

Königswinkel 10 32825 Blomberg, Germany Phone: +49 (0) 52 35 / 95 00-0 Fax: +49 (0) 52 35 / 95 00-10 office@phoenix-testlab.de www.phoenix-testlab.de

Test Report

Report Number:

F250067E5

Equipment under Test (EUT):

Safety switch

SRF-2/11-E,025-L and SRF-4/1/1-E0,25-L

Applicant:

Bernstein AG

Manufacturer:

Bernstein AG

References

- [1] ANSI C63.10: 2020 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- [2] FCC CFR 47 Part 15 Radio Frequency Devices
- [3] RSS-210 Issue 11 (June 2024)
 Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
- [4] RSS-Gen, Issue 5 Amendment 2 (2021-02)
 General Requirements for Compliance of Radio Apparatus

Test Result

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test. The complete test results are presented in the following. "Passed" indicates that the equipment under test conforms with the relevant limits of the testing standard without taking any measurement uncertainty into account as stated in clause 1.4 of ANSI C63.10 (2020). However, the measurement uncertainty is calculated and shown in this test report.

Tested and written by:	
	Signature
Reviewed and approved by:	
	Signature

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067
 Page 2 of 28

C	Contents: Pa		Page
1	Identific	cation	5
	1.1 App	olicant	5
	1.2 Mai	nufacturer	5
	1.3 Tes	st Laboratory	5
	1.4 EU	T (Equipment under Test)	6
	1.5 Tec	chnical Data of Equipment	7
	1.6 Dat	ies	7
2	Operati	ional States	8
3	Additio	nal Information	8
4	Overvie	9W	9
5	Results	5	G
	5.1 Tes	st setups	
	5.1.1	Radiated: Test fixture	
	5.1.2	Radiated: 9 kHz to 30 MHz	10
	5.1.2.	1 Preliminary measurement 9 kHz to 30 MHz	10
	5.1.2.2		11
	5.1.3	Radiated: 30 MHz to 1 GHz	12
	5.1.3.	,	12
	5.1.4	Conducted: AC power line	14
	5.1.5	Method 99% bandwidth	15
	5.2 99	% bandwidth	16
	5.2.1	Test setup (99 % bandwidth)	16
	5.2.2	Test method (99 % bandwidth)	16
	5.2.3	Test results (99 % bandwidth)	16
	5.3 Rad	diated emissions	
	5.3.1	Test setup (Maximum unwanted emissions)	17
	5.3.2	Test method (Maximum unwanted emissions)	17
	5.3.3	Test results (Maximum unwanted emissions)	17
	5.3.3.	1 Test results preliminary measurement 9 kHz to 30 MHz	17
	5.3.3.2	Test results final measurement 9 kHz to 30 MHz	20
	5.3.3.3	Test results (30 MHz – 1 GHz)	21
	5.4 AC	power-line conducted emissions	23
	5.4.1	Test setup (Conducted emissions on power supply lines)	
	5.4.2	Test method (Conducted emissions on power supply lines)	23
	5.4.3	Test results (Conducted emissions on power supply lines)	24

Examiner: Sebastian KREHS Date of Issue: 24.04.2025

Report Number: F250067E5 Order Number: 25-110067

6	Measurement Uncertainties	. 26
7	Test Equipment used for Tests	. 27
	Test site Verification	
9	Report History	. 28
10	List of Annexes	. 28

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

1 Identification

1.1 Applicant

Name:	Bernstein AG
Address:	Hans-Bernstein-Str. 1, 32457 Porta Westfalica
Country:	Germany
Name for contact purposes:	Mr. Michael STOMBERG
Phone:	+49 571 793 675
eMail address:	michael.stomberg@bernstein.eu
Applicant represented during the test by the following person:	None

1.2 Manufacturer

Name:	Bernstein AG
Address:	Hans-Bernstein-Str. 1, 32457 Porta Westfalica
Country:	Germany
Name for contact purposes:	Mr. Michael STOMBERG
Phone:	+49 571 793 675
eMail address:	michael.stomberg@bernstein.eu
Manufacturer represented during the test by the following person:	None

1.3 Test Laboratory

The tests were carried out by: PHOENIX TESTLAB GmbH

Königswinkel 10 32825 Blomberg Germany

accredited by Deutsche *Akkreditierungsstelle GmbH (DAkkS)* according to DIN EN ISO/IEC 17025:2018. The accreditation is only valid for the scope of accreditation listed in the annex of the certificate D-PL-17186-01-00. FCC Test Firm Designation Number DE0004, FCC Test Firm Registration Number 469623, CAB Identifier DE0003 and ISED# 3469A.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 5 of 28

1.4 EUT (Equipment under Test)

Test object: *	Safety switch
Model name: *	SRF
FCC ID: *	2ABA6SRFB
IC certification number: *	11535A-SRFB
PMN: *	SRF
HVIN: *	BAG-RF-04
FVIN: *	5417210109_09 V3.8

^{*} Declared by the applicant

	EUT	EUT number	
	1	2	
Model number: *	SRF-2/1/1-E0,25-L	SRF-4/1/1-E0,25-L	
Order number: *	G324000113	G324000115	
Serial number: *	-	-	
PCB identifier: *	5901240089_01 FBG-SRF-2, V3	5901240090_01 FBG-SRF-4, V3	
Hardware version: *	5901240089_01	5901240090_01	
Software version: *	5417210109_09 V3.8	5417210109_09 V3.8	

^{*} Declared by the applicant

Two EUTs were used for the tests. In the overview (chapter 4) is shown which EUT was used for each test case.

