

Report No.: E-Y1708847

Page 1 of 53

Rev: 00

FCC RADIO TEST REPORT

FCC ID: 2AB5JHS-BN900A

Product : Headphone

Trade Name : Honsenn

Model Name : HS-BN900

Addition Model : N/A

Prepared for

HONSENN TECHNOLOGY CO.,LTD

No.230,Er Heng Road ,Wentang Zhuanyao Industrial Zone,
Dongcheng District ,Dongguan City,Guangdong provice, China

Prepared by

Dongguan Yaxu (AiT) Technology Limited

No.22, Jinqianling Third Street, Jitigang, Huangjiang,Dongguan,
Guangdong, China

No.22, Jinqianling Third Street, Jitigang,
Huangjiang,Dongguan, Guangdong, China

TEST RESULT CERTIFICATION

Manufacturer's Name : HONSENN TECHNOLOGY CO.,LTD

Address : No.230,Er Heng Road ,Wentang Zhuanyao Industrial Zone,
Dongcheng District ,Dongguan City,Guangdong province, China

Product description

Product name : Headphone

Model and/or type reference : HS-BN900

Rating(s) : DC 3.7V

Standards : FCC Part15.249

Test procedure ANSI C63.10-2013

This device described above has been tested by AiT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of AiT, this document may be altered or revised by AiT, personal only, and shall be noted in the revision of the document.

Date of Test :

Date (s) of performance of tests : Jul. 02 2017 ~ Jul. 12 2017

Date of Issue : Jul.12 2017

Test Result : **Pass**

Reviewed by:

Approved by:

Table of Contents	Page
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	8
2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	9
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3 . ANTENNA REQUIREMENT	12
3.1 STANDARD REQUIREMENT	12
3.2 EUT ANTENNA	12
3.3 CONDUCTED EMISSION MEASUREMENT	13
3.3.1 POWER LINE CONDUCTED EMISSION LIMITS	13
3.3.2 TEST PROCEDURE	14
3.3.3 DEVIATION FROM TEST STANDARD	14
3.3.4 TEST SETUP	14
3.3.5 TEST RESULT	15
3.4 RADIATED EMISSION MEASUREMENT	17
3.4.1 RADIATED EMISSION LIMITS	17
3.4.2 TEST PROCEDURE	18
3.4.3 DEVIATION FROM TEST STANDARD	18
3.4.4 TEST SETUP	19
3.4.5 TEST RESULTS (BELOW 30MHZ)	22
3.4.6 TEST RESULTS (BETWEEN 30 – 1000 MHZ)	23
3.4.7 TEST RESULTS (ABOVE 1000 MHZ)	25
4 . BANDWIDTH TEST	31
4.1 TEST PROCEDURE	31
4.2 DEVIATION FROM STANDARD	31
4.3 TEST SETUP	31
4.4 TEST RESULTS	32
5 . EUT TEST PHOTO	44

Table of Contents

Page

APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Test	Test Requirement	Standard Paragraph	Result
Field Strength of Fundamental	FCC PART 15 C section 15.249 (a)	ANSI C63.10: Clause 6.6	PASS
Field Strength of Unwanted Emissions	FCC PART 15 C section 15.249 (a) section 15.249 (d)	ANSI C63.10: Clause 6.4, 6.6 and 6.7	PASS
Band Edges	FCC PART 15 C section 15.249 (d)	ANSI C63.10: Clause 6.9.2	PASS
Occupied Bandwidth	FCC PART 15 C section 15.215(c)	ANSI C63.10: Clause 6.9.1	PASS
Conducted Emissions at Mains Terminals	FCC PART 15 C section 15.207	ANSI C63.10: Clause 6.2	PASS
Antenna Requirement	FCC PART 15 C section 15.203	FCC PART 15 C section 15.203	PASS

1.1 TEST FACILITY

The test facility is recognized, certified or accredited by the following organizations:

.CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2005 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on Apr. 18, 2013

.FCC- Registration No: 248337

The 3m Semi-Anechoic Chamber, 3m/10m Open Area Test Site and Shielding Room of Dongguan Yaxu (AiT) Technology Limited have been registered by Federal Communications Commission (FCC) on Aug.29, 2014.

.Industry Canada(IC)-Registration No: IC6819A-1

The 3m Semi-Anechoic Chamber and 3m of Dongguan Yaxu (AiT) Technology Limited have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing on Oct. 01, 2014.

.VCCI- Registration No: 2705

The 3m/10m Open Area Test Site, Shielding Room and 3m Chamber of Dongguan Yaxu (AiT) Technology Limited have been registered by Voluntary Control Council for Interference on Nov. 21, 2012. The Telecommunication Ports Conducted Disturbance Measurement of Dongguan Yaxu (AiT) Technology Limited have been registered by Voluntary Control Council for Interference on May. 13, 2013.

.TUV NORD

Dongguan Yaxu (AiT) Technology Limited has been assessed on Jun. 13, 2013 that it can carry out EMC tests by order and under supervision of TUV NORD.

.ITS- Registration No: TMPSHA031

Dongguan Yaxu (AiT) Technology Limited has been assessed and included in Intertek Shanghai TMP Program regarding Laboratory facilities and test equipment on Jul.22, 2012.

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 % 。

No.	Item	Uncertainty
1	Conducted Emission Test	$\pm 1.38\text{dB}$
2	RF power,conducted	$\pm 0.16\text{dB}$
3	Spurious emissions,conducted	$\pm 0.21\text{dB}$
4	All emissions,radiated(<1G)	$\pm 4.68\text{dB}$
5	All emissions,radiated(>1G)	$\pm 4.89\text{dB}$
6	Temperature	$\pm 0.5^\circ\text{C}$
7	Humidity	$\pm 2\%$

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

EUT Name:	Headphone
Model No.:	HS-BN900
Addition Model:	N/A
Model Differences:	N/A
Operation frequency:	2402 MHz to 2480 MHz
Bluetooth Version	BT 4.2
Number of channel:	79 channels
Modulation Type and Antenna Type:	GFSK,π/4DQPSK,8DPSK PCB antenna
H/W No.:	V3.0
S/W No.:	V4.2
Antenna Gain:	0 dBi
Brand Name:	Honsenn
Derivative model No.:	N/A
Power Supply Range:	DC 3.7V by battery
Power Cord:	N/A
Signal Cable:	N/A

Description of Channel:					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2402	39	2440	77	2478
02	2403	40	2441	78	2479
03	2404	41	2442	79	2480
04	...	42	...		
05	...	43	...		
06	...	44	...		

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH1
Mode 2	CH39
Mode 3	CH79
Mode 4	Link

For Conductted Emission	
Final Test Mode	Description
Mode 4	Link

For Radiated Emission	
Final Test Mode	Description
Mode 1	CH1
Mode 2	CH39
Mode 3	CH79
Mode 4	Link

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels. The EUT use full-charge battery.
- (2) Measurements are performed according to C63.10.
- (3) The relevant RF Conducted Measurement is performed by a temporary antenna connector, please refer to the Equipment List for the detail
- (4) Test perform on all mode, only records worse cases in the test report.
- (5) The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitter signals.

Example:

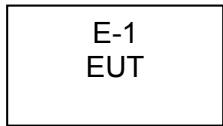
Frequency used:2402 - 2480 MHz

79 Channels (Ch 1 - Ch 79)

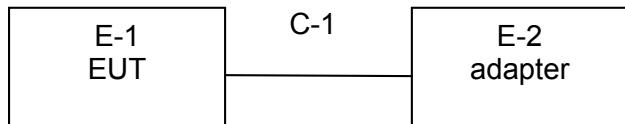
Hopping Sequence in Data Mode

55,48,26,33,52,35,50,65,54,67,15,08,64,49,66,53,22,25,63,04,41,05,24,43,73,07,75,28,56,37,60,39,58,69,16,40,21,44
23,42,13,17,46,02,51,03,11,29,77,47,62,27,71,10,68,32,57 12,59,72,30,76,31,18,74,61,14,70,36,06,09,45,19,20,34,38
78,00,01

2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING


The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel .

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS


Test software Version	Test program: BT152XX_V4.2		
Frequency	2402 MHz	2440 MHz	2480 MHz
Parameters	Default	Default	Default

2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Spurious Emission Test

2.5 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Headphone	N/A	HS-BN900	N/A	EUT
E-2	adapter	N/A	KS0501000		

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	YES	80	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Equipment No.	Instrument	Manufacturer	Model Name	Serial Number	Specification	Cal. Data
1	Semi-anechoic chamber	Changzhou Chengyu	EC3088	N/A	9*6*6m	10/25/2016
2	Loop Antenna	TESEQ	HLA6120	35779	9kHz-30MHz	06/05/2017
3	Broadband antenna	R&S	VULB 9160	VULB91 60-516	30MHz-1500 MHz	10/25/2016
4	Horn antenna	R&S	BBHA 9120D	10087	1GHz-18GHz	06/05/2017
5	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	15GHz-26.5GHz	06/05/2017
6	Test receiver	R&S	ESCI	101686	9KHz-3GHz	10/25/2016
7	EMI Measuring Receiver	R&S	ESR	101660	9KHz-40GHz	10/25/2016
8	Multi-device controller	MF	MF-7868	MF78680 8762	N/A	10/25/2016
9	Amplifier	EM	EM-30180	060538	1GHz-18GHz	10/25/2016
10	Amplifier	Schwarzbeck	BBV 9719	BBV 9719-663	18GHz-26.5GHz	06/05/2017
11	Spectrum Analyzer	agilent	E4440B	US44300368	1GHz-26.5GHz	06/05/2017
12	Test receiver	R&S	ESCI	101689	9KHz-3GHz	10/25/2016
13	LISN	R&S	NSLK81 26	8126466	9k-30MHz	10/25/2016
14	LISN	Narda	L2-16B	5589756	9k-30MHz	10/25/2016
15	Radiated Cable 1#	FUJIKURA	5D-2W	01	30MHz-1GHz	10/25/2016
16	Radiated Cable 2#	FUJIKURA	10D2W	02	1GHz -25GHz	10/25/2016
17	Conducted Cable 1#	FUJIKURA	1D-2W	01	9KHz-30MHz	10/25/2016

18	SMA Antenna connector	Dosin	Dosin-SMA	N/A	N/A	10/25/2016
Note: The SMA antenna connector is soldered on the PCB board in order to perform conducted tests and this SMA antenna connector is listed in the equipment list. The Cal.Interval was one year						

3. ANTENNA REQUIREMENT

3.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

3.2 EUT ANTENNA

The EUT antenna is PCB Antenna with 0dBi gain. It comply with the standard requirement.

