### FCC TEST REPORT

For

Jinan Huamao Technology Co., Ltd.

Bluetooth Module

Test Model: HM-10

Additional Model No.: HM-11

Prepared for : Jinan Huamao Technology Co., Ltd.

Address : C-4020, South area, Huanbao park, Hi-Tech zone, Jinan, Shandong,

China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : May 13, 2015

Number of tested samples : 1

Sample Number : 201504102312

Date of Test : May 13, 2015 - May 26, 2015

Date of Report : May 26, 2015

| FCC TEST REPORT                    |
|------------------------------------|
| FCC CFR 47 PART 15 C(15.247): 2015 |

Report Reference No. .....: LCS1505130764E

Date of Issue .....: May 26, 2015

Testing Laboratory Name......: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address .....: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure......: Full application of Harmonised standards

Partial application of Harmonised standards  $\Box$ 

Other standard testing method  $\Box$ 

Applicant's Name.....: Jinan Huamao Technology Co., Ltd.

Address .....: C-4020, South area, Huanbao park, Hi-Tech zone, Jinan,

Shandong, China

**Test Specification** 

Standard ......: FCC CFR 47 PART 15 C(15.247): 2015 / ANSI C63.10: 2009

Test Report Form No.....: LCSEMC-1.0

TRF Originator .....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

#### Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description. .....: : Bluetooth Module

Trade Mark .....: N/A

Test Model .....: HM-10

Ratings .....: DC 3.3V

Result .....: Positive

Compiled by:

Supervised by:

Approved by:

Leo Lee/ File administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

# **FCC -- TEST REPORT**

**Test Report No.: LCS1505130764E** 

May 26, 2015 Date of issue

Test Model..... : HM-10 EUT.....: Bluetooth Module Applicant..... : Jinan Huamao Technology Co., Ltd. Address..... : C-4020, South area, Huanbao park, Hi-Tech zone, Jinan, Shandong, China Telephone..... Fax..... Manufacturer..... : Jinan Huamao Technology Co., Ltd. Address..... : C-4020, South area, Huanbao park, Hi-Tech zone, Jinan, Shandong, Telephone..... Fax..... Factory..... : Jinan Huamao Technology Co., Ltd. Address..... : C-4020, South area, Huanbao park, Hi-Tech zone, Jinan, Shandong, China Telephone..... Fax.....

> **Test Result Positive**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

# TABLE OF CONTENTS

| Description                                                                                                                                                                                                     | Page |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1. GENERAL INFORMATION                                                                                                                                                                                          | 5    |
| 1.1. DESCRIPTION OF DEVICE (EUT) 1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS 1.3. EXTERNAL I/O 1.4. DESCRIPTION OF TEST FACILITY 1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY 1.6. MEASUREMENT UNCERTAINTY |      |
| 1.7. DESCRIPTION OF TEST MODES                                                                                                                                                                                  | 7    |
| 2. TEST METHODOLOGY                                                                                                                                                                                             | 8    |
| 2.1. EUT CONFIGURATION                                                                                                                                                                                          |      |
| 3. SYSTEM TEST CONFIGURATION                                                                                                                                                                                    | 9    |
| 3.1. JUSTIFICATION                                                                                                                                                                                              |      |
| 4. SUMMARY OF TEST RESULTS                                                                                                                                                                                      | 10   |
| 5. TEST RESULT                                                                                                                                                                                                  |      |
| 6. LIST OF MEASURING EQUIPMENTS                                                                                                                                                                                 | 32   |

# 1. GENERAL INFORMATION

# 1.1. Description of Device (EUT)

EUT : Bluetooth Module

Test Model : HM-10

Hardware Version : 10201503

Software Version : V540

Power Supply : DC 3.3V

Frequency Range : 2402.00-2480.00MHz

Channel Number : 40

Channel Spacing : 2MHz

Modulation Type : GFSK

Bluetooth Version : V4.0(BLE Only)

Antenna Description: PCB Antenna, 2.0dBi(Max.)

# 1.2. Host System Configuration List and Details

| Manufacturer | Description      | Model      | Serial Number | Certificate |
|--------------|------------------|------------|---------------|-------------|
| Lenovo       | Notebook         | B470       | WB05067151    | DOC         |
| Lenovo       | AC/DC ADAPTER    | ADP-90DD B | 36001941      | VOC         |
| Huamao       | CC Debugger      | V1.00      | /             | VOC         |
| Huamao       | USB To TTL Board | D-SUN      | /             | VOC         |

# 1.3. External I/O

|   | I/O Port Description | Quantity | Cable    |
|---|----------------------|----------|----------|
| ١ | - 1/65               | 163-     | 39 - (35 |

# 1.4. Description of Test Facility

CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

# 1.5. Statement of The Measurement Uncertainty

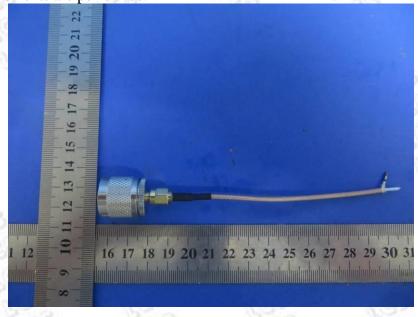
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

# 1.6. Measurement Uncertainty

| Test Item              |   | Frequency Range | Uncertainty | Note |
|------------------------|---|-----------------|-------------|------|
| 7,75                   |   | 9KHz~30MHz      | 3.10dB      | (1)  |
|                        |   | 30MHz~200MHz    | 2.96dB      | (1)  |
| Radiation Uncertainty  | : | 200MHz~1000MHz  | 3.10dB      | (1)  |
|                        |   | 1GHz~26.5GHz    | 3.80dB      | (1)  |
|                        | ŀ | 26.5GHz~40GHz   | 3.90dB      | (1)  |
| Conduction Uncertainty | : | 150kHz~30MHz    | 1.63dB      | (1)  |
| Power disturbance      | : | 30MHz~300MHz    | 1.60dB      | (1)  |

