

Report No.: EED32O800665 Page 1 of 31

TEST REPORT

Product 2.4GHz Remote Control

Trade mark OVO

: OVO-RC08P2, OVO-RC08, Model/Type reference

OVO-RC07P, OVO-RC08P

Serial Number : N/A

Report Number : EED32O800665

FCC ID 2AAUL-OVO-RC08P2

Date of Issue Mar. 21, 2022

Test Standards : 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

OVOMEDIA CREATIVE INC. 3F., No. 151, Ziqiang 5th Rd., Zhubei City, Hsinchu County, Taiwan

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Reviewed by:

Mark Chen

Date:

Aaron Ma Mar. 21, 2022

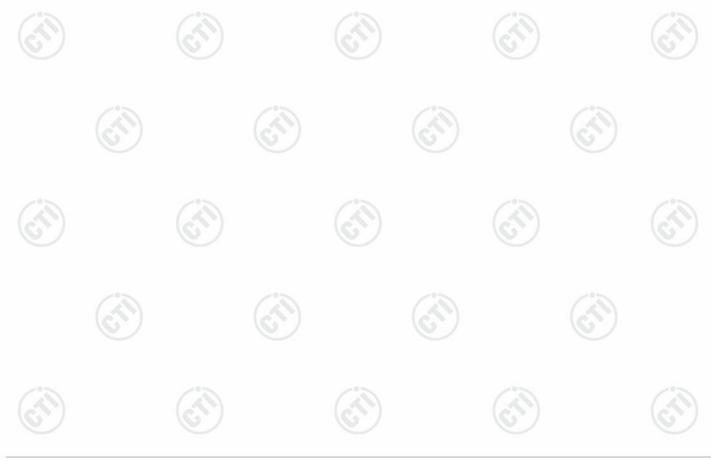
David Wang

Check No.:4903140122

Version

Version No.	Date	Description	37)
00	Mar. 21, 2022	Original	
		-	

Test Summary


Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	N/A
Field Strength of the Fundamental Signal	47 CFR Part 15 Subpart C Section 15.249 (a)	ANSI C63.10-2013	PASS
Spurious Emissions	47 CFR Part 15 Subpart C Section 15.249 (a)/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.249(a)/15.205	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.215 (c)	ANSI C63.10-2013	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: OVO-RC08P2, OVO-RC08, OVO-RC07P, OVO-RC08P.

Only the model OVO-RC08P2 was tested, the difference between these models is listed as below: the models are different because of the sales channels and customer code numbers; but their internal structure, circuit principle, and all key components related to electromagnetic compatibility are exactly the same. The difference does not affect the safety and electromagnetic compatibility of the product.

Page 3 of 31

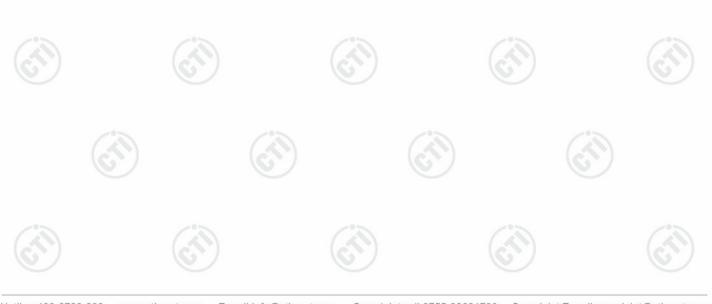
Contents

Page 4 of 31

1 VERSIO	ON				•••••		2
2 TEST S	SUMMARY			•••••	•••••	•••••	3
4 GENER	RAL INFORMAT	ION		•••••		•••••	5
4.2 GE 4.3 TE: 4.4 DE 4.5 TE: 4.6 DE 4.7 AB 4.8 OT 4.9 ME	NERAL DESCRIPTION ST ENVIRONMENT. SCRIPTION OF SUP ST LOCATION VIATION FROM ST. NORMALITIES FRO THER INFORMATION EASUREMENT UNCL	N DN OF EUT PORT UNITS ANDARDS M STANDARD CONE I REQUESTED BY TH ERTAINTY (95% CON	DITIONSE CUSTOMER	s, K=2)			
6 TEST F	RESULTS AND I	MEASUREMENT	DATA	••••••		•••••	11
6.2 RA	DIATED SPURIOUS	ENT EMISSIONS					12
		APHS OF TEST S					
APPEND	IX 2 PHOTOGR	APHS OF EUT	•••••		••••••	•••••	27

