

Sunway Electronics Company

Application
For
Certification
FCC ID: 2AB3UDG022

Product Description: wireless optical mouse

Model: HE7722
Additional Model: M-22
Brand Name: Sunway

2.4GHz Transceiver

Report No.: 140318003SZN-001

We hereby certify that the sample of the above item is considered to comply with the requirements of FCC Part 15, Subpart C for Intentional Radiator, mention 47 CFR [10-1-13]

Prepared and Checked by:

Approved by:

Sign on file

Benson Wang
Assistant Engineer

Andy Yan
Project Engineer
Date: July 1, 2014

- The test results reported in this test report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have been obtained.
- This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results referenced from this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.
- For Terms And Conditions of the services, it can be provided upon request.
- The evaluation data of the report will be kept for 3 years from the date of issuance.

TRF: No.: FCC 15C_TX_b

Intertek Testing Services Shenzhen Ltd. Kejiyuan Branch

6F, D Block, Huahan Building, Langshan Road, Nanshan District, Shenzhen, P. R. China

Tel: (86 755) 8601 6288 Fax: (86 755) 8601 6751 Website: www.china.intertek-etlsemko.com

INTERTEK TESTING SERVICES

LIST OF EXHIBITS

INTRODUCTION

<i>EXHIBIT 1:</i>	General Description
<i>EXHIBIT 2:</i>	System Test Configuration
<i>EXHIBIT 3:</i>	Emission Results
<i>EXHIBIT 4:</i>	Equipment Photographs
<i>EXHIBIT 5:</i>	Product Labelling
<i>EXHIBIT 6:</i>	Technical Specifications
<i>EXHIBIT 7:</i>	Instruction Manual
<i>EXHIBIT 8:</i>	Miscellaneous Information
<i>EXHIBIT 9:</i>	Confidentiality Request
<i>EXHIBIT 10:</i>	Test Equipment List

INTERTEK TESTING SERVICES

MEASUREMENT/TECHNICAL REPORT

Sunway Electronics Company

Model: HE7722

Additional Model: M-22

Brand Name: Sunway

FCC ID: 2AB3UDG022

This report concerns (check one:) Original Grant Class II Change _____

Equipment Type: DXX - Part 15 Low Power Communication Device Transmitter

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? Yes _____ No

If yes, defer until: _____
date

Company Name agrees to notify the Commission by: _____
date
of the intended date of announcement of the product so that the grant can be issued on that date.

Transition Rules Request per 15.37? Yes _____ No

If no, assumed Part 15, Subpart C for intentional radiator – the new 47 CFR [10-1-13 Edition] provision.

Report prepared by:

Benson Wang
Intertek Testing Services Shenzhen Ltd.
Kejiyuan Branch
6F, Block D, Huahan Building, Langshan Road,
Nanshan District, Shenzhen, P. R. China
Phone: (86 755) 8614 0629
Fax: (86 755) 8601 6751

INTERTEK TESTING SERVICES

Table of Contents

1.0 <u>General Description</u>	2
1.1 Product Description	2
1.2 Related Submittal(s) Grants	2
1.3 Test Methodology.....	2
1.4 Test Facility.....	2
2.0 <u>System Test Configuration</u>	4
2.1 Justification	4
2.2 EUT Exercising Software.....	4
2.3 Special Accessories	4
2.4 Equipment Modification	4
2.5 Measurement Uncertainty	5
2.6 Support Equipment List and Description	5
3.0 <u>Emission Results</u>	7
3.1 Radiated Test Results.....	8
3.1.1 Field Strength Calculation.....	8
3.1.2 Radiated Emission Configuration Photograph.....	9
3.1.3 Radiated Emissions.....	9
3.1.4 Transmitter Spurious Emissions (Radiated).....	11
4.0 <u>Equipment Photographs</u>	16
5.0 <u>Product Labelling</u>	18
6.0 <u>Technical Specifications</u>	20
7.0 <u>Instruction Manual</u>	22
8.0 <u>Miscellaneous Information</u>	24
8.1 Bandedge Plot	25
8.2 Discussion of Pulse Desensitizatio	27
8.3 Calculation of Average Factor.....	28
8.4 Emissions Test Procedures	29
9.0 <u>Confidentiality Request</u>	32
10.0 <u>Test Equipment List</u>	34

