

**CFR 47 FCC PART 15 SUBPART C
ISED RSS-247 ISSUE 2 (DTS)**

TEST REPORT

For

WIFI BT module

MODEL NUMBER: 6252BA-SR

REPORT NUMBER: E04A23090802F00102

ISSUE DATE: Nov. 10, 2013

FCC ID: 2AATL-6252BA-SR

IC: 12425A-6252BASR

Prepared for

FN-LINK TECHNOLOGY LIMITED

**No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha,
Hunan, China**

Prepared by

Guangdong Global Testing Technology Co., Ltd.

**Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park,
Dongguan city, Guangdong, People's Republic of China, 523808**

**This report shall not be reproduced, except in full, without the written approval of
Guangdong Global Testing Technology Co., Ltd.**

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	Nov. 10, 2013	Initial Issue	Win

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c) RSS-GEN Clause 6.8	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207 RSS-GEN Clause 8.8	N/A
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3) RSS-247 Clause 5.4 (d)	Pass
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.247 (d) FCC Part 15.205/15.209 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

Note:

1. N/A: In this whole report not applicable.

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C

ISED RSS-247 ISSUE 2 (DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

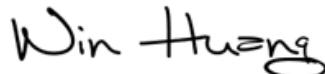
1. ATTESTATION OF TEST RESULTS.....	5
2. TEST METHODOLOGY.....	6
3. FACILITIES AND ACCREDITATION.....	6
4. CALIBRATION AND UNCERTAINTY	7
4.1. <i>MEASURING INSTRUMENT CALIBRATION</i>	<i>7</i>
4.2. <i>MEASUREMENT UNCERTAINTY</i>	<i>7</i>
5. EQUIPMENT UNDER TEST	8
5.1. <i>DESCRIPTION OF EUT</i>	<i>8</i>
5.2. <i>CHANNEL LIST</i>	<i>8</i>
5.3. <i>CONDUCTED OUTPUT AVERAGE POWER</i>	<i>9</i>
5.4. <i>TEST CHANNEL CONFIGURATION.....</i>	<i>9</i>
5.5. <i>THE WORSE CASE POWER SETTING PARAMETER</i>	<i>9</i>
5.6. <i>DESCRIPTION OF AVAILABLE ANTENNAS</i>	<i>10</i>
5.7. <i>SUPPORT UNITS FOR SYSTEM TEST.....</i>	<i>11</i>
5.8. <i>SETUP DIAGRAM</i>	<i>11</i>
6. MEASURING EQUIPMENT AND SOFTWARE USED.....	12
7. ANTENNA PORT TEST RESULTS	14
7.1. <i>Conducted Output Power.....</i>	<i>14</i>
7.2. <i>6dB Bandwidth and 99% Occupied Bandwidth</i>	<i>15</i>
7.3. <i>Power Spectral Density.....</i>	<i>17</i>
7.4. <i>Conducted Band edge and spurious emission</i>	<i>18</i>
7.5. <i>Duty Cycle</i>	<i>20</i>
8. RADIATED TEST RESULTS	21
9. ANTENNA REQUIREMENT	39
10. AC POWER LINE CONDUCTED EMISSION	40
11. TEST DATA.....	41
APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION	42
APPENDIX: PHOTOGRAPHS OF THE EUT	43

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: FN-LINK TECHNOLOGY LIMITED
Address: No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan, China

Manufacturer Information


Company Name: FN-LINK TECHNOLOGY LIMITED
Address: No.8, Litong Road, Liuyang Economic & Technical Development Zone, Changsha, Hunan, China

EUT Information

Product Description: WIFI BT module
Model: 6252BA-SR
Brand: FN-LINK
Sample Received Date: Sep. 26, 2023
Sample Status: Normal
Sample ID: A23090802 004
Date of Tested: Sep. 26, 2023 to Nov. 10, 2013

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2 (DTS)	Pass

Prepared By:

Win Huang
Project Engineer

Checked By:

Alan He
Laboratory Leader

Approved By:

Shawn Wen
Laboratory Manager

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C
ISED RSS-247 ISSUE 2 (DTS)

