

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.

TEST REPORT

FCC Rules Part 15.247

Report Reference No...... MTEB24120133/1-R1

FCC ID...... : 2AB2Q13A21150WRGBWH

Compiled by

Supervised by

(position+printed name+signature)..: Test Engineer Sunny Deng

Approved by

(position+printed name+signature)..: Manager Yvette Zhou

Representative Laboratory Name.: Shenzhen Most Technology Service Co., Ltd.

Nanshan, Shenzhen, Guangdong, China.

Applicant's name...... LEEDARSON LIGHTING CO., LTD.

Address...... Xingda Road, Xingtai Industrial Zone,

Changtai County, Zhangzhou, Fujian, China

Test specification/ Standard.....: FCC Rules Part 15.247

TRF Originator...... Shenzhen Most Technology Service Co., Ltd.

Shenzhen Most Technology Service Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Smart LED Lamp

Trade Mark N/A

Model/Type reference...... 14cSA-A2550ST-Q1G-01

Listed Models : 14ySA-A2550ST-Q1G-xx, 13A21150WRGBWHx

Where "y" may be "a" to "z", which designates for different

Aisa Luo Sunny Deng Yutter

enclosure pattern design;

"x and xx" may be "0" to "99", which designates for different

package of style.

Modulation Type.....: GFSK

Operation Frequency.....: From 2402MHz to 2480MHz

Rating..... AC 120V/60Hz

Result..... PASS

Report No.: MTEB24120133/1-R1 Page 2 of 18

TEST REPORT

Equipment under Test : Smart LED Lamp

Model /Type : 14cSA-A2550ST-Q1G-01

14ySA-A2550ST-Q1G-xx, 13A21150WRGBWHx

Where "y" may be "a" to "z", which designates for different

Listed Models : enclosure pattern design;

"x and xx" may be "0" to "99", which designates for different

package of style.

Remark Only model number and enclosure pattern design is different for the

ese model.

Applicant : LEEDARSON LIGHTING CO., LTD.

Address Xingda Road, Xingtai Industrial Zone,

Changtai County, Zhangzhou, Fujian, China

Manufacturer 1 : LEEDARSON LIGHTING CO., LTD.

Address 1 : Xingtai Industrial Zone, Economic Development Zone,

Changtai County, Zhangzhou city, Fujian Province, P.R.China

Manufacturer 2 LEEDARSON IOT TECHNOLOGY (THAILAND) CO., LTD.

Address 2 : 71, Moo5, Wellgrow Industrial Easte. Bang Samak, Bang Pakong

District, Chachoengsao 24130

|--|

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

1. REVISION HISTORY	4
2. TEST STANDARDS	5
3. SUMMARY	6
3.1. General Remarks	
3.2. Product Description	
3.3. Equipment Under Test	
3.4. Short description of the Equipment under Test (EUT)	
3.5. EUT operation mode	
3.6. Block Diagram of Test Setup	
3.7. Test Item (Equipment Under Test) Description*	
3.8. Auxiliary Equipment (AE) Description	
3.9. Antenna Information*	
3.10. EUT configuration	
3.11. Modifications	8
4. TEST ENVIRONMENT	9
4.1. Address of the test laboratory	9
4.2. Environmental conditions	
4.3. Test Description	
4.4. Statement of the measurement uncertainty	
4.5. Equipments Used during the Test	11
5. TEST CONDITIONS AND RESULTS	12
5. TEST CONDITIONS AND RESULTS	
	12

Report No.: MTEB24120133/1-R1 Page 4 of 18

1. Revision History

Revision	Issue Date	Revisions	Revised By
00	2024.12.12	Initial Issue	Alisa Luo
01	2025.01.16	Filing case	Alisa Luo

Note:On the basis of the original report **MTEB24120133-R1**, report the spare shrapnel, which is connected to the rivet cover and mainly used for discharge without affecting RF performance. Re evaluate the radiation interference.

Report No.: MTEB24120133/1-R1 Page 5 of 18

2. TEST STANDARDS

The tests were performed according to following standards:

The tests were performed according to following standards: FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

Report No.: MTEB24120133/1-R1 Page 6 of 18

3. <u>SUMMARY</u>

3.1. General Remarks

Date of receipt of test sample	:	2025.01.14
Testing commenced on	:	2025.01.15
Testing concluded on	:	2025.01.16

3.2. Product Description

Product Name:	Smart LED Lamp			
Model/Type reference:	14cSA-A2550ST-Q1G-01			
Power Supply:	AC 120V/60Hz			
Testing sample ID:	MTYP07768/1			
Bluetooth :				
Supported Type:	BLE			
Modulation:	GFSK			
Operation frequency:	2402MHz~2480MHz			
Channel number:	40			
Channel separation:	2MHz			
Antenna type:	Internal monopole antenna			
Antenna gain:	-0.33 dBi			

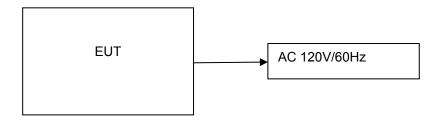
3.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	•	120V / 60Hz
		0	12 V DC	0	24 V DC
		0	Other (specified in blank below))

3.4. Short description of the Equipment under Test (EUT)

This is a Smart LED Lamp For more details, refer to the user's manual of the EUT.


