FCC ID:2AAU7-AH3

RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)	
	(A) Limits for 0	ccupational/Controlled Exp	osure		
0.3-3.0	614	1.63	*100	6	
3.0-30	1842/	4.89/1	*900/f ²	6	
30-300	61.4	0.163	1.0	6	
300-1,500			f/300	6	
1,500-100,000			5	6	
	(B) Limits for Gene	ral Population/Uncontrolled	Exposure		
0.3-1.34	614	1.63	*100	30	
1.34-30	824/	2.19/1	*180/f ²	30	
30-300	27.5	0.073	0.2	30	
300-1,500			f/1500	30	
1,500-100,000			1.0	30	

f = frequency in MHz * = Plane-wave equivalent power density

MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30*P*G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Average RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30*P*G}{377*D^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Measurement Result

BT:

Operation Frequency: 2402MHz~2480MHz

Power density limited: 1mW/ cm²

Antenna Type: stamped metal Antenna

BT antenna gain: 2.68 dBi;

R=20cm

 $mW=10^{(dBm/10)}$

Mode	Tune- up limit (dBm)	Gain (dBi)	EIRP (dBm)	EIRP (mW)	R(c m)	S (mW/cm ²)	MPE Limit (mW/cm²)	Conclusion
BDR EDR	3.62	2.68	6.30	4.266	20	0.00085	1	Pass
BLE	-0.24	2.68	2.44	1.754	20	0.00035	1	Pass

2.4G/5G WIFI:

Operation Frequency: WIFI 802.11b/g/n HT20: 2412-2462MHz,

WIFI 802.11n HT40:2422-2452MHz Power density limited: 1mW/ cm²

Operation Frequency:

WIFI 802.11a/ac/n(HT20): 5180-5240MHz; 5745-5825MHz; WIFI 802.11ac/n(HT40): 5190-5230MHz; 5755-5795MHz;

WIFI 802.11ac80:5210-5210MHz; 5775-5775MHz

Power density limited: 1mW/cm Antenna Type: stamped metal Antenna 2.4G WIFI antenna gain: 2.68 dBi 5G WIFI antenna gain: 5.98 dBi

R=20cm

mW=10^(dBm/10) WLAN2.4G MODE

Mode	Tune- up limit (dBm)	Gain (dBi)	EIRP (dBm)	EIRP (mW)	R(cm)	S (mW/cm ²)	MPE Limit (mW/cm ²)	Conclusion
2.4G	19.14	2.68	21.82	152.055	20	0.03025	1	Pass

WLAN5G MODE

Mode	Tune- up limit (dBm)	Gain (dBi)	EIRP (dBm)	EIRP (mW)	R(cm)	S (mW/cm ²)	MPE Limit (mW/cm²)	Conclusion
5.2G	12.56	5.98	18.54	71.45	20	0.01421	1	
5.3G	12.90	5.98	18.88	77.27	20	0.01537	1	Pass
5.6G	11.74	5.98	17.72	59.16	20	0.01177	1	F455
5.8G	14.38	5.98	20.36	108.64	20	0.02161	1	

SIMULTANEOUS TRANSMISSIONS

When a number of sources at different frequencies, and/or broadband sources, contribute to the total exposure, it becomes necessary to weigh each contribution relative to the MPE. To comply with the MPE, the fraction of the MPE in terms of E^2 , H^2 (or power density) incurred within each frequency interval should be determined and the sum of all such fractions should not exceed unity. In order to ensure compliance with the MPE for a controlled environment, the sum of the ratios of the power density to the corresponding MPE should not exceed unity. That is

$$\sum_{j=1}^{n} \frac{S_{j}}{MPE_{j}} \leq 1$$

Max. SIMULTANEOUS TRANSMISSIONS for BLE Module + Wi-Fi Module

Band	Tune-up limit (dBm)	Gain (dBi)	EIRP (dBm)	EIRP (mW)	R(cm	S (mW/cm ²)	MPE Limit (mW/cm ²)	Calculation result	Conclusion
LTE						0.141	0.47	0.33025	Door
WIFI 2.4	19.14	2.68	21.82	152.055	20	0.03025	1	0.33025	Pass

Note:

Alex

- 1. LTE Test data reference to FCC ID: XMR2020RM502QAE.
- 2. NO simultaneous transmissions are possible for this device of 2.4G + 5G

Signature: Date: 2022-10-10

NAME AND TITLE (Please print or type): Alex/Manager

COMPANY (Please print or type): Shenzhen NTEK Testing Technology Co., Ltd./ 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China.