Note: PHOENIX TESTLAB GmbH does not take samples. The samples used for tests are provided exclusively by the applicant.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 6 of 28

1.5 Technical Data of Equipment

General			
Power supply EUT: *	DC by SELV/PELV power ac	dapter	
Supply voltage EUT: *	$U_{nom} = 24.0 V_{DC}$	U _{min} = 19.2 V _{DC}	$U_{max} = 30.0 V_{DC}$
Temperature range: *	-25 °C to +70 °C		
Lowest / highest internal frequency: *	10 kHz / 24 MHz		

^{*} Declared by the applicant

RFID part	
Operating frequency: *	125 kHz
Number of channels: *	1
Type of modulation: *	AM
Antenna type: *	Internal antenna
Antenna connector: *	-

^{*} Declared by the applicant

Ports / Connectors				
Identification	Connector		Length	Shielding
Identification	EUT	Ancillary	during test	(Yes / No)
Power supply / IO	Fixed	M12	2.5 m	No

Equipment used for testing	
Safety relay *	SCR ON4-W22-3.6-S
Actuator *	SRF-0

^{*} Provided by the applicant

1.6 Dates

Date of receipt of test sample:	14.02.2025
Start of test:	17.02.2025
End of test:	19.03.2025

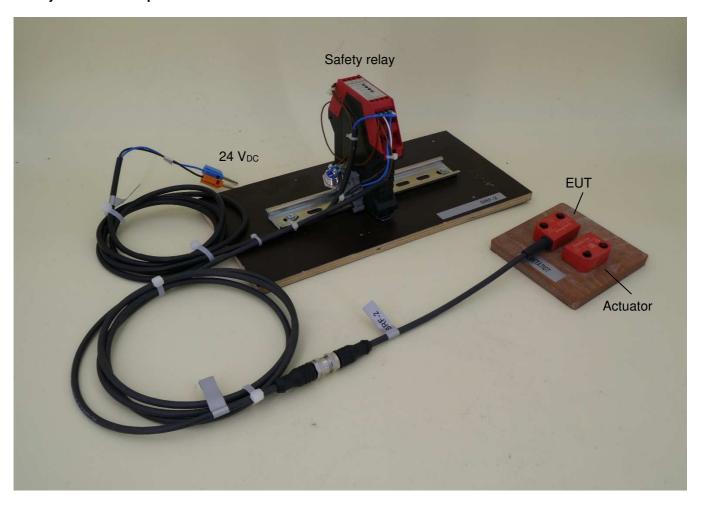
 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 7 of 28

2 Operational States

Description of function of the EUT:


The EUT is a 125 kHz RFID system used as a safety switch.

The following states were defined as the operating conditions:

During all tests the EUT was supplied by 24 V_{DC} via the safety relay. The EUT was continuously reading the actuator at a distance of 10 mm.

The used safety relay and actuator are presented in clause 1.5.

The system was setup as follows:

3 Additional Information

The EUT was not labeled as required by FCC / IC.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

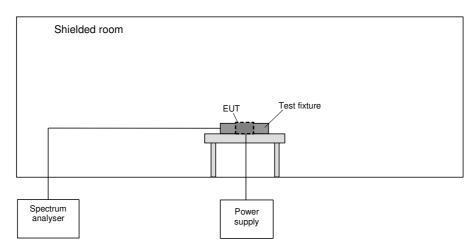
 Page 8 of 28

4 Overview

Application	Frequency range [MHz]	FCC 47 CFR Part 15 section [2]	RSS-Gen, Issue 5 [4] and RSS-210, Issue 11 [3]	Tested EUT	Status
Conducted emissions on supply line	0.15 – 30	15.207 (a)	8.8 [4]	1/2	Passed
Radiated emissions	0.009 – 1000 **	15.205 (a) 15.209 (a)	8.9 and 8.10 [4] 8.1 and 8.3 [3]	1*** / 2	Passed
99 % bandwidth	13.56	-	6.7 [4]	1	Passed
Antenna requirement	-	15.203 [2]	6.8 [4]	-	Passed *

^{*:} Integrated antenna only, requirement fulfilled.

- **: As declared by the applicant the highest clock frequency is 125 kHz.


 Therefore the radiated emission measurement must be carried out up to 10th of the highest clock frequency or 1 GHz, whichever is the highest [2]. In this case the measurement must be carried out up to 1 GHz.
- ***: The preliminary measurement in the frequency range 9 kHz 30 MHz showed that EUT 1 is the worst case, therefore the final measurement in this frequency range and the measurement in the frequency range 30 MHz to 1 GHz was only carried out with EUT 1.

