

MRT Technology (Suzhou) Co., Ltd
Phone: +86-512-66308358
Fax: +86-512-66308368
Web: www.mrt-cert.com

Report No.: 1403RSU02201
Report Version: Rev. 02
Issue Date: 04-10-2014

MEASUREMENT REPORT

FCC PART 95

FCC ID: 2AB4LCPK2201

APPLICANT: Cane Wireless Inc.

Application Type: Certification

Product: 3DS CHAT-PAK

Model No.: CPK2201

FCC Rule Part(s): FCC Part 95: 2013

Test Procedure(s): ANSI/TIA-603-D: 2010

Test Date: March 16 ~ 28, 2014

Reviewed By : Robin Wu

(Robin Wu)

Approved By : Marlin Chen

(Marlin Chen)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI/TIA-603-D: 2010. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date
1403RSU02201	Rev. 01	Initial report	2014-03-28
1403RSU02201	Rev. 02	Check the OBW data	2014-04-10

CONTENTS

Description	Page
§2.1033 General Information	5
1. INTRODUCTION	6
1.1. Scope	6
1.2. MRT Test Location	6
2. PRODUCT INFORMATION	7
2.1. Equipment Description.....	7
2.2. Frequency / Channel Opreation.....	7
2.3. Test Standards	8
2.4. Test Methodology	8
3. TEST EQUIPMENT CALIBRATION DATA	9
4. MEASUREMENT UNCERTAINTY	11
5. TEST RESULT	12
5.1. Summary	12
5.2. RF Output Power	13
5.2.1. Provisions Applicable	13
5.2.2. Test Procedure.....	13
5.2.3. Test Setup.....	14
5.2.4. Test Result.....	15
5.3. Modulation Characteristics.....	16
5.3.1. Provisions Applicable	16
5.3.2. Test Procedure.....	16
5.3.2.1 Frequency deviation	16
5.3.2.2 Modulation Frequency Response	16
5.3.2.3 Audio Low Pass Filter Response	17
5.3.3. Test Setup.....	17
5.3.4. Test Result.....	18
5.4. Occupied Bandwidth And Emission Mask	22
5.4.1. Provisions Applicable	22
5.4.2. Test Procedure.....	22
5.4.3. Test Setup.....	22
5.4.4. Test Result.....	23
5.5. Unwanted Radiated Spurious Emission	25
5.5.1. Provisions Applicable	25
5.5.2. Test Procedure.....	25

5.5.3.	Test Setup.....	26
5.5.4.	Test Result.....	27
5.6.	Frequency Stability	28
5.6.1.	Provisions Applicable	28
5.6.2.	Test Procedure.....	28
5.6.2.1.	Frequency stability versus environmental temperature	28
5.6.2.2.	Frequency stability versus input voltage.....	28
5.6.3.	Test Setup.....	29
5.6.4.	Test Result.....	30
6.	CONCLUSION.....	32

§2.1033 General Information

Applicant:	Cane Wireless Inc.
Applicant Address:	Suite 2A 4301 N Federal Hwy Pompano Beach, FL 33064
Manufacturer:	Shenzhen Freetalker Industry Co., Ltd
Manufacturer Address:	6/F, Building A, Xinghong Since Park, Fenghuanggang, Xixiang, Bao'an District, Shenzhen, China
Test Site:	MRT Technology (Suzhou) Co., Ltd
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China
MRT Registration No.:	809388
FCC Rule Part(s):	Part 95
Model No.	CPK2201
FCC ID:	2AB4LCPK2201
Test Device Serial No.:	N/A <input type="checkbox"/> Production <input checked="" type="checkbox"/> Pre-Production <input type="checkbox"/> Engineering
FCC Classification:	Part 95 Family Radio Face Held Transmitter (FRF)
Date(s) of Test:	March 16 ~ 28, 2014
Test Report S/N:	1403RSU02201

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	3DS CHAT-PAK
Model No.	CPK2201
Frequency Range	462.5625~462.7125MHz (FRS 1~7 channel) 467.5625~467.7125MHz (FRS 8~14 channel) 462.5500~462.7250MHz (GMRS 15~22 channel)
Maximum Output Power	19.62dBm
Type of Modulation	FM
Antenna Type	Internal
Peak Antenna Gain	2.0dBi

2.2. Frequency / Channel Operation

Channel	Frequency	Description	Channel	Frequency	Description
1	462.5625MHz	FRS	12	467.6625 MHz	FRS
2	462.5875 MHz	FRS	13	467.6875 MHz	FRS
3	462.6125 MHz	FRS	14	467.7125 MHz	FRS
4	462.6375 MHz	FRS	15	462.5500 MHz	GMRS
5	462.6625 MHz	FRS	16	462.5750 MHz	GMRS
6	462.6875 MHz	FRS	17	462.6000 MHz	GMRS
7	462.7125 MHz	FRS	18	462.6250 MHz	GMRS
8	467.5625 MHz	FRS	19	462.6500 MHz	GMRS
9	467.5875 MHz	FRS	20	462.6750 MHz	GMRS
10	467.6125 MHz	FRS	21	462.7000 MHz	GMRS
11	467.6375 MHz	FRS	22	462.7250 MHz	GMRS

2.3. Test Standards

The following report is prepared on behalf of the KIDDESIGNS INC. in accordance with FCC Part 95, Subpart A, Subpart E, and FCC Part 2 of the Federal Communication Commission rules.

The objective is to determine compliance with FCC Part 95, Subpart A, Subpart E, and FCC Part 2 of the Federal Communication Commission rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which results in lowering the emission, should be checked to ensure compliance has been maintained.

2.4. Test Methodology

All measurements contained in this report were conducted with TIA-603-D Land Mobile FM or PM Communications Equipment Measurement and Performance Standards and Performance standards and ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

3. TEST EQUIPMENT CALIBRATION DATA

RF Output Power

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
Preamplifier	MRT	AP01G18	1310002	1 year	2014/10/07
Preamplifier	MRT	AP18G40	1310003	1 year	2014/10/07
Loop Antenna	Schwarzbeck	FMZB1519	1519-041	1 year	2014/11/24
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2014/11/24
Broadband Horn Antenna	Schwarzbeck	BBHA9170	9170-549	1 year	2014/12/11
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

Modulation Characteristics

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due Date
Audio Signal Generator	R&S	UPV	101198	1 year	2015/01/09
Modulation Analyzer	Agilent	N9010A	MY51440164	1 year	2015/01/04

Occupied Bandwidth And Emission Mask

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

Unwanted Radiated Spurious Emission

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
Vector Signal Generator	Agilent	N5172B	MY51350057	1 year	2014/12/14
Preamplifier	MRT	AP25M01	1310002	1 year	2014/10/07
Preamplifier	MRT	AP01G18	1310003	1 year	2014/12/14
Bilog Period Antenna	Schwarzbeck	VULB 9162	9162-047	1 year	2014/11/24
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2014/11/24
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

Frequency Stability

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
Temperature & Humidity Chamber	BAOYT	BYH-1500L	1309W043	1 year	2014.11.20
Temperature/Humidity Meter	Anymetre	TH101B	TR3-01	1 year	2014/11/15

4. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

Radiated Emission Measurement
Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$):
9kHz ~ 1GHz: $\pm 4.2\text{dB}$
1GHz ~ 40GHz: $\pm 4.8\text{dB}$

5. TEST RESULT

5.1. Summary

Company Name: Cane Wireless Inc.