Page

Report No. : EED32O800665 Page 5 of 31

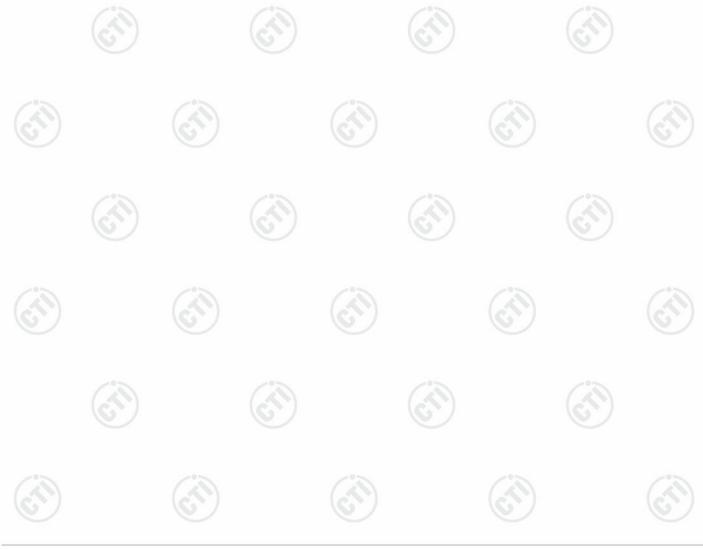

4 General Information

4.1 Client Information

Applicant:	OVOMEDIA CREATIVE INC.			
Address of Applicant:	3F., No. 151, Ziqiang 5th Rd., Zhubei City, Hsinchu County, Taiwan			
Manufacturer:	OVOMEDIA CREATIVE INC.			
Address of Manufacturer:	3F., No. 151, Ziqiang 5th Rd., Zhubei City, Hsinchu County, Taiwan			
Factory:	Shenzhen Tianzun Technology Co., Ltd.			
Address of Factory:	6th Floor, Building 65, Baotian Industrial Zone, Chentian Community,			
/°S	Xixiang Street, Baoan District, Shenzhen			

4.2 General Description of EUT

Product Name:	2.4GHz Remote Control
Model/Type reference:	OVO-RC08P2, OVO-RC08, OVO-RC07P, OVO-RC08P
Test Model No.:	OVO-RC08P2
Trade mark:	OVO
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Test Software of EUT	N/A
Operation Frequency:	2402MHz~2480MHz
Modulation Type:	GFSK
Number of Channel:	5
Antenna Type:	PCB Antenna
Antenna Gain:	4.5 dBi
Power Supply:	Battery: DC 3V
Test Voltage:	DC 3V
Sample Received Date:	Jan. 14, 2022
Sample tested Date:	Jan. 14, 2022 to Mar. 18, 2022
1677	1571 1571 1571


Page 6 of 31 Report No.: EED32O800665

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency		
1CH	2404 MHz	2CH	2424 MHz	3CH	2444 MHz		
4CH	2476 MHz	5CH	2480 MHz	(1)	(

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The Lowest channel(CH1)	2404MHz		
The Middle channel(CH3)	2444MHz		
The Highest channel(CH5)	2480MHz		

Report No. : EED32O800665 Page 7 of 31

4.3 Test Environment

	Operating Environment	:				
	Radiated Spurious Emis	ssions:				
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH				
1	Atmospheric Pressure:	1010mbar		(3)		(20)
	RF Conducted:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH				
	Atmospheric Pressure:	1010mbar	(3)		(3)	

4.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
1				, &

4.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.6 Deviation from Standards