<sup>(1).</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

# 1.7. Description Of Test Modes


Bluetooth operates in the unlicensed ISM Band at 2.4GHz. The EUT was set to transmit at 100% duty cycle. The following operating modes were applied for the related test items. For radiated measurement, the test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position. All test modes were tested, only the result of the worst case was recorded in the report.

| Frequency Range        | Data Rate                                   |
|------------------------|---------------------------------------------|
| (MHz)                  | (Mbps)                                      |
| 2402                   | (4)                                         |
| 2440                   | 125                                         |
| 2480                   | 1,23                                        |
| For Conducted Emission |                                             |
| 5 6                    | TX Mode                                     |
| For Radiated Emission  |                                             |
| 1,50                   | TX Mode                                     |
|                        | (MHz) 2402 2440 2480 For Conducted Emission |

Worst-case mode and channel used for 150kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be TX-High Channel(2480MHz, GFSK).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be TX-High Channel(2480MHz, GFSK).

\*\*\*Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.



# 2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2009, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd..

### 2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

#### 2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure KDB558074 D01 DTS Meas. Guidance v03r02 is required to be used for this kind of FCC 15.247 digital modulation device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

#### 2.3. General Test Procedures

#### 2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2009, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

#### 2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2009

# 3. SYSTEM TEST CONFIGURATION

# 3.1. Justification

The system was configured for testing in a continuous transmit condition.

# 3.2. EUT Exercise Software

N/A

# 3.3. Special Accessories

N/A

# 3.4. Block Diagram/Schematics

Please refer to the related document

# 3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

# 3.6. Test Setup

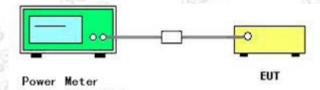
Please refer to the test setup photo.

# 4. SUMMARY OF TEST RESULTS

| Applied Standard: FCC Part 15 Subpart C |                                           |           |  |  |  |
|-----------------------------------------|-------------------------------------------|-----------|--|--|--|
| FCC Rules Description of Test Re        |                                           |           |  |  |  |
| §15.247(b)(3)                           | Maximum Conducted Output Power            | Compliant |  |  |  |
| §15.247(e)                              | Power Spectral Density                    | Compliant |  |  |  |
| §15.247(a)(2)                           | 6dB Bandwidth                             | Compliant |  |  |  |
| §15.209, §15.247(d)                     | Radiated and Conducted Spurious Emissions | Compliant |  |  |  |
| §15.205                                 | Emissions at Restricted Band              | Compliant |  |  |  |
| §15.207(a)                              | Line Conducted Emissions                  | Compliant |  |  |  |
| §15.203                                 | Antenna Requirements                      | Compliant |  |  |  |

# 5. TEST RESULT

# 5.1. Maximum Conducted Output Power Measurement


# 5.1.1. Standard Applicable

According to §15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850MHz bands: 1 Watt.

### 5.1.2. Test Procedures

The transmitter output (antenna port) was connected to the power meter.

#### 5.1.3. Test Setup Layout



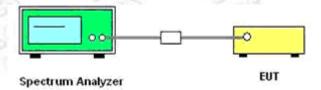
### 5.1.4. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

### 5.1.5. Test Result of Maximum Conducted Output Power(Peak)

| Modulation | Frequency (MHz) | Output Power (dBm) | Output Power (mW) | Limit<br>(mW) | Result |
|------------|-----------------|--------------------|-------------------|---------------|--------|
| 71.05      | 2402            | -0.51              | 0.89              | 1000          | Pass   |
| GFSK       | 2440            | -0.52              | 0.89              | 1000          | Pass   |
| 0.6        | 2480            | -0.37              | 0.92              | 1000          | Pass   |

### 5.2. Power Spectral Density Measurement


#### 5.2.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### 5.2.2. Test Procedures

- 1) The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2) The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3) Set the RBW = 3 kHz.
- 4) Set the VBW  $\geq$  3\*RBW.
- 5) Set the span to 1.5 times the DTS channel bandwidth.
- 6) Detector = peak.
- 7) Sweep time = auto couple.
- 8) Trace mode = max hold.
- 9) Allow trace to fully stabilize.
- 10) Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW.

#### 5.2.3. Test Setup Layout



#### 5.2.4. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

#### 5.2.5. Test Result of Power Spectral Density

| Modulation | Frequency (MHz) | Reading Level (dBm/3KHz) | Max. Limit<br>(dBm/3KHz) | Result |
|------------|-----------------|--------------------------|--------------------------|--------|
| Barrie .   | 2402            | -19.621                  | 8                        | Pass   |
| GFSK       | 2440            | -19.665                  | 8                        | Pass   |
| 23         | 2480            | -19.197                  | 8                        | Pass   |

The test data refer to the following page.

### Low Channel, 2402MHz



#### Middle Channel, 2440MHz



### High Channel, 2480MHz

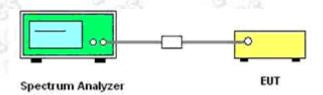


### 5.3. 6 dB Spectrum Bandwidth Measurement

#### 5.3.1. Standard Applicable

According to §15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

#### 5.3.2. Instruments Setting


The following table is the setting of the Spectrum Analyzer.

| Setting       |                              |                              |
|---------------|------------------------------|------------------------------|
| Auto          | (35                          | 0.85                         |
| 3MHz          | 28                           | 28                           |
| 100kHz/300kHz | 0.03                         | 300                          |
| Peak          | Rose                         | Post                         |
| Max Hold      | Book                         | 200                          |
|               | Auto 3MHz 100kHz/300kHz Peak | Auto 3MHz 100kHz/300kHz Peak |

#### 5.3.3. Test Procedures

- 1) The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2) The resolution bandwidth and the video bandwidth were set according to KDB558074 D01 DTS Meas. Guidance v03r02.
- 3) Measured the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.
- 4) Record the 99% occupied bandwidth and the minimum 6dB bandwidth.

