

Test report

392836-1R2TRFWL

Date of issue: September 9, 2020

Applicant:

ABG Tag and Traq, Inc.

Product:

Indoor Ultra-wideband transmitter module

Model:

LRTNTMOD1

FCC ID

2AACVLRTNTMOD1

IC ID

11400A-LRTNTMOD1

Specifications:

- ◆ FCC 47 CFR Part 15, Subpart F – §15.519
- ◆ Industry Canada RSS-220, Issue 1 + Amendment 1

Lab and test locations

Company name	Nemko USA Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
State	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500
Website	www.nemko.com
FCC Site Number	Test Firm Registration Number: 392943 Designation Number: US5058
ISED Test Site	2040B-3

Tested by	James Cunningham, Wireless Supervisor
Reviewed by	Juan M Gonzalez, EMC & Wireless Divisions Manager
Review date	September 9, 2020
Reviewer signature	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko USA's ISO/IEC 17025 accreditation.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Table of Contents

Table of Contents	3
Section 1 Report summary	4
1.1 Test specifications	4
1.2 Test methods	4
1.3 Exclusions	4
1.4 Statement of compliance	4
1.5 Test report revision history	4
Section 2 Summary of test results	5
2.1 FCC Part 15.519 / RSS-220	5
2.2 Operating modes investigated	5
Section 3 Equipment under test (EUT) details	6
3.1 Applicant	6
3.2 Manufacturer	6
3.3 Sample information	6
3.4 EUT information	6
3.5 EUT exercise and monitoring details	6
Section 4 Engineering considerations	7
4.1 Modifications incorporated in the EUT	7
4.2 Technical judgment	7
4.3 Deviations from laboratory tests procedures	7
Section 5 Test conditions	8
5.1 Atmospheric conditions	8
5.2 Power supply range	8
Section 6 Measurement uncertainty	9
6.1 Uncertainty of measurement	9
Section 7 Testing data	10
7.1 Antenna requirement	10
7.2 Definition of UWB operating Bandwidth	11
7.3 Radiated emissions below 960 MHz	14
7.4 Radiated emissions above 960 MHz	18
7.5 Peak emission f_M	24
7.6 Operation of hand held equipment	27
Section 8 Block diagrams of test set-ups	29
8.1 Radiated emissions set-up	29

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart D – §15.519
IC RSS-220 Issue 1 + Amendment 1

Technical requirements for hand held UWB systems
Devices using ultra-wideband (UWB) technology

1.2 Test methods

ANSI C63.10-2013

American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Details of changes made to test report
392836-1TRFWL	Original report issued
392836-R11TRFWL	Corrected model name, FCC ID and IC ID
392836-1R2TRFWL	Updated to cover FCC Part 15.519

Notes:

Section 2 Summary of test results

2.1 FCC Part 15.519 / RSS-220.

Part	Test description	Verdict
§15.203	Antenna requirements	Pass
§15.207 / RSS-Gen §7.2.4	Conducted limits	Not applicable
§15.503(d) / RSS-220 §2	Definition of UWB	Pass
§15.519(c) / RSS-220 §5.3.1(c)	Radiated emissions below 960 MHz	Pass
§15.519(c), (d) / RSS-220 §5.4.1(d), (e)	Radiated emissions above 960 MHz	Pass
§15.519(e) / RSS-220 §5.2.1(g)	Peak emission at f_M	Pass
§15.519(a)(1) / RSS-220 §5.3.1(b)	Ceasing operation/Acknowledgment	Pass

Note: EUT is battery powered

2.2 Operating modes investigated.

Measurements were performed with the EUT operating at 3.5 GHz and 4GHz.

Section 3 Equipment under test (EUT) details

3.1 Applicant

Company name	ABG Tag and Traq, Inc.
Address	510 E. Memorial Road
City	Oklahoma City
Province/State	OK
Postal/Zip code	73114-2214
Country	USA

3.2 Manufacturer

Company name	ABG Tag and Traq, Inc.
Address	510 E. Memorial Road
City	Oklahoma City
Province/State	OK
Postal/Zip code	73114-2214
Country	USA

3.3 Sample information

Receipt date	February 18, 2020
Nemko sample ID number	NEx: 392836

3.4 EUT information

Product name	Modular radio
Model	LRTNTMOD1
Serial number	2711 (configured for 3.5 GHz operation) 2745 (configured for 4 GHz operation)
Part number	N/A
Power requirements	Internal battery
Description/theory of operation	The EUT is an Ultra-wideband transmitter module intended for hand held applications.
Operational frequencies	2 operating frequencies centered on 3.5 GHz and 4 GHz
Software details	ABG Tag and Traq Software Version 3 was used to test the EUT

3.5 EUT exercise and monitoring details

The EUT was configured such that when it was switched on, it would begin transmitting on one of the defined operating frequencies at max power. Testing was performed using ABG Tag and Traq software which they label as Version 3. The power output was set before testing to maximum power (20dBm) with OOK modulation. This was set using the ABG Tag and Traq software Version 3. The ABG Tag and Traq firmware version is identified by them as version 14
 INPUT/OUTPUT: Since this is a module there are no input/output signal to and from the EUT to describe
 For testing at Nemko only power was provided to operate the EUT.

Description	Brand name	Model/Part number	Serial number	Rev.
None				

Table 3.5-2: EUT interface ports

Description	Qty.
None	

Table 3.5-3: Support equipment

Description	Brand name	Model/Part number	Serial number	Rev.
None				

Table 3.5-4: Inter-connection cables

Cable description	From	To	Length (ft)
None			

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15-30 °C
Relative humidity	20-75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages $\pm 5\%$, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of $K = 2$ with 95% certainty.

Test name	Measurement uncertainty, dB
Radiated spurious emissions	3.78
Powerline conducted emissions	1.38

Section 7 Testing data

7.1 Antenna requirement

7.1.1 References

Title 47 → Chapter 1 → Subchapter A → Part 15 → Subpart C → §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

7.1.2 Test summary

Verdict	Pass – The EUT has an integral antenna which is permanently attached
Test date	February 26, 2020
Test engineer	James Cunningham

7.2 Definition of UWB operating Bandwidth

7.2.1 References

Title 47 → Chapter I → Subchapter A → Part 15 → Subpart C → §15.503(d) / ANSI C63.10: 2013
 RSS-220 → §2