Report No.: MTEB24120133/1-R1 Page 7 of 18

3.5. EUT operation mode

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 40 channels provided to the EUT. Channel 00/19/39 was selected to test.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

3.6. Block Diagram of Test Setup

3.7. Test Item (Equipment Under Test) Description*

Short designation	EUT Name	EUT Description	Serial number	Hardware status	Software status
EUT A	1	1	1	1	1
EUT B	1	1	1	1	1

^{*:} declared by the applicant. According to customers information EUTs A and B are the same devices.

3.8. Auxiliary Equipment (AE) Description

AE short designation	EUT Name (if available)	EUT Description	Serial number (if available)	Software (if used)
AE 1	1	1	1	1
AE 2	1	1	1	1

Report No.: MTEB24120133/1-R1 Page 8 of 18

3.9. Antenna Information*

Short designation	Antenna Name	Antenna Type	Frequency Range	Serial number	Antenna Peak Gain
Antenna 1		Internal monopole antenna	2.4–2.5 GHz		-0.33 dBi
Antenna 2	1	1	1	/	1

^{*:} declared by the applicant.

3.10. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- $\ensuremath{\bigcirc}$ Supplied by the lab

ADAPTER	M/N:	
	Manufacturer:	

3.11. Modifications

No modifications were implemented to meet testing criteria.

Report No.: MTEB24120133/1-R1 Page 9 of 18

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 0031192610

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

4.2. Environmental conditions

Radiated Emission:

Temperature:	21.6 ° C
Humidity:	48 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	21.6 ° C
Humidity:	48 %
Atmospheric pressure:	950-1050mbar

Report No.: MTEB24120133/1-R1 Page 10 of 18

4.3. Test Description

FCC and IC Requirements					
FCC Part 15.207	AC Power Conducted Emission	See Note 3			
FCC Part 15.247 (a)(2)	6dB Bandwidth & 99% Bandwidth	See Note 3			
FCC Part 15.247(d)	Spurious RF Conducted Emission	See Note 3			
FCC Part 15.247(b)	Maximum Conducted Output Power	See Note 3			
FCC Part 15.247 (e)	Power Spectral Density	See Note 3			
FCC Part 15.205/15.209	Radiated Emissions	PASS			
FCC Part 15.247(d)	Band Edge	See Note 3			

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed
- 3. Data can be found in the original report "MTEB24120133/1-R1"

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

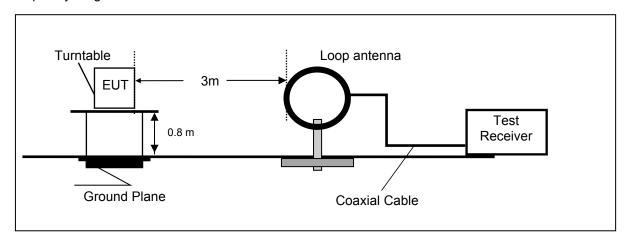
Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)
6dB Bandwidth & 99% Bandwidth	1	5%	(1)
Maximum Conducted Output Power	1	0.80dB	(1)
Spurious RF Conducted Emission	1	1.6dB	(1)

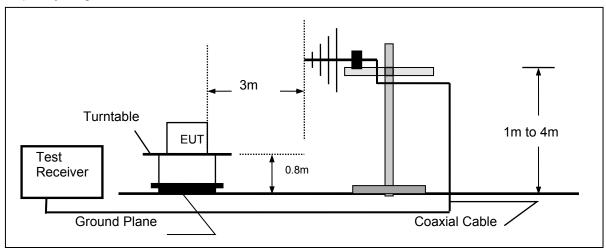
(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.5. Equipments Used during the Test