FCC ID: 2AB4LCPK2201

Number of Channels: 22

FCC Part Section(s)	Test Description	Test Result	Reference
95.639	Radiated Output Power (ERP)	PASS	Section 5.2
95.637	Modulation Characteristics	PASS	Section 5.3
95.633	Occupied Bandwidth and Emission Mask	PASS	Section 5.4
95.635	Radiated Spurious Emissions	PASS	Section 5.5
95.621, 95.626	Frequency Stability	PASS	Section 5.6

Notes:

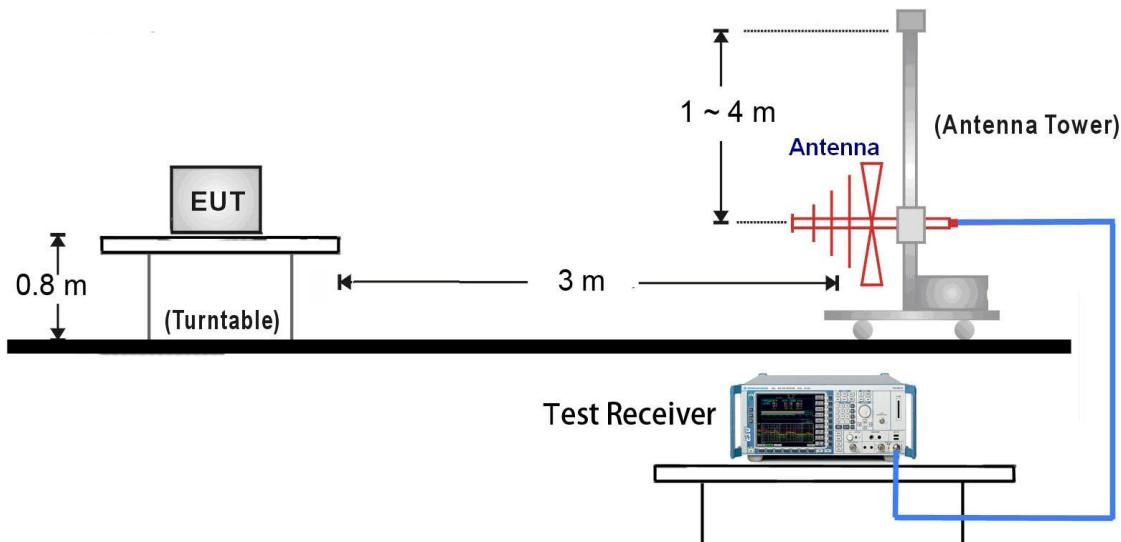
- (1) All modes of operation were investigated. The test results shown in the following sections represent the worst case emissions.
- (2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- (3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

5.2. RF Output Power

5.2.1. Provisions Applicable

Per FCC §2.1046 and §95.639(d): No FRS unit, under any condition of modulation, shall exceed 0.500 W effective radiated power (ERP).

Per FCC §2.1046 and §95.639(a): No GMRS transmitter, under any condition of modulation, shall exceed 50 W Carrier power (average TP during one un-modulated RF cycle) when transmitting emission type A1D, F1D, G1D, A3E, F3E or G3E.


5.2.2. Test Procedure

1. On a test site, the EUT shall be placed at 1.6m height on a wooden turntable, and in the position closest to normal use as declared by the applicant.
2. The test antenna shall be oriented initially for vertical polarization located 3m from EUT to correspond to the frequency of the transmitter.
3. The output of the test antenna shall be connected to the measuring receiver and the quasi-peak detector is used for the measurement.
4. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
5. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
6. The transmitter shall then be rotated through 360° in the horizontal plane, until a maximum signal level is detected by the measuring receiver.
7. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
8. The maximum signal level detected by the measuring receiver shall be noted.
9. The transmitter shall be replaced by a tuned dipole (substitution antenna).
10. The substitution antenna shall be oriented for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
11. The substitution antenna shall be connected to a calibrated signal generator.
If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

12. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver
13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
14. The input signal to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
16. The measure of the ERP is the larger of the two levels recorded, at the input to the substitution antenna, corrected the gain of the substitution antenna if necessary.

5.2.3. Test Setup

30MHz ~ 1GHz Test Setup:

5.2.4. Test Result

Channel	Channel Description	Frequency	Effective Radiated Power		Limit	Over Limit
		MHz	dBm	W	W	W
1	FRS	462.5625	18.21	0.0662	50	-49.9338
2		462.5875	18.42	0.0695	50	-49.9305
3		462.6125	17.91	0.0618	50	-49.9382
4		462.6375	18.91	0.0777	50	-49.9223
5		462.6625	18.32	0.0680	50	-49.9320
6		462.6875	18.81	0.0761	50	-49.9239
7		462.7125	18.55	0.0715	50	-49.9285
8	FRS	467.5625	19.62	0.0916	0.5	-49.9084
9		467.5875	18.86	0.0769	0.5	-49.9231
10		467.6125	19.59	0.0909	0.5	-49.9091
11		467.6375	19.54	0.0899	0.5	-49.9101
12		467.6625	19.54	0.0898	0.5	-49.9102
13		467.6875	19.45	0.0881	0.5	-49.9119
14		467.7125	19.61	0.0914	0.5	-49.9086
15	GMRS	462.5500	18.24	0.0667	50	-49.9333
16		462.5750	18.26	0.0670	50	-49.9330
17		462.6000	18.09	0.0643	50	-49.9357
18		462.6250	18.13	0.0650	50	-49.9350
19		462.6500	17.77	0.0598	50	-49.9402
20		462.6750	18.17	0.0656	50	-49.9344
21		462.7000	18.89	0.0775	50	-49.9225
22		462.7250	19.29	0.0850	50	-49.9150

5.3. Modulation Characteristics

5.3.1. Provisions Applicable

Per FCC §2.1047 and §95.637(a): A GMRS transmitter that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 5 kHz. A FRS unit that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz, the audio frequency response shall roll off before 3.125 kHz.

Each GMRS transmitter, except a mobile station transmitter with a power output of 2.5 W or less, must automatically prevent a greater than normal audio level from causing over-modulation.