7.2.2 Test summary

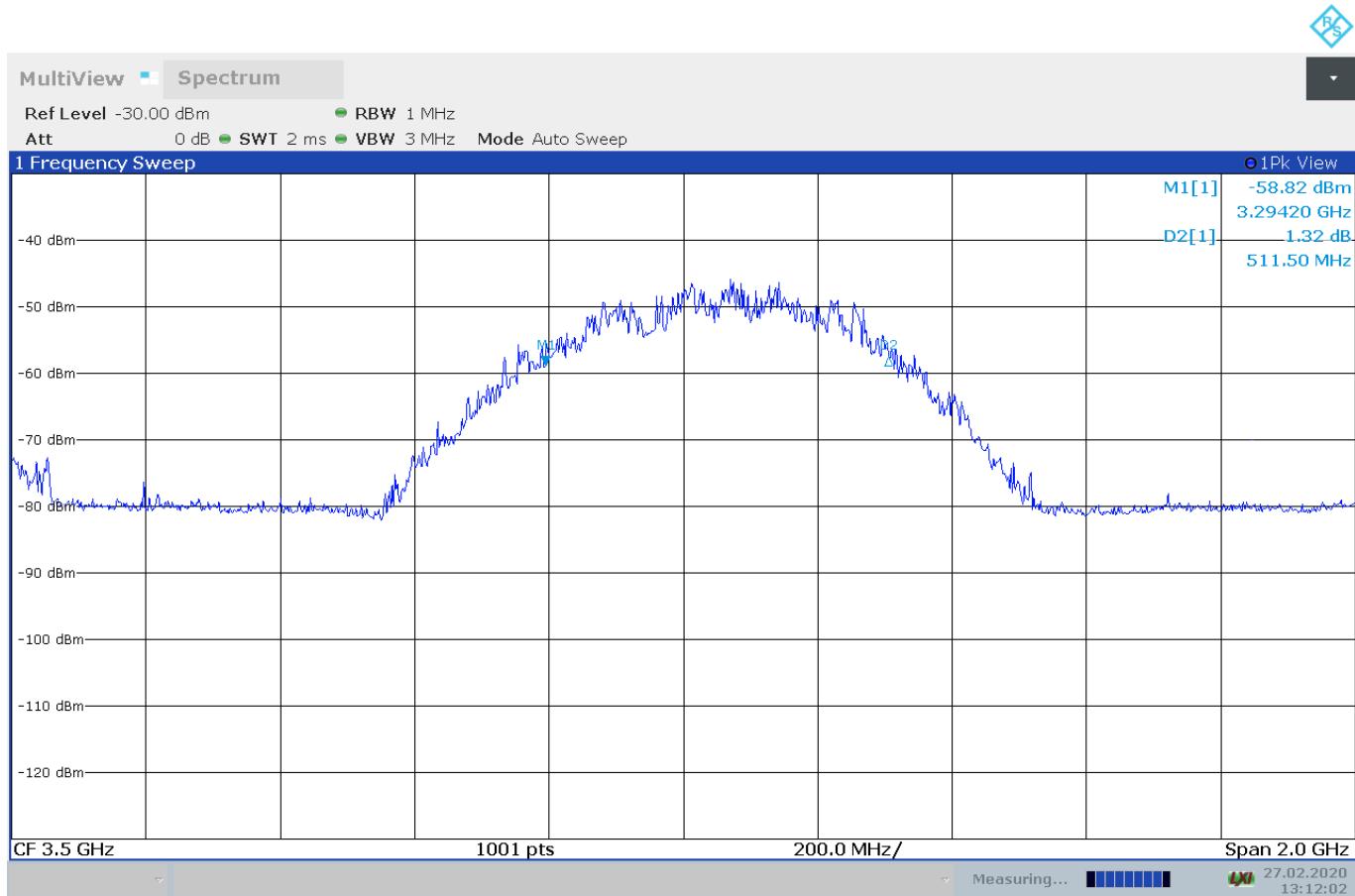
Verdict	Pass	Temperature	23°C
Test date	February 27, 2020	Air pressure	1009 mbar
Test engineer	James Cunningham	Relative humidity	26.3%
Test location	Wireless bench		

7.2.3 Notes

Testing was performed with both 3.5 GHz and 4 GHz transmitter operation.

7.2.4 Setup details and Method

EUT setup configuration	Tabletop
Test facility	Wireless bench
Measurement details	A horn antenna was connected to a spectrum analyzer and the EUT switched on. A max-hold sweep was used until the trace had stabilized. Using the spectrum analyzer markers, the frequencies f_l and f_h were measured.
ANSI C63.10 (2013)	Section 10.1


Receiver/spectrum analyzer settings:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak
Trace mode	Max Hold
Measurement time	Long enough for trace to stabilize

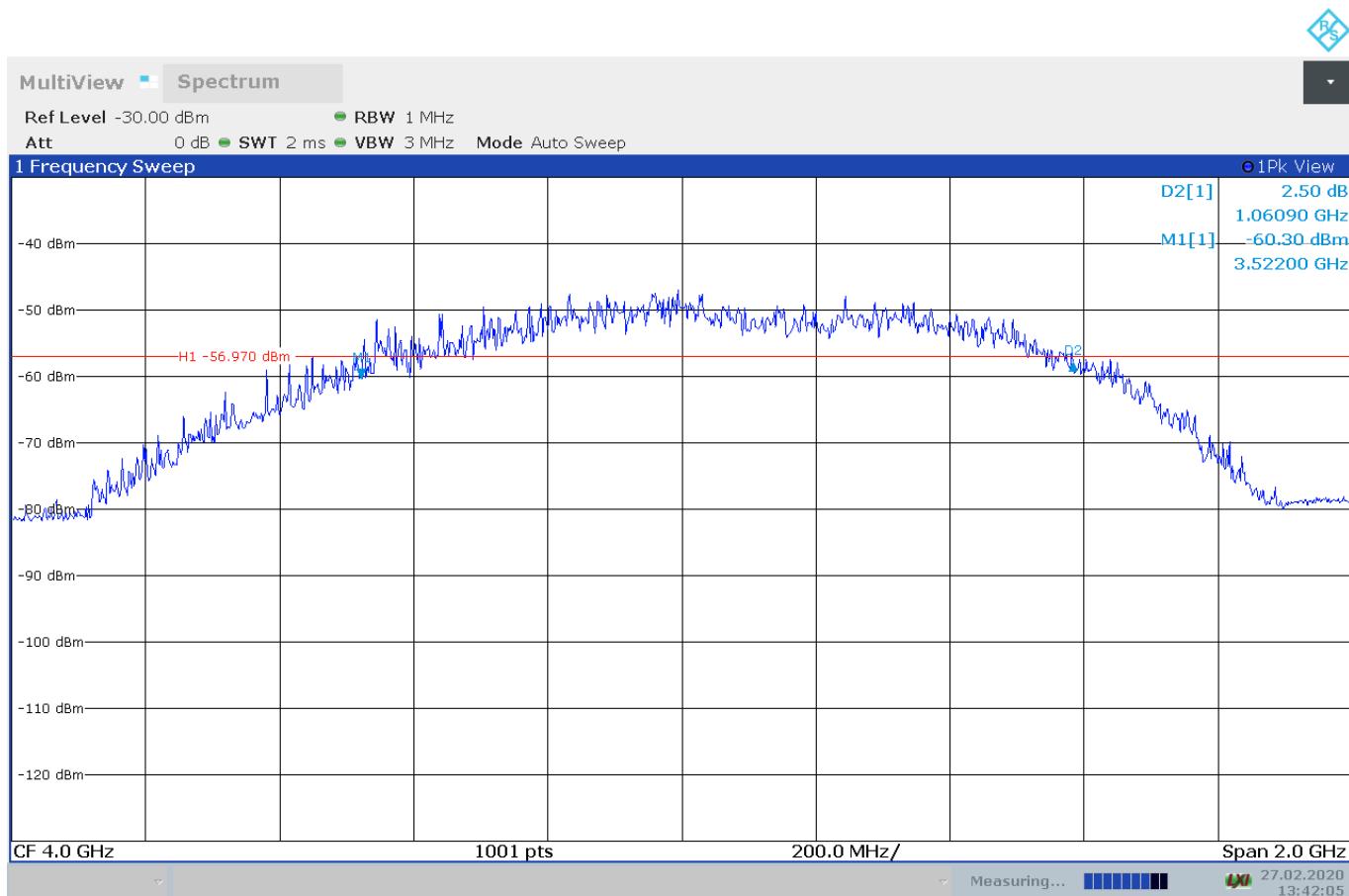
Table 7.2-1: Definition of UWB equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Signal and spectrum analyzer	Rohde & Schwarz	FSV	E1120	1 year	19 Nov 2020
Horn antenna	EMCO	3115	0752	2 years	21 Aug 2021

7.2.5 Test data, definition of UWB, 3.5 GHz operating channel

13:12:03 27.02.2020

Figure 7.2-1: Definition of UWB, 3.5 GHz operating channel


Requirement: The 10 dB bandwidth shall be at least 500 MHz or the fractional bandwidth shall be ≥ 0.2 (§15.503(d))