INTERTEK TESTING SERVICES

List of attached file

Exhibit type	File Description	Filename
Test Report	Test Report	report.pdf
Test Setup Photo	Radiated Emission	radiated photos.pdf
Test Setup Photo	Conducted Emission	conducted photos.pdf
Test Report	20dB BW Plot	bw.pdf
Test Report	Average Factor	af.pdf
Test Report	Bandedge Plot	bandedge.pdf
External Photo	External Photo	external photos.pdf
Internal Photo	Internal Photo	internal photos.pdf
Block Diagram	Block Diagram	block.pdf
Schematics	Circuit Diagram	circuit.pdf
Operation Description	Technical Description	descri.pdf
ID Label/Location	Label Artwork and Location	label.pdf
User Manual	User Manual	manual.pdf
Cover Letter	Letter of Agency	agency.pdf
Cover Letter	Confidentiality Request	request.pdf

INTERTEK TESTING SERVICES

EXHIBIT 1

GENERAL DESCRIPTION

TRF No.: FCC 15C_TX_b
FCC ID: 2AB3UDG022

INTERTEK TESTING SERVICES

1.0 General Description

1.1 Product Description

The Equipment under Test (EUT) is a wireless optical mouse (Mouse Unit), powered by DC 3.0V (2 x 1.5V AAA batteries) and operating at 2409MHz – 2476MHz. For more detail please refer to user manual.

The Model: M-22 is the same as the Model: HE7722 in hardware aspect. The difference are appearance and model number serves as marketing strategy.

Antenna Type: Integral antenna.

Modulation Type: GFSK

For electronic filing, the brief circuit description is saved with filename: descri.pdf.

1.2 Related Submittal(s) Grants

This is an application for certification of a transceiver for the Mouse unit, and the corresponding USB Dongle unit (2.4GHz transceiver) is subjected to FCC certification with FCC ID: 2AB3UDG022A.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (2009). Radiated Emission measurement was performed in a Semi-anechoic chamber. Preliminary scans were performed in the Semi-anechoic chamber only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the **"Justification Section"** of this Application.

1.4 Test Facility

The Semi-Anechoic chamber and shielding room used to collect the radiated data and conducted data are **Intertek Testing Services Shenzhen Ltd. Kejiyuan Branch** and located at 6F, Block D, Huahan Building, Langshan Road, Nanshan District, Shenzhen, P. R. China. This test facility and site measurement data have been fully placed on file with the FCC (Registration Number: 242492).

TRF No.: FCC 15C_TX_b
FCC ID: 2AB3UDG022

INTERTEK TESTING SERVICES

EXHIBIT 2

SYSTEM TEST CONFIGURATION

TRF No.: FCC 15C_TX_b
FCC ID: 2AB3UDG022

INTERTEK TESTING SERVICES

2.0 System Test Configuration

2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4: 2009.

The EUT was powered by new 2 x 1.5V “AAA” batteries, during the test. Only the worst case data was reported.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was operated standalone and placed in the centre of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on a turn table, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

2.2 EUT Exercising Software

The EUT exercise program (provided by client) used during testing was designed to exercise the various system components in a manner similar to a typical use.

2.3 Special Accessories

No special accessories used.

2.4 Equipment Modification

Any modifications installed previous to testing by Sunway Electronics Company will be incorporated in each production model sold / leased in the United States.

No modifications were installed by Intertek Testing Services Shenzhen Ltd. Kejiyuan Branch.

INTERTEK TESTING SERVICES

2.5 Measurement Uncertainty

When determining the test conclusion, the Measurement Uncertainty of test has been considered.

2.6 Support Equipment List and Description

Description	Manufacturer	Model No.
Laptop	Lenovo	T420
Hard Disk	N/A	Smart. drive
1394 Cable	N/A	unshielded, Length: 120cm
USB Cable	N/A	unshielded, Length: 120cm
USB Dongle Unit	Sunway	HE7722

INTERTEK TESTING SERVICES

EXHIBIT 3

EMISSION RESULTS

TRF No.: FCC 15C_TX_b
FCC ID: 2AB3UDG022

INTERTEK TESTING SERVICES

3.0 Emission Results

Data is included worst-case configuration (the configuration which resulted in the highest emission levels).

INTERTEK TESTING SERVICES

3.1 Radiated Test Results

A sample calculation, configuration photographs and data tables of the emissions are included.