3.3 CONDUCTED EMISSION MEASUREMENT

3.3.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

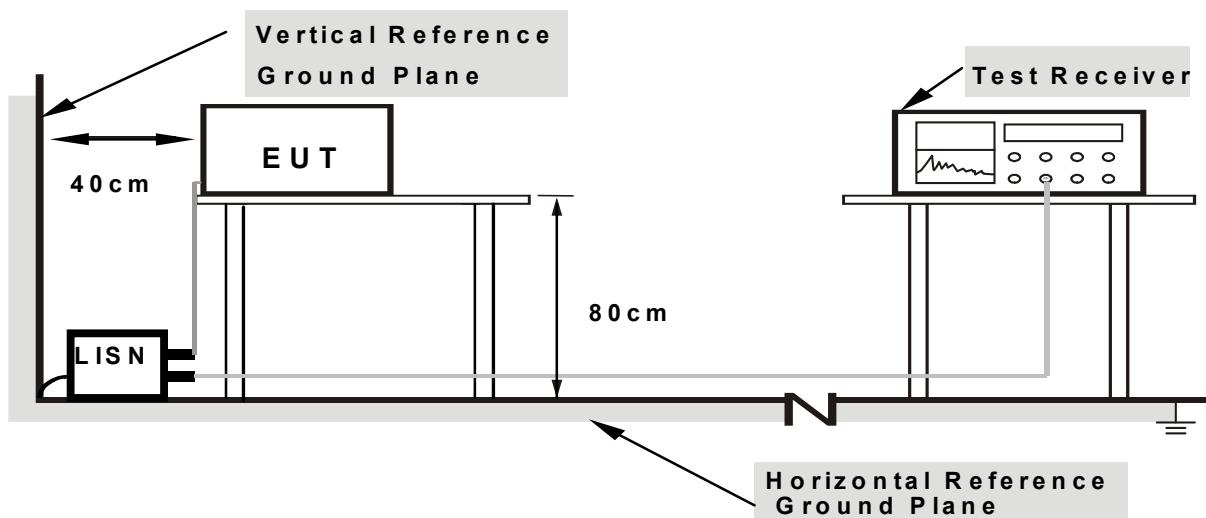
FREQUENCY (MHz)	(dBuV)		Standard
	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


3.3.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

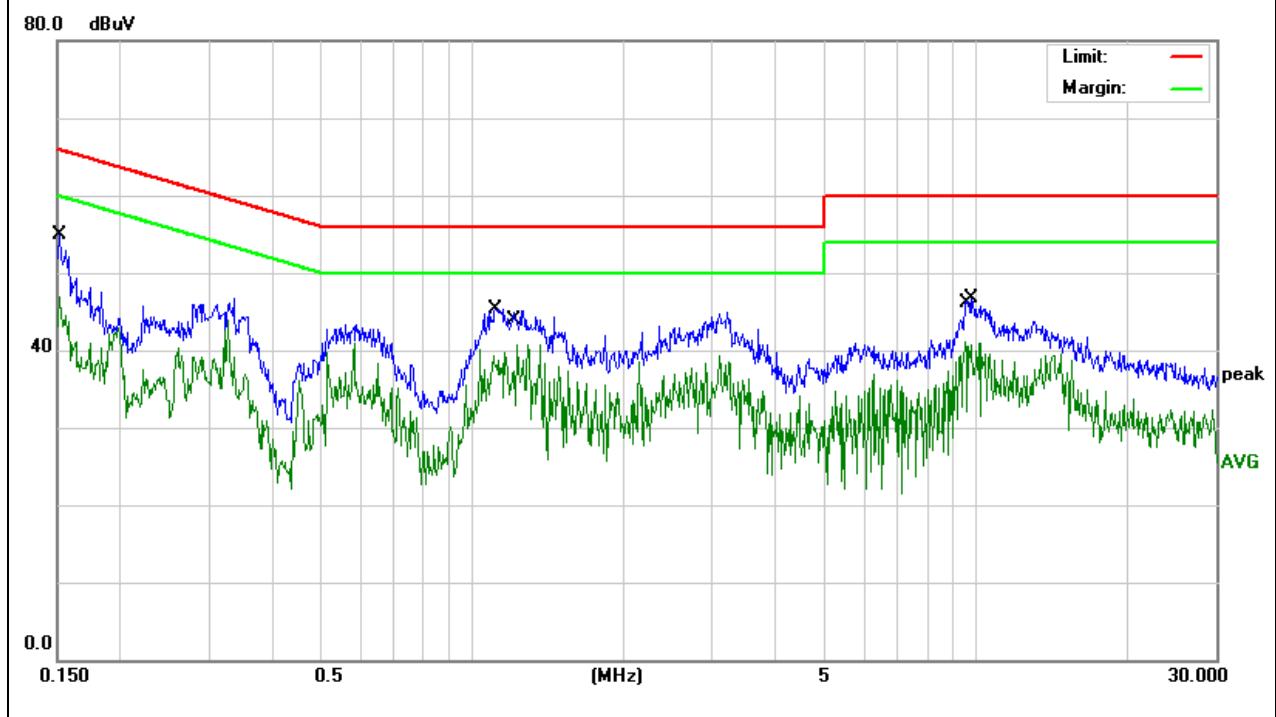
3.3.3 DEVIATION FROM TEST STANDARD

No deviation

3.3.4 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

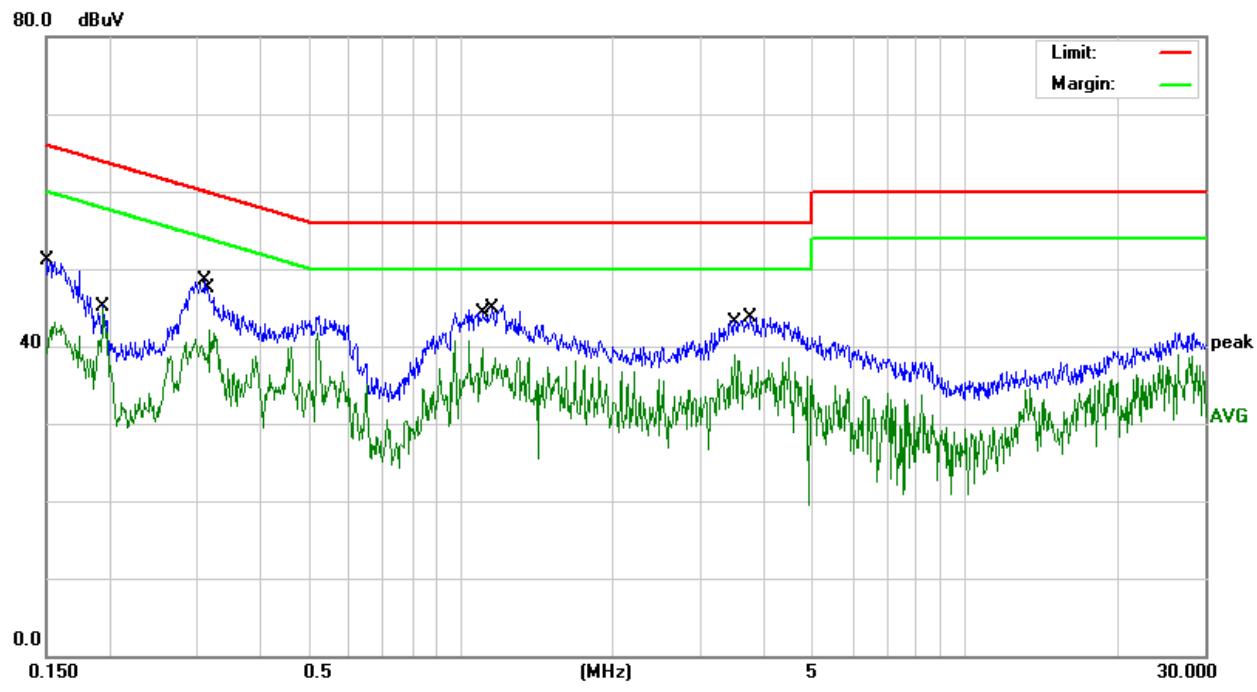

3.2.5 TEST RESULT

EUT :	Headphone	Model Name. :	HS-BN900
Temperature :	26 °C	Relative Humidity :	54%
Pressure :	1010hPa	Test Date :	2017-07-10
Test Mode :	Link	Phase :	L
Test Voltage :	DC 5V from charger AC 120V/60Hz		

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
1		0.1516	45.11	9.89	55.00	65.91	-10.91	QP	
2		0.1516	36.99	9.89	46.88	65.91	-19.03	AVG	
3	*	1.1140	35.50	9.90	45.40	56.00	-10.60	QP	
4		1.2340	30.89	9.90	40.79	56.00	-15.21	AVG	
5		9.5338	31.07	9.96	41.03	60.00	-18.97	AVG	
6		9.7939	36.84	9.96	46.80	60.00	-13.20	QP	

Remark:

1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.
3. N/A means All Data have pass Limit



EUT :	Headphone	Model Name. :	HS-BN900
Temperature :	26 °C	Relative Humidity :	54%
Pressure :	1010hPa	Test Date :	2017-07-10
Test Mode :	Link	Phase :	N
Test Voltage :	DC 5V from charger AC 120V/60Hz		

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
1		0.1499	41.20	9.90	51.10	66.00	-14.90	QP	
2		0.1944	35.12	9.84	44.96	63.84	-18.88	AVG	
3		0.3100	38.68	9.82	48.50	59.97	-11.47	QP	
4		0.3180	32.22	9.83	42.05	59.76	-17.71	AVG	
5		1.1019	29.75	9.90	39.65	56.00	-16.35	AVG	
6	*	1.1539	35.10	9.90	45.00	56.00	-11.00	QP	
7		3.5020	29.08	9.90	38.98	56.00	-17.02	AVG	
8		3.7580	33.89	9.91	43.80	56.00	-12.20	QP	

Remark:

1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.
3. N/A means All Data have pass Limit

3.4 RADIATED EMISSION MEASUREMENT

3.4.1 Radiated Emission Limits (FCC 15.209)

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.249)

Frequency of Emission (MHz)	Field Strength of fundamental ((millivolts /meter)	Field Strength of Harmonics (microvolts/meter)
2400 - 2483.5	50	500

Notes:

- (1) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.4.2 TEST PROCEDURE

1)9 kHz to 30 MHz emissions:

For testing performed with the loop antenna, testing was performed in accordance to ANSI C63.10. The centre of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT, During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane.

2)30 MHz to 1 GHz emissions:

For testing performed with the bi-log type antenna, testing was performed in accordance to ANSI C63.10. The measurement is performed with the EUT rotated 360°, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

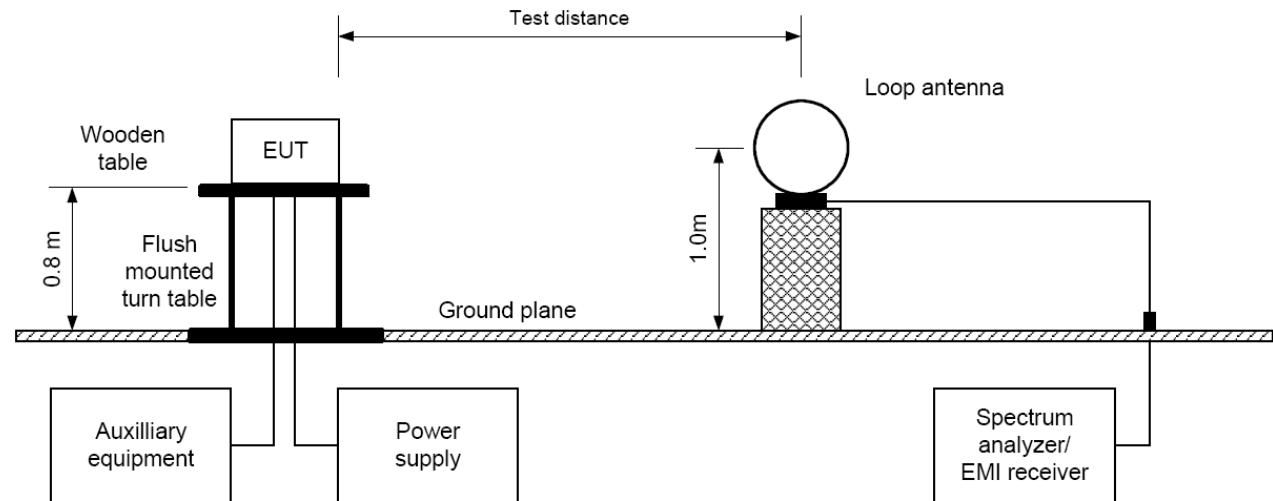
3)1 GHz to 25 GHz emissions:

Test site with RF absorbing material covering the ground plane that met the site validation criterion called out in CISPR 16-1-4:2007 was used to perform radiated emission test above 1 GHz.