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	<p>A2LA (Certificate No.: 6947.01) Guangdong Global Testing Technology Co., Ltd. has been assessed and proved to be in compliance with A2LA.</p> <p>FCC (FCC Designation No.: CN1343) Guangdong Global Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment subject to Supplier's Declaration of Conformity (SDoC) and Certification rules</p> <p>ISED (Company No.: 30714) Guangdong Global Testing Technology Co., Ltd. has been registered and fully described in a report filed with ISED. The Company Number is 30714 and the test lab Conformity Assessment Body Identifier (CABID) is CN0148.</p>
---------------------------	--

Note: All tests measurement facilities use to collect the measurement data are located at
Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city,
Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
DTS Bandwidth	1.96	±9.2 PPM
20dB Emission Bandwidth	1.96	±9.2 PPM
Carrier Frequency Separation	1.96	±9.2 PPM
Time of Occupancy	1.96	±0.57%
Conducted Output Power	1.96	±1.5 dB
Power Spectral Density Level	1.96	±1.9 dB
Conducted Spurious Emission	1.96	9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Item	Measurement Frequency Range	K	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		WIFI BT module
Model		6252BA-SR
Hardware Version		1.0
Software Version		1.15.12
Ratings		DC 3.3V
Power Supply	DC	3.3

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2412 MHz to 2462 MHz
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n-HT40, IEEE 802.11ax-HE20, IEEE 802.11ax-HE40
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n/ax: OFDM(64-QAM, 16-QAM, QPSK, BPSK)
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n: Up to MCS7 IEEE 802.11ax: Up to MCS11
Number of Channels:	IEEE 802.11b/g/n-HT20/ax-HE20: 11 IEEE 802.11n-HT40/ax-HE40: 7
Maximum Peak Power:	IEEE 802.11b: 19.94 dBm IEEE 802.11g: 17.78 dBm IEEE 802.11n-HT20: 18.09 dBm IEEE 802.11n-HT40: 17.90 dBm IEEE 802.11ax-HE20: 17.07 dBm IEEE 802.11ax-HE40: 16.92 dBm
Antenna Type:	External Antenna Two antenna for WIFI
Antenna Gain:	ANT1: 1.53 dBi, ANT2: 1.53 dBi
Directional Gain	4.54 dBi
Normal Test Voltage:	3.3 Vdc
EUT Test software:	Terminal

5.2. CHANNEL LIST

Channel List for 802.11b/g/n (20 MHz)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	/	/

Channel List for 802.11n (40 MHz)

Channel	Frequency (MHz)						
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	/	/

5.3. CONDUCTED OUTPUT AVERAGE POWER

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted Output Power (dBm)	Maximum EIRP (dBm)
b	2412 ~ 2462	1-11[11]	19.94	21.47
g	2412 ~ 2462	1-11[11]	17.78	19.31
n HT20	2412 ~ 2462	1-11[11]	18.09	22.63
n HT40	2422 ~ 2452	3-9[7]	17.90	22.44
ax HE20	2412 ~ 2462	1-11[11]	17.07	21.61
ax HE40	2422 ~ 2452	3-9[7]	16.92	21.46

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT20/ ax HE20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT40/ ax HE40	CH 3(Low Channel), CH 6(MID Channel), CH 9(High Channel)	2422 MHz, 2437 MHz, 2452 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Software		QA Tool					
Modulation Mode	Transmit Antenna Number	Terminal					
		NCB: 20MHz			NCB: 40MHz		
		CH 1	CH 6	CH 11	CH 3	CH 6	CH 9
802.11b	1	20	20	20	/		
	2	20	20	20			
802.11g	1	18	18	18			
	2	18	18	18			
802.11n HT20	1	15	15	15			
	2	15	15	15			
802.11ax HE20	1	14	14	14	/		
	2	14	14	14			
802.11n HT40	1	/			15	15	15
	2	/			15	15	15
802.11ax HE40	1	/			14	14	14
	2	/			14	14	14

WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.3.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps

802.11g mode: 6 Mbps

802.11n HT20/ax HE20 mode: MCS0

802.11n HT40/ax HE40 mode: MCS0

The EUT has 2 separate antennas which correspond to 2 separate antenna ports. Core 1 and Core 2 correspond to antenna 1 and antenna 2 respectively.