5 Results

5.1 Test setups

5.1.1 Radiated: Test fixture

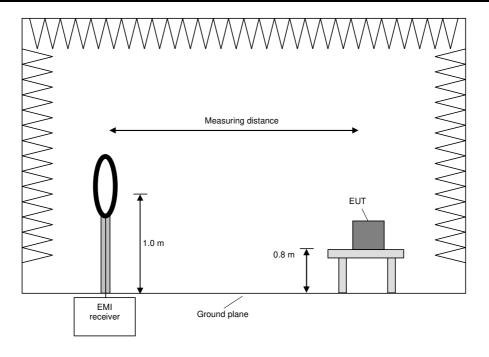
The test is carried out in a shielded chamber. Table-top devices are set up on a table and the spectrum analyser is connected to a test fixture / loop antenna, which is placed around / on top of the EUT.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 9 of 28

5.1.2 Radiated: 9 kHz to 30 MHz


5.1.2.1 Preliminary measurement 9 kHz to 30 MHz

In the first stage a preliminary measurement is performed in a semi-anechoic chamber at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices are placed directly on the turntable / ground plane. The setup of the equipment under test is in accordance with [1].

The frequency range 9 kHz to 30 MHz is monitored with an EMI receiver while the system and its cables are manipulated to find out the configuration with the maximum emission levels if applicable. The EMI receiver is set to MAX hold mode. The EUT and the measuring antenna are rotated around their vertical axis to find the maximum emission levels.

The resolution bandwidth of the EMI receiver is set to the following values:

Frequency range	Resolution bandwidth	
9 kHz to 150 kHz	200 Hz	
150 kHz to 30 MHz	9 kHz	

Procedure preliminary measurement:

Pre-scans are performed in the frequency range 9 kHz to 150 kHz and 150 kHz to 30 MHz. The following procedure is used:

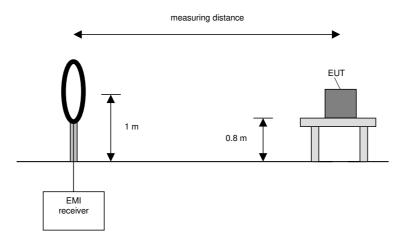
- 1) Monitor the frequency range with the measuring antenna facing the EUT and an EUT / turntable azimuth of 0 °.
- 2) Manipulate the system cables to produce the maximum levels of emissions.
- 3) Rotate the EUT by 360 ° to maximize the detected signals.
- 4) Measure the frequencies of the highest detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency values.
- 5) If the EUT is portable or ceiling mounted, repeat steps 1 to 4 with other orientations (x,y,z) of the EUT.

6) Rotate the measuring antenna and repeat steps 1 to 5.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 10 of 28


5.1.2.2 Final measurement 9 kHz to 30 MHz

In the second stage a final measurement is performed on an open area test site with no conducting ground plane at a measuring distance of 3 m, 10 m, or 30 m. If the standard requires larger measuring distances for a given frequency, the results are extrapolated according to section 15.31 (f) (2) [2]. The final measurement is performed with an EMI receiver set to Quasi-Peak detector, except for the frequency bands 9 kHz to 90 kHz and 110 kHz to 490 kHz where an Average detector is used according section 15.209 (d) [2].

At the frequencies, which were detected during the preliminary measurements, the final measurement is performed while rotating the EUT and the measuring antenna in the range of 0 ° to 360 ° around their vertical axis until the maximum level value is found.

The resolution bandwidth of the EMI receiver is set to the following values:

Frequency range	Resolution bandwidth	Measuring time	
9 kHz to 150 kHz	200 Hz	1 s	
150 kHz to 30 MHz	9 kHz	1 s	

Procedure final measurement:

The following procedure is used:

- 1) Monitor the selected frequencies from the preliminary measurement with the measuring antenna facing the EUT and an EUT azimuth of 0 °.
- 2) Rotate the EUT by 360 ° to maximize the detected signals.
- 3) Rotate the measuring antenna and repeat steps 1 to 2 until the maximum value is found and note it.

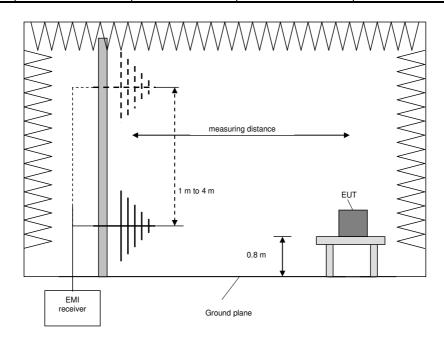
4) If the EUT is portable or ceiling mounted, repeat steps 1 to 3 with other orientations (x, y, z) of the EUT.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 11 of 28

5.1.3 Radiated: 30 MHz to 1 GHz


5.1.3.1 Preliminary and final measurement 30 MHz to 1 GHz

The preliminary and final measurements are performed in a semi-anechoic chamber with a metal ground plane at a measuring distance of 3 meters. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm. Floor-standing devices are placed directly on the turntable / ground plane. The setup of the equipment under test is in accordance with [1].