### 5.3.4. Test Setup Layout



### 5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Spectrum Bandwidth

| Modulation | Frequency (MHz) | 99% Bandwidth<br>(MHz) | 6dB Bandwidth (KHz) | Min. Limit<br>(KHz) | Result   |
|------------|-----------------|------------------------|---------------------|---------------------|----------|
| 3          | 2402            | 1.0289                 | 690.6               | 500                 | Complies |
| GFSK       | 2440            | 1.0309                 | 690.9               | 500                 | Complies |
|            | 2480            | 1.0316                 | 694.6               | 500                 | Complies |

The test data refer to the following page.

#### Low Channel, 2402MHz



#### Middle Channel, 2440MHz



# High Channel, 2480MHz



#### 5.4. Radiated Emissions Measurement

### 5.4.1. Standard Applicable

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies(MHz) | Field Strength(microvolts/meter) | Measurement Distance(meters 300 |  |
|------------------|----------------------------------|---------------------------------|--|
| 0.009~0.490      | 2400/F(KHz)                      |                                 |  |
| 0.490~1.705      | 24000/F(KHz)                     | 30                              |  |
| 1.705~30.0       | 30                               | 30                              |  |
| 30~88            | 100                              | 3                               |  |
| 88~216           | 150                              | 3                               |  |
| 216~960          | 200                              | 3                               |  |
| Above 960        | 500                              | 3                               |  |

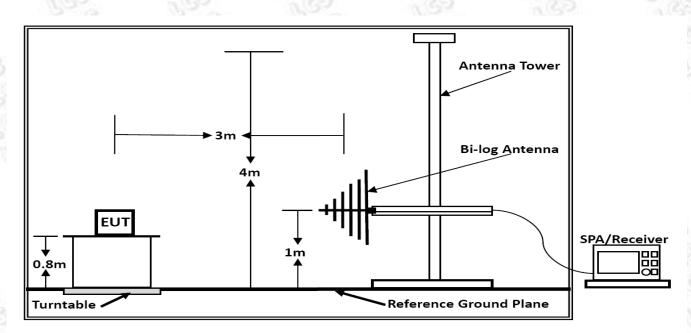
### 5.4.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

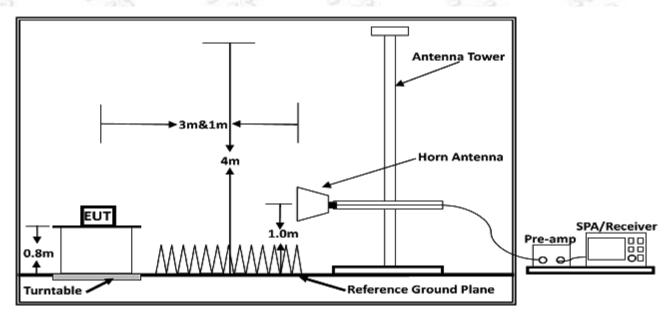
| Spectrum Parameter                        | Setting                                        |
|-------------------------------------------|------------------------------------------------|
| Attenuation                               | Auto                                           |
| Start Frequency                           | 1000 MHz                                       |
| Stop Frequency                            | 10th carrier harmonic                          |
| RB / VB (Emission in restricted band)     | 1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average |
| RB / VB (Emission in non-restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average |
| RB / VB (Emission in non-restricted band) | TIMEZ/TIMEZIOI Peak, TIMEZ/TOEZIOI AVE         |

| Spectrum Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 100kHz for QP |

#### 5.4.3. Test Procedures


- 1) Configure the EUT according to ANSI C63.10: 2009. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2) Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3) The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.

- 4) For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading
- 5) Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6) For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7) When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8) If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9) For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emission sat the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10) In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


# 5.4.4. Test Setup Layout



**Below 30MHz** 



**Below 1GHz** 



Above 1GHz

# 5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

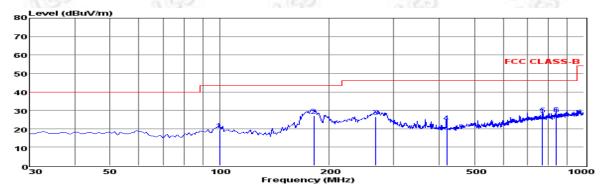
### 5.4.6. Results of Radiated Emissions (9kHz~30MHz)

| Temperature   | 25°C | Humidity       | 60%      |
|---------------|------|----------------|----------|
| Test Engineer | Leo  | Configurations | BLE V4.0 |

| Freq. | Level  | Over Limit | Over Limit | Remark   |
|-------|--------|------------|------------|----------|
| (MHz) | (dBuV) | (dB)       | (dBuV)     |          |
| 33    | OB T   | 333        | 135        | See Note |

#### Note:

The radiated emissions from 9kHz to 30MHz are at least 20dB below the official limit and no need to report.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

# 5.4.7. Results of Radiated Emissions (30MHz~1GHz)

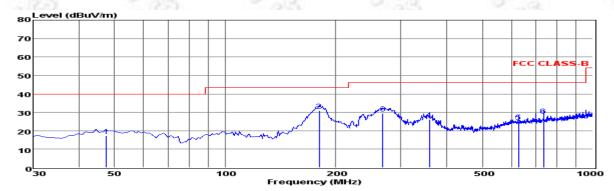
### PASS.