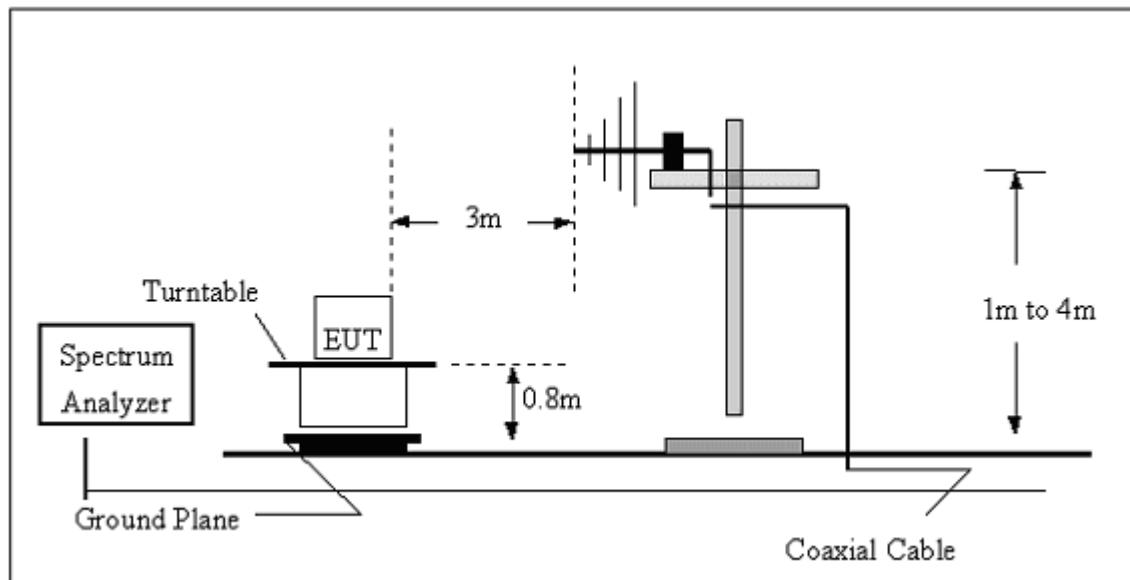
For testing performed with the horn antenna, testing was performed in accordance to ANSI C63.10. The measurement is performed with the EUT rotated 360°, the antenna height scan between 1m and 4m, and the antenna rotated to repeat the measurement for both the horizontal and vertical antenna polarizations.

For the radiated emission test above 1GHz:

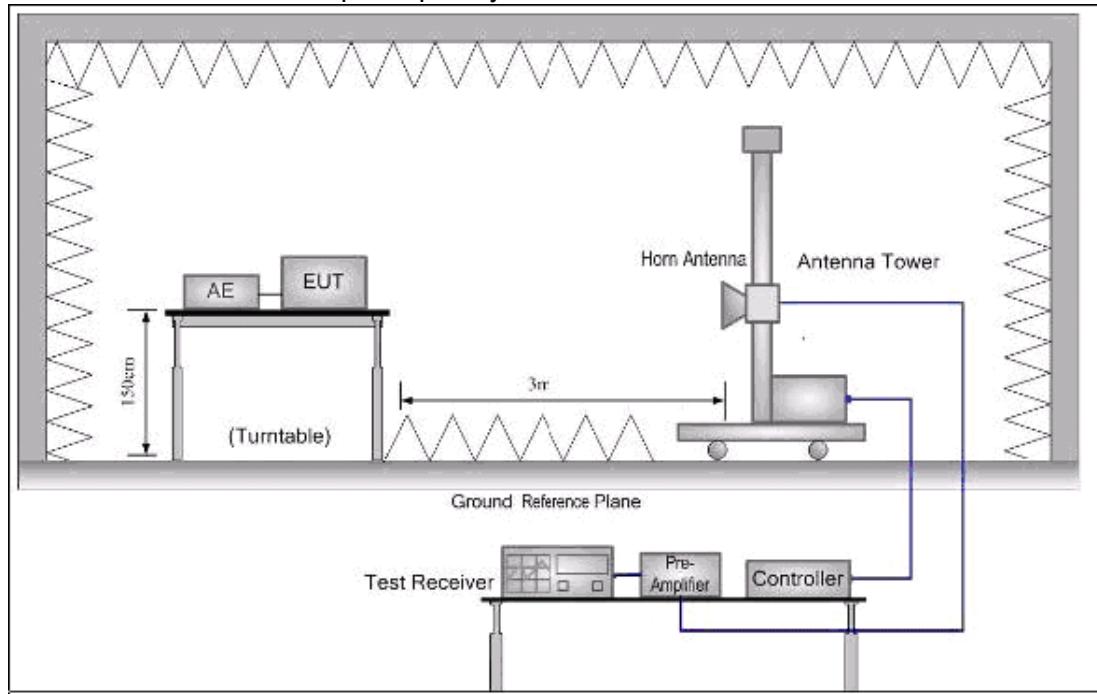
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.


Both horizontal and vertical antenna polarities were testedand performed pretest to three orthogonal axis. The worst case emissions were reported.

3.4.3 DEVIATION FROM TEST STANDARD


No deviation

3.4.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

Field Strength of Fundamental

Frequency (MHz)	Reading Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	amplifier factor (dB)	Emission PK/AV (dBuV/m)	Horizontal /Vertical	Detector type	Limits PK/AV (dBuV/m)	Margin (dB)
2400	46.58	25.21	6.51	35.24	43.06	H	Peak	74	-30.94
2400	39.26	25.21	6.51	35.24	35.74	H	AVG	54	-18.26
2402	88.47	25.87	6.56	35.1	85.8	H	Peak	114	-28.2
2402	81.32	25.87	6.56	35.1	78.65	H	AVG	94	-15.35
2440	83.19	25.93	6.64	35.37	80.39	H	Peak	114	-33.61
2440	78.68	25.93	6.64	35.37	75.88	H	AVG	94	-18.12
2480	82.24	26.05	6.7	35.42	79.57	H	Peak	114	-34.43
2480	77.35	26.05	6.7	35.42	74.68	H	AVG	94	-19.32
2483.5	50.12	26.13	6.88	35.15	47.98	H	Peak	74	-26.02
2483.5	42.23	26.13	6.88	35.15	40.09	H	AVG	54	-13.91
2400	49.36	25.21	6.51	35.24	45.84	V	Peak	74	-28.16
2400	41.79	25.21	6.51	35.24	38.27	V	AVG	54	-15.73
2402	85.79	25.87	6.56	35.1	83.12	V	Peak	114	-30.88
2402	76.95	25.87	6.56	35.1	74.28	V	AVG	94	-19.72
2440	89.33	25.93	6.64	35.37	86.53	V	Peak	114	-27.47
2440	80.15	25.93	6.64	35.37	77.35	V	AVG	94	-16.65
2480	87.14	26.05	6.7	35.42	84.47	V	Peak	114	-29.53
2480	79.65	26.05	6.7	35.42	76.98	V	AVG	94	-17.02
2483.5	50.33	26.13	6.88	35.15	48.19	V	Peak	74	-25.81
2483.5	42.21	26.13	6.88	35.15	40.07	V	AVG	54	-13.93

For the band-edge test, both hopping-on mode and hopping-off mode had been pre-tested, and only the worst case was recorded in the test report.

Spurious Emissions

3.4.5 TEST RESULTS (BELOW 30MHz)

EUT :	Headphone	Model Name. :	HS-BN900
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX	Polarization :	--

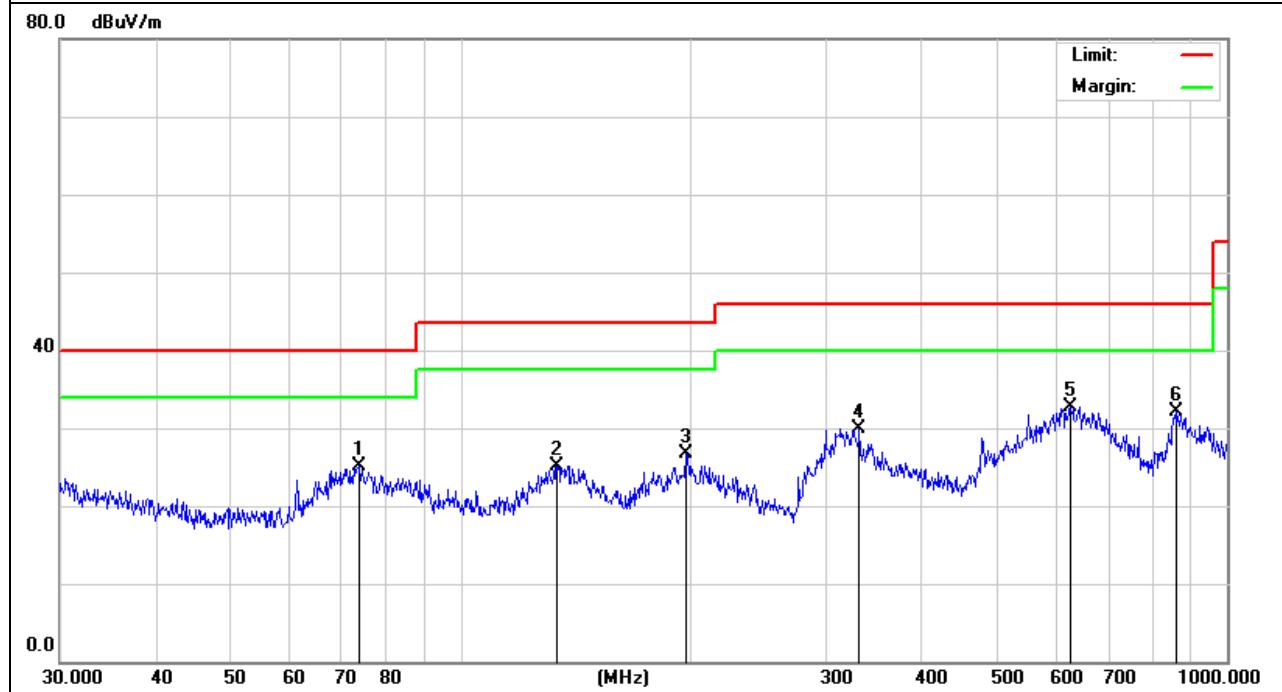
Freq. (MHz)	Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	State
--	--	--	--	P/F
--	--	--	--	PASS
--	--	--	--	PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = $20 \log(\text{specific distance}/\text{test distance})$ (dB);
Limit line = specific limits(dBuV) + distance extrapolation factor.

3.4.6 TEST RESULTS (BETWEEN 30 – 1000 MHZ)

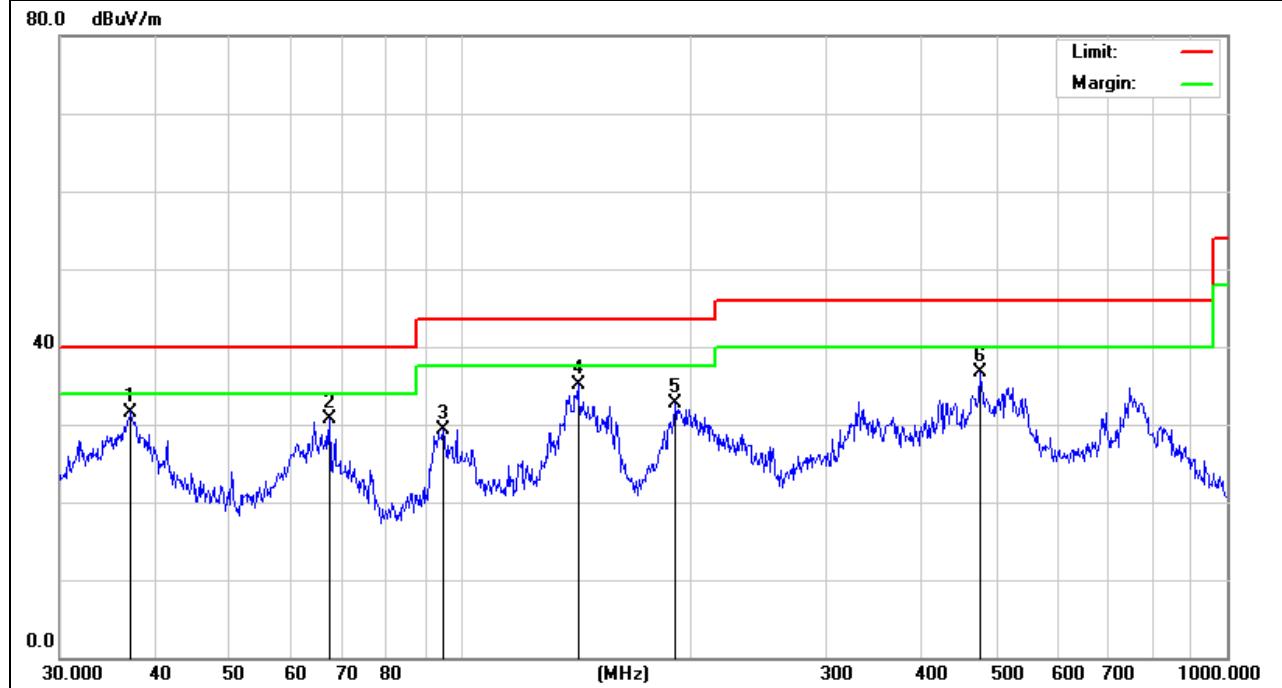

EUT :	Headphone	Model Name :	HS-BN900
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH1	Polarization :	Vertical

Note: test perform on BDR&EDR, the worst mode and has been reported.