During the tests the EUT is rotated in the range of 0 $^{\circ}$ to 360 $^{\circ}$, the measuring antenna is set to horizontal and vertical polarization and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI receiver is set to the following values:

Test	Frequency range	Step-size	Resolution bandwidth	Measuring time	Detector
Preliminary measurement	30 MHz to 1 GHz	30 kHz	120 kHz	-	Peak Average
Frequency peak search	± 120 kHz	10 kHz	120 kHz	1 s	Peak
Final measurement	30 MHz to 1 GHz	-	120 kHz	1 s	QuasiPeak

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 12 of 28

Procedure preliminary measurement:

The following procedure is used:

- 1) Set the measuring antenna to 1 m height.
- 2) Monitor the frequency range at horizontal polarization of the measuring antenna and an EUT / turntable azimuth of 0 °.
- 3) Rotate the EUT by 360° to maximize the detected signals.
- 4) Repeat steps 2 to 3 with the vertical polarization of the measuring antenna.
- 5) Increase the height of the measuring antenna for 0.5 m and repeat steps 2 to 4 until the final height of 4 m is reached.
- 6) The highest values for each frequency are saved by the software, including the measuring antenna height and polarization and the turntable azimuth for that value.

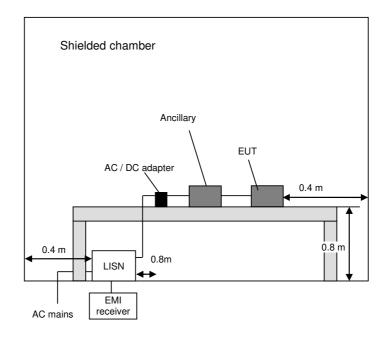
Procedure final measurement:

The following procedure is used:

- 1) Select the highest frequency peaks (lowest margin to the limit) for the final measurement.
- 2) The software determines the exact peak frequencies by doing a partial scan with reduced step size of the pre-scan of the selected peaks.
- 3) If the EUT is portable or ceiling mounted, find the worst-case EUT orientation (x, y, z) for the final test.
- 4) The worst-case measuring antenna height is found via varying the height by ± 0.5 m from the value obtained in the preliminary measurement while monitoring the emission level.
- 5) The worst-case turntable position is found via varying the turntable azimuth by $\pm 30^{\circ}$ from the value obtained in the preliminary measurement while monitoring the emission level.
- 6) The final measurement is performed at the worst-case measuring antenna height and the worst-case turntable azimuth.
- 7) Steps 2 to 6 are repeated for each frequency peak selected in step 1.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067
 Page 13 of 28



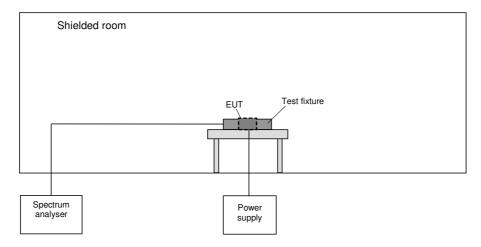
5.1.4 Conducted: AC power line

The test is carried out in a shielded chamber. Table-top devices are set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm above the ground plane. Floor-standing devices are placed directly on the ground plane. In case of DC powered equipment, which is not exclusively powered by a battery, it is connected to the LISN via a suitable AC/DC adaptor. The setup of the equipment under test is in accordance with [1].

The frequency range 150 kHz to 30 MHz is measured with an EMI receiver set to MAX hold mode with Peak and Average detectors and a resolution bandwidth of 9 kHz. A scan is carried out on the phase and neutral line of the AC mains network. If emissions less than 10 dB below the appropriable limit are detected, these emissions are measured with an Average and Quasi-Peak detector on all lines.

Frequency range	Resolution bandwidth	Measuring time
150 kHz to 30 MHz	9 kHz	5 s

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5


 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

Page 14 of 28

5.1.5 Method 99% bandwidth

The test is carried out in a shielded chamber. Table-top devices are set up on a table and the spectrum analyser is connected to a test fixture / loop antenna, which is placed around / on top of the EUT.

The following procedure will be used for the occupied bandwidth measurement according to [1]:

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. The following procedure shall be used for measuring 99 % power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1 % to 5 % of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

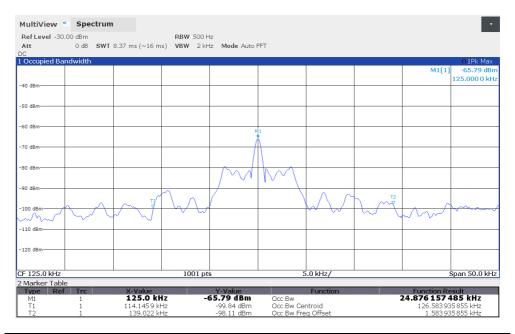
 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 15 of 28

5.2 99 % bandwidth

5.2.1 Test setup (99 % bandwidth)

	Test setup (99 % bandwidth)				
Used	Used Setup See sub-clause Comment				
\boxtimes	Radiated: Test fixture	5.1.1	-		
	Test setup (antenna port conducted)	-	-		