Lower edge f_l (GHz)	Upper edge f_h (GHz)	10 dB Bandwidth (MHz)	Limit (MHz)	Verdict
3.29420	3.80570	511.5	> 500	PASS

Requirement: The 10 dB bandwidth of the device shall be totally contained in the band 3.1 GHz to 10.6 GHz (RSS-220 §5.1(a))

Frequency (GHz)	Limit (GHz)	Verdict
3.29420	> 3.1000	PASS
3.80570	< 10.6000	PASS

7.2.6 Test data, definition of UWB, 4 GHz operating channel

13:42:06 27.02.2020

Figure 7.2-2: Definition of UWB, 4 GHz operating channel

Requirement: The 10 dB bandwidth shall be at least 500 MHz or the fractional bandwidth shall be ≥ 0.2 (§15.503(d))

Lower edge f_l (GHz)	Upper edge f_h (GHz)	10 dB Bandwidth (MHz)	Limit (MHz)	Verdict
3.52200	4.58290	1060.90	> 500	PASS

Requirement: The 10 dB bandwidth of the device shall be totally contained in the band 3.1 GHz to 10.6 GHz (RSS-220 §5.1(a))

Frequency (GHz)	Limit (MHz)	Verdict
3.52200	> 3.1000	PASS
4.58290	< 10.6000	PASS

7.3 Radiated emissions below 960 MHz

7.3.1 References

Title 47 → Chapter I → Subchapter A → Part 15 → Subpart C → §15.519(c) and (d) / ANSI C63.10: 2013

(c) The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in §15.209.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

RSS-220 → §5.3.1(c)

(c) Radiated emission limits below 960 MHz from a device shall not exceed the limits in section 3.4:

Frequency (MHz)	Field Strength (Microvolts/m)	Measurement Distance (Metres)	E.i.r.p. (dBmW)
0.009-0.490	2,400/F (F in kHz)	300	$10 \log (17.28 / F^2)$ (F in kHz)
0.490-1.705	24,000/F (F in kHz)	30	$10 \log (17.28 / F^2)$ (F in kHz)
1.705-30	30	30	-45.7
30-88	100	3	-55.2
88-216	150	3	-51.7
216-960	200	3	-49.2

7.3.2 Test summary

Verdict	Pass		
Test date	February 26, 2020	Temperature	22 °C
Test engineer	James Cunningham, Wireless Supervisor	Air pressure	1012 mbar
Test location	10m semi anechoic chamber	Relative humidity	21 %

7.3.3 Notes

Testing was performed with both 3.5 GHz and 4 GHz transmitter operation.

7.3.4 Setup details

EUT setup configuration	Table top
Test facility	10 m Semi anechoic chamber
Measuring distance	3 m
Antenna height variation	1–4 m
Turn table position	0–360°
Measurement details	A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated and antenna adjusted to maximize radiated emission. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.
ANSI C63.10 (2013)	Section 10.2

Receiver/spectrum analyzer settings for frequencies below 1 GHz:

Resolution bandwidth	120 kHz
Video bandwidth	300 kHz
Detector mode	<ul style="list-style-type: none"> – Peak (Preview measurement) – Quasi-peak (Final measurement)
Trace mode	Max Hold
Measurement time	<ul style="list-style-type: none"> – 100 ms (Peak preview measurement) – 5000 ms (Quasi-peak final measurement)

Table 7.3-1: Radiated disturbance equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESU40	E1121	1 year	25 May 2020
System Controller	Sunol Sciences	SC104V	E1129	NCR	NCR
Bilog Antenna	Schaffner	CBL6111C	1480	1 year	18 Apr 2020

Notes: NCR - no calibration required

Table 7.3-2: Radiated disturbance test software details

Manufacturer of Software	Details
Rohde & Schwarz	EMC 32 V10.00.00

Notes: None

7.3.5 Test data, 3.5 GHz operation

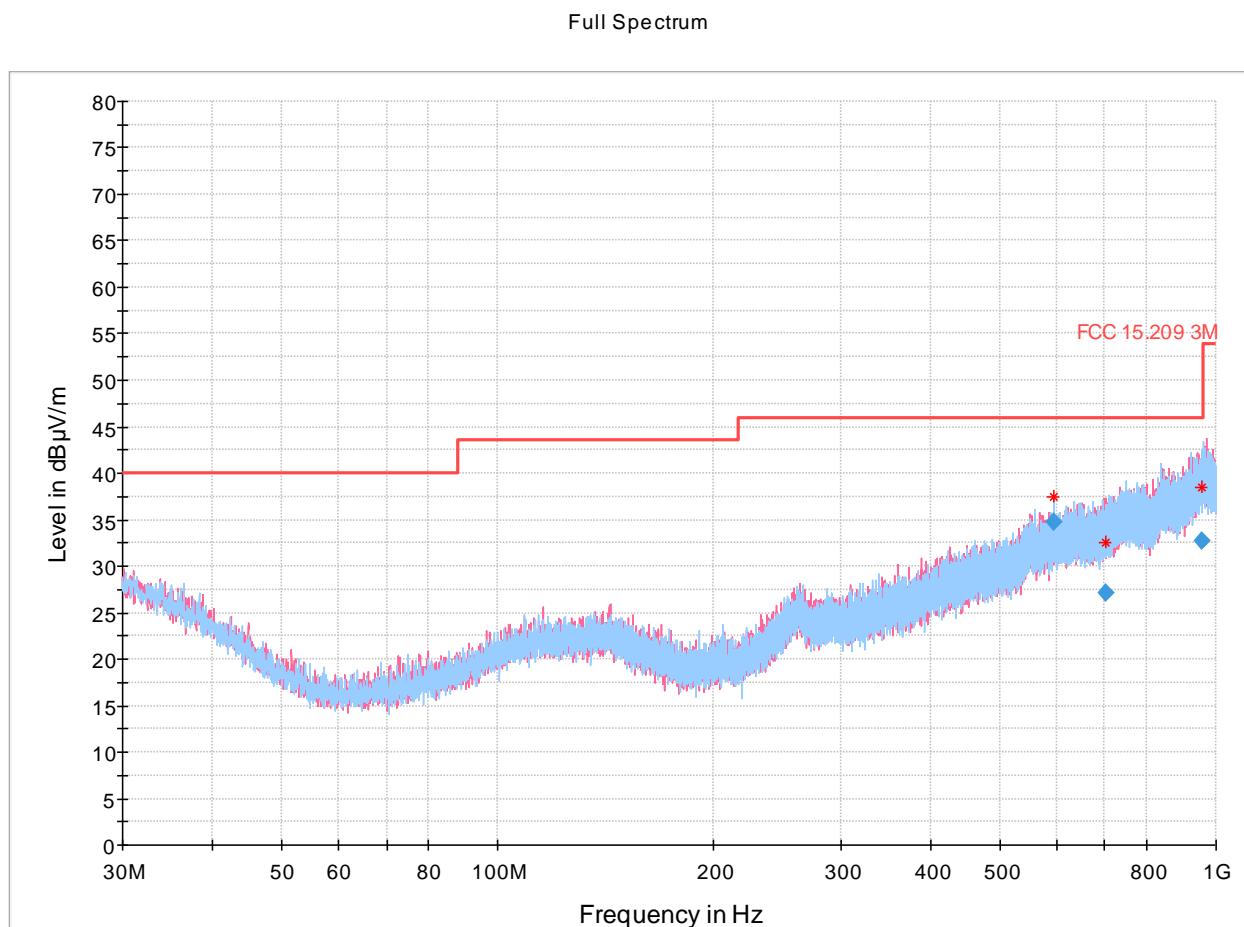


Figure 7.3-3: Radiated emissions, 30 – 1000 MHz, 3.5 GHz operation

Table 7.3-3: Radiated Emissions, 30 – 1000 MHz, 3.5 GHz operation

Frequency (MHz)	QuasiPeak (dB $\mu\text{V}/\text{m}$)	Limit (dB $\mu\text{V}/\text{m}$)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
593.998000	34.82	46.00	11.18	5000.0	120.000	392.1	H	58.0	29.4
701.761667	27.15	46.00	18.85	5000.0	120.000	281.7	V	185.0	30.4
953.738667	32.78	46.00	13.22	5000.0	120.000	221.1	H	171.0	35.9