The transmitter also must include audio frequency low pass filtering, unless it complies with the applicable paragraphs of § 95.631 (without filtering.) The filter must be between the modulation limiter and the modulated stage of the transmitter. At any frequency (f in kHz) between 3 and 20 kHz, the filter must have an attenuation of at least $60 \log_{10} (f/3)$ dB greater than the attenuation at 1 kHz.

Above 20 kHz, it must have an attenuation of at least 50 dB greater than the attenuation at 1 kHz.

5.3.2. Test Procedure

5.3.2.1 Frequency deviation

1. Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1 kHz using this level as a reference (0dB) and vary the input level from -20 to +20dB. Record the frequency deviation obtained as a function of the input level.
2. Repeat step (1) with input frequency changing to 500, 1000, 2500 and 3125Hz in sequence.

5.3.2.2 Modulation Frequency Response

1. Configure the EUT as shown in figure 1.
2. Adjust the audio signal generator frequency to the sound pressure level 107dB SPL at the microphone of the EUT.
3. Vary the Audio frequency from 100 Hz to 5 kHz and record the frequency deviation.
4. The peak frequency deviation must not exceed 2.5 kHz.

5.3.2.3 Audio Low Pass Filter Response

1. Connect the equipment in figure 2.
2. Connect the audio frequency generator as close as possible the input of the post limiter low pass filter within the transmitter under test.
3. Connect the audio spectrum analyzer to the output of the post limiter low pass filter within the transmitter under test.
4. Apply a 1000 Hz tone from the audio frequency generator and adjust the level per manufacturer's specifications.
5. Record the dB level of the 1000 Hz spectral line on the audio spectrum analyzer as LEV1.
6. Set the audio frequency generator to the desired test frequency between 3000 Hz and the upper low pass filter limit.
7. Record audio spectrum analyzer levels, at the test frequency in step (6).
8. Record the dB level on the audio spectrum analyzer as LEV2. Method of Measurement for transmitters.

