

MPE Calculation

FCC ID: 2AB76NC2400C1

Remark: Average \leq Peak, which means that calculating the power density applying Peak power is worst case. The worst case operation mode generating the highest power in each frequency range is taken for calculation.

For the device:

Frequency range: **2401-2482** MHz Typical use distance: $d \geq 20$ cm

Power density limit for mobile devices at 2.4 GHz: $S \leq 1 \text{ mW/cm}^2$

Maximum measured conducted power (Peak): $P_{\text{conducted}} = 2.4 \text{ dBm} = 1.738 \text{ mW}$

Antenna Gain: G = **2.2** dBi = 1.66 on the linear scale

$$\text{Calculation: } P_{\text{radiated}} = P_{\text{conducted}} + G_{\text{linear}} = 2.4 \text{ dBm} + 2.2 \text{ dBi} = 4.6 \text{ dBm} = 2.88 \text{ mW}$$

Power density $S = (P_{\text{radiated}}) / (4\pi \times d^2) = 2.88 / 5026 = 0.0006 \text{ mW/cm}^2 < 1 \Rightarrow \text{below limit}$