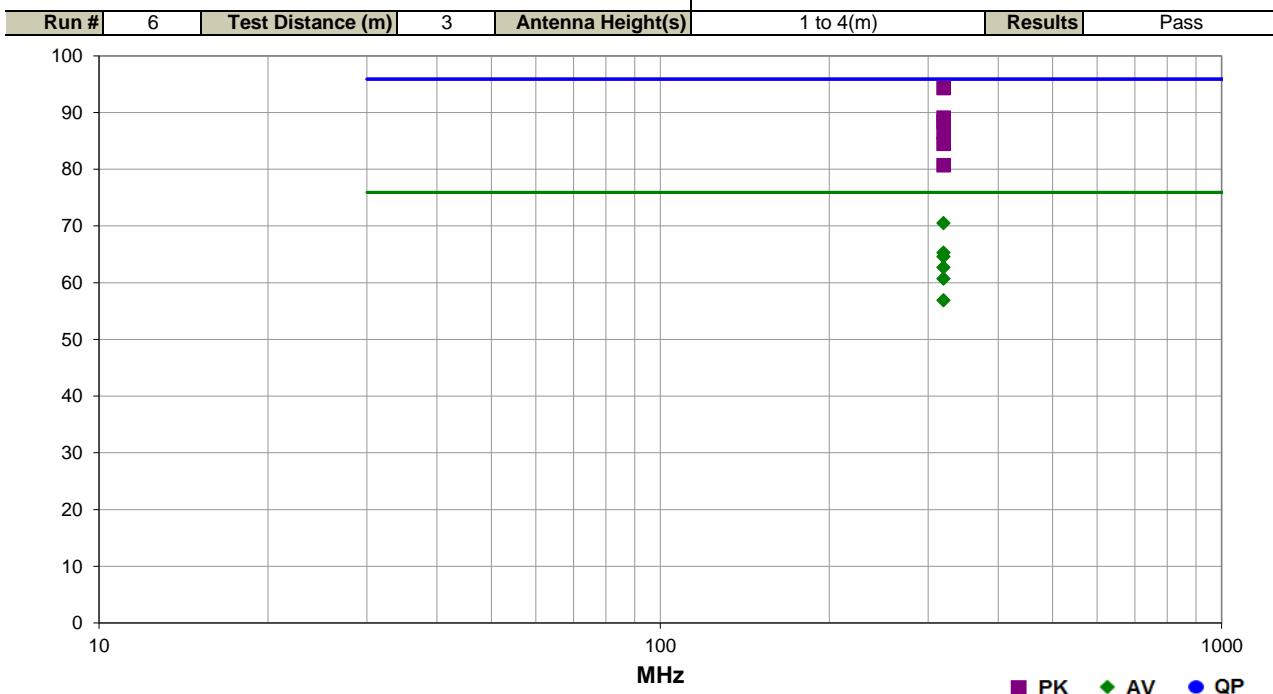
Number of Type 1 Pulses = 59

Number of Type 2 Pulses = 1

Duty Cycle = $20 \log [((59)(.1013) + (1)(.465))/100] = -23.81 \text{ dB}$

The duty cycle correction factor of -23.81 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

FIELD STRENGTH OF FUNDAMENTAL



EmIR5 2017.01.25

PSA-ESCI 2017.01.26

Work Order:	CINC0008	Date:	06/07/17		
Project:	None	Temperature:	23 °C		
Job Site:	MN05	Humidity:	44.1% RH		
Serial Number:	W:4042A2	Barometric Pres.:	1020 mbar		
EUT:	Door Bell Sensor			<i>Trevor Buls</i>	
Configuration:	6				
Customer:	CINCH Systems				
Attendees:	Jibril Aga				
EUT Power:	Battery				
Operating Mode:	Transmitting at 319.5MHz				
Deviations:	None				
Comments:	None				