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Antenna	Table	Comment
			Level	Factor	ment			Height	Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree
1	73.8756	45.91	-20.81	25.10	40.00	-14.90	QP			
2	133.6187	40.50	-15.30	25.20	43.50	-18.30	QP			
3	196.5098	45.16	-18.46	26.70	43.50	-16.80	QP			
4	331.3546	41.96	-11.96	30.00	46.00	-16.00	QP			
5 *	625.0779	37.49	-4.79	32.70	46.00	-13.30	QP			
6	860.0352	33.28	-1.18	32.10	46.00	-13.90	QP			

Remark:

Factor = Antenna Factor + Cable Loss.



EUT :	Headphone	Model Name :	HS-BN900
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH1	Polarization :	Horizontal

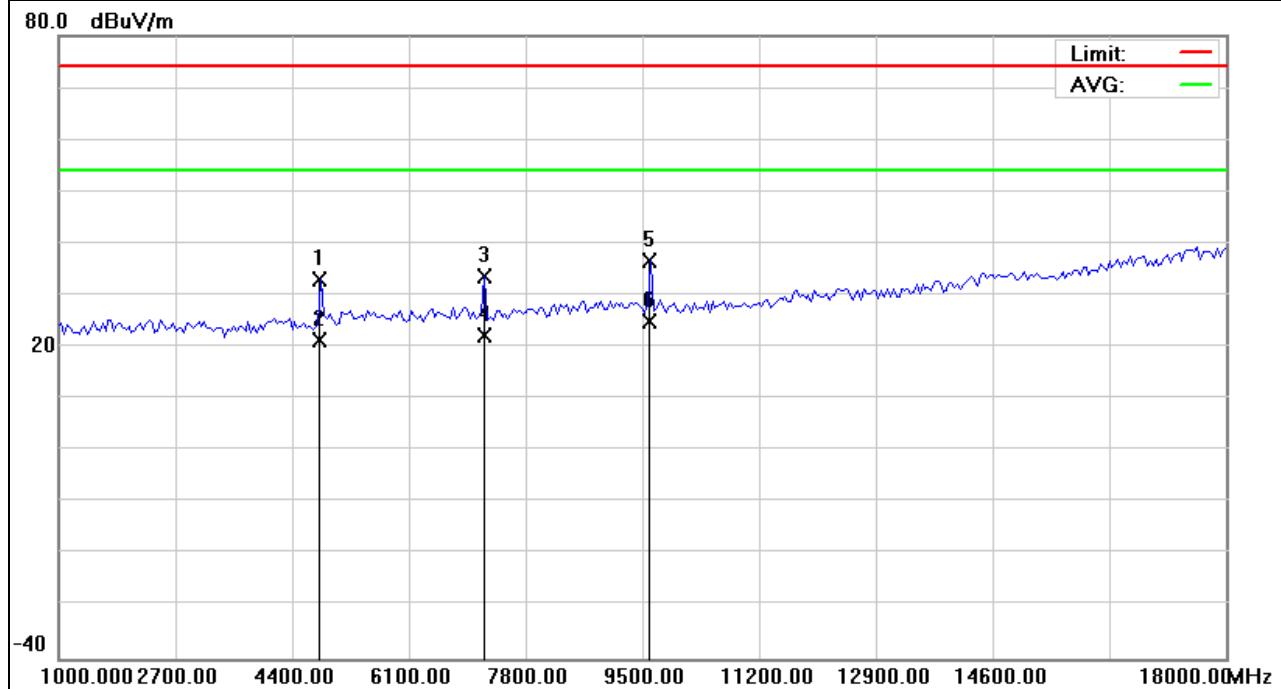
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Antenna	Table		
			Level	Factor	ment			Height	Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		37.1550	44.32	-12.72	31.60	40.00	-8.40	QP			
2		67.4381	52.47	-21.77	30.70	40.00	-9.30	QP			
3		94.7600	46.89	-17.49	29.40	43.50	-14.10	QP			
4	*	142.3243	50.51	-15.31	35.20	43.50	-8.30	QP			
5		190.4050	51.14	-18.44	32.70	43.50	-10.80	QP			
6		475.4990	45.03	-8.23	36.80	46.00	-9.20	QP			

Remark:

Factor = Antenna Factor + Cable Loss.

3.4.7 TEST RESULTS (ABOVE 1000 MHZ)

Note: test perform on BDR&EDR, the worst mode and has been reported.


GFSK

EUT :	Headphone	Model Name :	HS-BN900
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH1	Polarization :	Horizontal

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Antenna	Table	
			Level	Factor	ment					Degree
		MHz	dBuV	dB	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	24.98	8.12	33.10	74.00	-40.90	QP		
2		4804.000	13.34	8.12	21.46	54.00	-32.54	AVG		
3		7206.000	22.01	11.59	33.60	74.00	-40.40	QP		
4		7206.000	10.72	11.59	22.31	54.00	-31.69	AVG		
5		9608.000	19.21	17.49	36.70	74.00	-37.30	QP		
6	*	9608.000	7.48	17.49	24.97	54.00	-29.03	AVG		

Remark:

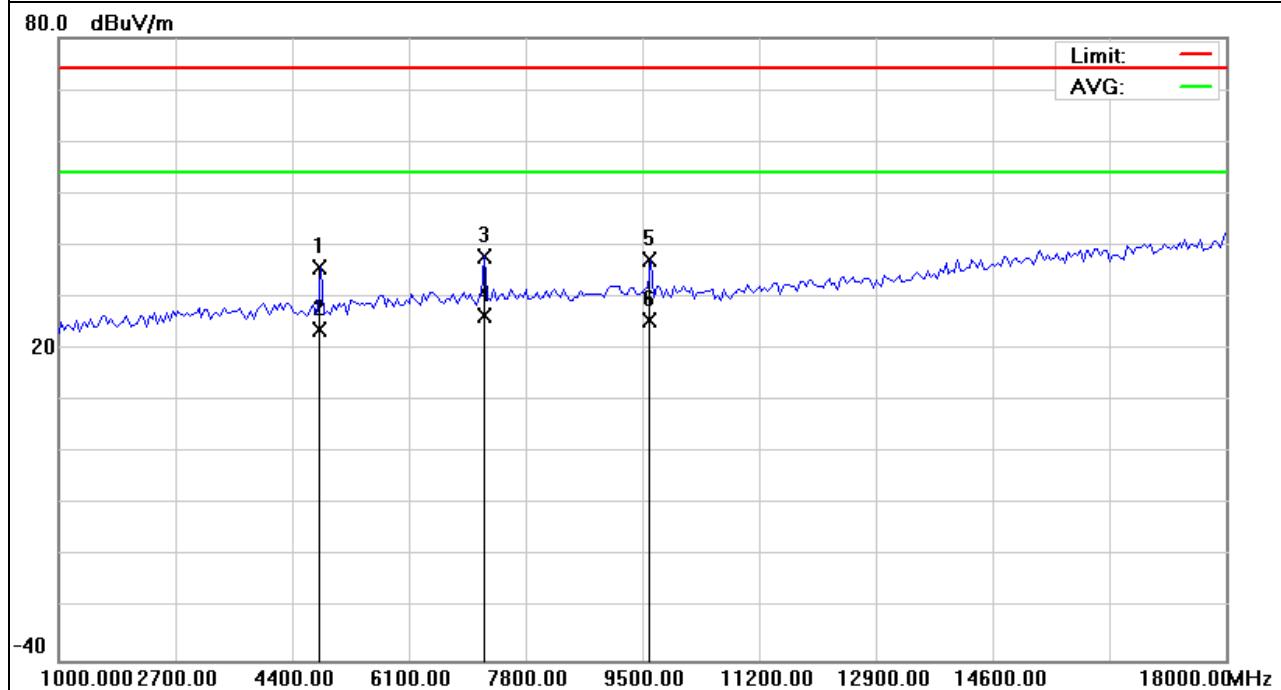
Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT :	Headphone	Model Name :	HS-BN900
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH1	Polarization :	Vertical

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Antenna	Table		
			Level	Factor	ment			Height	Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	27.78	8.12	35.90	74.00	-38.10	QP			
2		4804.000	15.52	8.12	23.64	54.00	-30.36	AVG			
3		7206.000	26.41	11.59	38.00	74.00	-36.00	QP			
4	*	7206.000	14.90	11.59	26.49	54.00	-27.51	AVG			
5		9608.000	19.91	17.49	37.40	74.00	-36.60	QP			
6		9608.000	7.98	17.49	25.47	54.00	-28.53	AVG			

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

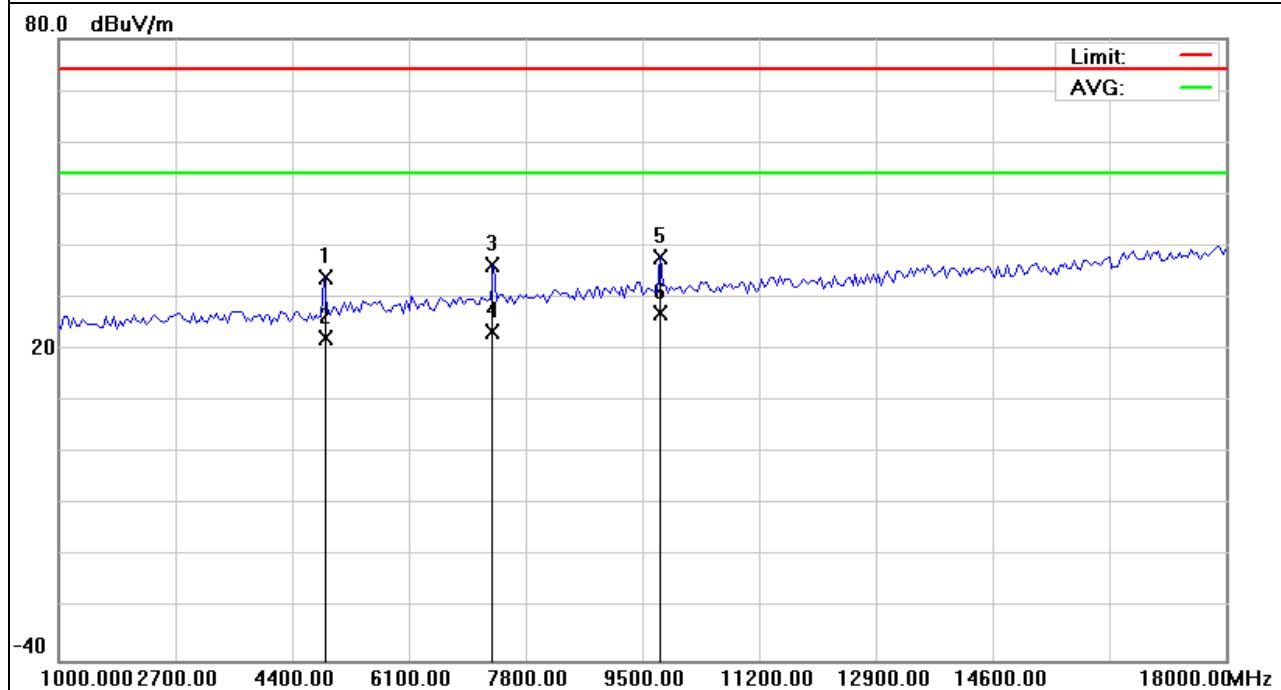


EUT :	Headphone	Model Name :	HS-BN900
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH40	Polarization :	Horizontal

No. Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Antenna	Table	Comment
		Level	Factor	ment			Height	degree	
1	4880.000	26.63	8.17	34.80	74.00	-39.20	QP		
2	4880.000	14.37	8.17	22.54	54.00	-31.46	AVG		
3	7320.000	23.80	12.10	35.90	74.00	-38.10	QP		
4	7320.000	11.88	12.10	23.98	54.00	-30.02	AVG		
5	9760.000	18.04	18.26	36.30	74.00	-37.70	QP		
6	* 9760.000	7.05	18.26	25.31	54.00	-28.69	AVG		

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

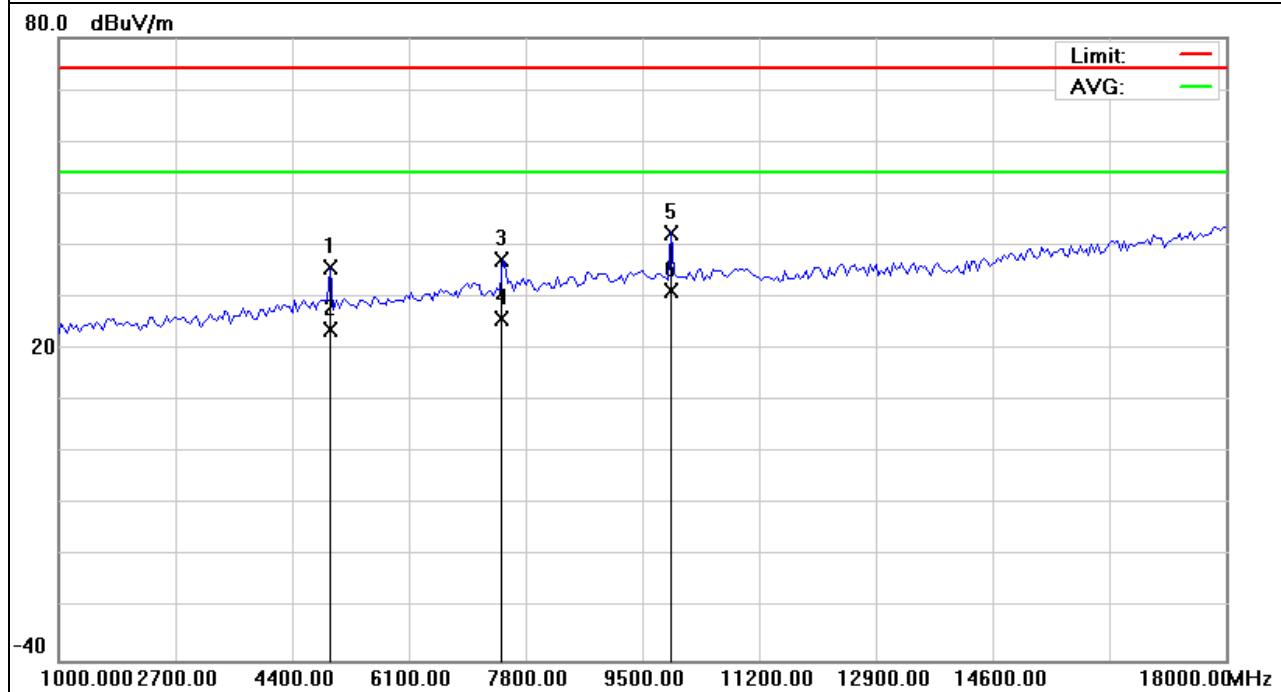


EUT :	Headphone	Model Name :	HS-BN900
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH40	Polarization :	Vertical

No. Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV/m	Limit dBuV/m	Over dB	Antenna Height cm		Table Degree	
							Detector	cm	degree	Comment
1	4880.000	25.83	8.17	34.00	74.00	-40.00	QP			
2	4880.000	13.98	8.17	22.15	54.00	-31.85	AVG			
3	7320.000	24.20	12.10	36.30	74.00	-37.70	QP			
4	7320.000	11.44	12.10	23.54	54.00	-30.46	AVG			
5	9760.000	19.74	18.26	38.00	74.00	-36.00	QP			
6 *	9760.000	8.71	18.26	26.97	54.00	-27.03	AVG			

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

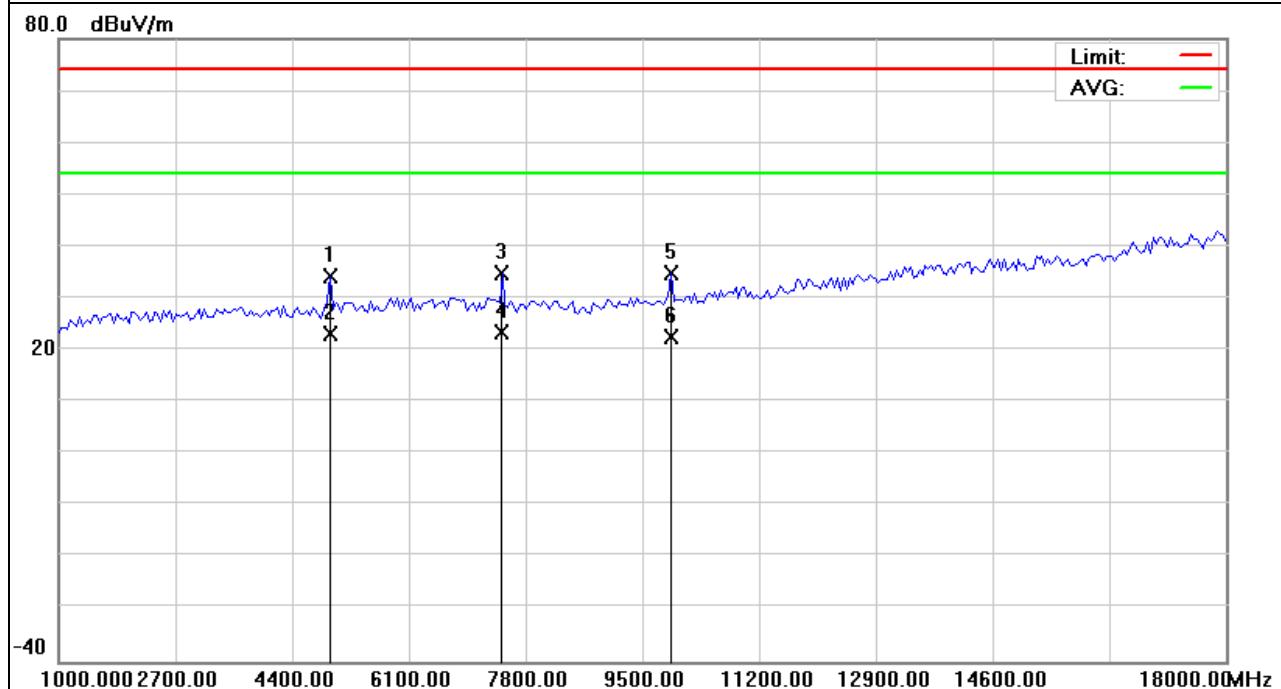


EUT :	Headphone	Model Name :	HS-BN900
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH79	Polarization :	Horizontal

No. Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Antenna	Table	Comment
		Level	Factor	ment			Height	Degree	
1	4960.000	27.49	8.21	35.70	74.00	-38.30	QP		
2	4960.000	15.43	8.21	23.64	54.00	-30.36	AVG		
3	7440.000	24.55	12.65	37.20	74.00	-36.80	QP		
4	7440.000	13.26	12.65	25.91	54.00	-28.09	AVG		
5	9920.000	23.42	19.08	42.50	74.00	-31.50	QP		
6	* 9920.000	12.06	19.08	31.14	54.00	-22.86	AVG		

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.



EUT :	Headphone	Model Name :	HS-BN900
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX-CH79	Polarization :	Vertical

No. Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Antenna	Table
		Level	Factor	ment				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm degree
1	4960.000	26.19	8.21	34.40	74.00	-39.60	QP	
2	4960.000	14.94	8.21	23.15	54.00	-30.85	AVG	
3	7440.000	22.15	12.65	34.80	74.00	-39.20	QP	
4	* 7440.000	10.89	12.65	23.54	54.00	-30.46	AVG	
5	9920.000	15.92	19.08	35.00	74.00	-39.00	QP	
6	9920.000	3.56	19.08	22.64	54.00	-31.36	AVG	