5.2.2 Test method (99 % bandwidth)

	Test method (99 % bandwidth)				
Used	Used Sub-Clause [1] Name of method Applicability Comment				
\boxtimes	6.9.3	Occupied bandwidth – power bandwidth (99%) measurement procedure	-	-	

5.2.3 Test results (99 % bandwidth)

Ambient temperature:	22 °C
Relative humidity:	8 %

Date:	18.03.2025
Tested by:	S. KREHS

F∟	Fυ BW (Fυ - F	
114.1459 kHz	139.0220 kHz	24.8761 kHz

Test result: Passed

Test equipment (please refer to chapter 7 for details)
1 - 4

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 16 of 28

5.3 Radiated emissions

5.3.1 Test setup (Maximum unwanted emissions)

	Test setup (Maximum unwanted emissions)				
Used	Jsed Setup See sub-clause Comment				
	Radiated: 9 kHz to 30 MHz / 30 MHz to 1 GHz	5.1.2 / 5.1.3	-		

5.3.2 Test method (Maximum unwanted emissions)

☐ Test method (radiated) see sub-clause 5.1.2 / 5.1.3 as described herein

5.3.3 Test results (Maximum unwanted emissions)

5.3.3.1 Test results preliminary measurement 9 kHz to 30 MHz

Ambient temperature:	21 / 22 °C	Da	ate:	17.02.2025/ 07.04.2025
Relative humidity:	12 / 13%	Те	ested by.	D. BRUSCHINSKI / S. KREHS

Position of EUT: For tests for f between 9 kHz to 30 MHz, the EUT was set-up on a table with a height of

80 cm. The distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the annex

A in the test report.

Test record: The measurement value was already corrected by 40 dB/decade as described in 47

CFR 15.31(f)(2) regarding to the measurement distance as requested in 47 CFR

15.209(a)

Remark: All 3 orthogonal planes were tested separately

As preliminary tests have shown, there are no significant differences in in the various orthogonal orientations of the EUT. Therefore, the test was carried out in the EUT

orientation lying flat on the surface.

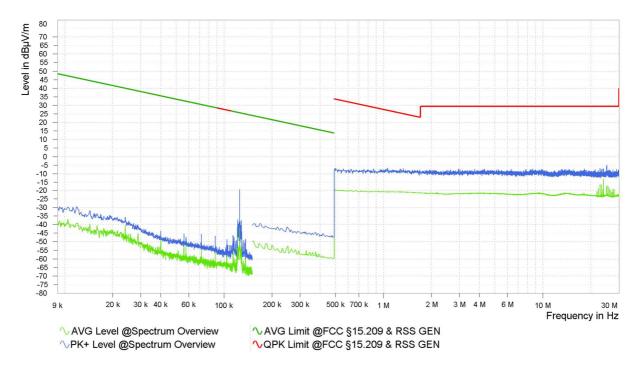
Calculations:

Result @ norm. dist. $[dB\mu V/m] =$ Reading $[dB\mu V] + AF [dB/m] + Distance corr. fact. <math>[dB\mu V/m]$

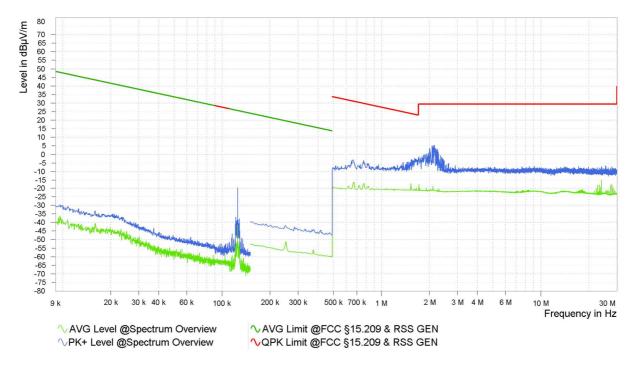
 $Result @ norm. \ dist. \ [dB\mu A/m] = \\ Result @ norm. \ dist. \ [dB\mu V/m] - 20 \ x \ log_{10} \ (377 \ \Omega)$

 $\label{eq:margin} \text{Margin [dB] = } \qquad \qquad \text{Limit [dB}(\mu V | \mu A) / m] - \text{Result [dB}(\mu V | \mu A) / m]$

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5


 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 17 of 28


Worst case plot EUT 1 (SRF-2/1/1-E0,25-L):

Spurious emissions from 9 kHz to 30 MHz:

Worst case plot EUT 2 (SRF-4/1/1-E0,25-L):

Spurious emissions from 9 kHz to 30 MHz:

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 18 of 28

The following frequencies were found in the frequency range 9 kHz to 300 MHz:

- 125 kHz.

Those frequencies have to be measured within a final measurement.

Remark: No further emissions close than 20 dB to the limit.

As the preliminary measurement have shown the worst case is the measurement at the EUT

SRF-4. Therefor the final measurement was only carried out wit the EUT SRF-4.