3.1.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any), Average Factor (optional) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG - AV$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

AV = Average Factor in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

$$FS = RR + LF$$

where FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RR = $RA - AG - AV$ in $\text{dB}\mu\text{V}$

LF = $CF + AF$ in dB

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB and average factor of 5 dB are subtracted, giving a field strength of 27 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$$RA = 52.0 \text{ dB}\mu\text{V}/\text{m}$$

$$AF = 7.4 \text{ dB}$$

$$RR = 18.0 \text{ dB}\mu\text{V}$$

$$CF = 1.6 \text{ dB}$$

$$LF = 9.0 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$AV = 5.0 \text{ dB}$$

$$FS = RR + LF$$

$$FS = 18 + 9 = 27 \text{ dB}\mu\text{V}/\text{m}$$

$$\text{Level in } \mu\text{V}/\text{m} = \text{Common Antilogarithm } [(27 \text{ dB}\mu\text{V}/\text{m})/20] = 22.4 \mu\text{V}/\text{m}$$

INTERTEK TESTING SERVICES

3.1.2 Radiated Emission Configuration Photograph

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos. pdf.

3.1.3 Radiated Emissions

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission
at
37.760 MHz

Judgement: Passed by 11.7 dB

TEST PERSONNEL:

Sign on file

Benson Wang, Assistant Engineer
Typed/Printed Name

June 27, 2014

Date

INTERTEK TESTING SERVICES

Applicant: Sunway Electronics Company

Date of Test: June 27, 2014

Model: HE7722

Sample: 1/1

Worst Case Operating Mode: Transmit

Table 1

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
Horizontal	30.485	33.2	26.0	14.0	21.2	40.0	-18.8
Horizontal	273.470	35.9	26.0	16.9	26.8	46.0	-19.2
Horizontal	300.660	33.7	26.0	20.4	28.1	46.0	-17.9
Vertical	30.960	37.1	26.0	14.0	25.1	40.0	-14.9
Vertical	37.760	36.4	26.0	17.9	28.3	40.0	-11.7
Vertical	165.315	34.7	26.0	19.9	28.6	43.5	-14.9

NOTES: 1. Quasi-Peak detector is used except for others stated.

2. All measurements were made at 3 meters. Harmonic emissions not detected at the 3-meter distances were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.

3. Negative value in the margin column shows emission below limit.

4. All emissions are below the QP limit.

INTERTEK TESTING SERVICES

3.1.4 Transmitter Spurious Emissions (Radiated)

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Worst Case Radiated Emission
at
4952 MHz

Judgement: Passed by 6.8 dB

TEST PERSONNEL:

Sign on file

Benson Wang, Engineer
Typed/Printed Name

June 27, 2014
Date

INTERTEK TESTING SERVICES

Applicant: Sunway Electronics Company
Model: HE7722
Sample: 1/1
Mode: Transmit (2409MHz)

Date of Test: June 27, 2014

Table 2

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
Vertical	2409.000	99.8	36.7	28.5	91.6	114.0	-22.4
Vertical	4818.000	73.3	36.7	28.5	65.1	74.0	-8.9
Vertical	7227.000	62.8	36.1	33.1	59.8	74.0	-14.2

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
Vertical	2409.000	99.8	36.7	28.5	22.9	68.7	94.0	-25.3
Vertical	4818.000	73.3	36.7	28.5	22.9	42.2	54.0	-11.8
Vertical	7227.000	62.8	36.1	33.1	22.9	36.9	54.0	-17.1

Notes: 1. Peak Detector Data unless otherwise stated.

2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna is used for the emission over 1000MHz.

Test Engineer: Benson Wang

TRF No.: FCC 15C_TX_b
FCC ID: 2AB3UDG022

INTERTEK TESTING SERVICES

Applicant: Sunway Electronics Company
Model: HE7722
Sample: 1/1
Mode: Transmit (2440MHz)

Date of Test: June 27, 2014

Table 3

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Peak Limit at 3m (dB μ V/m)	Margin (dB)
Vertical	2440.000	102.4	36.7	28.5	94.2	114.0	-19.8
Vertical	4880.000	74.8	36.7	28.5	66.6	74.0	-7.4
Vertical	7320.000	63.4	36.1	33.1	60.4	74.0	-13.6

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
Vertical	2440.000	102.4	36.7	28.5	22.9	71.3	94.0	-22.7
Vertical	4880.000	74.8	36.7	28.5	22.9	43.7	54.0	-10.3
Vertical	7320.000	63.4	36.1	33.1	22.9	37.5	54.0	-16.5

Notes:

1. Peak Detector Data unless otherwise stated.
2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna is used for the emission over 1000MHz.