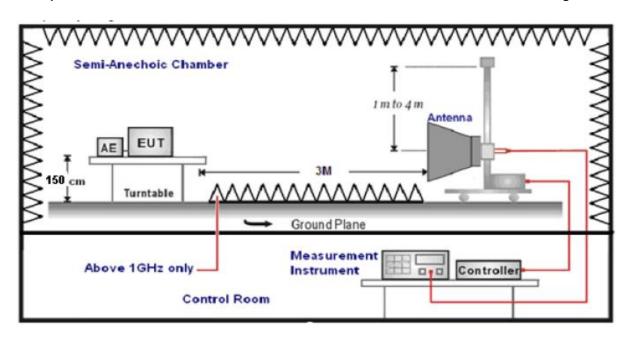
Item	Equipment	Manufacturer	Model No.	Serial No.	Firmware	Last Cal.
ILCIII	Equipment	iviariuraciurei	Wodel NO.	Octial INU.	versions	Lasi Cai.
1.	L.I.S.N.	R&S	ENV216	100093	/	2024/03/15
2	Three-phase artificial power network	Schwarzback Mess	NNLK8129	8129178	1	2024/03/15
3.	Receiver	R&S	ESCI	100492	V3.0-10-2	2024/03/15
4	Receiver	R&S	ESPI	101202	V3.0-10-2	2024/03/15
5	Spectrum analyzer	Agilent	9020A	MT-E306	A14.16	2024/03/15
6	Bilong Antenna	Sunol Sciences	JB3	A121206	1	2024/08/15
7	Horn antenna	HF Antenna	HF Antenna	MT-E158	1	2024/03/15
8	Loop antenna	Beijing Daze	ZN30900B	/	1	2024/03/15
9	Horn antenna	R&S	OBH100400	26999002	1	2024/03/15
10	Wireless Communication Test Set	R&S	CMW500	I	CMW-BASE- 3.7.21	2024/03/15
11	Spectrum analyzer	R&S	FSP	100019	V4.40 SP2	2024/03/15
12	High gain antenna	Schwarzbeck	LB-180400KF	MT-E389	1	2024/03/15
13	Preamplifier	Schwarzbeck	BBV 9743	MT-E390	1	2024/03/15
14	Pre-amplifier	EMCI	EMC051845S E	MT-E391	1	2024/03/15
15	Pre-amplifier	Agilent	83051A	MT-E392	1	2024/03/15
16	High pass filter unit	Tonscend	JS0806-F	MT-E393	1	2024/03/15
17	RF Cable(below1GHz)	Times	9kHz-1GHz	MT-E394	1	2024/03/15
18	RF Cable(above 1GHz)	Times	1-40G	MT-E395	1	2024/03/15
19	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	1	2024/03/15
20	Power meter	R&S	NRVS	100444	1	2024/03/15


Note: 1. The Cal.Interval was one year.

5. TEST CONDITIONS AND RESULTS


5.1. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

Transd=AF +CL-AG

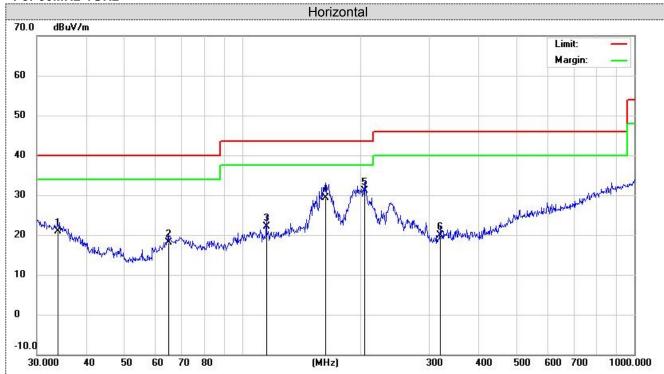
Report No.: MTEB24120133/1-R1 Page 14 of 18

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

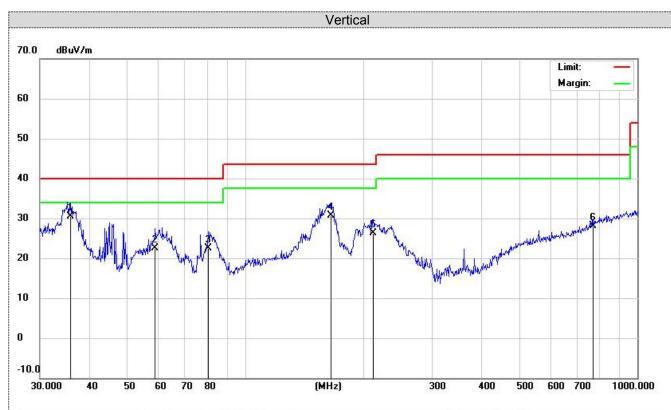
Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission

Unwanted emissions that fall into restricted bands shall comply with the limits specified in RSS-Gen; and Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark:


- We measured Radiated Emission at GFSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 2. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		33.9173	2.66	18.24	20.90	40.00	-19.10	QP	200	57	
2		64.8864	9.25	8.94	18.19	40.00	-21.81	QP	200	124	
3		115.3205	6.84	15.29	22.13	43.50	-21.37	QP	200	199	
4		163.1817	12.05	17.19	29.24	43.50	-14.26	QP	200	258	
5	*	204.9551	16.03	15.06	31.09	43.50	-12.41	QP	200	301	
6	1	319.9369	4.03	15.88	19.91	46.00	-26.09	QP	200	351	

^{*:}Maximum data x:Over limit !:over margin

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	35.8746	13.58	16.85	30.43	40.00	-9.57	QP	100	32	
2		59.0251	14.02	8.55	22.57	40.00	-17.43	QP	100	89	
3		80.6441	12.33	10.09	22.42	40.00	-17.58	QP	100	157	
4		165.4866	13.51	17.12	30.63	43.50	-12.87	QP	100	233	
5		212.2694	11.36	14.86	26.22	43.50	-17.28	QP	100	288	
6		771.4485	1.02	27.10	28.12	46.00	-17.88	QP	100	336	

^{*:}Maximum data x:Over limit !:over margin

Report No.: MTEB24120133/1-R1 Page 17 of 18

6. Test Setup Photos of the EUT

	Report No.: MTEB24120133/1-R1							Page 18 of 18
7.	External	a n d	Internal	Photos	o f	the	EUT	

.....End of Report.....

See related photo report.