Test equipment (please refer to chapter 7 for details)

3, 5 - 12

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067
 Page 19 of 28

5.3.3.2 Test results final measurement 9 kHz to 30 MHz

Ambient temperature:	9 °C
Relative humidity:	57 %

Date:	25.02.2025
Tested by:	S. KREHS

The results of the standard subsequent measurement on the outdoor test site are indicated in the table below. The limits as well as the measured results (levels) refer to the above-mentioned standard while taking account of the specified requirements for a 300 m measuring distance.

	Results 9 kHz - 30 MHz											
Frequency	Reading @ measuring distance	Result @ norm. distance	Result @ norm. distance	Limit acc. 15.209	Limit acc. RSS-Gen Table 6	Margin	Detector	Antenna factor	Measuring distance	Normative distance	Distance correction factor	Position
[MHz]	[dB(µV)]	[dB(µV/m)]	[dB(µA/m)]	[dB(µV/m)]	[dB(µA/m)]	[dB]		[dB/m]	[m]	[m]	[dB]	#
0.125	39.7	-19.8	-71.3	25.7	-25.9	45.5	AV	20.5	3	300	80.0	1

Remark:

The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ω .

For example, the measurement frequency X kHz resulted in the level of Y dB μ V/m, which is equivalent to Y - 51.5 = Z dB μ A/m, which was the same margin, W dB, to the corresponding RSS-GEN Table 6 as it has to the 15.209(a) limit.

Remark: At 10m measuring distance the signal of the EUT was below the sensitivity of the measuring system.

Test result: Passed

Test equipment (please refer to chapter 7 for details)
22 - 24

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 20 of 28

5.3.3.3 <u>Test results (30 MHz – 1 GHz)</u>

Ambient temperature:	22 °C
Relative humidity:	14 %

Date: 19.03.2025
Tested by: D. BRUSCHINSKI

Position of EUT: For tests for f between 30 MHz to 1 GHz, the EUT was set-up on a table with a height

of 80 cm. The distance between EUT and antenna was 3 m.

Cable guide: For detail information of test set-up and the cable guide refer to the pictures in the annex

A in the test report.

Test record: Plots for each frequency range are submitted below.

Remark: All 3 orthogonal planes were tested separately

As preliminary tests have shown, there are no significant differences in in the various orthogonal orientations of the EUT. Therefore, the test was carried out in the EUT

orientation lying flat on the surface.

Calculations:

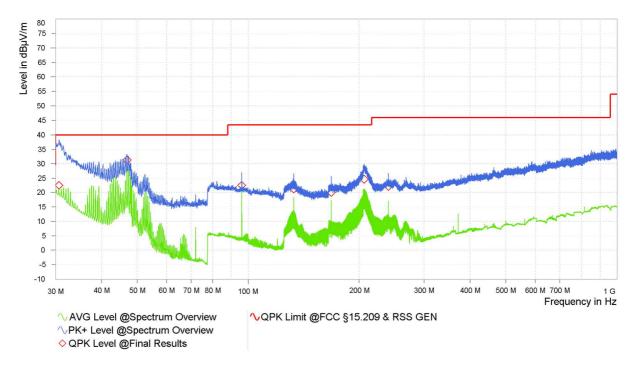
Result $[dB\mu V/m]$ = Reading $[dB\mu V]$ + Correction $[dB\mu V/m]$

Correction $[dB\mu V/m] = AF [dB/m] + Cable attenuation [dB] + optional preamp gain [dB]$

Margin [dB] = Limit [dB μ V/m] - Result [dB μ V/m]

The measured points and the limit line in the following diagram refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with ">" are the measured results of the standard subsequent measurement in a semi-anechoic chamber.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5


 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

Page 21 of 28

Worst case plot EUT 2 (SRF-4/1/1-E0,25-L):

Spurious emissions from 30 MHz to 1 GHz:

Result table EUT 2 (SRF-4/1/1-E0,25-L):

Frequency [MHz]	Result (QP) [dBμV/m]	Limit [dBµV/m]	Margin [dB]	Readings [dBµV]	Correction [dB/m]	Height [cm]	Azimuth [deg]	Pol. (H/V)
30.630	22.5	40.00	17.5	-3.8	26.3	136	48	V
46.890	31.3	40.00	8.7	15.7	15.6	100	40	V
96.000	22.5	43.50	21.0	5.4	17.1	101	318	V
132.840	21.2	43.50	22.4	4.7	16.5	105	210	V
168.000	20.0	43.50	23.6	4.5	15.5	139	331	Н
206.130	24.7	43.50	18.8	8.6	16.1	136	222	Н
240.000	22.1	46.00	23.9	5.1	17.0	102	215	Н

Test result: Passed

Test equipment (please refer to chapter 7 for details)
3, 6 - 15

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 22 of 28

5.4 AC power-line conducted emissions

5.4.1 Test setup (Conducted emissions on power supply lines)

Test setup (Conducted emissions on power supply lines)						
Used	ed Setup See sub-clause Comment					
\boxtimes	Conducted: AC power line	5.1.4	-			
	Not applicable, because	-	-			