Notes: None

Field strength (dB $\mu\text{V}/\text{m}$) = receiver/spectrum analyzer value (dB μV) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to dB $\mu\text{V}/\text{m}$ and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

7.3.6 Test data, 4 GHz operation

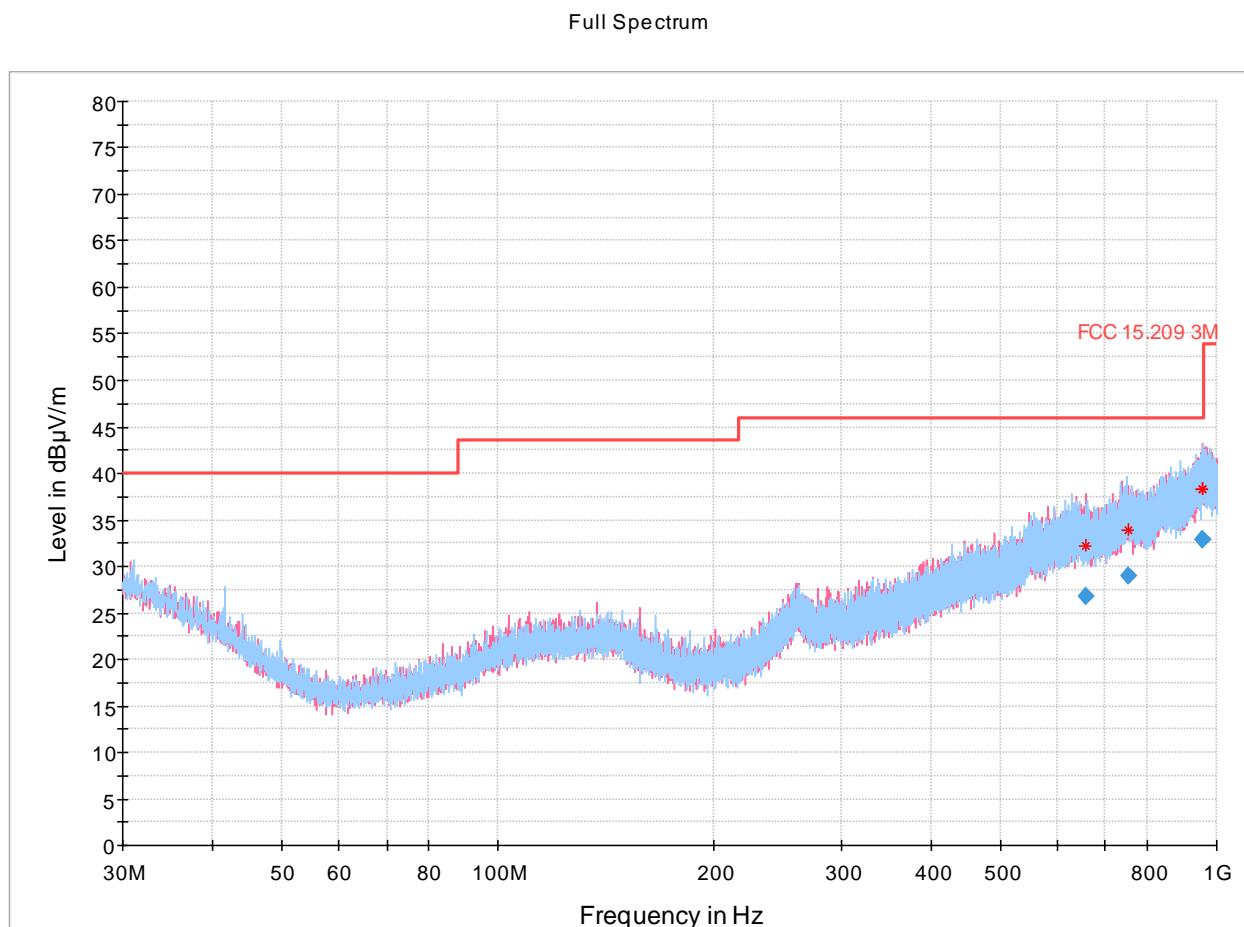


Figure 7.3-4: Radiated emissions, 30 – 1000 MHz, 4 GHz operation

Table 7.3-4: Radiated Emissions, 30 – 1000 MHz, 4 GHz operation

Frequency (MHz)	QuasiPeak (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
656.761667	26.77	46.00	19.23	5000.0	120.000	155.0	V	324.0	30.1
751.942667	28.92	46.00	17.08	5000.0	120.000	365.3	H	292.0	32.2
954.787667	32.81	46.00	13.19	5000.0	120.000	398.7	V	58.0	35.9
955.635667	32.92	46.00	13.08	5000.0	120.000	177.4	H	342.0	36.0

Notes: None

Field strength (dBμV/m) = receiver/spectrum analyzer value (dBμV) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Limits converted to dBμV/m and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.

7.4 Radiated emissions above 960 MHz

7.4.1 References

Title 47 → Chapter I → Subchapter A → Part 15 → Subpart C → §15.519(c) and (d) / ANSI C63.10: 2013

(c) The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in §15.209. The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

Frequency in MHz	EIRP in dBm
960-1610	-75.3
1610-1990	-53.3
1990-3100	-51.3
3100-10600	-41.3
Above 10600	-51.3

(d) In addition to the radiated emission limits specified in the table in paragraph (c) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency in MHz	EIRP in dBm
1164-1240	-85.3
1559-1610	-85.3

RSS-220 → §5.3.1(d) and (e)

Radiated emissions above 960 MHz from a device shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

Frequency in MHz	EIRP in dBm
960-1610	-75.3
1610-4750	-70.0
4750-10600	-41.3
Above 10600	-51.3

In addition to the limits specified in paragraph (d) of this section, radiated emissions shall not exceed the following average limits when measured using a resolution bandwidth of greater than or equal to 1 kHz. The measurements shall demonstrate compliance with the stated limits at whatever resolution bandwidth is used:

Frequency in MHz	EIRP in dBm
1164-1240	-85.3
1559-1610	-85.3

15.521(h) The highest frequency employed in §15.33 to determine the frequency range over which radiated measurements are made shall be based on the center frequency, f_c , unless a higher frequency is generated within the UWB device. For measuring emission levels, the spectrum shall be investigated from the lowest frequency generated in the UWB transmitter, without going below 9 kHz, up to the frequency range shown in §15.33(a) or up to $f_c + 3/(pulse width in seconds)$, whichever is higher. There is no requirement to measure emissions beyond 40 GHz provided f_c is less than 10 GHz; beyond 100 GHz if f_c is at or above 10 GHz and below 30 GHz; or beyond 200 GHz if f_c is at or above 30 GHz.

No Emissions were noted above the 18GHz for this EUT.

7.4.2 Test summary

Verdict	Pass		
Test date	February 25, 2020 February 26, 2020	Temperature	22 °C 22 °C
Test engineer	James Cunningham, Wireless Supervisor	Air pressure	1010 mbar 1012 mbar
Test location	3m semi anechoic chamber	Relative humidity	48 % 21 %

7.4.3 Notes

Testing was performed with both 3.5 GHz and 4 GHz transmitter operation.