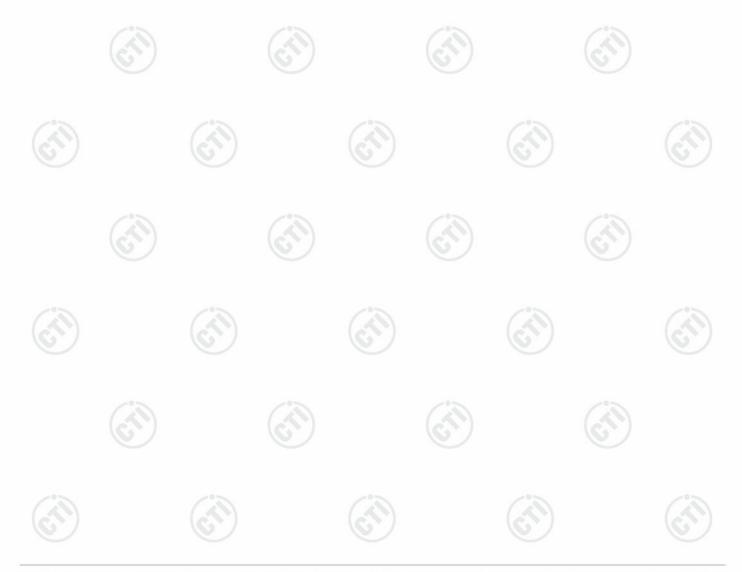
None.

4.7 Abnormalities from Standard Conditions

None.

4.8 Other Information Requested by the Customer

None.

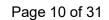


Report No. : EED32O800665 Page 8 of 31

4.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DC navver conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
	()	3.3dB (9kHz-30MHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
100		3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32O800665 Page 9 of 31


5 Equipment List

RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	R&S	FSV40	101200	08-26-2021	08-25-2022	
Signal Generator	Keysight	E8257D	MY53401106	12-24-2021	12-23-2022	
Digital multimeter	FLUKE	111	90240138	05-10-2021	05-09-2022	
DC Power	Keysight	E3642A	MY54426035	12-24-2021	12-23-2022	

	3M Se	mi/full-anechoic Cha	mber			
Equipment	Equipment Manufacturer		Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2021	05-15-2022	
Receiver	R&S	ESCI7	100938-003	10-15-2021	10-14-2022	
Multi device Controller	maturo	NCD/070/10711112	- 0	- G	(3	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04-15-2021	04/14/2024	
Spectrum Analyzer	R&S	FSP40	100416	04-29-2021	04-28-2022	
Microwave Preamplifier	Agilent	8449B	3008A02425	06-23-2021	06-22-2022	

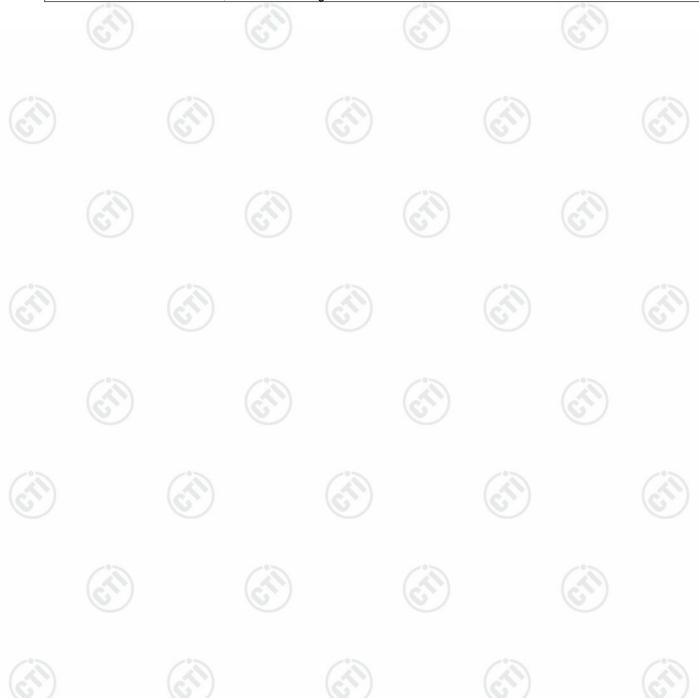
		3M full-anecho	ic Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		- 6	
Receiver	Keysight	N9038A	MY57290136	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS- LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022	
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022	
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022	
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	(c/12)	(
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	<u></u>		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001			
Cable line	Times	EMC104-NMNM- 1000	SN160710	/	(N)	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		9)	
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001			
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		/	
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	(0,7)	(

Standard requirement:

Report No. : EED32O800665 Page 11 of 31

6 Test results and Measurement Data

6.1 Antenna Requirement


15.203 requirement:
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the
responsible party shall be used with the device. The use of a permanently attached antenna or of an
li ai le proprobleria é el teatro de

47 CFR Part 15C Section 15.203

responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna, The best case gain of the antenna is 4.5 dBi.