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

Conducted output power, power spectral density tests separately on each port with all supported SISO & MIMO port combinations.

Conducted bandedge and spurious emissions tests were performed with SISO mode, as this port was found to have the worst case in terms of power settings amongst all supported possible SISO & MIMO port combinations.

Radiated emissions tests were performed with the MIMO modes. These were found to be the worst modulation scheme with regards to emissions after preliminary investigations and, as this mode emits the highest conducted output power level, it was deemed to be the worst case.

The EUT support Cyclic Shift Diversity(CDD), Space Time Coding(STBC), Spartial Division Multiplexing(SDM) modes. They use the same conducted power per chain in any given mode, so we only chose the worst case mode CDD for final testing.

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	External Antenna	1.53
2	2412-2462	External Antenna	1.53

The EUT support Cyclic Shift Diversity(CDD) mode.

MIMO output power port and MIMO PSD port summing were performed in accordance with KDB 662911 D01. For the CDD results the Directional Gain was calculated in accordance with the following method.

For output power measurements:

Directional gain= $G_{ANT} + \text{Array Gain} = 4.54 \text{ dBi}$

G_{ANT} : equal to the gain of the antenna having the highest gain

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \leq 4$

For power spectral density (PSD) measurements:

Directional gain= $G_{ANT} + \text{Array Gain} = 4.54 \text{ dBi}$

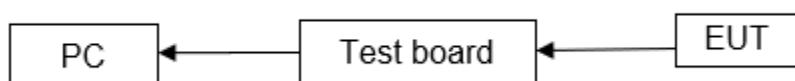
Array Gain = $10 \log(N_{ANT}/N_{SS}) \text{ dB}$.

N_{ANT} : number of transmit antennas

N_{SS} : number of spatial streams, The worst case directional gain will occur when $N_{SS} = 1$

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	<input checked="" type="checkbox"/> 2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11g	<input checked="" type="checkbox"/> 2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20/ax HE20	<input checked="" type="checkbox"/> 2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40/ax HE40	<input checked="" type="checkbox"/> 2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
<p>Note:</p> <p>1.BT&WLAN 2.4G, BT & WLAN 5G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)</p>		

Note: The value of the antenna gain was declared by customer.


5.7. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

Equipment	Manufacturer	Model No.
Test board	FN-LINK	6252BA-SR
PC	Lenovo	T14

5.8. SETUP DIAGRAM

Radiated emissions:

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Conducted RF					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2023/09/18	2024/09/17
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/09/18	2024/09/17
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/09/18	2024/09/17
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A

Test Equipment of Radiated emissions below 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A

Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17

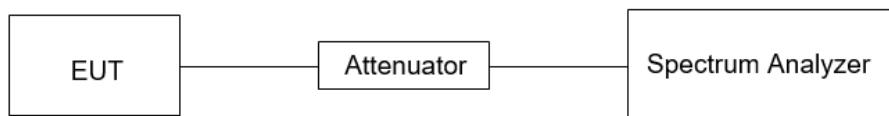
Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2023/09/18	2024/09/17
LISN/AMN	Rohde & Schwarz	ENV216	102843	2023/09/18	2024/09/17
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2023/09/18	2024/09/17
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS


CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6°C	Relative Humidity	46%
Atmosphere Pressure	101kPa		

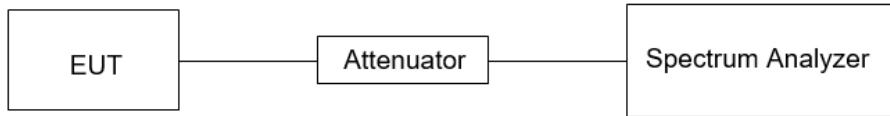
TEST RESULTS

Please refer to section "Test Data" - Appendix B

7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	For reporting purposes only.	2400-2483.5


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 6 dB Bandwidth: $\geq 3 \times$ RBW For 99 % Occupied Bandwidth: $\geq 3 \times$ RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP**TEST ENVIRONMENT**