Test Specifications	Test Method
FCC 15.231:2017	ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
319.510	74.4	19.9	1.0	8.1		0.0	Horz	PK	0.0	94.3	95.9	-1.6	EUT Horz, CW
319.510	74.4	19.9	1.0	8.1	-23.8	0.0	Horz	AV	0.0	70.5	75.9	-5.4	EUT Horz, CW
319.510	69.2	19.9	1.0	11.1		0.0	Horz	PK	0.0	89.1	95.9	-6.8	EUT On Side, CW
319.510	68.5	19.9	1.1	236.9		0.0	Horz	PK	0.0	88.4	95.9	-7.5	EUT Vert, CW
319.510	66.6	19.9	1.6	166.1		0.0	Vert	PK	0.0	86.5	95.9	-9.4	EUT Vert, CW
319.510	69.2	19.9	1.0	11.1	-23.8	0.0	Horz	AV	0.0	65.3	75.9	-10.6	EUT On Side, CW
319.510	68.5	19.9	1.1	236.9	-23.8	0.0	Horz	AV	0.0	64.6	75.9	-11.3	EUT Vert, CW
319.510	64.6	19.9	1.9	161.0		0.0	Vert	PK	0.0	84.5	95.9	-11.4	EUT On Side, CW
319.510	66.6	19.9	1.6	166.1	-23.8	0.0	Vert	AV	0.0	62.7	75.9	-13.2	EUT Vert, CW
319.510	60.8	19.9	1.4	95.1		0.0	Vert	PK	0.0	80.7	95.9	-15.2	EUT Horz, CW
319.510	64.6	19.9	1.9	161.0	-23.8	0.0	Vert	AV	0.0	60.7	75.9	-15.2	EUT On Side, CW
319.510	60.8	19.9	1.4	95.1	-23.8	0.0	Vert	AV	0.0	56.9	75.9	-19.0	EUT Horz, CW

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.01.26

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 319.5MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

CINC0008 - 6

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	6000 MHz
-----------------	--------	----------------	----------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/6/2017	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/1/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2/14/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	12/1/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/23/2016	24 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = $N1L1 + N2L2 + \dots$

Where $N1$ is the number of type 1 pulses, $L1$ is length of type 1 pulses, $N2$ is the number of type 2 pulses, $L2$ is the length of type 2 pulses, etc.

Therefore, Duty Cycle = $(N1L1 + N2L2 + \dots)/100mS$ or T , whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec

Pulsewidth of Type 1 Pulse = 101.3 uSec

Pulsewidth of Type 2 Pulse = 465 uSec

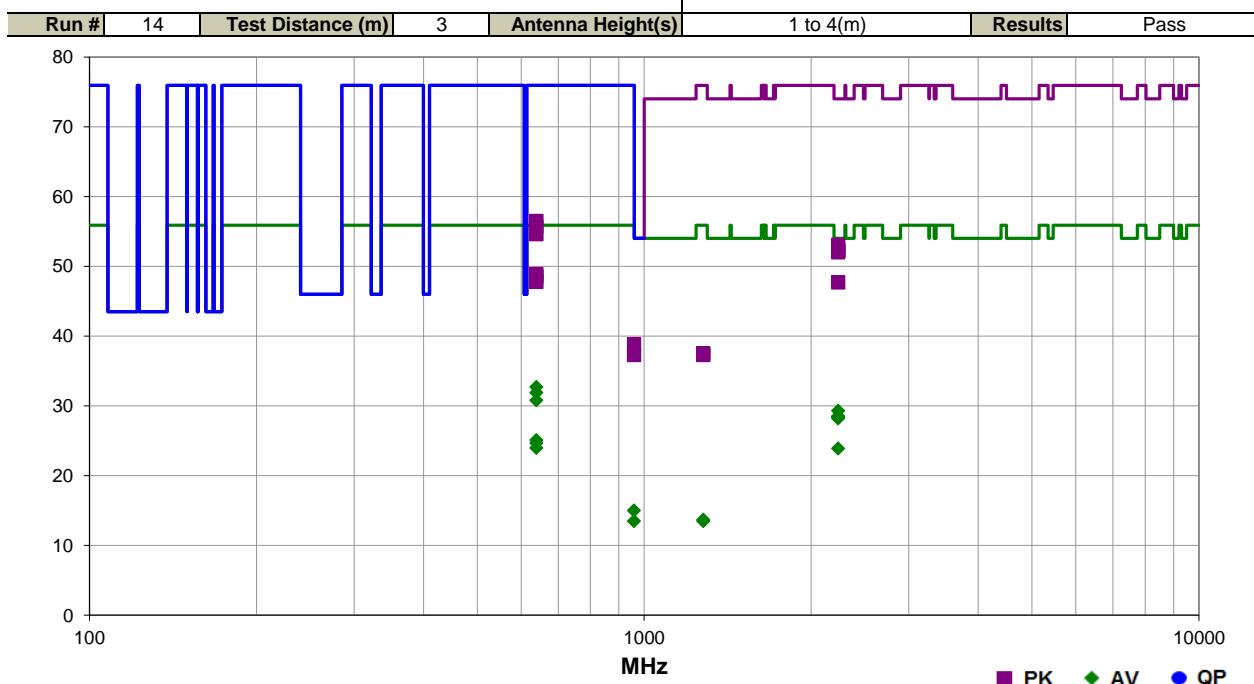
Number of Type 1 Pulses = 59

Number of Type 2 Pulses = 1

Duty Cycle = $20 \log [((59)(.1013) + (1)(.465))/100] = -23.81 \text{ dB}$

The duty cycle correction factor of -23.81 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

SPURIOUS RADIATED EMISSIONS


EmiRS 2017.01.25

PSA-ESCI 2017.01.26

Trevor Buls

Work Order:	CINC0008	Date:	06/08/17	
Project:	None	Temperature:	22.9 °C	
Job Site:	MN05	Humidity:	49.7% RH	
Serial Number:	W:4042A2	Barometric Pres.:	1016 mbar	Tested by: Trevor Buls, Chris Patterson
EUT:	Door Bell Sensor			
Configuration:	6			
Customer:	CINCH Systems			
Attendees:	Jibrial Aga			
EUT Power:	Battery			
Operating Mode:	Transmitting at 319.5MHz			
Deviations:	None			
Comments:	None			

Test Specifications	Test Method
FCC 15.231:2017	ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
639.020	49.5	7.0	1.4	17.0	0.0	Horz	PK	0.0	56.5	75.9	-19.4	EUT Vert, CW	
639.020	48.7	7.0	1.4	204.0	0.0	Horz	PK	0.0	55.7	75.9	-20.2	EUT Horz, CW	
2236.775	55.3	-2.2	1.3	55.1	0.0	Horz	PK	0.0	53.1	74.0	-20.9	EUT Horz, CW	
639.025	47.6	7.0	1.3	202.1	0.0	Horz	PK	0.0	54.6	75.9	-21.3	EUT On Side, CW	
2236.600	54.5	-2.2	1.0	176.0	0.0	Horz	PK	0.0	52.3	74.0	-21.7	EUT On Side, CW	
2236.617	54.5	-2.2	1.0	37.1	0.0	Vert	PK	0.0	52.3	74.0	-21.7	EUT Vert, CW	
2236.525	54.4	-2.2	1.0	234.0	0.0	Vert	PK	0.0	52.2	74.0	-21.8	EUT On Side, CW	
2236.575	54.2	-2.2	1.0	290.9	0.0	Horz	PK	0.0	52.0	74.0	-22.0	EUT Vert, CW	
639.020	49.5	7.0	1.4	17.0	-23.8	0.0	Horz	AV	0.0	32.7	55.9	-23.2	EUT Vert, CW
639.020	48.7	7.0	1.4	204.0	-23.8	0.0	Horz	AV	0.0	31.9	55.9	-24.0	EUT Horz, CW
2236.775	55.3	-2.2	1.3	55.1	-23.8	0.0	Horz	AV	0.0	29.3	54.0	-24.7	EUT Horz, CW
639.025	47.6	7.0	1.3	202.1	-23.8	0.0	Horz	AV	0.0	30.8	55.9	-25.1	EUT On Side, CW
2236.600	54.5	-2.2	1.0	176.0	-23.8	0.0	Horz	AV	0.0	28.5	54.0	-25.5	EUT On Side, CW
2236.617	54.5	-2.2	1.0	37.1	-23.8	0.0	Vert	AV	0.0	28.5	54.0	-25.5	EUT Vert, CW
2236.525	54.4	-2.2	1.0	234.0	-23.8	0.0	Vert	AV	0.0	28.4	54.0	-25.6	EUT On Side, CW
2236.575	54.2	-2.2	1.0	290.9	-23.8	0.0	Horz	AV	0.0	28.2	54.0	-25.8	EUT Vert, CW
2236.533	49.9	-2.2	1.0	199.1	0.0	Vert	PK	0.0	47.7	74.0	-26.3	EUT Horz, CW	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
639.020	41.9	7.0	1.0	311.9		0.0	Vert	PK	0.0	48.9	75.9	-27.0	EUT On Side, CW
639.015	41.5	7.0	1.0	312.9		0.0	Vert	PK	0.0	48.5	75.9	-27.4	EUT Vert, CW
639.020	40.8	7.0	1.2	315.0		0.0	Vert	PK	0.0	47.8	75.9	-28.1	EUT Horz, CW
2236.533	49.9	-2.2	1.0	199.1	-23.8	0.0	Vert	AV	0.0	23.9	54.0	-30.1	EUT Horz, CW
639.020	41.9	7.0	1.0	311.9	-23.8	0.0	Vert	AV	0.0	25.1	55.9	-30.8	EUT On Side, CW
639.015	41.5	7.0	1.0	312.9	-23.8	0.0	Vert	AV	0.0	24.7	55.9	-31.2	EUT Vert, CW
639.020	40.8	7.0	1.2	315.0	-23.8	0.0	Vert	AV	0.0	24.0	55.9	-31.9	EUT Horz, CW
958.530	25.5	13.3	1.2	35.0		0.0	Vert	PK	0.0	38.8	75.9	-37.1	EUT On Side, CW
1278.367	43.8	-6.3	1.0	211.0		0.0	Vert	PK	0.0	37.5	75.9	-38.4	EUT On Side, CW
958.530	24.0	13.3	1.0	66.1		0.0	Horz	PK	0.0	37.3	75.9	-38.6	EUT Vert, CW
1278.450	43.6	-6.3	1.0	156.1		0.0	Horz	PK	0.0	37.3	75.9	-38.6	EUT Horz, CW
958.530	25.5	13.3	1.2	35.0	-23.8	0.0	Vert	AV	0.0	15.0	55.9	-40.9	EUT On Side, CW
1278.367	43.8	-6.3	1.0	211.0	-23.8	0.0	Vert	AV	0.0	13.7	55.9	-42.2	EUT On Side, CW
958.530	24.0	13.3	1.0	66.1	-23.8	0.0	Horz	AV	0.0	13.5	55.9	-42.4	EUT Vert, CW
1278.450	43.6	-6.3	1.0	156.1	-23.8	0.0	Horz	AV	0.0	13.5	55.9	-42.4	EUT Horz, CW