7.4.4 Setup details

EUT setup configuration	Table top
Test facility	3 m Semi anechoic chamber
Measuring distance	0.5 m
Antenna height variation	1–4 m
Turn table position	0–360°
Measurement details	<p>Measurements were performed with RF absorber on the floor of the chamber.</p> <p>Due to the low limits, measurements were performed at 0.5m to have sufficiently low noise floor.</p> <p>An initial analysis was performed to identify the orientation that maximized the transmitter level. All sweeps were performed in that orientation.</p> <p>The EUT was rotated 360 degrees and the measurement antenna height and polarization varied while the receiver was sweeping in max-hold mode.</p>
ANSI C63.10 (2013)	Section 10.3

Receiver/spectrum analyzer settings for frequencies above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	10 MHz
Detector mode	RMS
Trace mode	Max Hold

Except in the frequency ranges 1164 – 1240 MHz and 1559 – 1610 MHz where the following settings were used:

Resolution bandwidth	1 kHz
Video bandwidth	10 kHz
Detector mode	RMS
Trace mode	Max Hold

Table 7.4-1: Radiated disturbance equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESU40	E1131	1 year	19-Nov-2020
System Controller	Sunol Sciences	SC104V	E1129	NCR	NCR
Horn Antenna	ETS Lindgren	3117-PA	E1139	1 year	21-Mar-2020

Notes: NCR - no calibration required

7.4.5 Test data, 3.5 GHz operation

Table 7.4-2: Radiated Emissions, 1 - 18 GHz, 3.5 GHz operation

Frequency (MHz)	Resolution Bandwidth (MHz)	Measured (dB μ V) (RMS Detector)	Antenna Factor (dB/m)	Cable Loss (dB)	Field Strength at 0.5 m (dB μ V/m)	EIRP (dBm)	FCC 15.519(c) Limit (dBm)	RSS-220 5.2.1(d) Limit (dBm)	Verdict
1000.0	1	39.6	-19.0	3.7	24.3	-86.5	-75.3	-75.3	Pass
1620.0	1	40.4	-19.5	4.7	25.5	-85.2	-63.3	-70.0	Pass
2550.0	1	39.5	-16.2	5.8	29.1	-81.6	-61.3	-70.0	Pass
7000.0	1	34.5	-10.7	10.3	34.1	-76.7	-41.3	-41.3	Pass
16000.0	1	31.1	-8.9	16.7	38.9	-71.8	-61.3	-61.3	Pass
18000.0	1	28.9	-7.2	18.5	40.2	-70.5	-61.3	-61.3	Pass

Notes: No spurious emissions detected

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

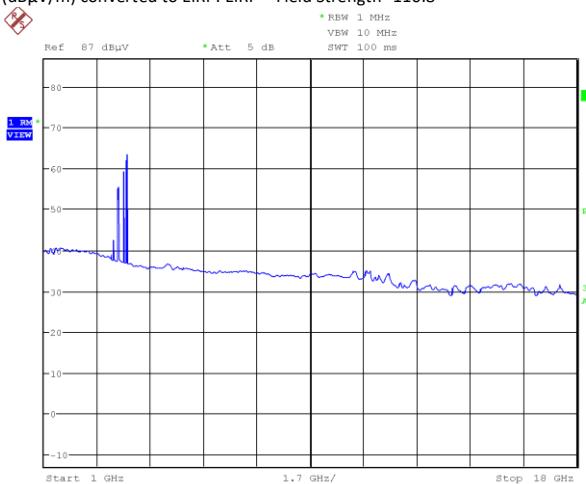
Correction factors = antenna factor ACF (dB) + cable loss (dB)

$$E \text{ [dB}\mu\text{V/m]} = \text{EIRP [dBm]} + 20\log(d \text{ [m]}) - 104.8$$

Field strength (dB μ V/m) converted to EIRP at 0.5 meters: EIRP = Field Strength -110.8

Table 7.4-3: Radiated Emissions, 1164 - 1240 MHz and 1559 – 1610 MHz, 3.5 GHz operation

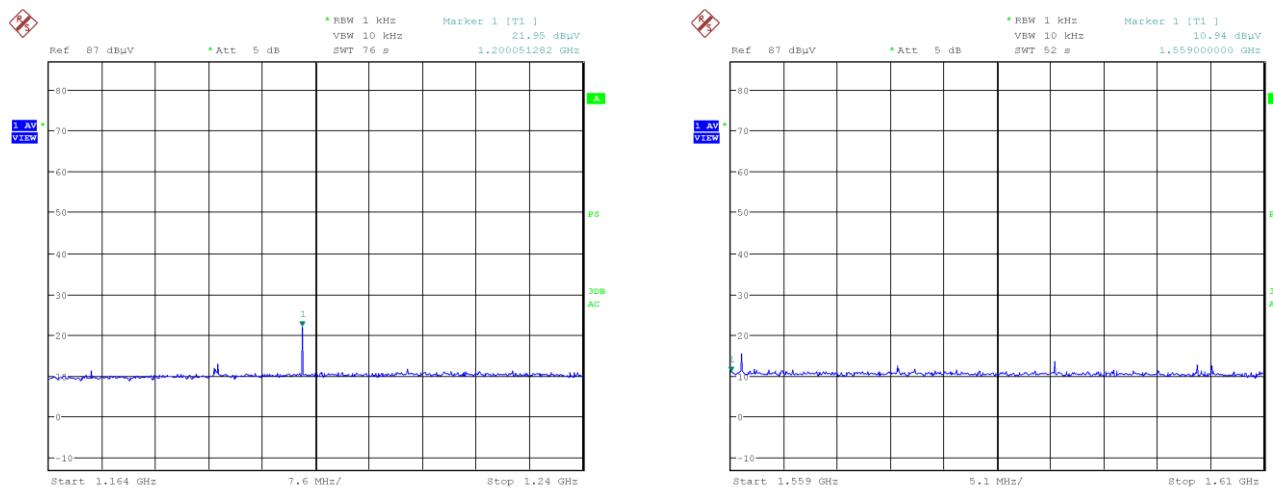
Frequency (MHz)	Resolution Bandwidth (kHz)	Measured (dB μ V) (Average Detector)	Antenna Factor (dB/m)	Cable Loss (dB)	Field Strength at 0.5 m (dB μ V/m)	EIRP (dBm)	FCC 15.519(d) / RSS 220 5.2.1(e) Limit (dBm)	Verdict
1164.0	1	9.2	-18.9	3.9	-5.8	-116.6	-85.3	Pass
1200.0	1	22.0	-18.4	4.0	7.5	-103.3	-85.3	Pass
1240.0	1	10.0	-18.6	4.0	-4.6	-115.3	-85.3	Pass
1559.0	1	10.9	-20.0	4.6	-4.5	-115.3	-85.3	Pass
1560.0	1	15.4	-20.0	4.6	0.0	-110.8	-85.3	Pass
1610.0	1	10.6	-19.7	4.7	-4.4	-115.1	-85.3	Pass



Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)


Field strength (dB μ V/m) converted to EIRP: EIRP = Field Strength -110.8

Date: 26.FEB.2020 01:56:47

Figure 7.4-5: Radiated emissions, 1 – 18 GHz, 3.5 GHz operation

Note: Emissions observed around 3.5 GHz are due to the intentional transmissions of the UWB transmitter and are not evaluated here. Per 15.521(h) – the spectrum was scanned up to 40GHz and no emissions were noted

Date: 26.FEB.2020 02:07:33

Date: 26.FEB.2020 02:15:59

Figure 7.4-6: Radiated emissions, 1164 - 1240 MHz and 1559 – 1610 MHz, 3.5 GHz operation