Test Engineer: Benson Wang

TRF No.: FCC 15C_TX_b
FCC ID: 2AB3UDG022

INTERTEK TESTING SERVICES

Applicant: Sunway Electronics Company
Model: HE7722
Sample: 1/1
Mode: Transmit (2476MHz)

Date of Test: June 27, 2014

Table 4

Radiated Emissions

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Net at 3m (dB μ V/m)	Limit at 3m (dB μ V/m)	Margin (dB)
Vertical	2476.000	102.8	36.7	28.6	94.7	114.0	-19.3
Vertical	4952.000	75.3	36.7	28.6	67.2	74.0	-6.8
Vertical	7428.000	64.1	36.1	33.4	61.4	74.0	-12.6

Polarization	Frequency (MHz)	Reading (dB μ V)	Pre-Amp Gain (dB)	Antenna Factor (dB)	Average Factor (-dB)	Net at 3m (dB μ V/m)	Average Limit at 3m (dB μ V/m)	Margin (dB)
Vertical	2476.000	102.8	36.7	28.6	22.9	71.8	94.0	-22.2
Vertical	4952.000	75.3	36.7	28.6	22.9	44.3	54.0	-9.7
Vertical	7428.000	64.1	36.1	33.4	22.9	38.5	54.0	-15.5

Notes:

1. Peak Detector Data unless otherwise stated.
2. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.
3. Negative value in the margin column shows emission below limit.
4. Horn antenna is used for the emission over 1000MHz.

Test Engineer: Benson Wang

TRF No.: FCC 15C_TX_b
FCC ID: 2AB3UDG022

INTERTEK TESTING SERVICES

EXHIBIT 4

EQUIPMENT PHOTOGRAPHS

TRF No.: FCC 15C_TX_b
FCC ID: 2AB3UDG022

INTERTEK TESTING SERVICES

4.0 Equipment Photographs

For electronic filing, the photographs of the tested EUT are saved with filename: external photos.pdf & internal photos.pdf.

INTERTEK TESTING SERVICES

EXHIBIT 5

PRODUCT LABELLING

INTERTEK TESTING SERVICES

5.0 Product Labelling

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf.

INTERTEK TESTING SERVICES

EXHIBIT 6

TECHNICAL SPECIFICATIONS

INTERTEK TESTING SERVICES

6.0 Technical Specifications

For electronic filing, the block diagram and schematics of the tested EUT are saved with filename: block.pdf and circuit.pdf respectively.

INTERTEK TESTING SERVICES

EXHIBIT 7

INSTRUCTION MANUAL

INTERTEK TESTING SERVICES

7.0 Instruction Manual

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf.

This manual will be provided to the end-user with each unit sold/leased in the United States.

INTERTEK TESTING SERVICES

EXHIBIT 8

MISCELLANEOUS INFORMATION

INTERTEK TESTING SERVICES

8.0 Miscellaneous Information

This miscellaneous information includes details of the measured Bandwidth, the test procedure and calculation of factor such as pulse desensitization.

INTERTEK TESTING SERVICES

8.1 Bandedge Plot

For electronic filing, the plot shows the fundamental emission when modulated is saved with filename: be.pdf. From the plot, the field strength of any emissions outside of the specified frequency band are attenuated to the general radiated emission limits in section 15.209. It fulfils the requirement of 15.249(d).

Peak Measurement

Bandedge compliance is determined by applying marker-delta method, i.e (Bandedge Plot).

(i) Lower channel 2409MHz:

Peak Resultant field strength = Fundamental emissions (Quasi-peak value) – delta from the bandedge plot

$$\begin{aligned} &= 91.6\text{dB}\mu\text{v/m} - 51.2\text{dB} \\ &= 40.4\text{dB}\mu\text{v/m} \end{aligned}$$

(ii) Upper channel 2476MHz:

Peak Resultant field strength = Fundamental emissions (Quasi-peak value) – delta from the bandedge plot

$$\begin{aligned} &= 94.7\text{dB}\mu\text{v/m} - 46.0\text{dB} \\ &= 48.7\text{dB}\mu\text{v/m} \end{aligned}$$

The resultant field strength meets the general radiated emission limit in section 15.209, which does not exceed 74dB μ v/m (Peak Limit) and 54dB μ v/m (Average Limit).

INTERTEK TESTING SERVICES

8.1 Bandedge Plot (cont'd)

Pursuant to FCC part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered.