The test data please refer to following page:



Env./Ins: EUT: M/N: Power Rating: 24°C/56% Bluetooth Module

HM-10 DC 3.3V TX-2480MHz Leo


Test Mode: Operator: Memo:

VERTICAL pol:

|   | Freq   | Reading | CabLos | Antfac | Measured | Limit  | Over   | Remark |
|---|--------|---------|--------|--------|----------|--------|--------|--------|
|   | MHz    | dBuV    | dВ     | dB/m   | dBuV/m   | dBuV/m | dВ     |        |
| 1 | 99.84  | 5.59    | 0.60   | 13.15  | 19.34    | 43.50  | -24.16 | QP     |
| 2 | 181.32 | 16.37   | 0.89   | 9.80   | 27.06    | 43.50  | -16.44 | QP     |
| 3 | 268.62 | 13.08   | 1.00   | 12.32  | 26.40    | 46.00  | -19.60 | QP     |
| 4 | 419.94 | 6.62    | 1.32   | 15.47  | 23.41    | 46.00  | -22.59 | QP     |
| 5 | 770.11 | 6.25    | 1.76   | 19.69  | 27.70    | 46.00  | -18.30 | QP     |
| 6 | 839.95 | 5.48    | 1.88   | 20.47  | 27.83    | 46.00  | -18.17 | QP     |

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable

reported The emission that ate 20db blow the offficial limit are not



Env./Ins: EUT: M/N: Power Rating: Test Mode: Operator:

24°C/56% Bluetooth Module HM-10 DC 3.3V

TX-2480MHz

nol:

HORIZONTAL

|   | Freq   | Reading | CabLos | Antfac | Measured | Limit  | Over   | Remark |
|---|--------|---------|--------|--------|----------|--------|--------|--------|
|   | MHz    | dBuV    | dВ     | dB/m   | dBuV/m   | dBuV/m | dВ     |        |
| 1 | 47.46  | 3.40    | 0.35   | 13.40  | 17.15    | 40.00  | -22.85 | QP     |
| 2 | 180.35 | 20.21   | 0.89   | 9.71   | 30.81    | 43.50  | -12.69 | QP     |
| 3 | 268.62 | 16.12   | 1.00   | 12.32  | 29.44    | 46.00  | -16.56 | QP     |
| 4 | 358.83 | 10.72   | 1.18   | 14.41  | 26.31    | 46.00  | -19.69 | QP     |
| 5 | 628.49 | 4.97    | 1.60   | 18.55  | 25.12    | 46.00  | -20.88 | QP     |
| 6 | 734.22 | 7.24    | 1.74   | 19.24  | 28.22    | 46.00  | -17.78 | QP     |
|   |        |         |        |        |          |        |        |        |

te: 1. All readings are Quasi-peak values. Measured= Reading + Antenna Factor + Cable Loss The emission that ate 20db blow the offficial limit

\*\*\*Note:

Pre-scan all mode and recorded the worst case results in this report (TX-High Channel(2480MHz, GFSK)).

Emission level  $(dBuV/m) = 20 \log Emission level (uV/m)$ .

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Measured Level.

### 5.4.8. Results for Radiated Emissions (Above 1GHz)

#### Channel 1

| Freq.<br>MHz | Reading<br>Level<br>dBuV | Ant.<br>Fac.<br>dB/m | Pre.<br>Fac.<br>dB | Cab.<br>Loss<br>dB | Measured<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Remark  | Pol.       |
|--------------|--------------------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------|
| 4804.16      | 50.64                    | 33.06                | 35.04              | 3.94               | 52.60              | 74              | -21.40       | Peak    | Horizontal |
| 4804.19      | 41.27                    | 33.06                | 35.04              | 3.94               | 43.23              | 54              | -10.77       | Average | Horizontal |
| 4804.16      | 52.79                    | 33.06                | 35.04              | 3.94               | 54.75              | 74              | -19.25       | Peak    | Vertical   |
| 4804.19      | 43.61                    | 33.06                | 35.04              | 3.94               | 45.57              | 54              | -8.43        | Average | Vertical   |

### Channel 20

| Freq.<br>MHz | Reading<br>Level<br>dBuV | Ant.<br>Fac.<br>dB/m | Pre.<br>Fac.<br>dB | Cab.<br>Loss<br>dB | Measured<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Remark  | Pol.       |
|--------------|--------------------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------|
| 4880.10      | 51.17                    | 33.16                | 35.15              | 3.96               | 53.14              | 74              | -20.86       | Peak    | Horizontal |
| 4880.13      | 42.01                    | 33.16                | 35.15              | 3.96               | 43.98              | 54              | -10.02       | Average | Horizontal |
| 4880.10      | 53.37                    | 33.16                | 35.15              | 3.96               | 55.34              | 74              | -18.66       | Peak    | Vertical   |
| 4880.13      | 43.88                    | 33.16                | 35.15              | 3.96               | 45.85              | 54              | -8.15        | Average | Vertical   |

# Channel 40

| Freq.<br>MHz | Reading<br>Level<br>dBuV | Ant.<br>Fac.<br>dB/m | Pre.<br>Fac.<br>dB | Cab.<br>Loss<br>dB | Measured<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Remark  | Pol.       |
|--------------|--------------------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------|
| 4960.17      | 52.93                    | 33.26                | 35.14              | 3.98               | 55.03              | 74              | -18.97       | Peak    | Horizontal |
| 4960.20      | 43.81                    | 33.26                | 35.14              | 3.98               | 45.91              | 54              | -8.09        | Average | Horizontal |
| 4960.17      | 55.67                    | 33.26                | 35.14              | 3.98               | 57.77              | 74              | -16.23       | Peak    | Vertical   |
| 4960.20      | 45.84                    | 33.26                | 35.14              | 3.98               | 47.94              | 54              | -6.06        | Average | Vertical   |