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

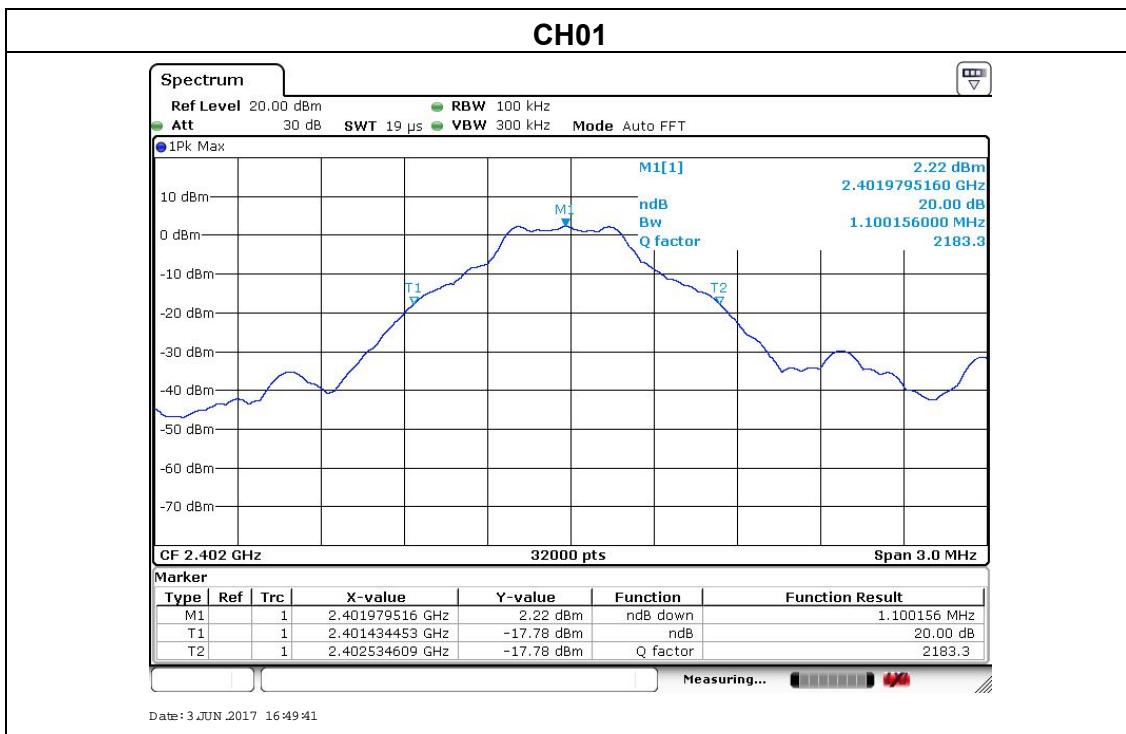
4. BANDWIDTH TEST

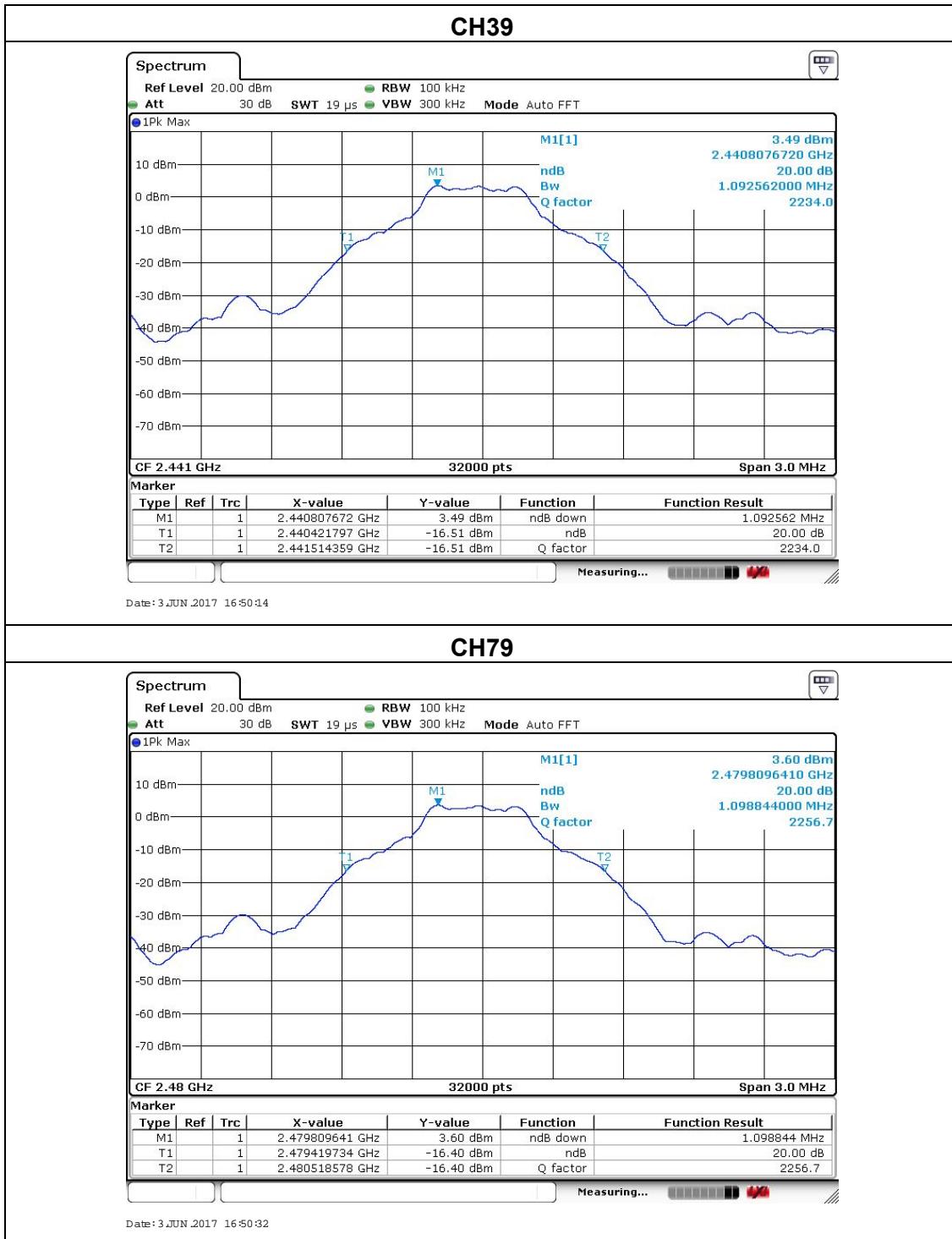
4.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 100KHz, VBW \geq RBW, Sweep time = Auto.

4.2 DEVIATION FROM STANDARD

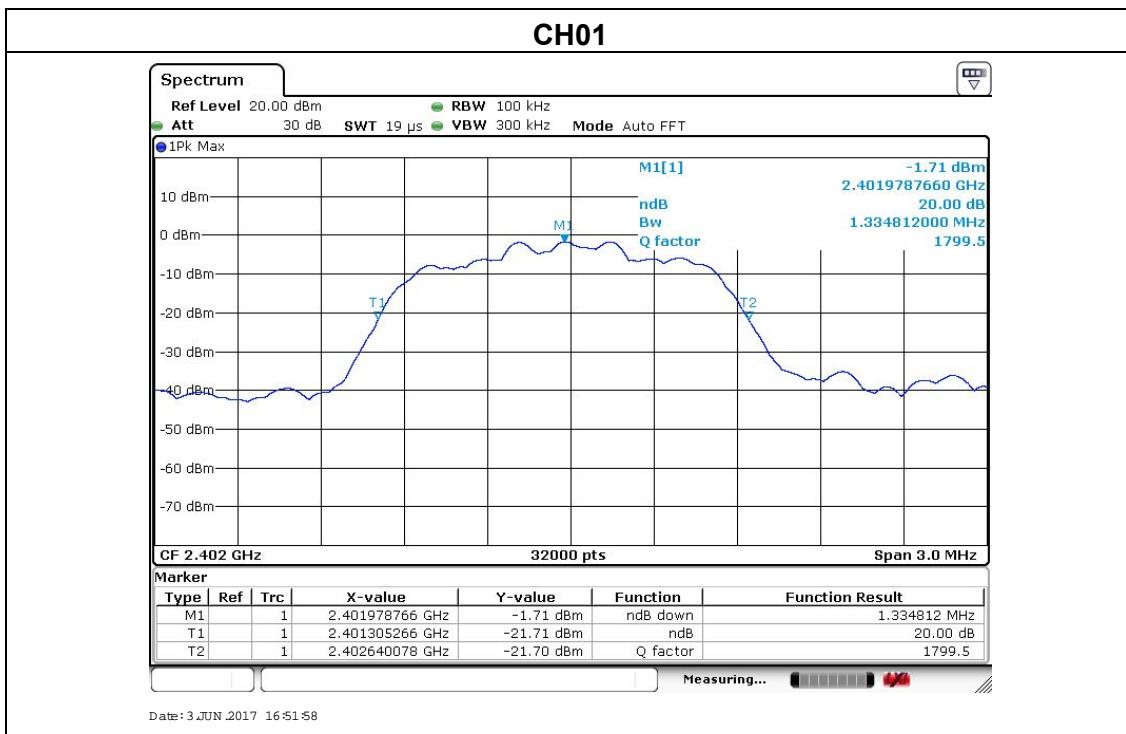
No deviation.


4.3 TEST SETUP



4.4 TEST RESULTS

EUT :	Headphone	Model Name :	HS-BN900
Temperature :	25 °C	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	GFSK:CH01 / CH40 /CH79		

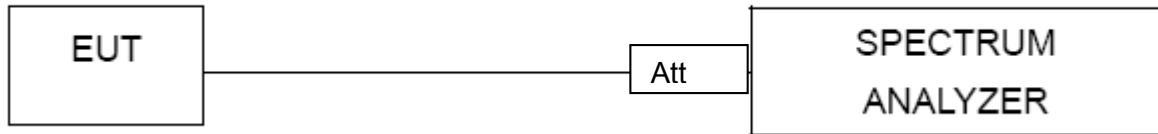

Frequency	20dB Bandwidth (kHz)	Result
2402 MHz	1.1002	PASS
2441 MHz	1.0926	PASS
2480 MHz	1.0988	PASS

EUT :	Headphone	Model Name :	HS-BN900
Temperature :	25 °C	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	8DPSK:CH01 / CH40 /CH79		

Frequency	20dB Bandwidth (kHz)	Result
2402 MHz	1.3348	PASS
2441 MHz	1.3304	PASS
2480 MHz	1.3369	PASS

5. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a)&A1.1 is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a)&A8.5, must also comply with the radiated emission limits specified in §15.209(a) &A1.1 (see §15.205(c)) &A8.5.


TEST PROCEDURE

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

5.1 DEVIATION FROM STANDARD

No deviation.

5.2 TEST SETUP

5.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.4 TEST RESULTS

BDR			
EUT :	Headphone	Model Name :	HS-BN900
Temperature :	25 °C	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	CH01 / CH40 /CH79		

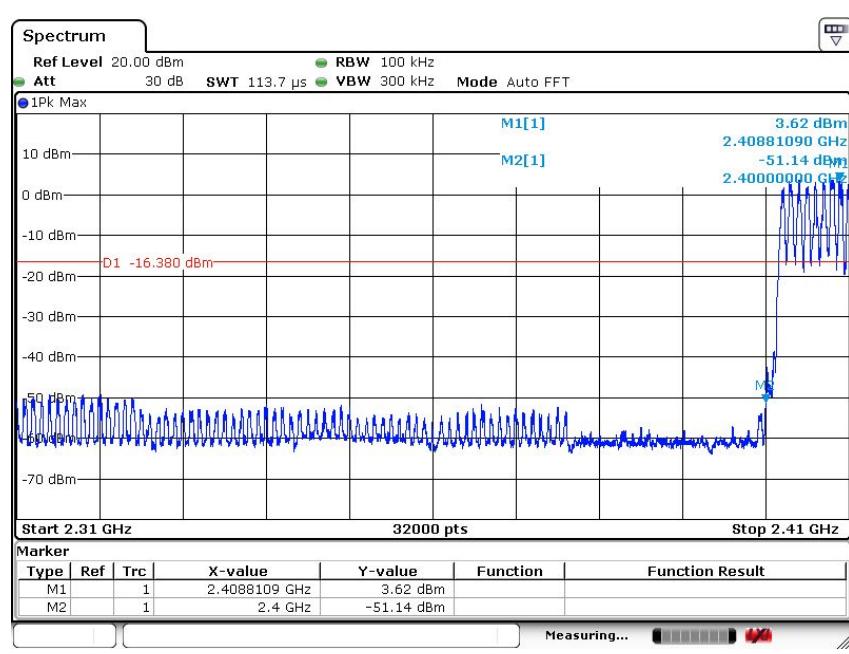
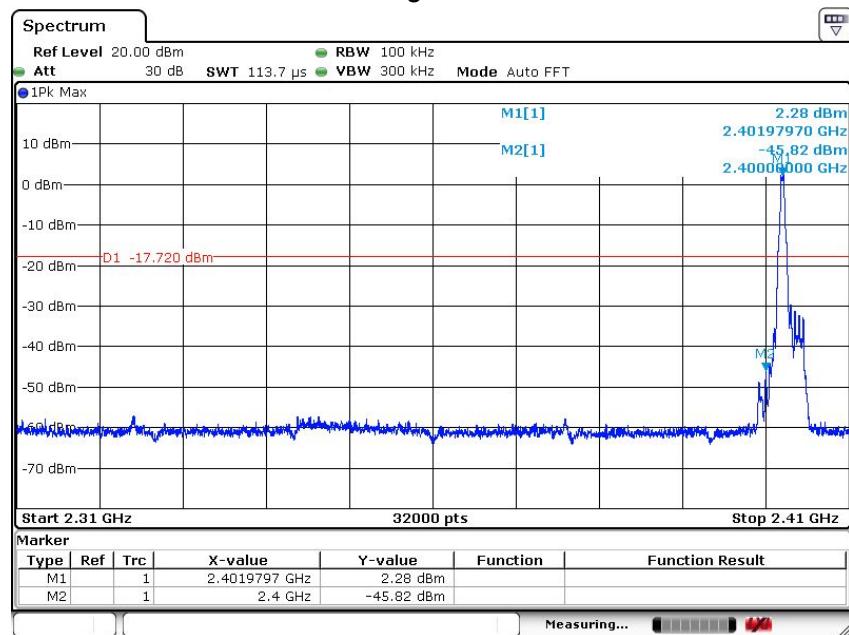
Frequency Band	Delta Peak to band emission (dBc)	> Limit (dBc)	Result
2390.00	48.1	20	Pass
2483.50	62.37	20	Pass

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type	Comment
2390	43.15	1.05	44.2	74	-29.8	peak	Vertical
2390	46.88	1.05	47.93	74	-26.07	peak	Horizontal
2483.5	47.12	1.29	48.41	74	-25.59	peak	Vertical
2483.5	44.35	1.29	45.64	74	-28.36	peak	Horizontal