5.3.3. Test Setup

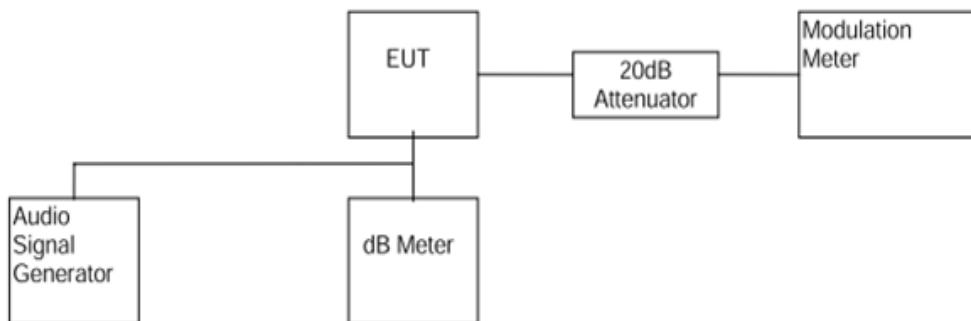


Figure 1

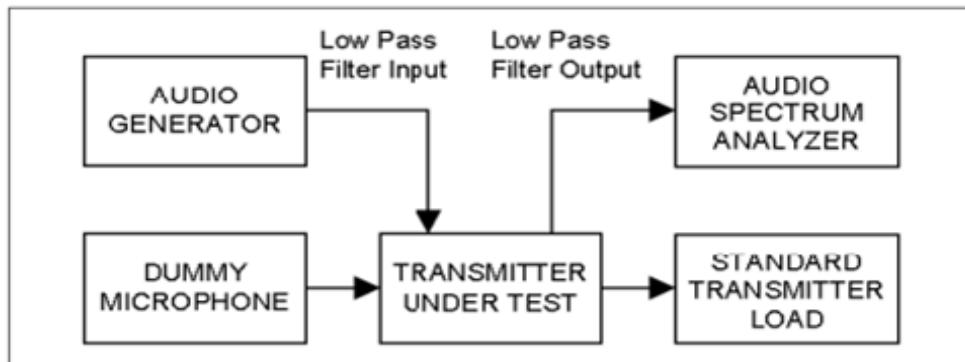
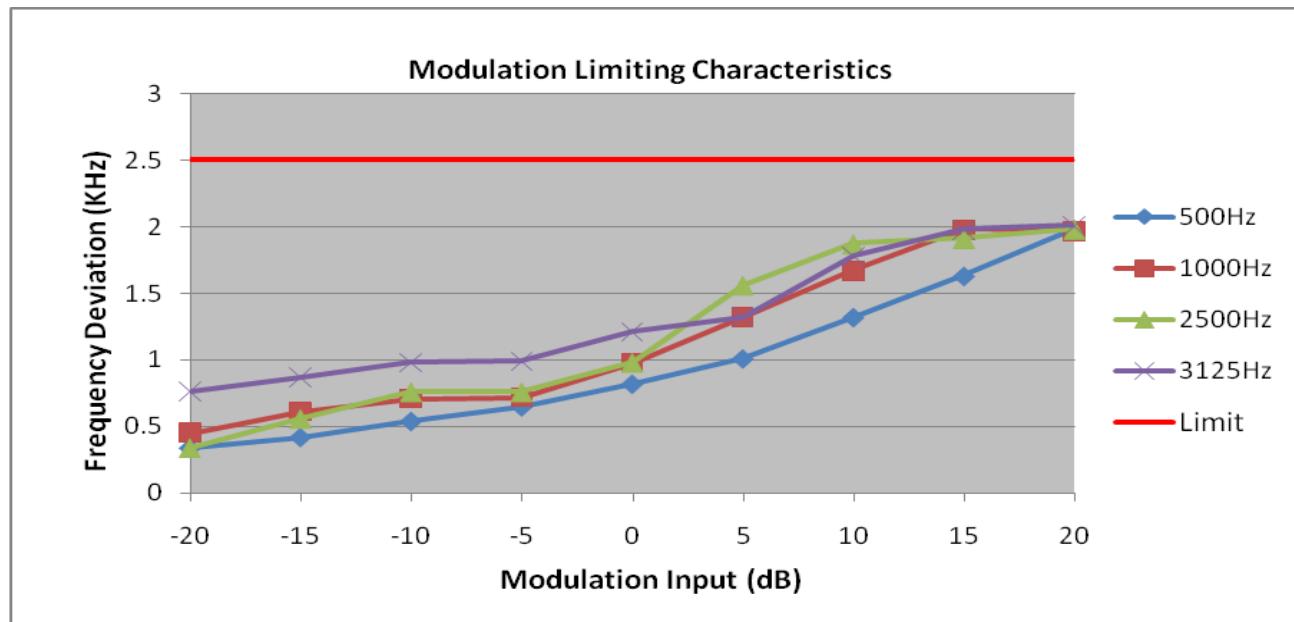
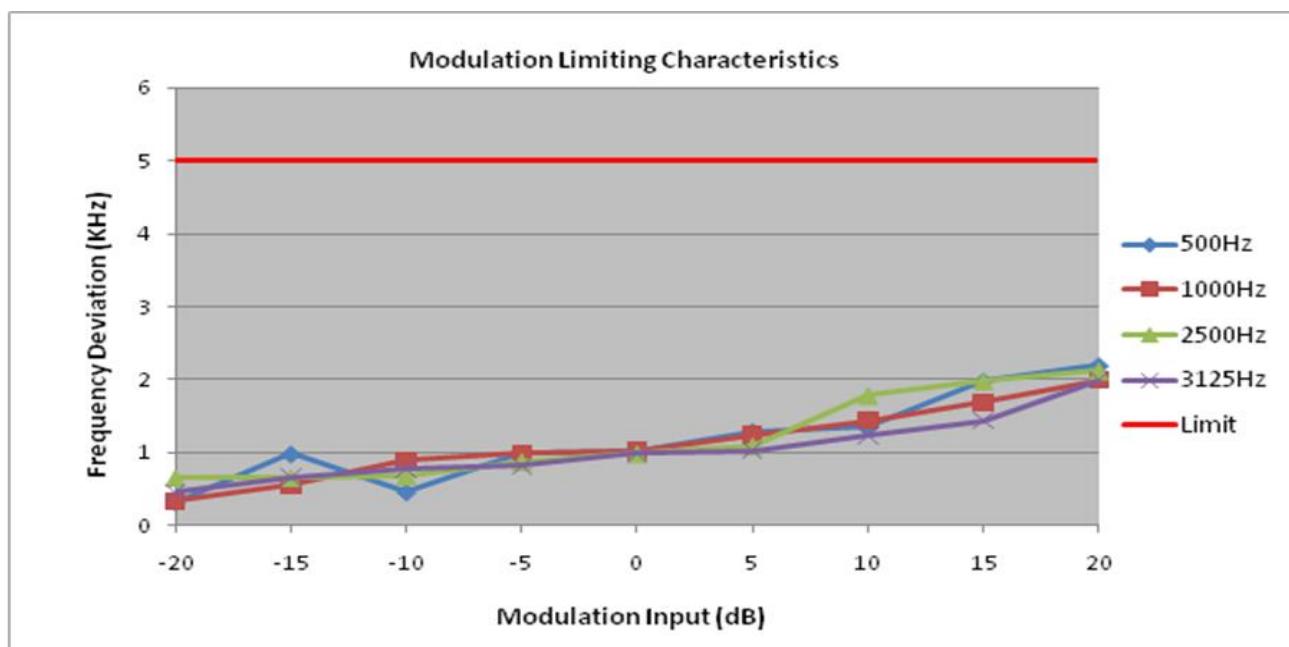
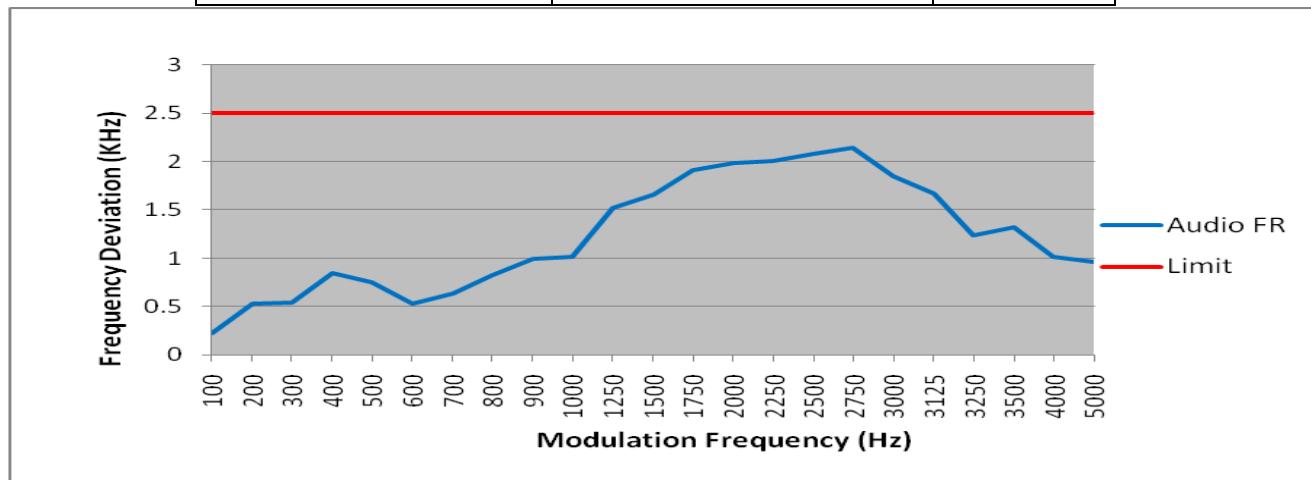