#### Notes:

- 1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

# 5.4.9. Results for Band edge Testing (Radiated)

Tx-2402

|              |                          |                      |                    |                    |                    |                 |              |         | C          |
|--------------|--------------------------|----------------------|--------------------|--------------------|--------------------|-----------------|--------------|---------|------------|
| Freq.<br>MHz | Reading<br>Level<br>dBuV | Ant.<br>Fac.<br>dB/m | Pre.<br>Fac.<br>dB | Cab.<br>Loss<br>dB | Measured<br>dBuV/m | Limit<br>dBuV/m | Margin<br>dB | Remark  | Pol.       |
| 2377.41      | 43.71                    | 32.89                | 35.16              | 3.51               | 44.95              | 74              | -29.05       | Peak    | Horizontal |
| 2377.43      | 34.56                    | 32.90                | 35.16              | 3.51               | 35.81              | 54              | -18.19       | Average | Horizontal |
| 2390.00      | 48.18                    | 32.92                | 35.16              | 3.54               | 49.48              | 74              | -24.52       | Peak    | Horizontal |
| 2389.97      | 37.87                    | 32.92                | 35.16              | 3.54               | 39.17              | 54              | -14.83       | Average | Horizontal |
| 2377.41      | 44.14                    | 32.89                | 35.16              | 3.51               | 45.38              | 74              | -28.62       | Peak    | Vertical   |
| 2377.43      | 34.67                    | 32.90                | 35.16              | 3.51               | 35.92              | 54              | -18.08       | Average | Vertical   |
| 2390.00      | 49.33                    | 32.92                | 35.16              | 3.54               | 50.63              | 74              | -23.37       | Peak    | Vertical   |
| 2389.97      | 39.42                    | 32.92                | 35.16              | 3.54               | 40.72              | 54              | -13.28       | Average | Vertical   |

Tx-2480

| 1A 2 100                 |                                                                                         |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reading<br>Level<br>dBuV | Ant.<br>Fac.<br>dB/m                                                                    | Pre.<br>Fac.<br>dB                                                                                                                                                                                                                                          | Cab.<br>Loss<br>dB                                                                                                                                                                                                                                                                                                                                                                 | Measured<br>dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit<br>dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Margin<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 46.35                    | 33.06                                                                                   | 35.18                                                                                                                                                                                                                                                       | 3.60                                                                                                                                                                                                                                                                                                                                                                               | 47.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -26.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 37.06                    | 33.08                                                                                   | 35.18                                                                                                                                                                                                                                                       | 3.60                                                                                                                                                                                                                                                                                                                                                                               | 38.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -15.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 43.57                    | 33.08                                                                                   | 35.18                                                                                                                                                                                                                                                       | 3.62                                                                                                                                                                                                                                                                                                                                                                               | 45.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -28.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 34.11                    | 33.08                                                                                   | 35.18                                                                                                                                                                                                                                                       | 3.62                                                                                                                                                                                                                                                                                                                                                                               | 35.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -18.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 47.69                    | 33.06                                                                                   | 35.18                                                                                                                                                                                                                                                       | 3.60                                                                                                                                                                                                                                                                                                                                                                               | 49.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -24.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 38.01                    | 33.08                                                                                   | 35.18                                                                                                                                                                                                                                                       | 3.60                                                                                                                                                                                                                                                                                                                                                                               | 39.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -14.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 44.53                    | 33.08                                                                                   | 35.18                                                                                                                                                                                                                                                       | 3.62                                                                                                                                                                                                                                                                                                                                                                               | 46.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -27.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 34.68                    | 33.08                                                                                   | 35.18                                                                                                                                                                                                                                                       | 3.62                                                                                                                                                                                                                                                                                                                                                                               | 36.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -17.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | Reading<br>Level<br>dBuV<br>46.35<br>37.06<br>43.57<br>34.11<br>47.69<br>38.01<br>44.53 | Reading Level dBuV         Ant. Fac. dB/m           46.35         33.06           37.06         33.08           43.57         33.08           34.11         33.08           47.69         33.06           38.01         33.08           44.53         33.08 | Reading Level dBuV         Ant. Fac. dB/m         Pre. Fac. dB           46.35         33.06         35.18           37.06         33.08         35.18           43.57         33.08         35.18           34.11         33.08         35.18           47.69         33.06         35.18           38.01         33.08         35.18           44.53         33.08         35.18 | Reading Level dBuV         Ant. Fac. dB/m         Pre. Fac. dB         Cab. Loss dB           46.35         33.06         35.18         3.60           37.06         33.08         35.18         3.60           43.57         33.08         35.18         3.62           34.11         33.08         35.18         3.62           47.69         33.06         35.18         3.60           38.01         33.08         35.18         3.60           44.53         33.08         35.18         3.62 | Reading Level dBuV         Ant. Fac. dB/m         Pre. Fac. dB         Cab. Loss dB         Measured dBuV/m           46.35         33.06         35.18         3.60         47.83           37.06         33.08         35.18         3.60         38.56           43.57         33.08         35.18         3.62         45.09           34.11         33.08         35.18         3.62         35.63           47.69         33.06         35.18         3.60         49.17           38.01         33.08         35.18         3.60         39.51           44.53         33.08         35.18         3.62         46.05 | Reading Level dBuV         Ant. Fac. dB/m         Pre. Fac. dB         Cab. Loss dB         Measured dBuV/m         Limit dBuV/m           46.35         33.06         35.18         3.60         47.83         74           37.06         33.08         35.18         3.60         38.56         54           43.57         33.08         35.18         3.62         45.09         74           34.11         33.08         35.18         3.62         35.63         54           47.69         33.06         35.18         3.60         49.17         74           38.01         33.08         35.18         3.60         39.51         54           44.53         33.08         35.18         3.62         46.05         74 | Reading Level dBuV         Ant. Fac. dB/m         Pre. Fac. dB         Cab. Loss dB         Measured dBuV/m         Limit dBuV/m         Margin dB           46.35         33.06         35.18         3.60         47.83         74         -26.17           37.06         33.08         35.18         3.60         38.56         54         -15.44           43.57         33.08         35.18         3.62         45.09         74         -28.91           34.11         33.08         35.18         3.62         35.63         54         -18.37           47.69         33.06         35.18         3.60         49.17         74         -24.83           38.01         33.08         35.18         3.60         39.51         54         -14.49           44.53         33.08         35.18         3.62         46.05         74         -27.95 | Reading Level dBuV         Ant. Fac. dB/m         Pre. Fac. dB dB         Cab. Loss dB         Measured dBuV/m         Limit dBuV/m         Margin dB         Remark           46.35         33.06         35.18         3.60         47.83         74         -26.17         Peak           37.06         33.08         35.18         3.60         38.56         54         -15.44         Average           43.57         33.08         35.18         3.62         45.09         74         -28.91         Peak           34.11         33.08         35.18         3.62         35.63         54         -18.37         Average           47.69         33.06         35.18         3.60         49.17         74         -24.83         Peak           38.01         33.08         35.18         3.60         39.51         54         -14.49         Average           44.53         33.08         35.18         3.62         46.05         74         -27.95         Peak |