6.2 Radiated Spurious Emissions

Test Requirement: 47 CFR Part 15C Section 15.249 and 15.209 and 15.205

Test Method: ANSI C63.10

Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10kHz	Average

Receiver Setup:

Limit: (Spurious Emissions)

Fraguenay	Field strength	Limit	Remark	Measurement
Frequency	(microvolt/meter)	(dBµV/m)	Remark	distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	7:0	30
1.705MHz-30MHz	30	-	(-5%)	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Limit:

(Field strength of the fundamental signal)

Frequency	Limit (dBµV/m @3m)	Remark
2400MHz-2483.5MHz	94.0	Average Value
2400WHZ-2463.5WHZ	114.0	Peak Value

Test Setup:

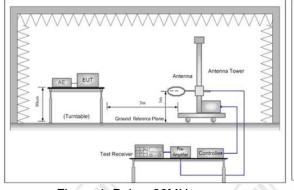


Figure 1. Below 30MHz

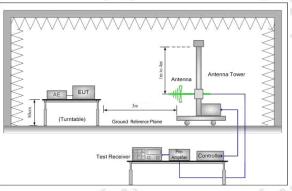
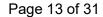



Figure 2. 30MHz to 1GHz

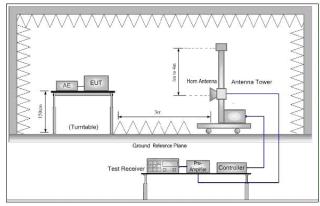


Figure 3. Above 1GHz

Test Procedure:

Below 1GHz test procedure as below:

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).

Test the EUT in the lowest channel, middle channel, the Highest channel

The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

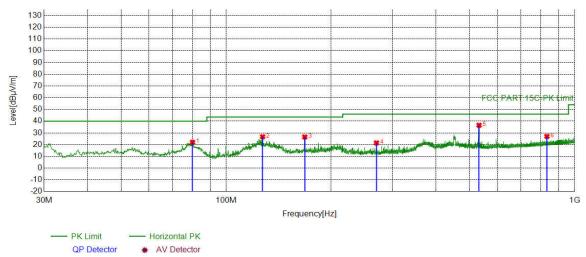
Repeat above procedures until all frequencies measured was complete.

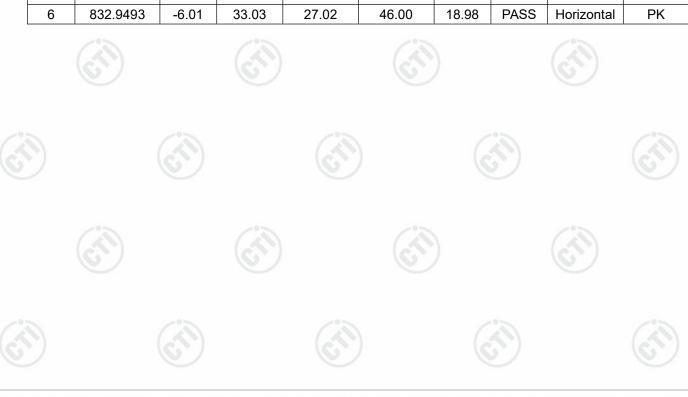
Measurement Data

Field Strength Of The Fundamental Signal:

Peak value:

Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2404	5.82	84.75	90.57	114	-23.43	Pass	Horizontal	PK
2404	5.83	82.14	87.97	114	-26.03	Pass	Vertical	PK
2444	6.20	87.10	93.30	114	-20.7	Pass	Horizontal	PK
2444	6.20	84.72	90.92	114	-23.08	Pass	Vertical	PK
2480	6.54	85.95	92.49	114	-21.51	Pass	Horizontal	PK
2480	6.54	85.24	91.78	114	-22.22	Pass	Vertical	PK


Page 14 of 31


Spurious Emissions:

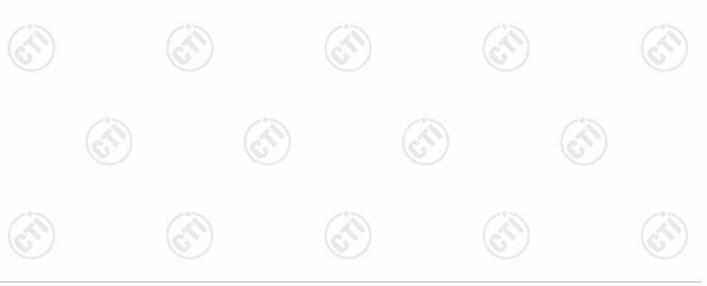
30MHz-1GHz:(worse)		