Figure 2

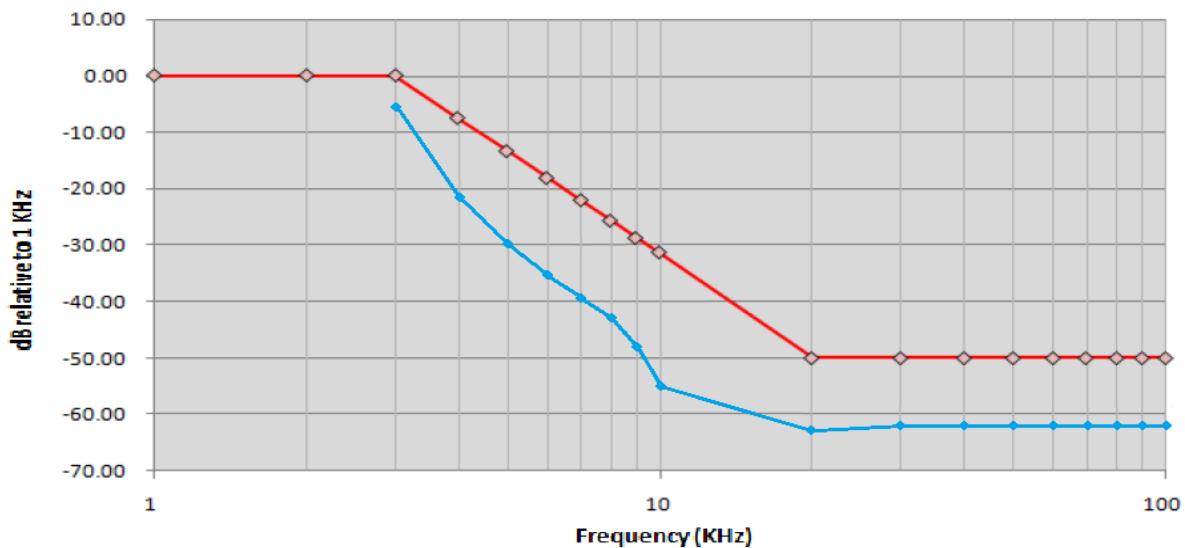

5.3.4. Test Result

Frequency deviation

Channel 11: 467.6375MHz FRS					
Modulation Input (dB)	Peak Frequency Deviation (KHz) at 500Hz	Peak Frequency Deviation (KHz) at 1000Hz	Peak Frequency Deviation (KHz) at 2500Hz	Peak Frequency Deviation (KHz) at 3125Hz	Limit (KHz)
-20.00	0.34	0.45	0.34	0.76	2.50
-15.00	0.42	0.61	0.56	0.87	2.50
-10.00	0.54	0.71	0.76	0.98	2.50
-5.00	0.65	0.72	0.76	0.99	2.50
0.00	0.82	0.98	0.98	1.21	2.50
5.00	1.01	1.32	1.56	1.32	2.50
10.00	1.32	1.67	1.87	1.78	2.50
15.00	1.63	1.98	1.91	1.98	2.50
20.00	1.98	1.97	1.98	2.01	2.50



Channel 19: 462.6500MHz GMRS					
Modulation Input (dB)	Peak Frequency Deviation (KHz) at 500Hz	Peak Frequency Deviation (KHz) at 1000Hz	Peak Frequency Deviation (KHz) at 2500Hz	Peak Frequency Deviation (KHz) at 3125Hz	Limit (KHz)
-20.00	0.32	0.34	0.65	0.45	5.00
-15.00	0.98	0.56	0.65	0.65	5.00
-10.00	0.46	0.89	0.67	0.77	5.00
-5.00	0.98	0.98	0.87	0.81	5.00
0.00	1.02	1.02	0.98	0.98	5.00
5.00	1.29	1.23	1.09	1.02	5.00
10.00	1.34	1.43	1.78	1.23	5.00
15.00	1.98	1.68	1.98	1.43	5.00
20.00	2.19	1.98	2.12	1.98	5.00


Audio Frequency Response

Channel 11 for FRS		
Modulation Frequency (Hz)	Peak Modulation Deviation (KHz)	Limit (KHz)
100	0.22	2.5
200	0.53	2.5
300	0.54	2.5
400	0.85	2.5
500	0.75	2.5
600	0.53	2.5
700	0.63	2.5
800	0.82	2.5
900	0.99	2.5
1000	1.02	2.5
1250	1.52	2.5
1500	1.66	2.5
1750	1.92	2.5
2000	1.99	2.5
2250	2.01	2.5
2500	2.09	2.5
2750	2.15	2.5
3000	1.85	2.5
3125	1.67	2.5
3250	1.24	2.5
3500	1.32	2.5
4000	1.02	2.5
5000	0.96	2.5

Audio Low Pass Filter Frequency Response

Channel 19 for GMRS		
Frequency (KHz)	Response	Limit
1	-0.01	0.00
2	-0.01	0.00
3	-5.10	0.00
4	-21.12	-7.50
5	-29.92	-13.31
6	-35.61	-18.06
7	-39.97	-22.08
8	-42.57	-25.56
9	-48.71	-28.63
10	-55.35	-31.37
20	-62.71	-50.00
30	-61.98	-50.00
40	-61.98	-50.00
50	-61.98	-50.00
60	-61.98	-50.00
70	-61.98	-50.00
80	-61.98	-50.00
90	-61.98	-50.00
100	-61.98	-50.00

5.4. Occupied Bandwidth And Emission Mask

5.4.1. Provisions Applicable

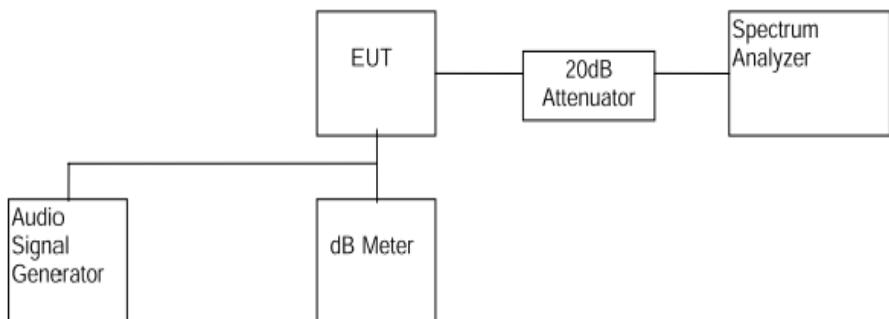
According to FCC Part §95.633 (a), the authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz. (c) The authorized bandwidth for emission type F3E or F2D transmitted by a FRS unit is 12.5 kHz.

Per FCC §95.635 (b) (1), at least 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50% up to and including 100% of the authorized bandwidth.

Per FCC §95.635 (b) (3), At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100% up to and including 250% of the authorized bandwidth.

Per FCC §95.635 (b) (7), At least $43 + 10 \log_{10} (T)$ dB on any frequency removed from the center of the authorized bandwidth by more than 250%.