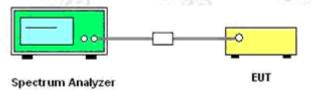
# 5.5. Conducted Spurious Emissions And Band Edges Test

### 5.5.1. Standard Applicable

According to §15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

### 5.5.2. Instruments Setting

The following table is the setting of the spectrum analyzer.

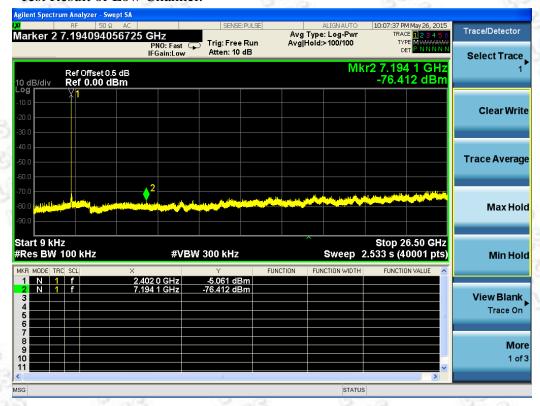

| Spectrum Parameter                        | Setting       |  |  |  |  |  |
|-------------------------------------------|---------------|--|--|--|--|--|
| Detector                                  | Peak          |  |  |  |  |  |
| Attenuation                               | Auto          |  |  |  |  |  |
| RB / VB (Emission in restricted band)     | 100KHz/300KHz |  |  |  |  |  |
| RB / VB (Emission in non-restricted band) | 100KHz/300KHz |  |  |  |  |  |

#### 5.5.3. Test Procedures

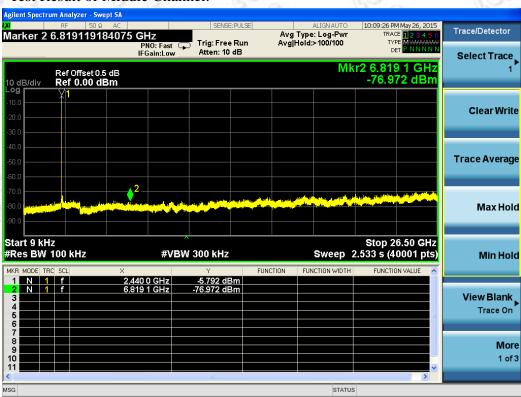
The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

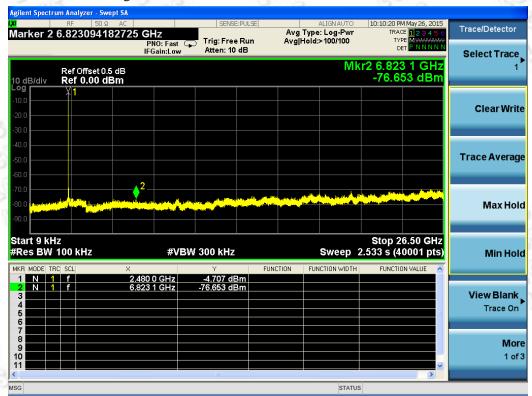
#### 5.5.4. Test Setup Layout




#### 5.5.5. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

# 5.5.6. Test Results of Conducted Spurious Emissions


#### Test Result of Low Channel:



### Test Result of Middle Channel:



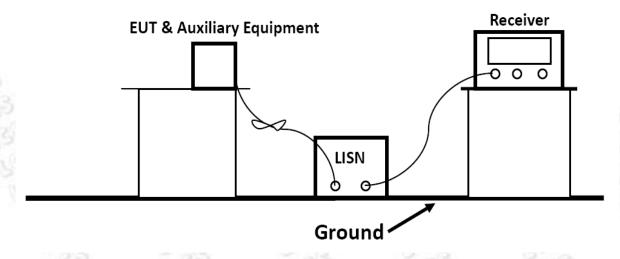
### Test Result of High Channel:



### 5.5.7. Test Results of Band Edges Test



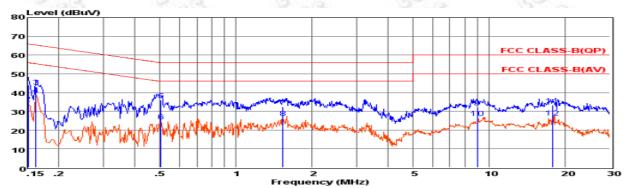



### 5.6. Power line conducted emissions

### 5.6.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

| Frequency Range | Limits (dBµV) |          |  |  |  |
|-----------------|---------------|----------|--|--|--|
| (MHz)           | Quasi-peak    | Average  |  |  |  |
| 0.15 to 0.50    | 66 to 56      | 56 to 46 |  |  |  |
| 0.50 to 5       | 56            | 46       |  |  |  |
| 5 to 30         | 60            | 50       |  |  |  |

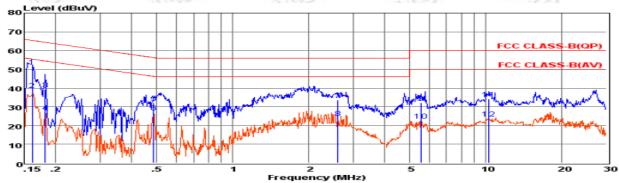

## 5.6.2 Block Diagram of Test Setup



5.6.3 Test Results

PASS.