OCCUPIED BANDWIDTH

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/6/2017	1/6/2018
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	1/6/2018
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/1/2016	12/1/2017

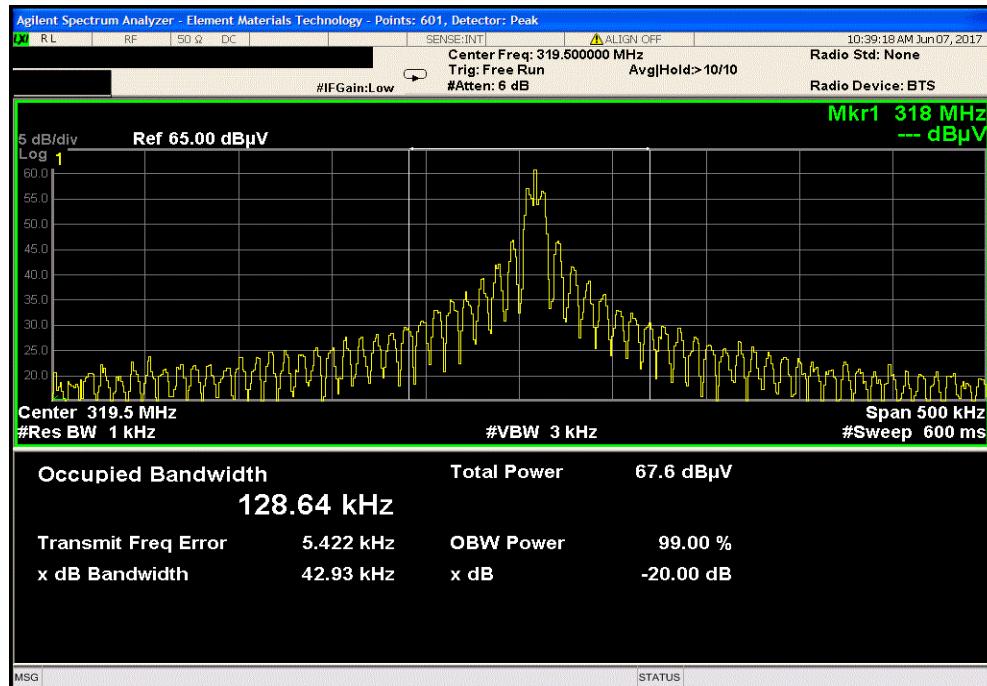
TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