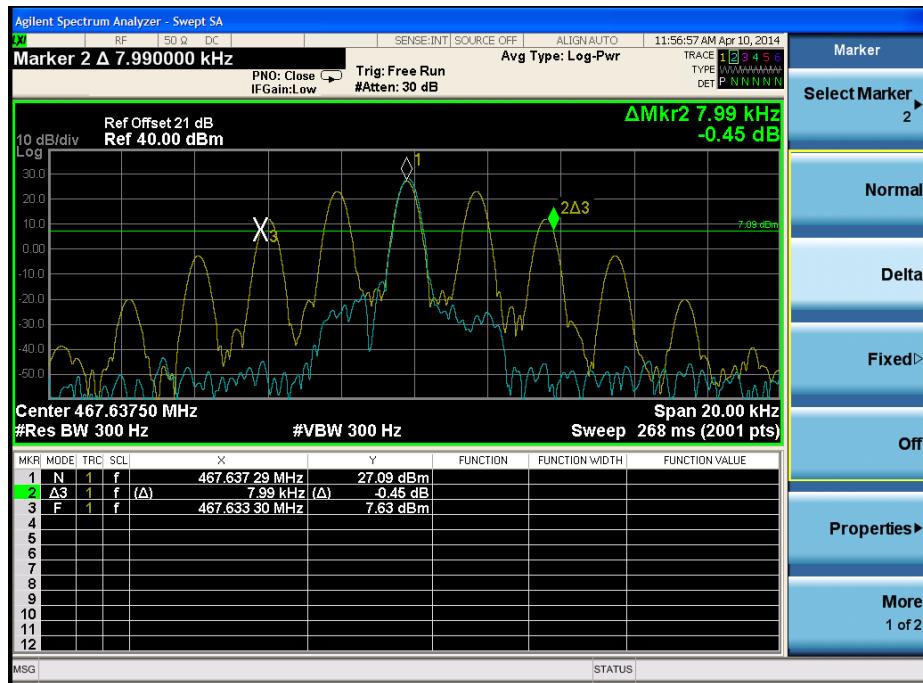
5.4.2. Test Procedure

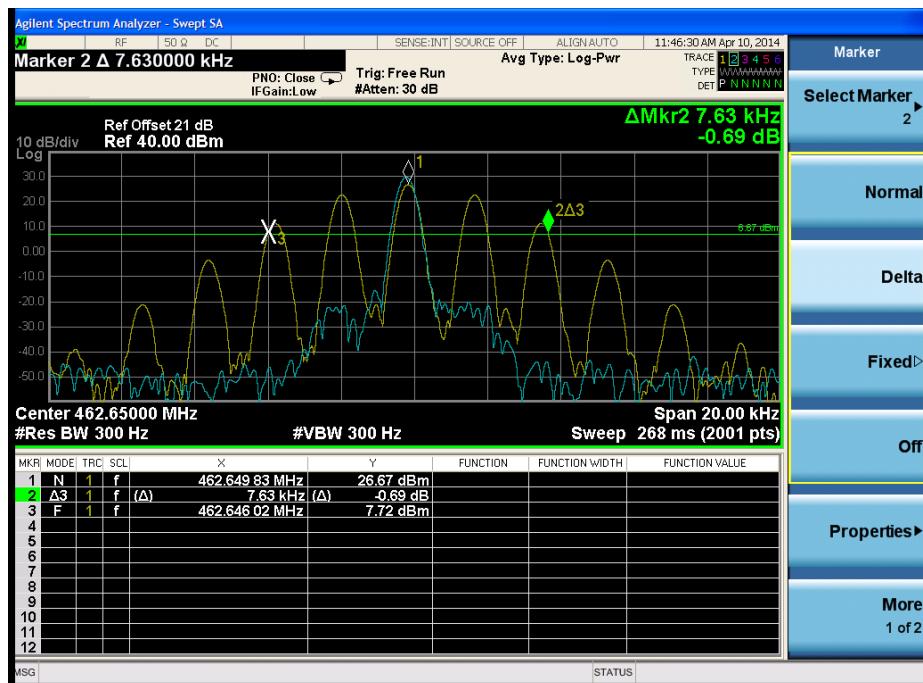

The set-up test equipment in the following configuration:

The EUT was modulated by 2.5 KHz Sine wave audio signal. The level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 KHz (12.5 KHz channel spacing).

Setting the SPA Center Frequency = fundamental frequency, RBW=VBW=300 Hz, Span=20 KHz.

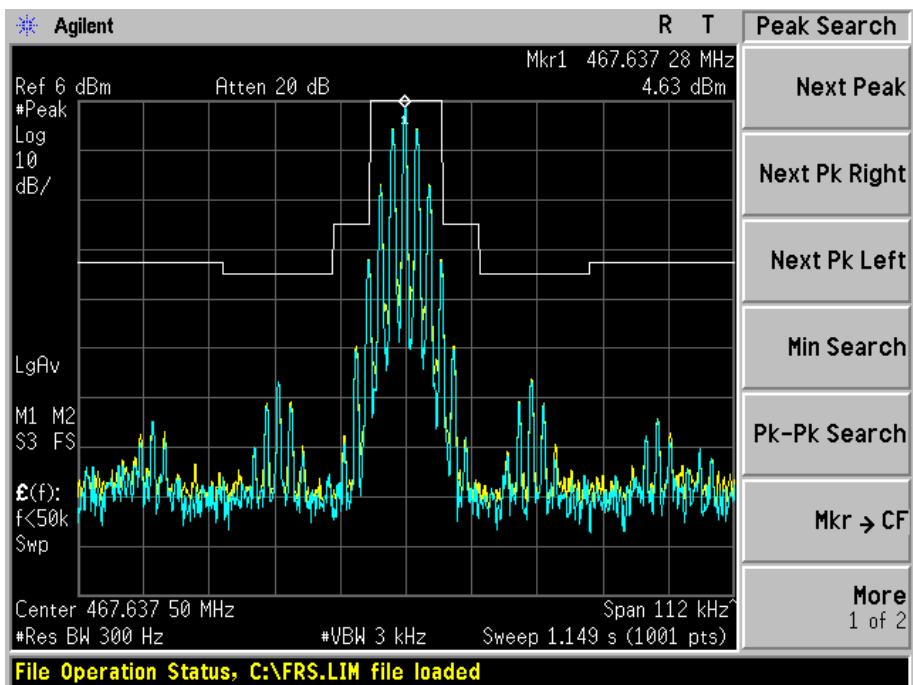
Setting SPA to Max hold. Mark peak -20dB.


5.4.3. Test Setup

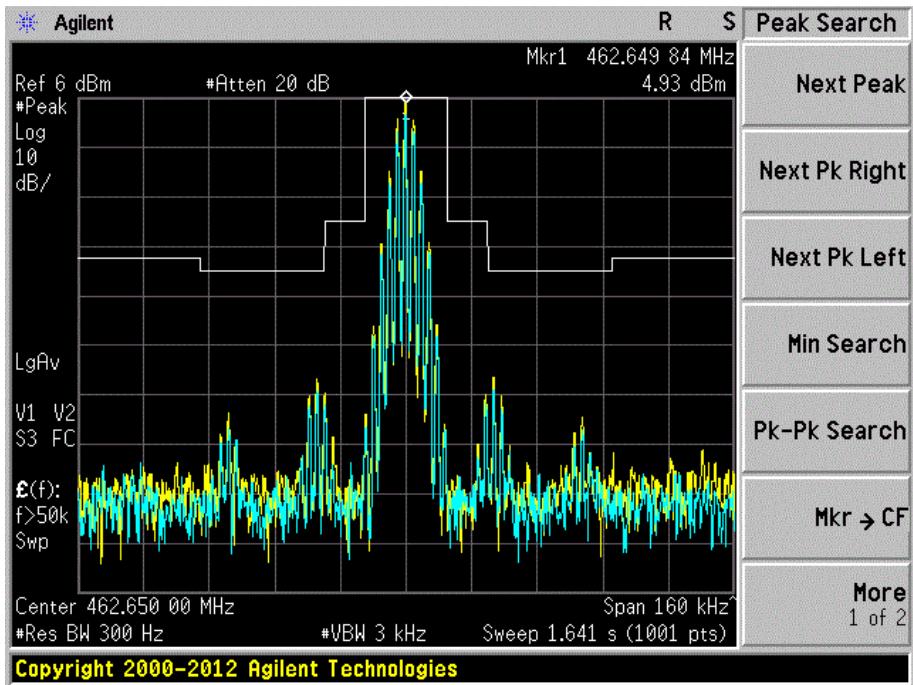

5.4.4. Test Result

Occupied Bandwidth:

The occupied Bandwidth is measured to be 7.99 KHz for FRS



The occupied Bandwidth is measured to be 7.63 KHz for GMRS



Mask:

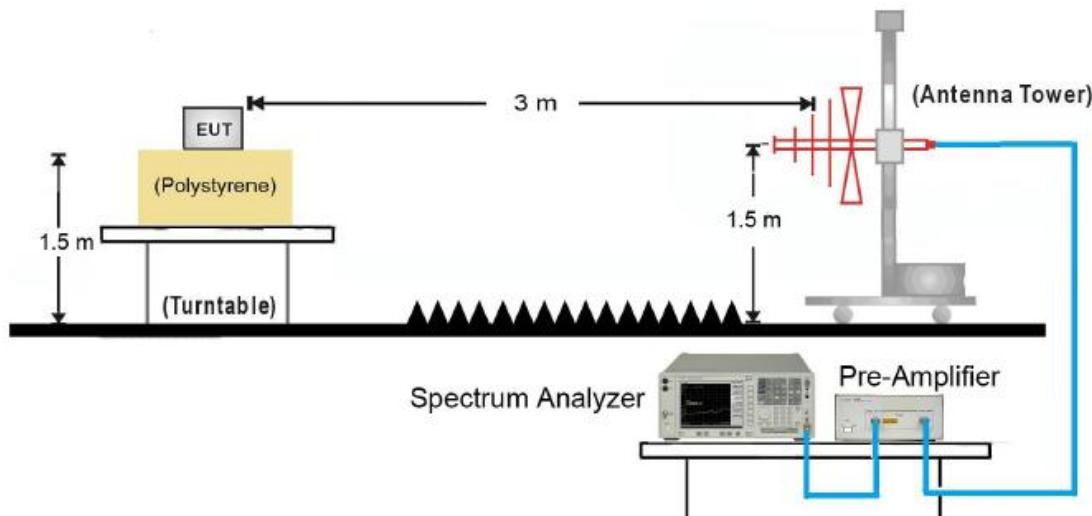
Channel 11: 467.6375MHz FRS

Channel 19: 462.6500MHz GMRS

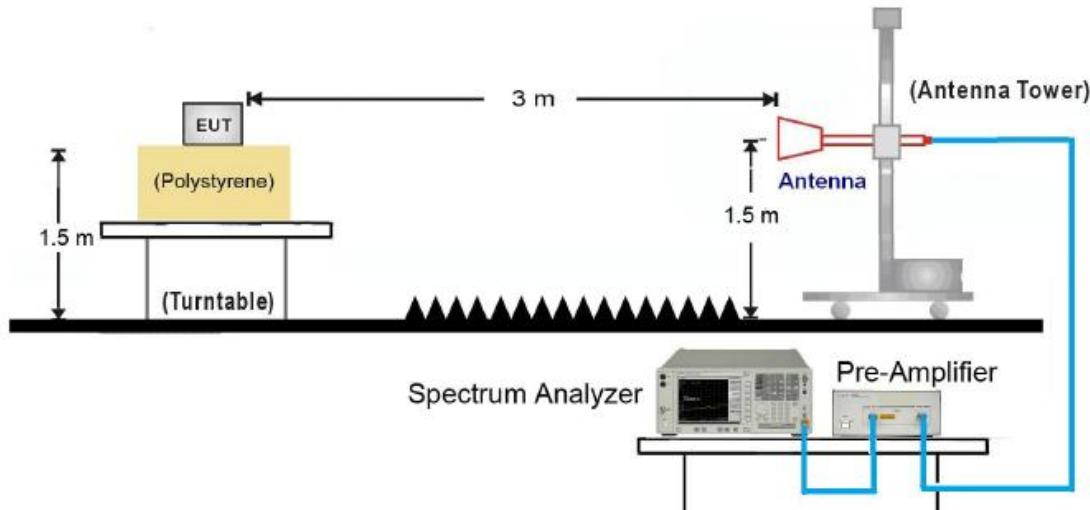
5.5. Unwanted Radiated Spurious Emission

5.5.1. Provisions Applicable

According to FCC section 95.635(b7), the unwanted emission should be attenuated below TP by at least $43+10 \log (\text{Transmit Power})$ dB.


5.5.2. Test Procedure

1. On a test site, the EUT shall be placed on a turntable and in the position closest to the normal use as declared by the user.
2. The test antenna shall be oriented initially for vertical polarization located 3m from the EUT to correspond to the transmitter.
3. The output of the antenna shall be connected to the measuring receiver and either a peak or quasi-peak detector was used for the measurement as indicated on the report. The detector selection is based on how close the emission level was approaching the limit.
4. The transmitter shall be switched on; if possible, without the modulation and the measurement receiver shall be tuned to the frequency of the transmitter under test.
5. The test antenna shall be raised and lowered through the specified range of height until the measuring receiver detects a maximum signal level.
6. The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
7. The test antenna shall be raised and lowered again through the specified range of height until the measuring receiver detects a maximum signal level.
8. The maximum signal level detected by the measuring receiver shall be noted.
9. The measurement shall be repeated with the test antenna set to horizontal polarization.
10. Replace the antenna with a proper Antenna (substitution antenna).
11. The substitution antenna shall be oriented for vertical polarization and, if necessary, the length of the substitution antenna shall be adjusted to correspond to the frequency of transmitting.
12. The substitution antenna shall be connected to a calibrated signal generator.
13. If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
14. The test antenna shall be raised and lowered through the specified range of the height to ensure that the maximum signal is received.


15. The input signal to substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuation setting of the measuring receiver.
16. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
17. The measurement shall be repeated with the test antenna and the substitution antenna oriented for horizontal polarization.