3	Suspected List														
	NO	Freq.	Factor	Reading	Reading Level Limit Marg	Margin	Result	Result Polarity	Remark						
	110	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	rtocait	rolanty	rtomant					
	1	80.0570	-22.55	44.53	21.98	40.00	18.02	PASS	Horizontal	PK					
	2	127.2037	-21.15	47.88	26.73	43.50	16.77	PASS	Horizontal	PK					
	3	168.0448	-20.59	47.15	26.56	43.50	16.94	PASS	Horizontal	PK					
	4	270.0020	-16.15	37.61	21.46	46.00	24.54	PASS	Horizontal	PK					
	5	531.8312	-10.21	46.77	36.56	46.00	9.44	PASS	Horizontal	PK					
	6	832.9493	-6.01	33.03	27.02	46.00	18.98	PASS	Horizontal	PK					

Page 15 of 31

- PK Limit

QP Detector


- Vertical PK

* AV Detector

Report No.: EED32O800665 Page 16 of 31

est mode:	Transmitting (lowest channel)	Vertical	
130 120 110 100 90 80 70 50 50		FCC PART 15C-PK Limit	
40 30 20 10 0 -10 -20 30M	100M	16	

Sus	spec	ted List								
N	0	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	rtoduit	1 Glarity	rtomant
, 1	1	53.0883	-17.58	39.25	21.67	40.00	18.33	PASS	Vertical	PK
2	2	79.9600	-22.56	45.01	22.45	40.00	17.55	PASS	Vertical	PK
3	3	99.9440	-18.41	40.18	21.77	43.50	21.73	PASS	Vertical	PK
4	1	184.3424	-19.36	45.17	25.81	43.50	17.69	PASS	Vertical	PK
5	5	284.9415	-15.83	41.28	25.45	46.00	20.55	PASS	Vertical	PK
6	3	530.6671	-10.24	39.65	29.41	46.00	16.59	PASS	Vertical	PK

Report No. : EED32O800665 Page 17 of 31

Above 1GHz:

Test mode:	Transmitting (lowest channel)	Horizontal
------------	-------------------------------	------------

Suspe	Suspected List													
NO	Freq.	Factor	Reading	Level	Limit	Margin	D 14		D					
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark					
1	1181.2181	0.81	42.42	43.23	74.00	30.77	PASS	Horizontal	PK					
2	1853.2853	3.68	40.67	44.35	74.00	29.65	PASS	Horizontal	PK					
3	4868.1245	-16.21	55.90	39.69	74.00	34.31	PASS	Horizontal	PK					
4	7211.2808	-11.82	59.76	47.94	74.00	26.06	PASS	Horizontal	PK					
5	9790.4527	-7.41	50.74	43.33	74.00	30.67	PASS	Horizontal	PK					
6	13922.728	-1.84	49.43	47.59	74.00	26.41	PASS	Horizontal	PK					

Test mode:	Transmitting (lowest channel)	Vertical

Su	spected List								
NC	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
140	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	lolanty	IXCIIIAIK
1	1291.2291	1.04	41.78	42.82	74.00	31.18	PASS	Vertical	PK
2	1708.4708	2.97	41.01	43.98	74.00	30.02	PASS	Vertical	PK
3	4848.1232	-16.22	54.30	38.08	74.00	35.92	PASS	Vertical	PK
4	6965.2644	-11.82	53.22	41.40	74.00	32.60	PASS	Vertical	PK
5	11275.5517	-6.58	52.04	45.46	74.00	28.54	PASS	Vertical	PK
6	14433.7623	0.74	47.49	48.23	74.00	25.77	PASS	Vertical	PK