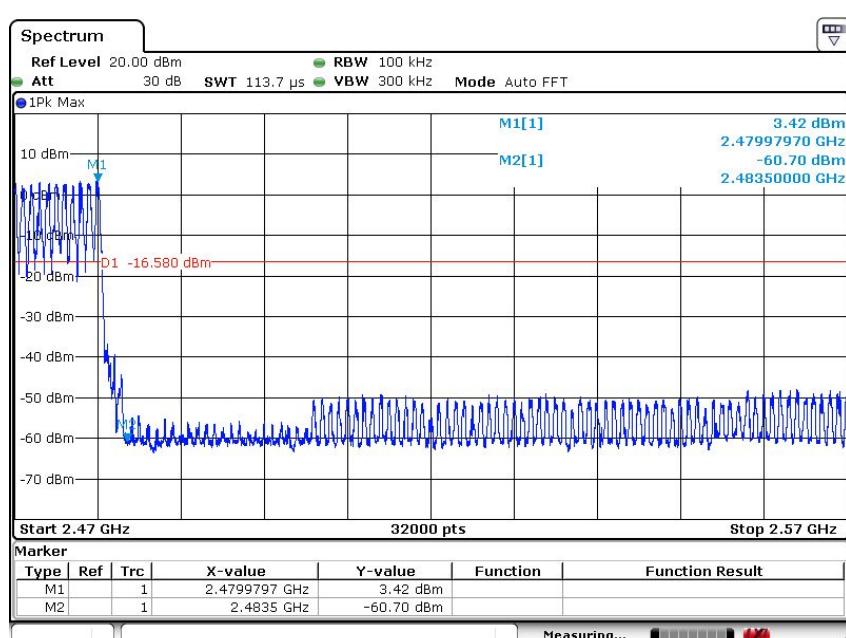
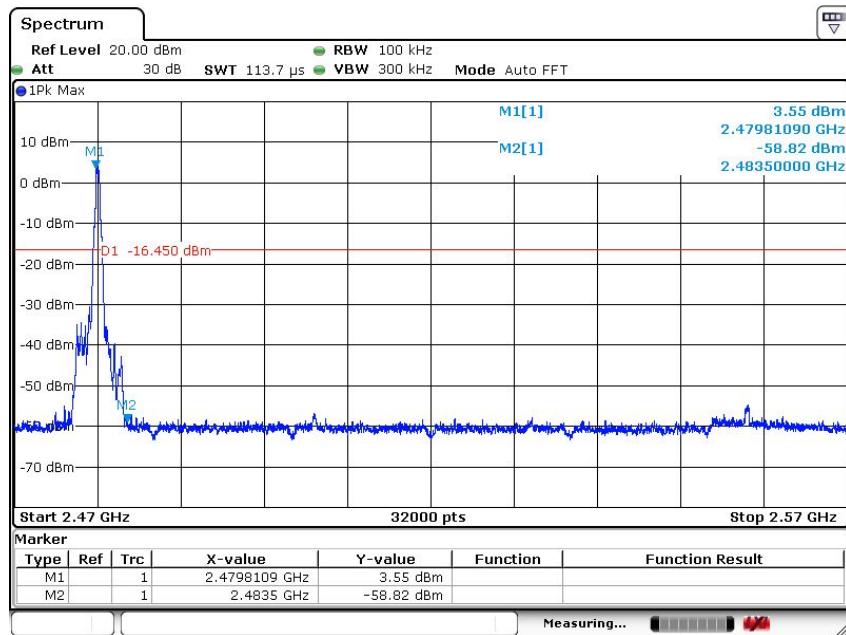
Note: Test method to see chapter 3.2 . When PK value is lower than the Average value limit, average not record.

For the band-edge test, both hopping-on mode and hopping-off mode had been pre-tested, and only the worst case was recorded in the test report.

EDR			
EUT :	Headphone	Model Name :	HS-BN900
Temperature :	25 °C	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V

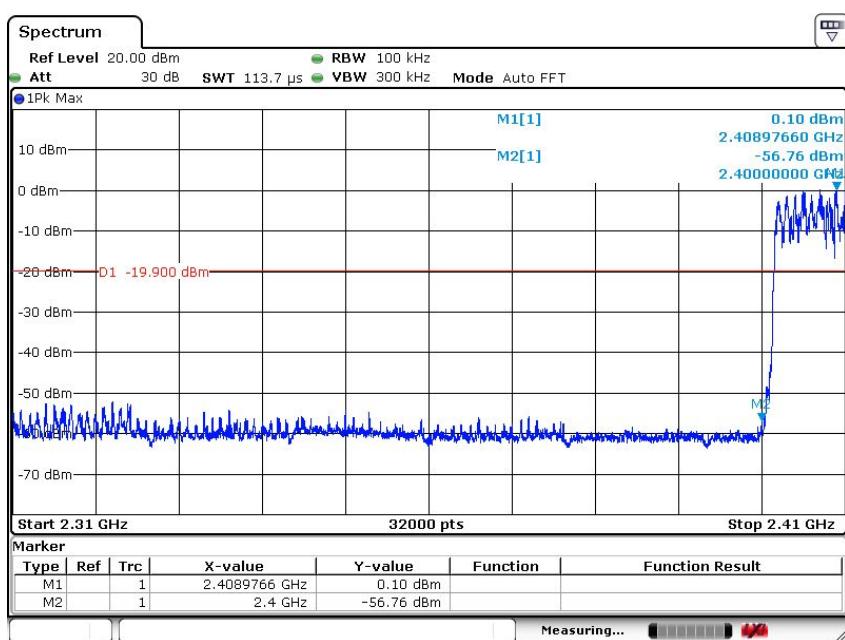
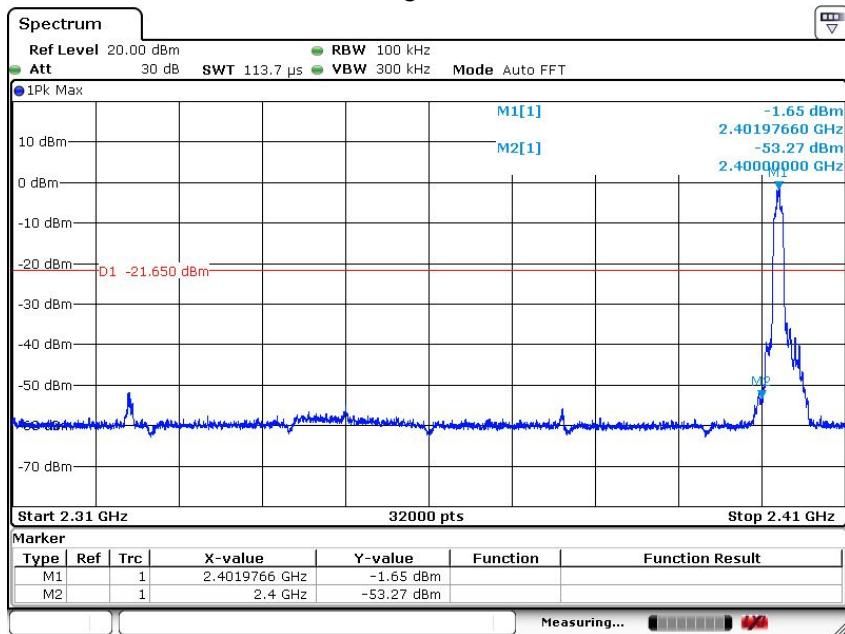


Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result
2390.00	51.62	20	Pass
2483.50	60.21	20	Pass

Frequency (MHz)	Meter Reading (dB μ V)	Factor (dB)	Emission Level (dB μ V/m)	Limits (dB μ V/m)	Margin (dB)	Detector Type	Comment
2390	42.36	1.05	43.41	74	-30.59	peak	Vertical
2390	44.87	1.05	45.92	74	-28.08	peak	Horizontal
2483.5	45.52	1.29	46.81	74	-27.19	peak	Vertical
2483.5	42.38	1.29	43.67	74	-30.33	peak	Horizontal

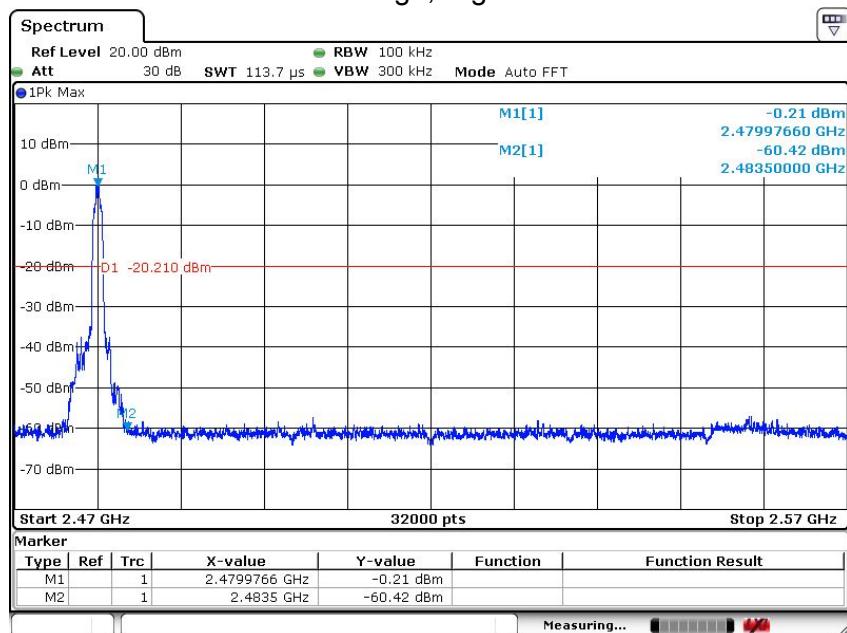


Note: Test method to see chapter 3.2 . When PK value is lower than the Average value limit, average not record.