5.5.3. Test Setup

30MHz ~ 1GHz Test Setup:

Above 1GHz Test Setup:

5.5.4. Test Result.

Channel 11 Frequency = 467.6375MHz

Frequency (MHz)	Polarity (V/H)	Emission level (dBm)	FCC Part 95 Limit dBm	Over Limit (dBm)
935.5	V	-30.62	-13	-17.62
1399.5	V	-30.65	-13	-17.65
1867.0	V	-36.94	-13	-23.94
2334.5	V	-38.49	-13	-25.49
2802.0	V	-37.11	-13	-24.11
935.5	H	-32.81	-13	-19.81
1399.5	H	-39.63	-13	-26.63
1867.0	H	-49.96	-13	-36.96
2334.5	H	-41.18	-13	-28.18
2802.0	H	-43.94	-13	-30.94

Channel 19 Frequency = 462.6500MHz

Frequency (MHz)	Polarity (V/H)	Emission level (dBm)	FCC Part 95 Limit (dBm)	Over Limit (dBm)
925.3	V	-25.84	-13	-12.84
1391.0	V	-31.95	-13	-18.95
1850.0	V	-31.79	-13	-18.79
2309.0	V	-36.37	-13	-23.37
2776.5	V	-36.32	-13	-23.32
925.3	H	-21.36	-13	-8.36
1391.0	H	-34.10	-13	-21.10
1850.0	H	-38.93	-13	-25.93
2309.0	H	-43.48	-13	-30.48
2776.5	H	-39.26	-13	-26.26

5.6. Frequency Stability

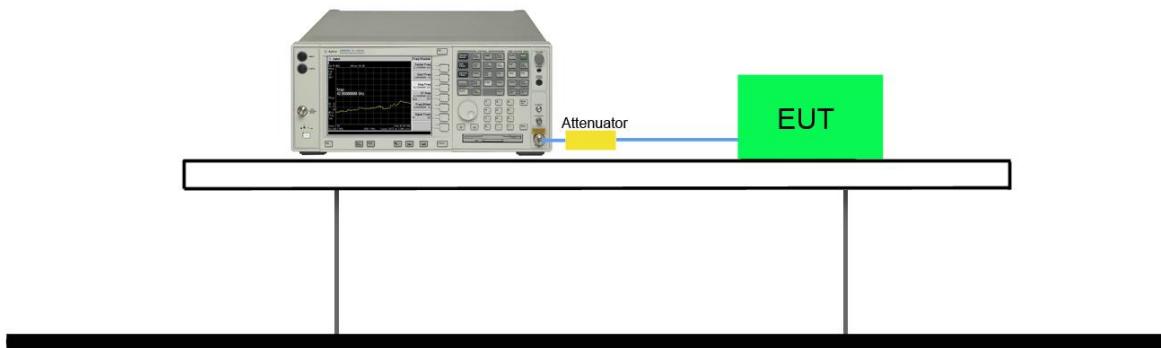
5.6.1. Provisions Applicable

According to FCC Section 95.626, the frequency stability shall be measured with variation of ambient temperature from -30°C to +50°C centigrade. Each FRS unit must be maintained within a frequency tolerance of 0.00025%.

According to FCC Section 95.621, the frequency stability shall be measured with variation of ambient temperature from -30°C to +50°C centigrade each GMRS transmitter for mobile station, small base station and control station operation must be maintained within a frequency tolerance of 0.0005%.

5.6.2. Test Procedure

5.6.2.1. Frequency stability versus environmental temperature


1. Setup the configuration per figure 1 for frequencies measurement inside an environment chamber. Install new battery in the EUT.
2. Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1 KHz and Frequency Span to 50KHz. Record this frequency as reference frequency.
3. Set the temperature of chamber to 50°C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
4. Repeat step 2 with a 10°C decreased per stage until the lowest temperature -30°C is measured, Record all measured frequencies on each temperature step.

5.6.2.2. Frequency stability versus input voltage

1. Setup the configuration per figure 1 for frequencies measured at temperature if it is within 15°C to 25°C. Otherwise, an environment chamber set for a temperature of 20°C shall be used. The EUT shall be powered by DC 4.5 V.
2. Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
3. Supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

5.6.3. Test Setup

Spectrum Analyzer

5.6.4. Test Result

Assigned Frequency (MHz)	Temperature (°C)	Measured Frequency (MHz)	Frequency Deviation	Limit (%)
GMRS Channel 19 462.6500	-30	462.6499179870	0.0000177268%	0.0005%
	-20	462.6499144390	0.0000184937%	0.0005%
	-10	462.6499107810	0.0000192843%	0.0005%
	0	462.6500329370	0.0000071192%	0.0005%
	10	462.6500810850	0.0000175262%	0.0005%
	20	462.6500296080	0.0000063997%	0.0005%
	30	462.6500195460	0.0000042248%	0.0005%
	40	462.6500233030	0.0000050369%	0.0005%
	50	462.6500083070	0.0000017955%	0.0005%
FRS Channel 11 467.6375	-30	467.6373106750	0.0000404854%	0.00025%
	-20	467.6373156850	0.0000394141%	0.00025%
	-10	467.6373197710	0.0000385403%	0.00025%
	0	467.6373452170	0.0000330989%	0.00025%
	10	467.6373312940	0.0000360762%	0.00025%
	20	467.6373393800	0.0000343471%	0.00025%
	30	467.6373350270	0.0000352780%	0.00025%
	40	467.6373324820	0.0000358222%	0.00025%
	50	467.6373337430	0.0000355525%	0.00025%

Assigned Frequency (MHz)	Voltage (V)	Measured Frequency (MHz)	Frequency Deviation (KHz)	Limit (%)
GMRS Channel 19 462.6500	3.6	462.6499340520	-0.0001425440	0.0005%
	3.7	462.6499324130	-0.0001460867	0.0005%
	3.8	462.6500357220	0.0000772117	0.0005%
	3.9	462.6500377060	0.0000815001	0.0005%
	4.0	462.6500356010	0.0000769502	0.0005%
	4.1	462.6500349400	0.0000755215	0.0005%
	4.2	462.6500307100	0.0000663785	0.0005%
	4.3	462.6500255280	0.0000551778	0.0005%
	4.4	462.6500230450	0.0000498109	0.0005%
	4.5	462.6500201350	0.0000435210	0.0005%
FRS Channel 11 467.6375	3.6	467.6373257110	-0.0003727011	0.00025%
	3.7	467.6373153330	-0.0003948935	0.00025%
	3.8	467.6373081150	-0.0004103285	0.00025%
	3.9	467.6373070040	-0.0004127043	0.00025%
	4.0	467.6373060610	-0.0004147208	0.00025%
	4.1	467.6373090540	-0.0004083205	0.00025%
	4.2	467.6373121370	-0.0004017278	0.00025%
	4.3	467.6373152870	-0.0003949918	0.00025%
	4.4	467.6373188880	-0.0003872914	0.00025%
	4.5	467.6373248330	-0.0003745786	0.00025%

6. CONCLUSION

The data collected relate only the item(s) tested and show that the **3DS CHAT-PAK FCC ID: 2AB4LCPK2201** is in compliance with Part 95 of the FCC Rules.

The End