Test mode:	Transmitting (middle channel)	Horizontal

Susp	ected List								
NO	Freq.	Factor	Reading	Level	Limit	Margin		.	
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
1	1098.6099	0.85	42.09	42.94	74.00	31.06	PASS	Horizontal	PK
2	1763.0763	3.15	40.79	43.94	74.00	30.06	PASS	Horizontal	PK
3	4875.1250	-16.21	55.26	39.05	74.00	34.95	PASS	Horizontal	PK
4	7187.2792	-11.81	53.89	42.08	74.00	31.92	PASS	Horizontal	PK
5	10945.5297	-6.27	50.98	44.71	74.00	29.29	PASS	Horizontal	PK
6	16258.8839	1.38	48.88	50.26	74.00	23.74	PASS	Horizontal	PK

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Compiaint call:0755-33681700 Compiaint E-mail:complaint@cti-cert.com

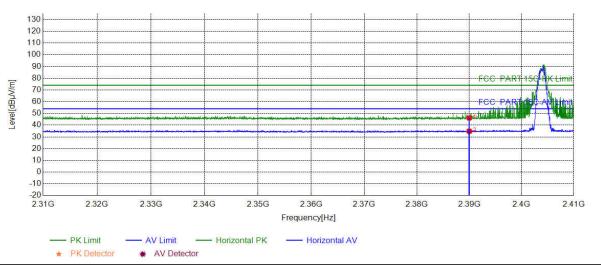
Report No. : EED32O800665 Page 18 of 31

Test mode:	Transmitting (middle channel)	Vertical
------------	-------------------------------	----------

Suspe	ected List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
INO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Nesuit	Folanty	INGIIIAIN
1	1356.4356	1.25	42.17	43.42	74.00	30.58	PASS	Vertical	PK
2	1783.6784	3.22	41.12	44.34	74.00	29.66	PASS	Vertical	PK
3	4889.1259	-16.20	57.94	41.74	74.00	32.26	PASS	Vertical	PK
4	6374.2249	-12.88	55.12	42.24	74.00	31.76	PASS	Vertical	PK
5	8799.3866	-9.46	51.59	42.13	74.00	31.87	PASS	Vertical	PK
6	13280.6854	-3.39	49.66	46.27	74.00	27.73	PASS	Vertical	PK

Test mode:	Transmitting (highest channel)	Horizontal
------------	--------------------------------	------------

2 1782.6783 3.22 40.59 43.81 74.00 30.19 PASS Horizontal Ph	Susp	ected List	ted List						
[MHz] [dB] [dBμV] [dBμV/m] [dBμV/m] [dB] 1 1193.4193 0.80 41.74 42.54 74.00 31.46 PASS Horizontal Ph 2 1782.6783 3.22 40.59 43.81 74.00 30.19 PASS Horizontal Ph	NO	Freq.	Freq. Factor Read	ing Level	Limit	Margin	Pacult	Polarity	Pemark
2 1782.6783 3.22 40.59 43.81 74.00 30.19 PASS Horizontal Ph	NO	[MHz]	[MHz] [dB] [dB _i	V] [dBµV/m]	[dBµV/m]	[dB]	Result	Folality	Remark
	1	1193.4193	1193.4193 0.80 41.	42.54	74.00	31.46	PASS	Horizontal	PK
3 4540.1027 -16.85 55.09 38.24 74.00 35.76 PASS Horizontal Ph	2	1782.6783	1782.6783 3.22 40.	9 43.81	74.00	30.19	PASS	Horizontal	PK
	3	4540.1027	4540.1027 -16.85 55.	9 38.24	74.00	35.76	PASS	Horizontal	PK
4 6015.2010 -12.99 54.08 41.09 74.00 32.91 PASS Horizontal Ph	4	6015.2010	6015.2010 -12.99 54.	8 41.09	74.00	32.91	PASS	Horizontal	PK
5 8565.3710 -10.42 51.81 41.39 74.00 32.61 PASS Horizontal Ph	5	8565.3710	8565.3710 -10.42 51.	41.39	74.00	32.61	PASS	Horizontal	PK
6 12553.6369 -4.44 51.03 46.59 74.00 27.41 PASS Horizontal Ph	6	12553.6369	12553.6369 -4.44 51.	3 46.59	74.00	27.41	PASS	Horizontal	PK


Test mode:	Transmitting (highest channel)	Vertical	

Suspe	cted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	D 16	D. L. die	D
NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark
1	1120.4120	0.84	42.48	43.32	74.00	30.68	PASS	Vertical	PK
2	1679.2679	2.81	40.77	43.58	74.00	30.42	PASS	Vertical	PK
3	4373.0915	-17.10	56.40	39.30	74.00	34.70	PASS	Vertical	PK
4	6381.2254	-12.87	56.11	43.24	74.00	30.76	PASS	Vertical	PK
5	8742.3828	-9.85	53.03	43.18	74.00	30.82	PASS	Vertical	PK
6	12581.6388	-4.24	51.00	46.76	74.00	27.24	PASS	Vertical	PK