BDR MODE

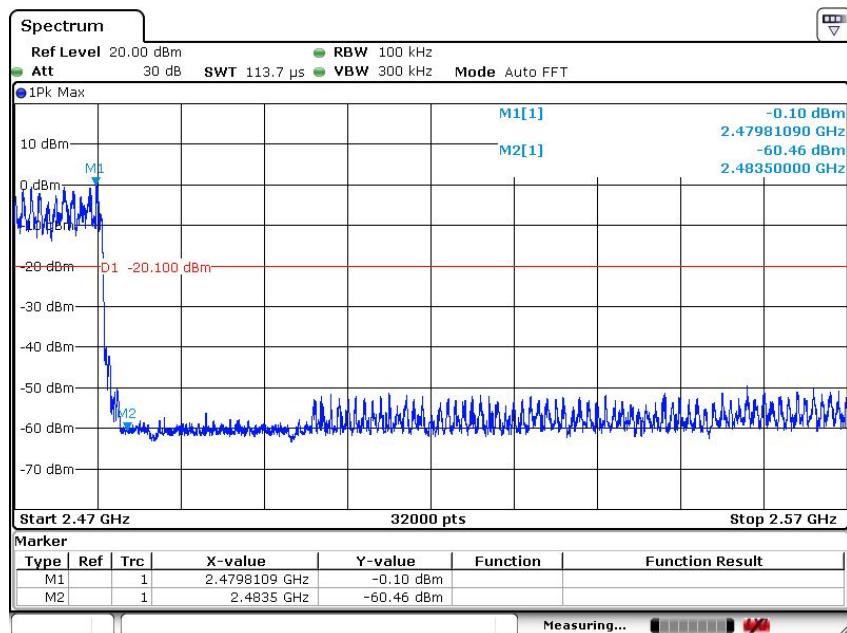
Band Edge, Left Side

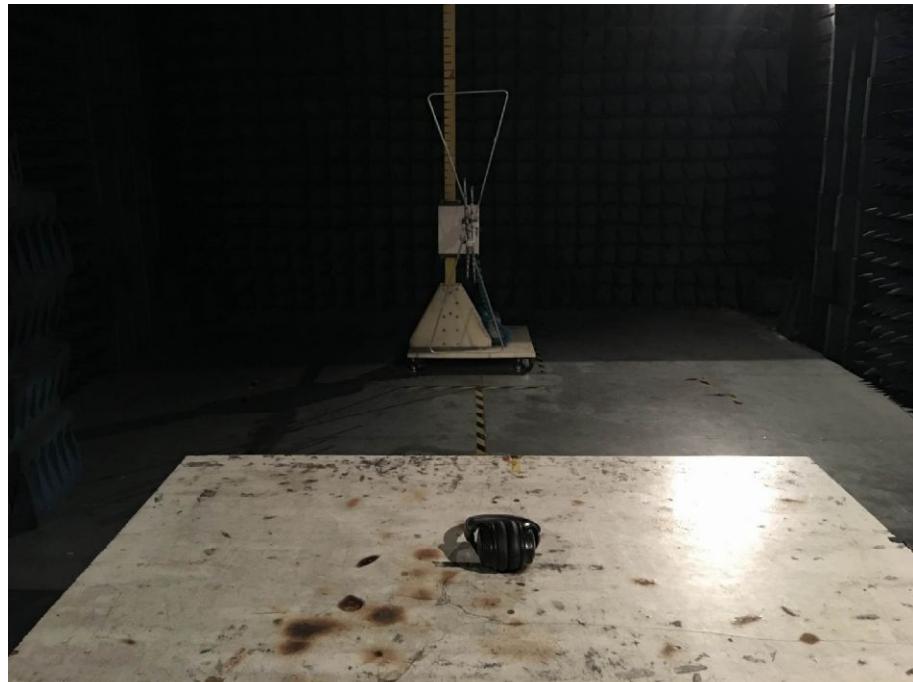
Band Edge, Right Side



EDR MODE


Band Edge, Left Side

Band Edge, Right Side

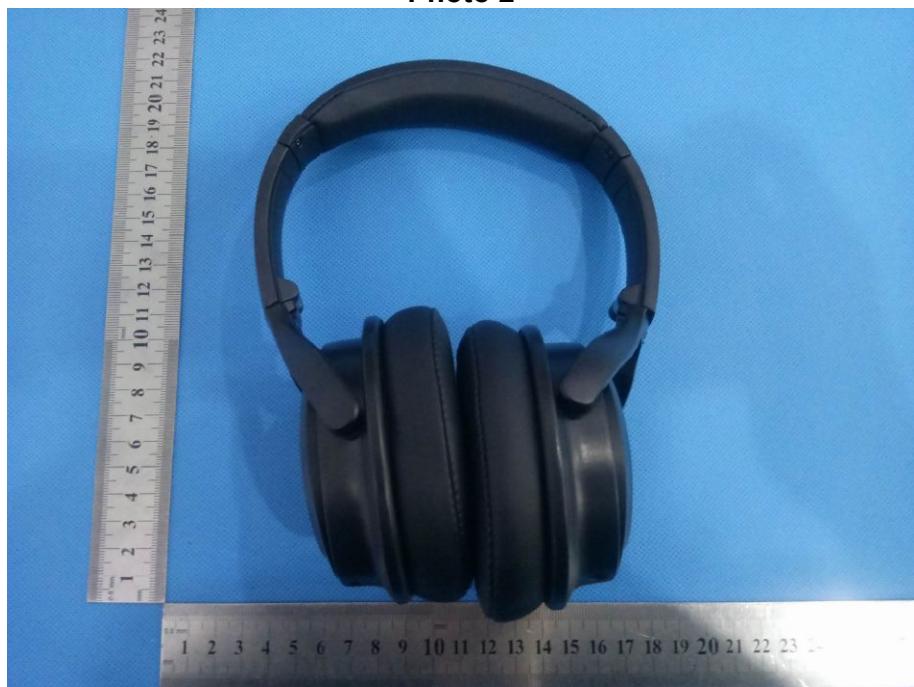

Date: 3 JUN 2017 16:59:30

Date: 3 JUN 2017 16:59:06

6. EUT TEST PHOTO

Radiated Measurement Photos 30-1000MHz

Above 1GHz


**Conducted Measurement Photos
0.15-30MHz**

EUT
Photo 1

Photo 2

Photo 3

Photo 4

Photo 5

Photo 6

Photo 7

Photo 8

Photo 9

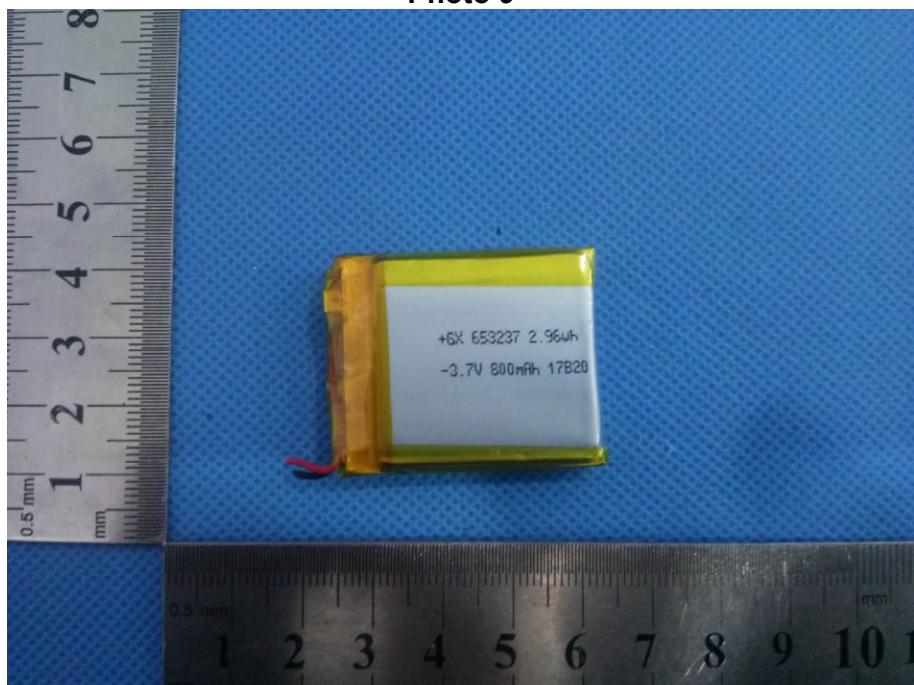


Photo 10

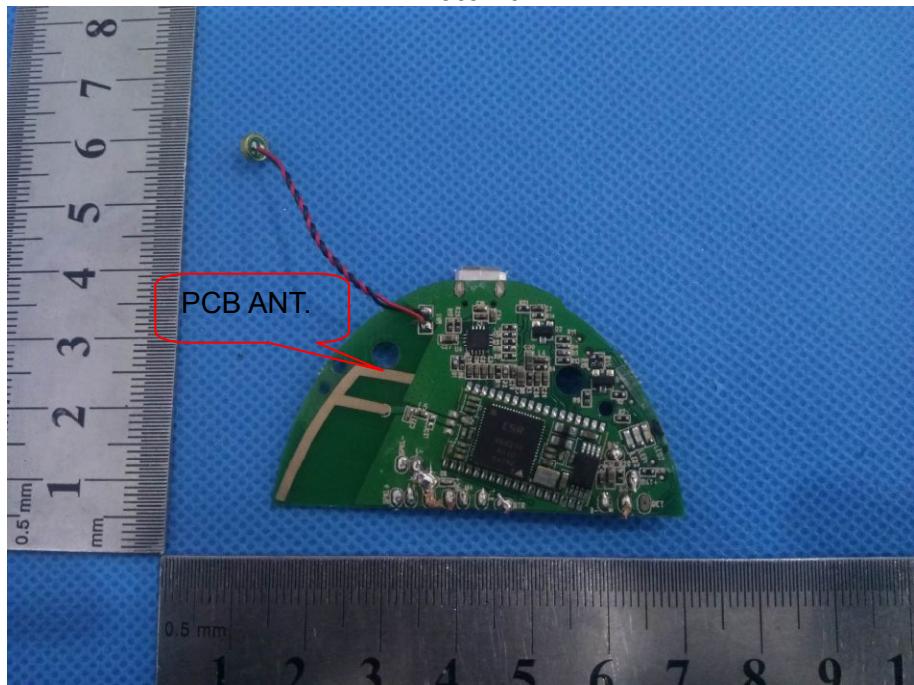
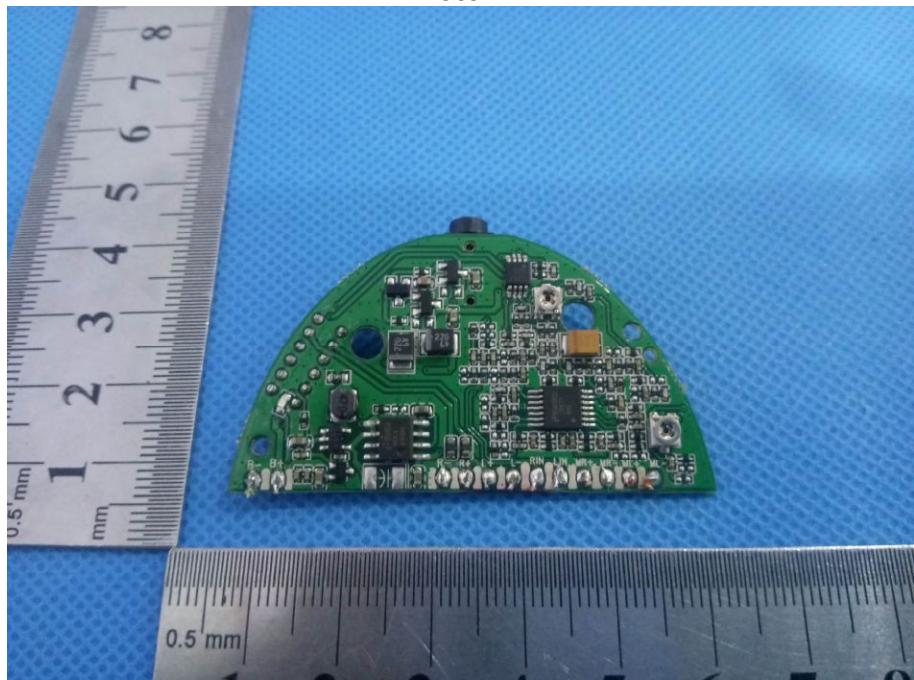


Photo 11


Photo 12

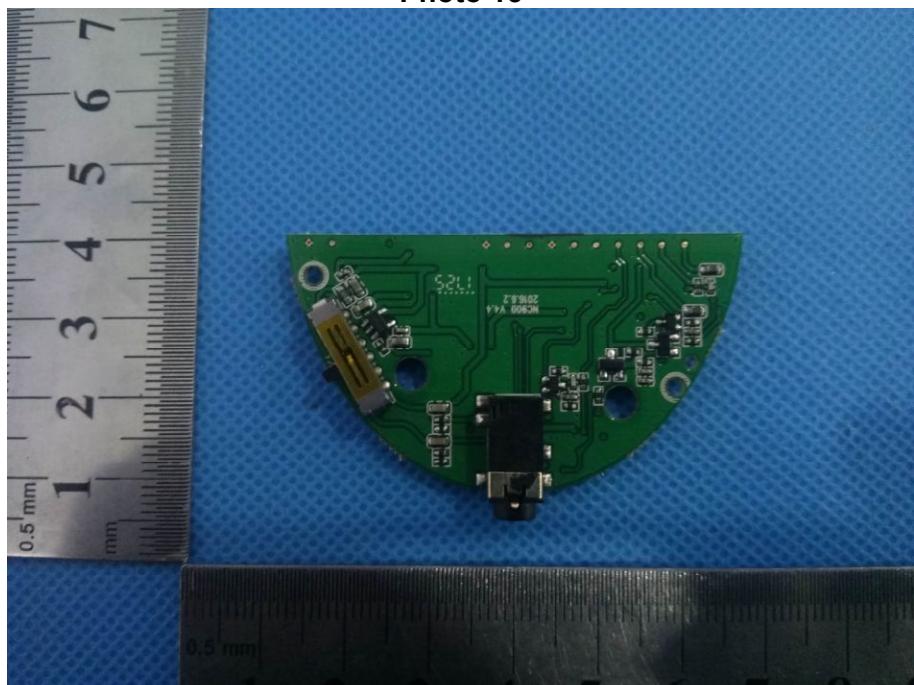

Photo 13

Photo 14

Photo 15