5.4.2 Test method (Conducted emissions on power supply lines)

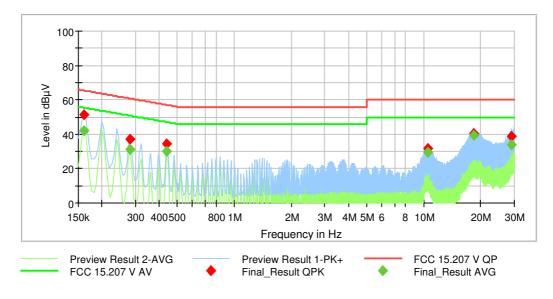
	Test setup (Conducted emissions on power supply lines)							
Used	Used Clause [1] Name of method Sub-clause Comment							
\boxtimes	6.2	Tabletop equipment testing	5.1.4	The EUT is DC supplied, therefore an AC / DC adaptor has to be used.				
	6.2	Floor-standing equipment testing	-	-				

During the measurement the EUT was supplied with 24.0 V_{DC} by an AC/DC adaptor MINI-PS-100-240AC/24DC/1.3. The power adaptor itself was supplied by 120 V_{AC} 60Hz.

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 23 of 28


5.4.3 Test results (Conducted emissions on power supply lines)

Ambient temperature:	22 °C
Relative humidity:	14 / 33 %

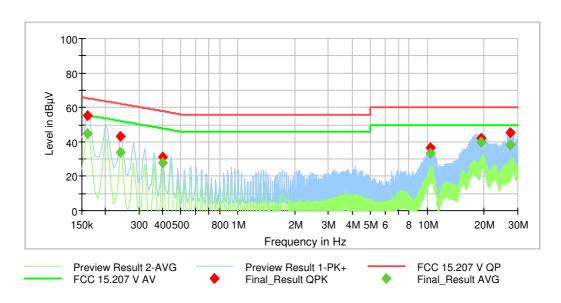
Date:	25.02.2025 / 19.03.2025
Tested by:	D. BRUSCHINSKI

The curves in the diagrams below only represent for each frequency point the maximum measured value of all preliminary measurements which were made for each power supply line. The top measured curve represents the peak measurement and the bottom measured curve the average measurement. The quasi-peak measured points are marked by ◆ and the average measured points by ◆.

Measurement plot EUT 1 (SRF-2/1/1-E0,25-L):

Result table EUT 1 (SRF-2/1/1-E0,25-L):

Frequency	QuasiPeak	Average	Limit	Margin	Line	PE	Corr.
[MHz]	[dB(μV)]	[dB(μV)]	[dB(μV)]	[dB]			[dB]
0.1599		41.9	55.5	13.6	L1	GND	9.8
0.1599	51.4		65.5	14.1	L1	GND	9.8
0.2805		31.3	50.8	19.5	L1	GND	9.9
0.2805	37.3		60.8	23.5	L1	GND	9.9
0.4407		30.0	47.1	17.1	L1	GND	9.9
0.4407	34.6		57.1	22.5	L1	GND	9.9
10.5306		29.6	50.0	20.4	N	GND	10.6
10.5306	31.9		60.0	28.1	N	GND	10.6
18.2985	40.5		60.0	19.5	L1	GND	10.9
18.2985		39.3	50.0	10.7	L1	GND	10.9
29.0274	38.6		60.0	21.4	L1	GND	11.2
29.0292		33.6	50.0	16.4	L1	GND	11.2


 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 24 of 28

Measurement plot EUT 2 (SRF-4/1/1-E0,25-L):

Result table EUT 2 (SRF-4/1/1-E0,25-L):

Frequency [MHz]	QuasiPeak [dB(μV)]	Average [dΒ(μV)]	Limit [dΒ(μV)]	Margin [dB]	Line	PE	Corr. [dB]
0.160800	55.3		65.4	10.2	N	GND	9.8
0.160800		44.6	55.4	10.8	N	GND	9.8
0.240900		34.0	52.1	18.1	N	GND	9.9
0.240900	43.3		62.1	18.8	N	GND	9.9
0.401100		27.8	47.8	20.0	N	GND	9.9
0.401100	31.4		57.8	26.5	N	GND	9.9
10.357800	36.4		60.0	23.6	L1	GND	10.6
10.358700		33.1	50.0	16.9	L1	GND	10.6
19.270500		39.8	50.0	10.2	N	GND	10.9
19.273200	42.3		60.0	17.7	N	GND	10.9
27.381300		38.1	50.0	11.9	L1	GND	11.1
27.382200	45.4		60.0	14.6	N	GND	11.2

Test result: Passed

Test equipment (please ref	r to chapter 7 for details)	
16 -21		

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 25 of 28

6 Measurement Uncertainties

Conducted measurements						
Measurement method	Standard used for calculating measurement uncertainty	Expanded measurement uncertainty (95 %) Ulab				
Frequency error	ETSI TR 100 028	4.5×10 ⁻⁸				
Bandwidth measurements	-	9.0×10 ⁻⁸				
Conducted emissions from 150 kHz to 30 MHz with LISN	CISPR 16-4-2	2.8 dB				