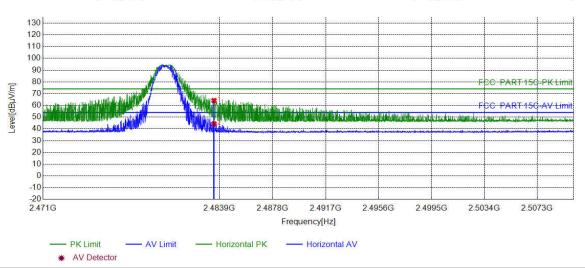
Report No. : EED32O800665 Page 19 of 31

Restricted bands

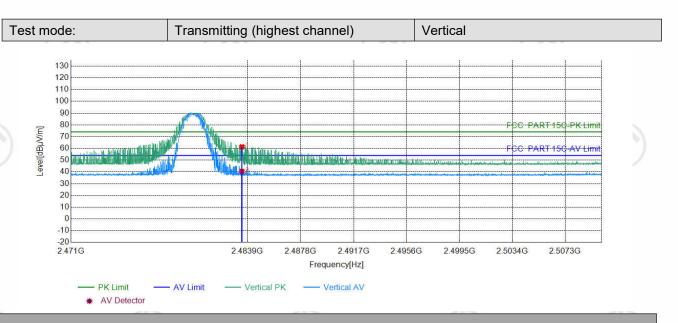
Suspec	ted List								
NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
140	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	resuit	lolanty	rtemant
1	2390.0000	5.77	40.41	46.18	74.00	27.82	PASS	Horizontal	PK
2	2390.0000	5.77	29.05	34.82	54.00	19.18	PASS	Horizontal	AV

st mode:	Transmitting (lowest channel)	Vertical
130		
120		
110		
100		
90		
80		FCC PART 15CPK+imit
70		
60		FCC PARTITION AVILIMIT
50		FCC PARTITION AVILIMIT
40		2
30		and the second of the second o
20		
10		
0		
-10		
-20		
2.31G 2.32G 2.3	3G 2.34G 2.35G 2.36G 2.37G	2.38G 2.39G 2.4G 2.41G
	Frequency[Hz]	
PK Limit A	V Limit — Vertical PK — Vertical AV	
★ PK Detector **	AV Detector	

	Suspected List												
8	NO	Freq. [MHz]	Factor [dB]	Reading	Level	Limit	Margin [dB]	Result	Polarity	Remark			
I		[2]	L	[abh t]	[GDM 17111]	[abh t/m]							


CTI华测检测

Report No.: EED32O800665


Page	20	∩f	31
ıauc	~0	OI.	O I

1	2390.0000	5.77	40.52	46.29	74.00	27.71	PASS	Vertical	PK
2	2390.0000	5.77	29.80	35.57	54.00	18.43	PASS	Vertical	AV

Test mode: Transmitting (highest channel) Horizontal

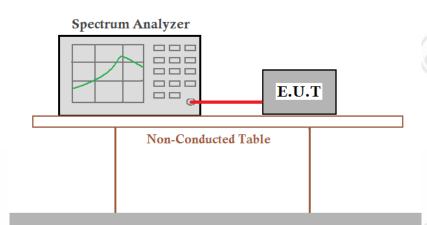
•	Suspected List											
	ОИ	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark		
	110	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]					
13	1	2483.5000	6.57	57.63	64.20	74.00	9.80	PASS	Horizontal	PK		
6	2	2483.5000	6.57	37.69	44.26	54.00	9.74	PASS	Horizontal	AV		

Page 21 of 31

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	54.78	61.35	74.00	12.65	PASS	Vertical	PK
2	2483.5000	6.57	33.91	40.48	54.00	13.52	PASS	Vertical	AV

Remark:

- The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Factor
 - Factor=Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



6.3 20dB Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.215

Test Method: ANSI C63.10: 2013

Test Setup:

Ground Reference Plane

Remark: Offset=Cable loss+ attenuation factor.