7.4.6 Test data, 4 GHz operation

Table 7.4-4: Radiated Emissions, 1 - 18 GHz, 4 GHz operation

Frequency (MHz)	Resolution Bandwidth (MHz)	Measured (dB μ V) (RMS Detector)	Antenna Factor (dB/m)	Cable Loss (dB)	Field Strength at 0.5 m (dB μ V/m)	EIRP (dBm)	FCC 15.519(c) Limit (dBm)	RSS-220 5.2.1(d) Limit (dBm)	Verdict
1000.0	1	39.7	-19.0	3.7	24.4	-86.4	-75.3	-75.3	Pass
1620.0	1	40.5	-19.5	4.7	25.7	-85.1	-63.3	-70.0	Pass
2550.0	1	39.6	-16.2	5.8	29.3	-81.5	-61.3	-70.0	Pass
7000.0	1	34.7	-10.7	10.3	34.3	-76.5	-41.3	-41.3	Pass
16000.0	1	31.2	-8.9	16.7	38.9	-71.8	-61.3	-61.3	Pass
18000.0	1	29.0	-7.2	18.5	40.3	-70.4	-61.3	-61.3	Pass

Notes: No spurious emissions detected

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Field strength (dB μ V/m) converted to EIRP: EIRP = Field Strength -110.8

Table 7.4-5: Radiated Emissions, 1164 - 1220 MHz and 1559 - 1610 MHz, 4 GHz operation

Frequency (MHz)	Resolution Bandwidth (kHz)	Measured (dB μ V) (Average Detector)	Antenna Factor (dB/m)	Cable Loss (dB)	Field Strength at 0.5 m (dB μ V/m)	EIRP (dBm)	FCC 15.519(d) / RSS 220 5.2.1(e) Limit (dBm)	Verdict
1164.0	1	9.5	-18.9	3.9	-5.4	-116.2	-85.3	Pass
1200.0	1	22.3	-18.4	4.0	7.9	-102.9	-85.3	Pass
1240.0	1	10.2	-18.6	4.0	-4.3	-115.1	-85.3	Pass
1559.0	1	11.0	-20.0	4.6	-4.5	-115.2	-85.3	Pass
1560.0	1	16.9	-20.0	4.6	1.4	-109.4	-85.3	Pass
1610.0	1	10.0	-19.7	4.7	-5.0	-115.7	-85.3	Pass

Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

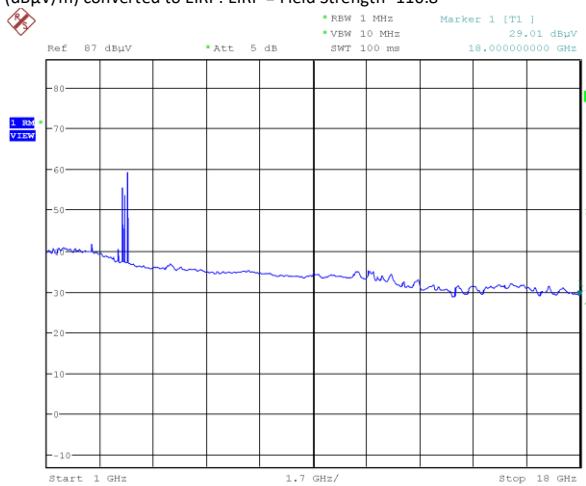
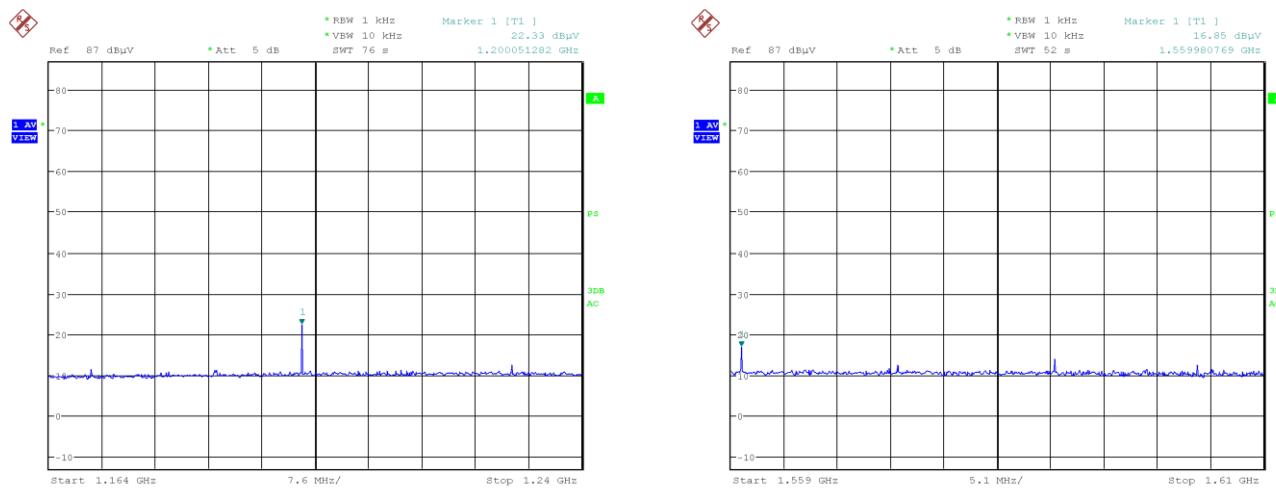


Field strength (dB μ V/m) converted to EIRP: EIRP = Field Strength -110.8

Figure 7.4-7: Radiated emissions, 1 - 18 GHz, 4 GHz operation

Note: Emissions observed around 4 GHz are due to the intentional transmissions of the UWB transmitter and are not evaluated here.

Date: 26.FEB.2020 20:53:39

Date: 26.FEB.2020 20:48:42

Figure 7.4-8: Radiated emissions, 1164 - 1240 MHz and 1559 – 1610 MHz, 4 GHz operation

7.5 Peak emission f_M

7.5.1 References

Title 47 → Chapter I → Subchapter A → Part 15 → Subpart C → §15.519(e)

(e) There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_M . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in §15.521.

RSS-220 -> §5.3.1(g) and Annex 4(c)

(g) The peak level of transmissions shall not exceed the peak equivalent of the average limit contained within any 50 MHz bandwidth, as defined in Section 4 of the Annex.

Peak Power: the peak level of transmission contained within a 50 MHz bandwidth centered on the frequency at which the highest average radiated power occurs (f_M). If a resolution bandwidth (RBW) other than 50 MHz is employed, the peak EIRP limit shall be $20\log(RBW/50)$ dBm where RBW is in units of megahertz.

7.5.2 Test summary

Verdict	Pass		
Test date	February 26, 2020	Temperature	22°C
Test engineer	James Cunningham	Air pressure	1012 mbar
Test location	Ground Plane 1	Relative humidity	20 %

7.5.3 Notes

Testing was performed with both 3.5 GHz and 4 GHz transmitter operation.