The test data please refer to following page.




Env. Ins: EUT: M/N: Power Rating: Test Mode: Operator: Memo: Pol: 24\*/56% Bluetooth Module HM-10 AC 120V/60Hz TX-2480MHz

LINE

|     | Freq     | Reading | LisnFac | CabLos | Atten_Fac | Measured | Limit | 0ver   | Remark  |
|-----|----------|---------|---------|--------|-----------|----------|-------|--------|---------|
|     | MHz      | dBuV    | dB      | dB     | dB        | dBuV     | dBuV  | dB     |         |
|     |          |         |         |        |           |          |       |        |         |
| 1   | 0.15080  | 24.36   | 9.57    | 0.02   | 10.00     | 43.95    | 65.96 | -22.01 | QP      |
| 2   | 0.15081  | 14.63   | 9.57    | 0.02   | 10.00     | 34.22    | 55.96 | -21.74 | Average |
| 3   | 0.16241  | 23.64   | 9.59    | 0.02   | 10.00     | 43.25    | 65.34 | -22.09 | QP      |
| 4   | 0.16242  | 19.38   | 9.59    | 0.02   | 10.00     | 38.99    | 55.34 | -16.35 | Average |
| 5   | 0.50469  | 16.41   | 9.62    | 0.04   | 10.00     | 36.07    | 56.00 | -19.93 | QP      |
| 6   | 0.50470  | 5.11    | 9.62    | 0.04   | 10.00     | 24.77    | 46.00 | -21.23 | Average |
| 7   | 1.53548  | 12.68   | 9.64    | 0.05   | 10.00     | 32.37    | 56.00 | -23.63 | QP      |
| 8   | 1.53648  | 6.80    | 9.64    | 0.05   | 10.00     | 26.49    | 46.00 | -19.51 | Average |
| 9   | 8.96368  | 12.35   | 9.69    | 0.08   | 10.00     | 32.12    | 60.00 | -27.88 | QP      |
| 10  | 8.96468  | 6.56    | 9.69    | 0.08   | 10.00     | 26.33    | 50.00 | -23.67 | Average |
| 111 | 17.75494 | 13.48   | 9.74    | 0.11   | 10.00     | 33.33    | 60.00 | -26.67 | QP      |
| 121 | 17.75564 | 6.85    | 9.74    | 0.11   | 10.00     | 26.70    | 50.00 | -23.30 | Average |

Measured = Reading + Lisn Factor +Cable The emission levels that are 20dB below limit are not reported. Loss+Atten\_Fac. the official



24\*/56\*
Bluetooth Module
HM-10
AC 120V/60Hz
TX-2480MHz Env. Ins: EUT: M/N: Power Rating: Test Mode: Operator: Leo Memo: Pol: NEUTRAL

|     | Freq     | Reading | LisnFac | CabLos | Atten_Fac | Measured | Limit | 0ver   | Remark  |
|-----|----------|---------|---------|--------|-----------|----------|-------|--------|---------|
|     | MHz      | dBu∀    | dB      | dB     | dB        | dBu∀     | dBu∀  | dB     |         |
|     |          |         |         |        |           |          |       |        |         |
| 1   | 0.16155  | 31.72   | 9.67    | 0.02   | 10.00     | 51.41    | 65.38 | -13.97 | QP      |
| 2   | 0.16156  | 19.21   | 9.67    | 0.02   | 10.00     | 38.90    | 55.38 | -16.48 | Average |
| 3   | 0.18152  | 19.51   | 9.63    | 0.02   | 10.00     | 39.16    | 64.42 | -25.26 | QP      |
| 4   | 0.18153  | 7.44    | 9.63    | 0.02   | 10.00     | 27.09    | 54.42 | -27.33 | Average |
| - 5 | 0.48632  | 12.45   | 9.62    | 0.04   | 10.00     | 32.11    | 56.23 | -24.12 | QP      |
| 6   | 0.48633  | 7.50    | 9.62    | 0.04   | 10.00     | 27.16    | 46.23 | -19.07 | Average |
| 7   | 2.60823  | 13.83   | 9.64    | 0.05   | 10.00     | 33.52    | 56.00 | -22.48 | QP      |
| 8   | 2.60853  | 4.27    | 9.64    | 0.05   | 10.00     | 23.96    | 46.00 | -22.04 | Average |
| 9   | 5.53468  | 12.29   | 9.67    | 0.06   | 10.00     | 32.02    | 60.00 | -27.98 | QP      |
| 10  | 5.53568  | 2.86    | 9.67    | 0.06   | 10.00     | 22.59    | 50.00 | -27.41 | Average |
| 111 | 10.28758 | 14.39   | 9.72    | 0.08   | 10.00     | 34.19    | 60.00 | -25.81 | QP      |
| 121 | 10.28858 | 3.91    | 9.72    | 0.08   | 10.00     | 23.71    | 50.00 | -26.29 | Average |

Remarks: Measured = Reading + Lisn Factor +Cable Loss+Atten\_Fac. The emission levels that are 20dB below the official

\*\*\*Note: Pre-scan all mode and recorded the worst case results in this report.

# 5.7. Antenna Requirements

#### 5.7.1. Standard Applicable

According to §15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 5.7.2. Antenna Connector Construction

The antenna used for transmitting is permanently attached and no consideration of replacement. Please see EUT photo for details.