	Radiated measurements	
Frequency error		
(Semi-) Anechoic chamber	ETSI TR 100 028	4.5×10 ⁻⁸
OATS	ETSI TR 100 028	4.5×10 ⁻⁸
Test fixture	ETSI TR 100 028	4.5×10 ⁻⁸
Bandwidth measurements	•	
(Semi-) Anechoic chamber	-	9.0×10 ⁻⁸
OATS	-	9.0×10 ⁻⁸
Test fixture	-	9.1×10 ⁻⁸
Radiated field strength M20	•	
CBL6112B @ 3 m 30 MHz – 1 GHz	CISPR 16-4-2	5.3 dB
R&S HL050 @ 3 m	•	
1 – 6 GHz	CISPR 16-4-2	5.1 dB
6 – 18 GHz	CISPR 16-4-2	5.4 dB
Flann Standard Gain Horns 18 – 40 GHz	-	5.9 dB
Radiated field strength M276	•	
R&S HL562E @ 3 m 30 MHz – 1 GHz	CISPR 16-4-2	4.8 dB
R&S HL050 @ 3 m	-	
1 – 6 GHz	CISPR 16-4-2	5.1 dB
6 – 18 GHz	CISPR 16-4-2	5.4 dB
Flann Standard Gain Horns 18 – 40 GHz	-	5.9 dB
OATS	·	
Field strength measurements below 30 MHz on OATS without ground plane	-	4.4 dB

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 26 of 28

7 Test Equipment used for Tests

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal Due
1	Signal & spectrum analyser	FSW43	Rohde & Schwarz	102954	483957	10.07.2024	07.2026
2	Power Supply	TOE8852	Toellner	51704	480591	Calibration not necessary	
3	Multimeter	971A	Hewlett Packard	JP39009358	480721	09.10.2024	10.2025
4	Loop antenna	22.5 cm	PHOENIX TESTLAB	-	410085	Calibration not	necessary
5	Loop antenna	HFH2-Z2	Rohde & Schwarz	832609/014	480059	21.02.2024	02.2026
6	EMC test software	Elektra V5.10.00	Rohde & Schwarz		483755	Calibration not	necessary
7	RF Switch Matrix	OSP220	Rohde & Schwarz	101391	482976	Calibration not	necessary
8	Turntable	TT3.0-3t	Maturo	825/2612/.01	483224	Calibration not	necessary
9	Controller	NCD	Maturo	474/2612.01	483226	Calibration not	necessary
10	Semi Anechoic Chamber M276	SAC5-2	Albatross Projects	C62128-A540- A138-10-0006	483227	Calibration not	necessary
11	EMI receiver / Spectrum analyser	ESW44	Rohde & Schwarz	101828	482979	21.02.2024	02.2026
12	DC Power Supply	TOE8951	Toellner	81995	481252	Calibration not	necessary
13	Attenuator 6 dB	WA2-6	Weinschel	8254	410119	Calibration not	necessary
14	Ultralog antenna	HL562E	Rohde & Schwarz	101079	482978	24.04.2024	04.2027
15	Antennasupport	BAM 4.5-P-10kg	Maturo	222/2612.01	483225	Calibration not	necessary
16	LISN	NSLK8128	Schwarzbeck	8128161	480138	28.02.2024	02.2026
17	AC power supply	AC6803A AC Quelle 2000VA	Keysight	JPVJ002509	482350	Calibration not necessary	
18	Software	EMC32	Rohde & Schwarz	100061	481022	Calibration not	necessary
19	Shielded chamber M4	B83117-S1-X158	Siemens	190075	480088	Calibration not necessary	
20	EMI Receiver / Spectrum Analyser	ESIB 26	Rohde & Schwarz	100292	481182	22.02.2024	02.2026
21	Transient Filter Limiter	CFL 9206A	Teseq	38268	481982	28.03.2024	03.2026
22	Loop antenna	HFH2-Z2	Rohde & Schwarz	100417	481912	21.02.2024	02.2026
23	Outdoor test site	-	PHOENIX TESTLAB	-	480293	Calibration not necessary	
24	EMI receiver / Spectrum analyser	ESI 40	Rohde & Schwarz	100064/040	480355	20.02.2024	03.2026

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 27 of 28

8 Test site Verification

Test equipment	PM. No.	Frequency range	Type of validation	According to	Val. Date	Val Due
Shielded chamber M4	480088	9 kHz – 30 MHz	GND-Plane	ANSI C63.4-2014	08.11.2022	07.11.2025
OATS Outdoor	480293	9 kHz – 30 MHz	=	ANSI C63.4-2014	-	-
Semi anechoic chamber M276	483227	30 – 1000 MHz	NSA	ANSI C63.4-2014 ANSI C63.4a-2017	01.03.2023	28.02.2026

9 Report History

Report Number	Date	Comment
F250067E5	24.04.2025	Initial Test Report
-	-	-
-	-	-

10 List of Annexes

Annex A	Test Setup Photos	9 pages
Annex B	EUT External Photos	6 pages
Annex C	EUT Internal Photos	2 pages

---- end of test report -----

 Examiner:
 Sebastian KREHS
 Report Number:
 F250067E5

 Date of Issue:
 24.04.2025
 Order Number:
 25-110067

 Page 28 of 28