1) The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

2) Set to the maximum power setting and enable the EUT transmit continuously.

3) Use the following spectrum analyzer settings for 20dB Bandwidth **Test Procedure:**

measurement.

Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a test

channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold.

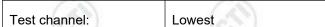
4) Measure and record the results in the test report.

Limit: N/A

Test Mode: Transmitter mode

Test Results: Pass

Measurement Data


Test Channel	20dB bandwidth (MHz)		Results	
Lowest	0.808	/°S	Pass	<u></u>
Middle	0.808	(3)	Pass	(67)
Highest	0.832		Pass	

Page 23 of 31

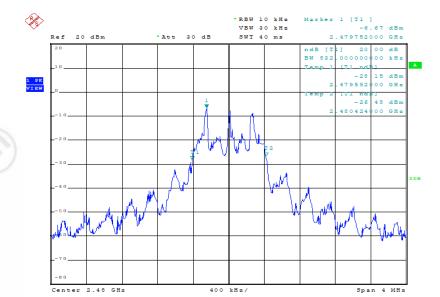
Test plot as follows:

Date: 17.MAR.2022 16:27:05

Test channel: Middle **%** 20 dBm SWT 40 ms

Date: 17.MAR.2022 16:29:35

Test channel:



Report No.: EED32O800665

Highest

Date: 17.MAR.2022 16:42:23

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.:OVO-RC08P2

Radiated emission Test Setup-1 (30MHz~1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32O800665

APPENDIX 2 PHOTOGRAPHS OF EUT

Test model No.:OVO-RC08P2

View of Product-1

View of Product-2

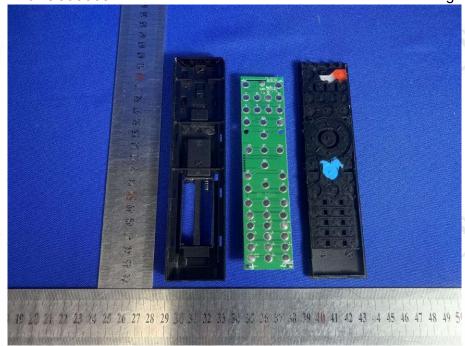
Page 28 of 31 Report No.: EED32O800665

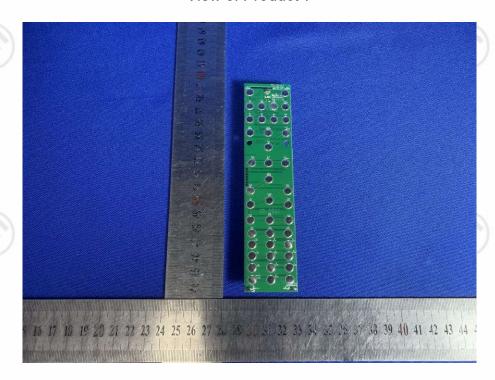
View of Product-3

View of Product-4

View of Product-5

View of Product-6



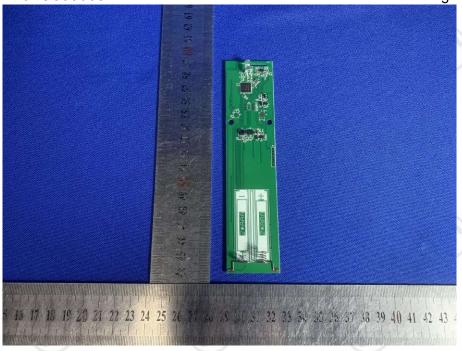


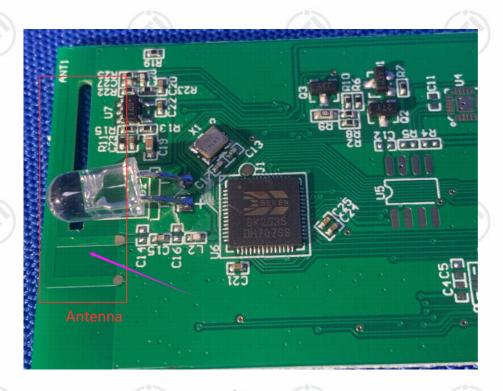
CTI华测检测

Report No.: EED32O800665 Page 30 of 31

View of Product-7

View of Product-8





Report No. : EED32O800665 Page 31 of 31

View of Product-9

View of Product-10

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***