#### 5.7.3. Antenna Gain

| Pa                    | Parameter Setting |  |  |  |  |  |
|-----------------------|-------------------|--|--|--|--|--|
| Detector:             | Peak              |  |  |  |  |  |
| Sweep Time:           | Auto              |  |  |  |  |  |
| Resolution bandwidth: | 3MHz              |  |  |  |  |  |
| Video bandwidth:      | 3MHz              |  |  |  |  |  |
| Span:                 | 5MHz              |  |  |  |  |  |
| Trace-Mode:           | Max hold          |  |  |  |  |  |

Note: The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For Bluetooth devices, the GFSK mode is used.

| Test Result                                        |                                       |                            |                                    |                             |  |  |
|----------------------------------------------------|---------------------------------------|----------------------------|------------------------------------|-----------------------------|--|--|
| T <sub>nom</sub>                                   | $V_{nom}$                             | Lowest Channel<br>2402 MHz | Middle Channel<br>2440 MHz         | Highest Channel<br>2480 MHz |  |  |
| Measu                                              | power [dBm]<br>red with<br>nodulation | -0.51                      | -0.52                              | -0.37                       |  |  |
| Radiated power [dBm] Measured with GFSK modulation |                                       | 1.44                       | 1.48                               | 1.60                        |  |  |
| Gain [dBi] Calculated                              |                                       | 1.95                       | 2.00                               | 1.97                        |  |  |
| Measurement uncertainty                            |                                       |                            | ± 1.6 dB (cond.) / ± 3.8 dB (rad.) |                             |  |  |

### 5.7.4. Results: Compliance.

# 6. LIST OF MEASURING EQUIPMENTS

| Instrument                  | Manufacturer      | Model No.                        | Serial No.  | Characteristics                                   | Cal Date     | Due Date     |
|-----------------------------|-------------------|----------------------------------|-------------|---------------------------------------------------|--------------|--------------|
| EMC Receiver                | R&S               | ESCS 30                          | 100174      | 9kHz – 2.75GHz                                    | June 18,2014 | June 17,2015 |
| Signal analyzer             | Agilent           | E4448A(External mixers to 40GHz) | US44300469  | 9kHz~40GHz                                        | July 16,2014 | July 15,2015 |
| LISN                        | SCHWARZBECK       | NLSK 8127                        | N/A         | 9KHz~30MHz                                        | June 18,2014 | June 17,2015 |
| LISN                        | MESS Tec          | NNB-2/16Z                        | 99079       | 9KHz-30MHz                                        | June 18,2014 | June 17,2015 |
| LISN<br>(Support Unit)      | EMCO              | 3819/2NM                         | 9703-1839   | 9KHz-30MHz                                        | June 18,2014 | June 17,2015 |
| RF Cable-CON                | UTIFLEX           | 3102-26886-4                     | CB049       | 9KHz-30MHz                                        | June 18,2014 | June 17,2015 |
| ISN                         | SCHAFFNER         | ISN ST08                         | 21653       | 9KHz-30MHz                                        | June 18,2014 | June 17,2015 |
| 3m Semi Anechoic<br>Chamber | SIDT<br>FRANKONIA | SAC-3M                           | 03СН03-НҮ   | 30M-1GHz<br>3m                                    | June 18,2014 | June 17,2015 |
| Amplifier                   | SCHAFFNER         | COA9231A                         | 18667       | 9kHz-2GHzz                                        | June 18,2014 | June 17,2015 |
| Amplifier                   | Agilent           | 8449B                            | 3008A02120  | 1GHz-26.5GHz                                      | July 16,2014 | July 15,2015 |
| Amplifier                   | MITEQ             | AMF-6F-260400                    | 9121372     | 26.5GHz-40GHz                                     | July 16,2014 | July 15,2015 |
| Spectrum Analyzer           | Agilent           | E4407B                           | MY41440292  | 9k-26.5GHz                                        | July 16,2014 | July 15,2015 |
| Loop Antenna                | R&S               | HFH2-Z2                          | 860004/001  | 9k-30MHz                                          | June 18,2014 | June 17,2015 |
| By-log Antenna              | SCHWARZBECK       | VULB9163                         | 9163-470    | 30MHz-1GHz                                        | June 10,2014 | June 09,2015 |
| Horn Antenna                | EMCO              | 3115                             | 6741        | 1GHz-18GHz                                        | June 10,2014 | June 09,2015 |
| Horn Antenna                | SCHWARZBECK       | ВВНА9170                         | BBHA9170154 | 15GHz-40GHz                                       | June 10,2014 | June 09,2015 |
| RF Cable-R03m               | Jye Bao           | RG142                            | CB021       | 30MHz-1GHz                                        | June 18,2014 | June 17,2015 |
| RF Cable-HIGH               | SUHNER            | SUCOFLEX 106                     | 03CH03-HY   | 1GHz-40GHz                                        | June 18,2014 | June 17,2015 |
| Power Meter                 | R&S               | NRVS                             | 100444      | DC-40GHz                                          | June 18,2014 | June 17,2015 |
| Power Sensor                | R&S               | NRV-Z51                          | 100458      | DC-30GHz                                          | June 18,2014 | June 17,2015 |
| Power Sensor                | R&S               | NRV-Z32                          | 10057       | 30MHz-6GHz                                        | June 18,2014 | June 17,2015 |
| RF CABLE-1m                 | JYE Bao           | RG142                            | CB034-1m    | 20MHz-7GHz                                        | June 18,2014 | June 17,2015 |
| RF CABLE-2m                 | JYE Bao           | RG142                            | CB)35-2m    | 20MHz-1GHz                                        | June 18,2014 | June 17,2015 |
| temporary antenna connector | LCS               | LCS-RF-20150413                  | N/A         | 9KHz~40GHz<br>Impedance: 50Ω<br>Cable Loss: 0.5dB | N/A          | N/A          |

Note: All equipment through GRGT EST calibration

-----THE END OF REPORT-----