Temperature	24.6°C	Relative Humidity	46%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix B

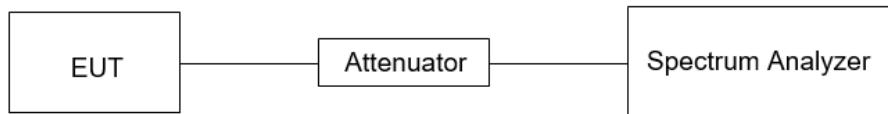
7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	$3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$
VBW	$\geq 3 \times \text{RBW}$
Span	$1.5 \times \text{DTS bandwidth}$
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6°C	Relative Humidity	46%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix B

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

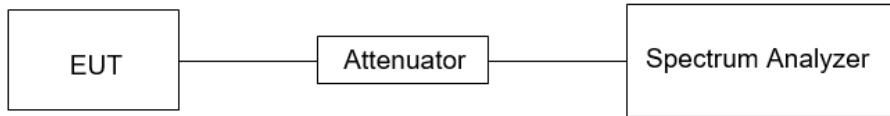
LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2		
Section	Test Item	Limit
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:


Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	$\geq 3 \times$ RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	$\geq 3 \times$ RBW
measurement points	\geq span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

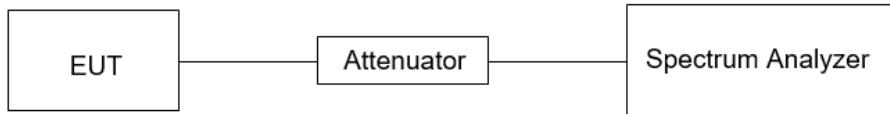
TEST SETUP**TEST ENVIRONMENT**

Temperature	24.6°C	Relative Humidity	46%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix B

7.5. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6°C	Relative Humidity	46%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix B

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m	
		Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
		74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (μ A/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

Table 7 – Restricted frequency bands ^{Note 1}		
MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	156.52475 - 156.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.38 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
108 - 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.38-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 80 cm above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to $Y - 51.5 = Z$ dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

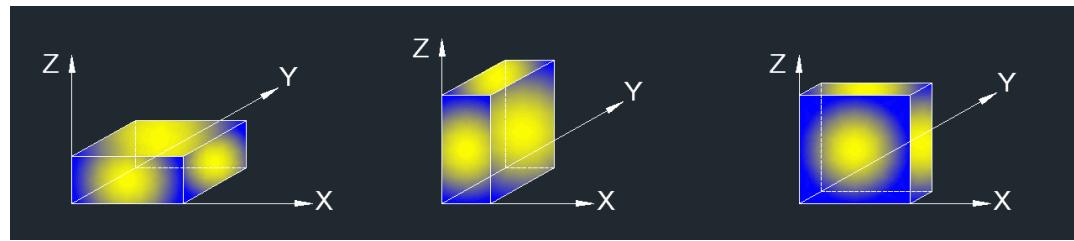
Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