7.5.4 Setup Details

EUT setup configuration	Table top
Test facility	3 m Semi anechoic chamber
Measuring distance	0.5 m
Antenna height variation	1–4 m
Turn table position	0–360°
Measurement details	<p>Measurements were performed with RF absorber on the floor of the chamber.</p> <p>Due to the low limits, measurements were performed at 0.5m to have sufficiently low noise floor.</p> <p>An initial analysis was performed to identify the orientation that maximized the transmitter level. All sweeps were performed in that orientation.</p> <p>The EUT was rotated 360 degrees and the measurement antenna height and polarization varied while the receiver was sweeping in max-hold mode. The sweep was left to run until the trace stabilized.</p>
ANSI C63.10 (2013)	Section 10.3

Receiver/spectrum analyzer settings for frequencies above 1 GHz:

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Detector mode	Peak
Trace mode	Max Hold

Table 7.5-1: Peak emission equipment list

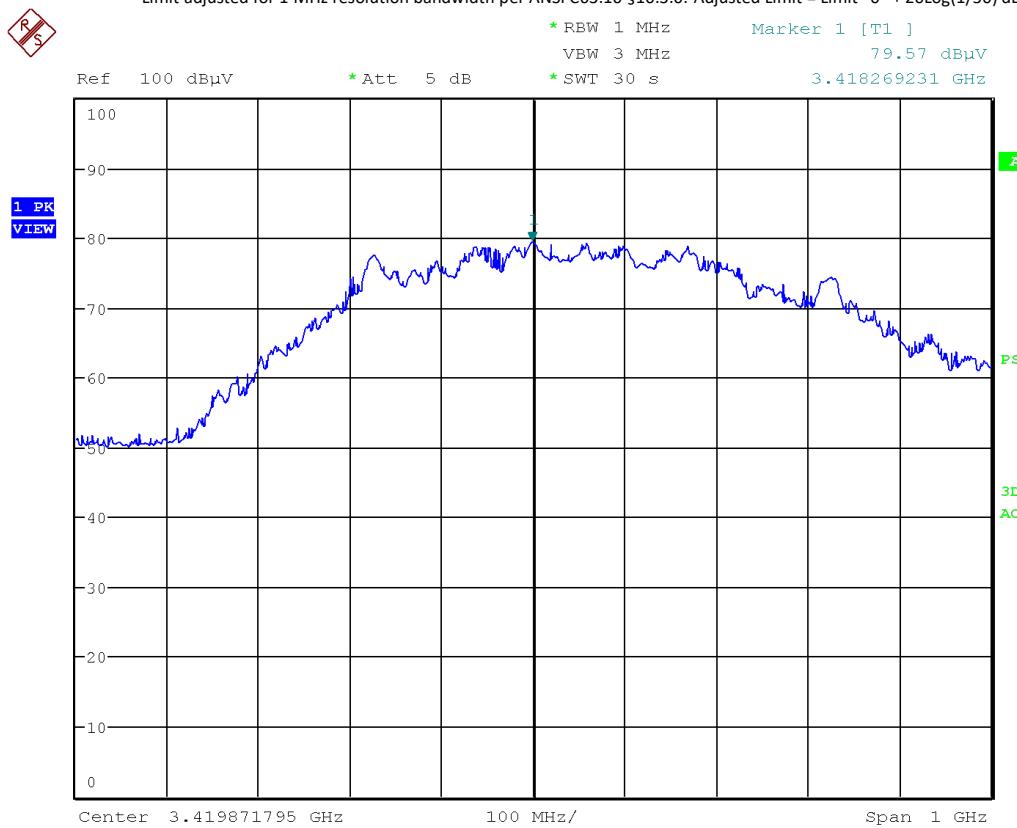
Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
EMI Test Receiver	Rohde & Schwarz	ESU40	E1131	1 year	19-Nov-2020
System Controller	Sunol Sciences	SC104V	E1129	NCR	NCR
Horn Antenna	ETS Lindgren	3117-PA	E1139	1 year	21-Mar-2020

Notes: NCR - no calibration required

7.5.5 Test data peak emission, 3.5 GHz operation

Table 7.5-2: Peak emission, 3.5 GHz operation

Frequency (MHz)	Resolution Bandwidth (MHz)	Measured (dB μ V) (Peak Detector)	Antenna Factor (dB/m)	Cable Loss (dB)	Field Strength at 0.5 m (dB μ V/m)	EIRP (dBm)	Limit (dBm)	Verdict
3418.3	1	79.6	-14.4	6.8	71.9	-38.8	-34.0	Pass


Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Field strength (dB μ V/m) converted to EIRP: EIRP = Field Strength -110.8

Limit adjusted for 1 MHz resolution bandwidth per ANSI C63.10 §10.3.6: Adjusted Limit = Limit "0" + 20Log(1/50) dBm = -34 dBm

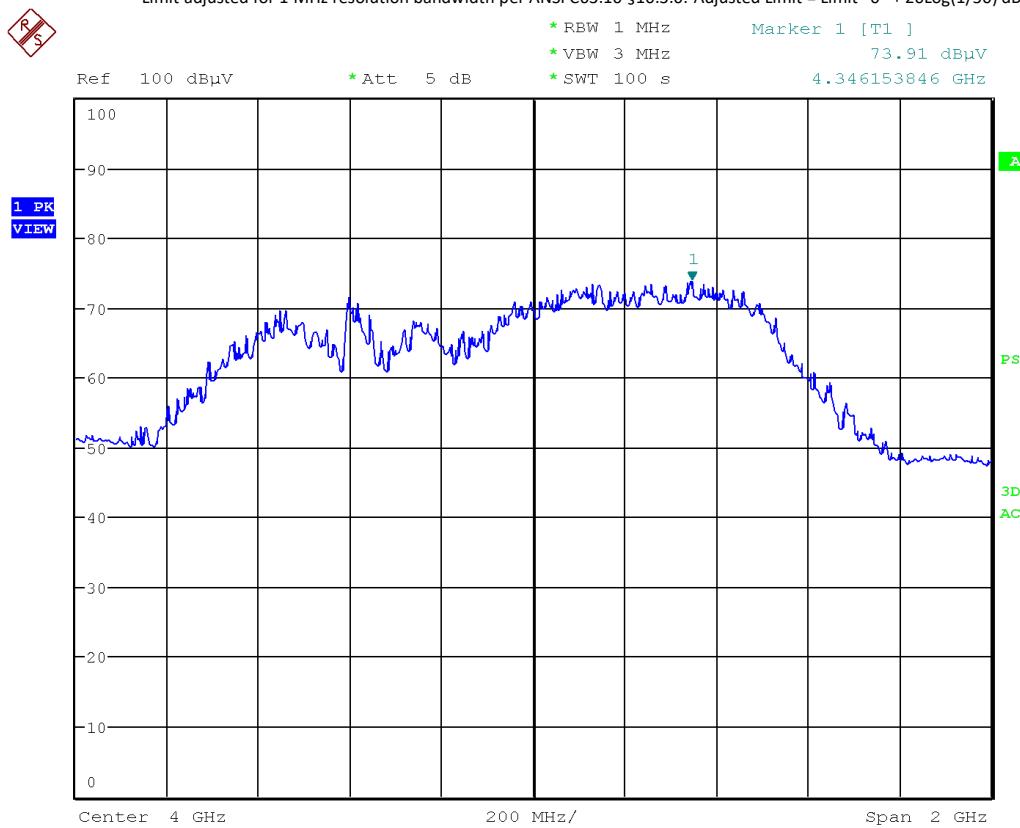
Date: 26.FEB.2020 03:07:50

Figure 7.5.1: Peak emission f_M : 3.5 GHz operation

7.5.6 Test data peak emission, 4 GHz operation

Table 7.5-3: Peak emission, 4 GHz operation

Frequency (MHz)	Resolution Bandwidth (MHz)	Measured (dB μ V) (Peak Detector)	Antenna Factor (dB/m)	Cable Loss (dB)	Field Strength at 0.5 m (dB μ V/m)	EIRP (dBm)	Limit (dBm)	Verdict
4346.2	1	73.9	-11.9	7.8	69.8	-41.0	-34.0	Pass


Notes:

Field strength (dB μ V/m) = receiver/spectrum analyzer value (dB μ V) + correction factor (dB)

Correction factors = antenna factor ACF (dB) + cable loss (dB)

Field strength (dB μ V/m) converted to EIRP: EIRP = Field Strength -110.8

Limit adjusted for 1 MHz resolution bandwidth per ANSI C63.10 §10.3.6: Adjusted Limit = Limit "0" + 20Log(1/50) dBm = -34 dBm

Date: 26.FEB.2020 20:11:46

Figure 7.5.2: Peak emission f_M : 4 GHz operation

7.6 Operation of hand held equipment

7.6.1 References

[Title 47](#) → [Chapter I](#) → [Subchapter A](#) → [Part 15](#) → [Subpart C](#) → §15.519(a)

§15.519 Technical requirements for hand held UWB systems.