Figure 8.1 Bandwidth

INTERTEK TESTING SERVICES

8.2 Discussion of Pulse Desensitization

Pulse desensitivity is not applicable for this device. The effective period (T_{eff}) is approximately 0.44 ms for a digital "1" bit, as shown in the plots of Exhibit 8.3. With a resolution bandwidth (3 dB) of 100 kHz, the pulse desensitivity factor was 0 dB.

INTERTEK TESTING SERVICES

8.3 Calculation of Average Factor

Averaging factor in dB = $20 \log_{10} (\text{duty cycle})$

The specification for output field strengths in accordance with the FCC rules specify measurements with an average detector. During testing, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation. The duty cycle is measured by placing the spectrum analyzer in zero scan (receiver mode) and linear mode at maximum bandwidth (3 MHz at 3 dB down) and viewing the resulting time domain signal output from the analyzer on a Tektronix oscilloscope. The oscilloscope is used because of its superior time base and triggering facilities.

A plot of the worst-case duty cycle as detected in this manner are saved with filename: af.pdf

The duty cycle is simply the on-time divided by the period:

The duration of one cycle = 6.12ms
Effective period of the cycle = 0.44ms

$$DC = 0.44ms / 6.12ms = 0.0719 \text{ or } 7.19\%$$

Therefore, the averaging factor is found by $20 \log_{10} 0.0719 = -22.9 \text{ dB}$

INTERTEK TESTING SERVICES

8.4 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services in the measurements of transmitters operating under Part 15, Subpart C rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 2009.

The transmitting equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the ground plane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The EUT is adjusted through all three orthogonal axes to obtain maximum emission levels. The antenna height and polarization are varied during the testing to search for maximum signal levels.

Detector function for radiated emissions above 1GHz is in peak mode and Quasi-Peak mode is used below 1GHz.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

INTERTEK TESTING SERVICES

8.4 Emissions Test Procedures (cont'd)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements are made as described in ANSI C63.4 - 2009.

The IF bandwidth used for measurement of radiated signal strength was 10 kHz for emission below 30 MHz and 120 kHz for emission from 30 MHz to 1000 MHz. Above 1000 MHz, a resolution bandwidth of 1 MHz (RBW 3MHz for fundamental emission) is used.

Transmitter measurements are normally conducted at a measurement distance of three meters. However, to assure low enough noise floor in the restricted bands and above 1 GHz, signals are acquired at a distance of one meter or less. All measurements are extrapolated to three meters using inverse scaling, but those measurements taken at a closer distance are so marked.

INTERTEK TESTING SERVICES

EXHIBIT 9

CONFIDENTIALITY REQUEST

INTERTEK TESTING SERVICES

9.0 Confidentiality Request

For electronic filing, the confidentiality request of the tested EUT is saved with filename: request.pdf.

INTERTEK TESTING SERVICES

EXHIBIT 10

TEST EQUIPMENT LIST

INTERTEK TESTING SERVICES

10.0 Test Equipment List

Equipment No.	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
SZ061-03	BiConiLog Antenna	ETS	3142C	00066460	28-Jun-13	28-Jun-15
SZ185-01	EMI Receiver	R&S	ESCI	100547	10-Mar-14	10-Mar-15
SZ061-07	Pyramidal Horn Antenna	ETS	3160-09	00083067	27-Aug-13	27-Aug-14
SZ061-08	Horn Antenna	ETS	3115	00092346	26-Oct-13	26-Oct-14
SZ061-06	Active Loop Antenna	Electro-Metrics	EM-6876	217	29-Apr-14	29-Apr-15
SZ056-03	Spectrum Analyzer	R&S	FSP 30	101148	10-Mar-14	10-Mar-15
SZ181-04	Preamplifier	Agilent	8449B	3008A02474	10-Mar-14	10-Mar-15
SZ188-01	Anechoic Chamber	ETS	RFD-F/A-100	4102	19-Apr-14	19-Apr-15
SZ062-02	RF Cable	RADIALL	RG 213U	--	8-Jan-14	8-Jul-14
SZ062-06	RF Cable	RADIALL	0.04-26.5GHz	--	8-Jan-14	8-Jul-14
SZ062-12	RF Cable	RADIALL	0.04-26.5GHz	--	19-Apr-14	19-Oct-14
SZ067-04	Notch Filter	Micro-Tronics	BRM5070 2-02	--	21-May-14	21-May-15