OCCUPIED BANDWIDTH

XMII 2017.02.08


EUT:	Door Bell Sensor		Work Order:	CINC0008	
Serial Number:	W:1227A4		Date:	06/09/17	
Customer:	CINCH Systems		Temperature:	23 °C	
Attendees:	Jibril Aga		Humidity:	50.2% RH	
Project:	None		Barometric Pres.:	1011 mbar	
Tested by:	Trevor Buls, Chris Patterson		Power:	Battery	
TEST SPECIFICATIONS			Test Method		
FCC 15.231:2017			ANSI C63.10:2013		
COMMENTS					
Transmitting at 319.5MHz					
DEVIATIONS FROM TEST STANDARD					
None					
Configuration #	2	Signature	<i>Trevor Buls</i>		
			Value	Limit	Result
319.5MHz			42.93	798.8	Pass

OCCUPIED BANDWIDTH

XMI 2017.02.08

319.5MHz		Value (kHz)	Limit (kHz)	Result
		42.93	798.8	Pass

DUTY CYCLE

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/1/2016	12/1/2017
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	1/6/2018
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFI	1/6/2017	1/6/2018

TEST DESCRIPTION

The measurement was made in a radiated configuration of the fundamental with the carrier fully maximized for its highest radiated power. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = $N1L1 + N2L2 + \dots$

Where $N1$ is the number of type 1 pulses, $L1$ is length of type 1 pulses, $N2$ is the number of type 2 pulses, $L2$ is the length of type 2 pulses, etc.

Therefore, Duty Cycle = $(N1L1 + N2L2 + \dots)/100mS$ or T , whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec

Pulsewidth of Type 1 Pulse = 101.3 uSec

Pulsewidth of Type 2 Pulse = 465 uSec

Number of Type 1 Pulses = 59

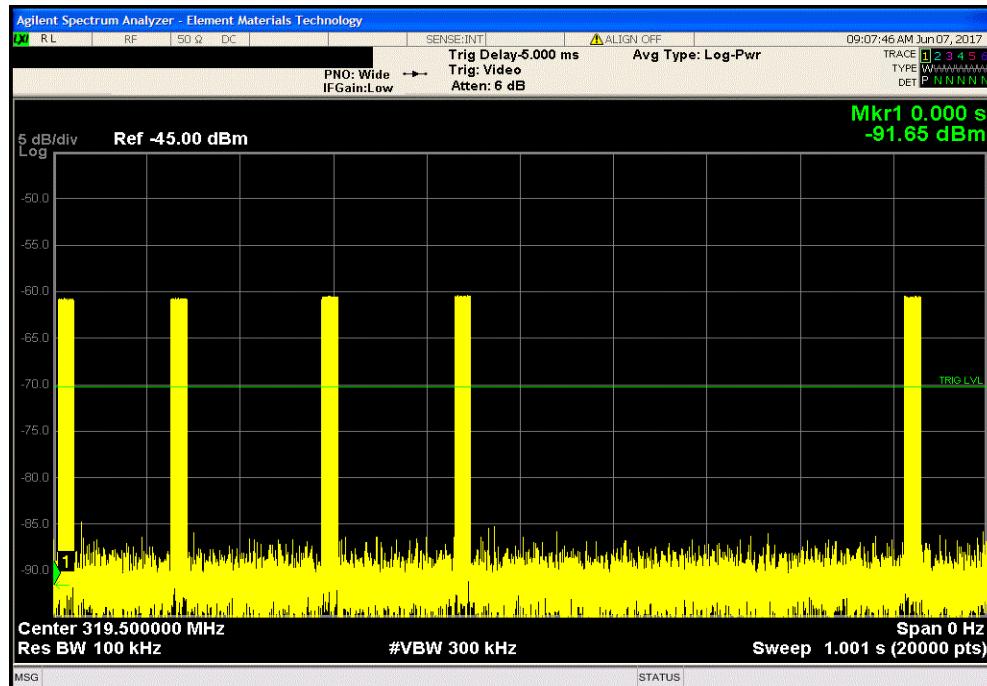
Number of Type 2 Pulses = 1

Duty Cycle = $20 \log [((59)(.1013) + (1)(.465))/100] = -23.81 \text{ dB}$

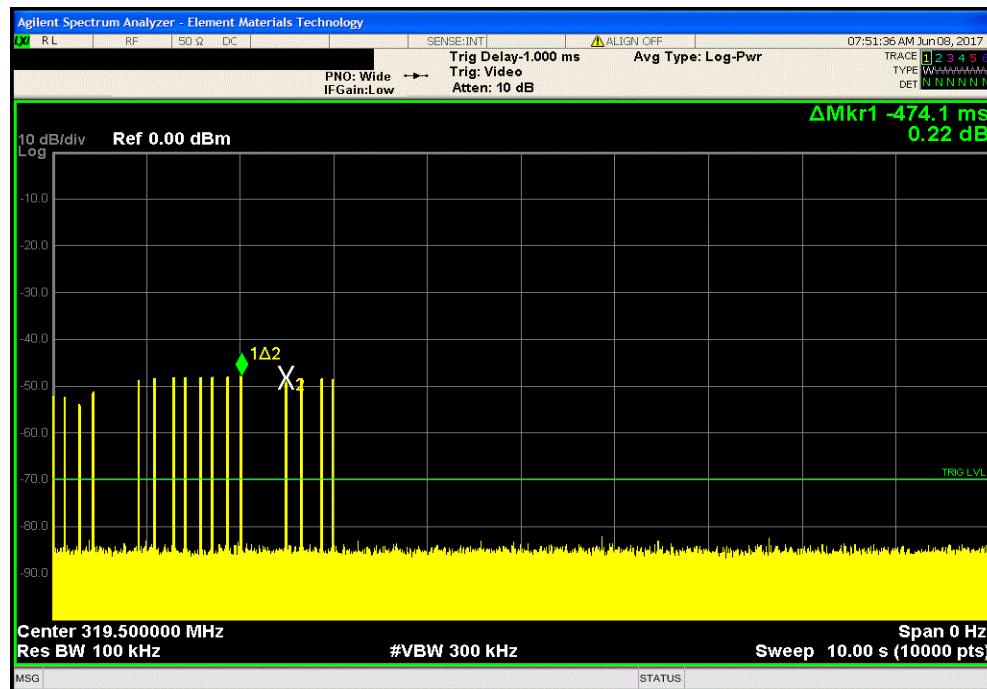
The duty cycle correction factor of **-23.81 dB** was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

DUTY CYCLE

XMT 2017.02.08


EUT:	Door Bell Sensor	Work Order:	CINC0008
Serial Number:	W:1227A4	Date:	06/07/17
Customer:	CINCH Systems	Temperature:	23.4 °C
Attendees:	Jibril Aga	Humidity:	44% RH
Project:	None	Barometric Pres.:	1019 mbars
Tested by:	Trevor Buls, Chris Patterson	Job Site:	MN05
TEST SPECIFICATIONS		Power:	Battery
FCC 15.231:2017		Test Method	ANSI C63.10:2013
COMMENTS			
Transmitting at 319.5MHz			
DEVIATIONS FROM TEST STANDARD			
None			
Configuration #	2	Signature	
		<i>Trevor Buls</i>	
1sec		Value	Limit
10sec		See Test Description	N/A
20ms		See Test Description	N/A
		See Test Description	N/A

DUTY CYCLE



XMI 2017.02.08

1sec			
Value	Limit	Result	
See Test Description	N/A	N/A	

10sec			
Value	Limit	Result	
See Test Description	N/A	N/A	

DUTY CYCLE

XMI 2017.02.08

20ms			
Value	Limit	Result	
See Test Description	N/A	N/A	