(a) UWB devices operating under the provisions of this section must be hand held, *i.e.*, they are relatively small devices that are primarily hand held while being operated and do not employ a fixed infrastructure.

(1) A UWB device operating under the provisions of this section shall transmit only when it is sending information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting.

RSS-220 -> §5.3.1(b)

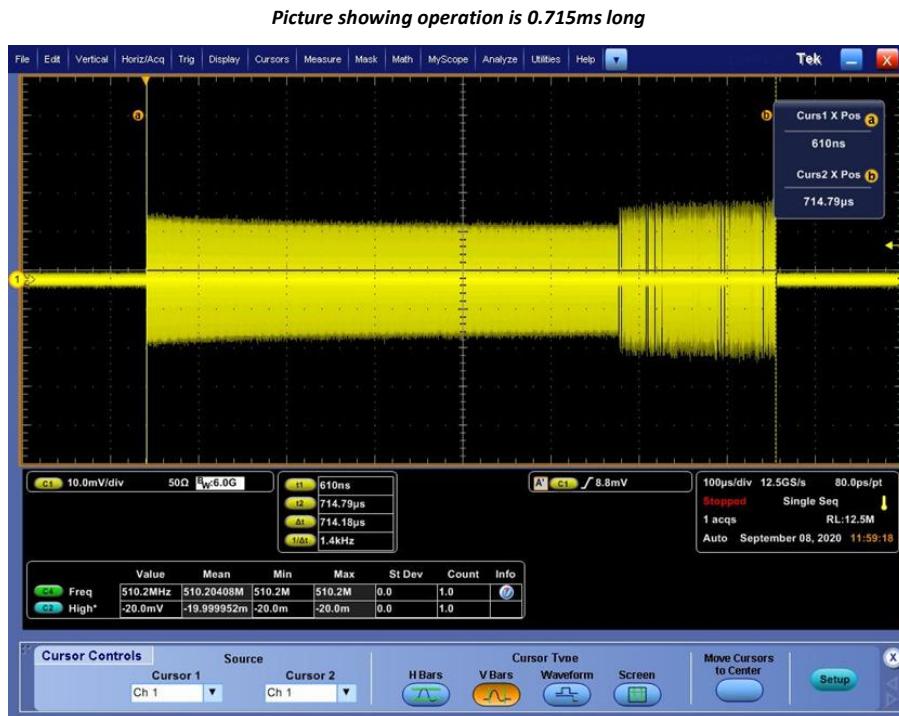
- b. The device is to transmit only when it is sending information to an associated receiver. The device shall cease transmission of information within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgement of reception must continue to be received by the UWB device at least every 10 seconds or the UWB device shall cease transmitting any information other than periodic signals used for the establishment or re-establishment of a communication link with an associated receiver.

7.6.2 Test summary – Declared information from customer with plot

Verdict	Pass
---------	------

7.6.3 Notes

Npme


7.6.4 Setup Details

EUT setup configuration	Table top
ANSI C63.10 (2013)	None

7.6.5 Test data – operation time < 10s

Per the 15.519(a)(1) requirement, the UWB transmitter is allowed to operate up to 10 seconds after which it must cease its transmission if it has not received an acknowledgement from the associated receiver. As demonstrated, the UWB transmitter will automatically cease its transmission after only 715 microseconds, meeting the requirement in much less than the allowed 10 seconds.

Section 8 Block diagrams of test set-ups

8.1 Radiated emissions set-up

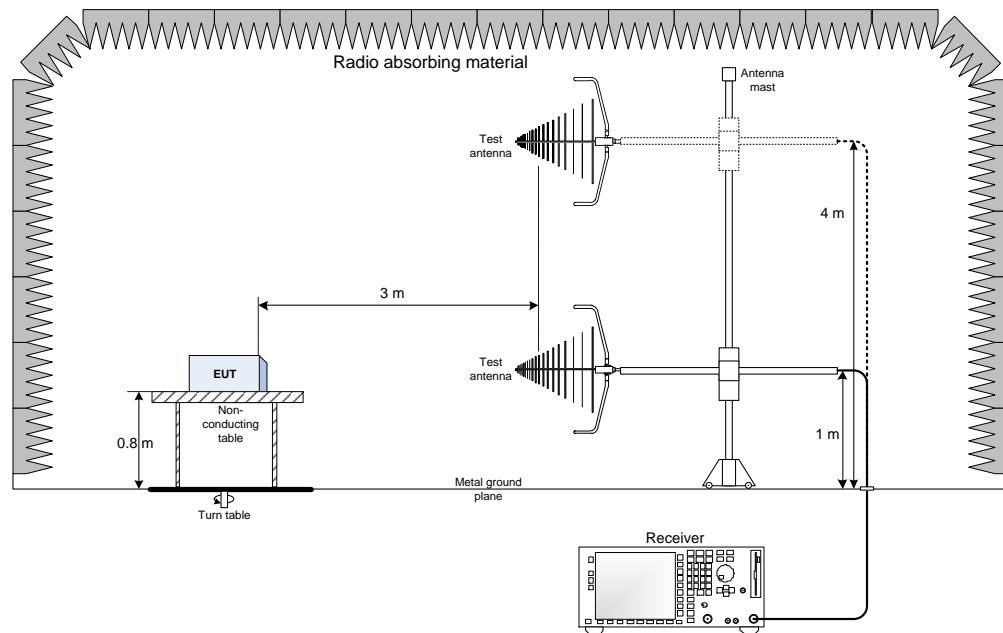


Figure 3 30 MHz - 1000 MHz Setup

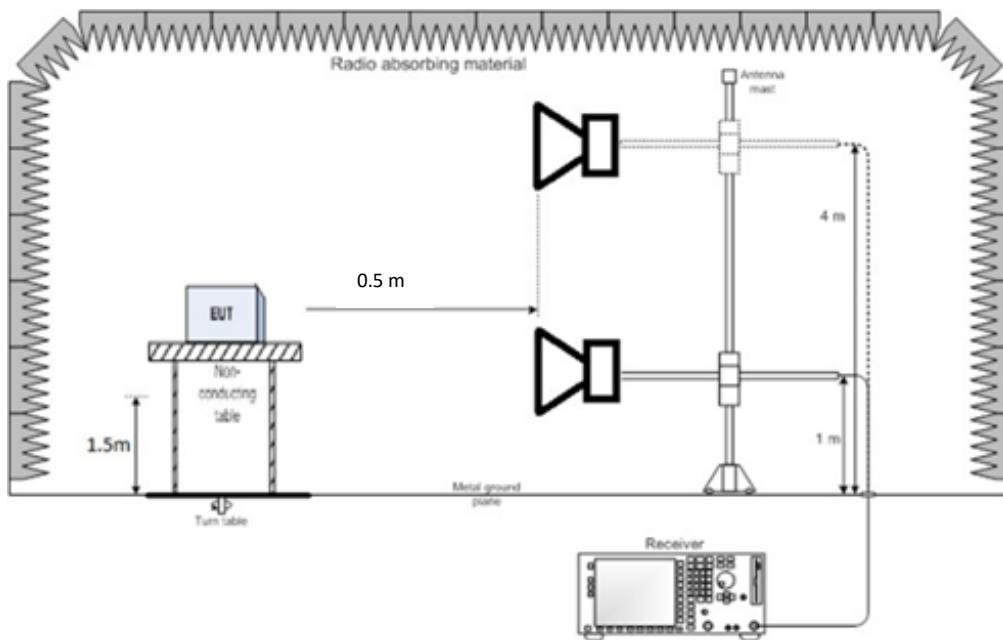


Figure 4 1 GHz - 40 GHz Setup

Thank you for choosing

ONE WORLD ◊ OUR APPROVAL