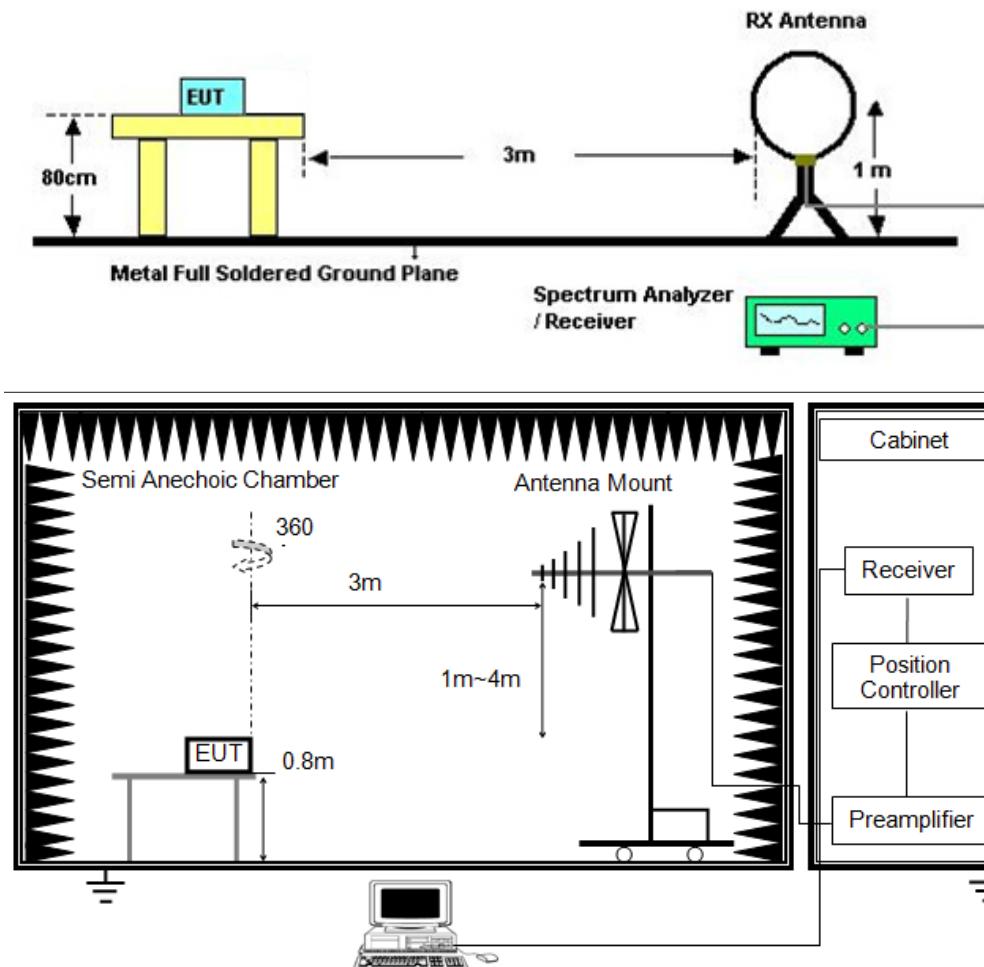
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

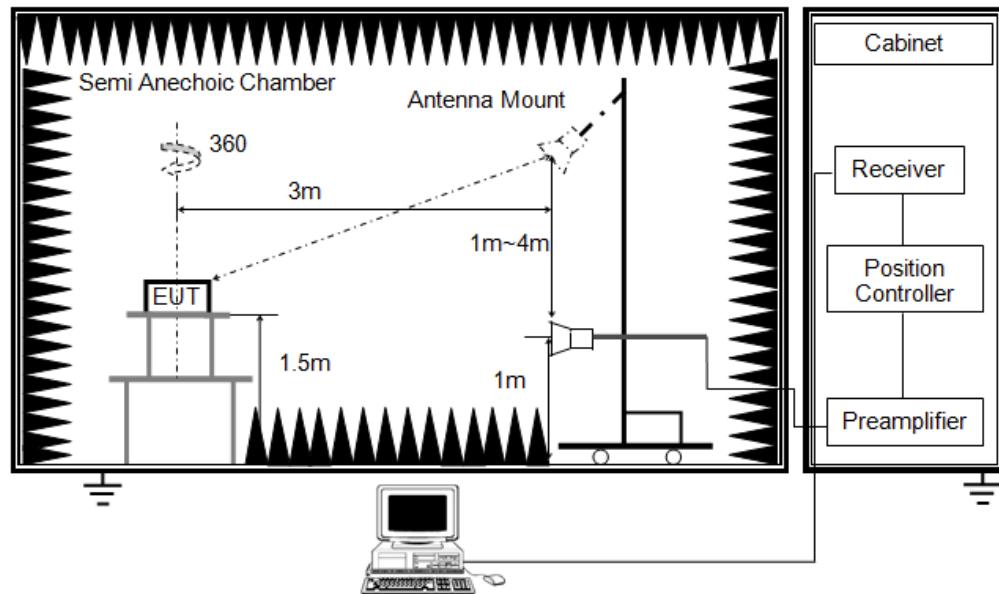
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 80 cm above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.


Above 1G

The setting of the spectrum analyser

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

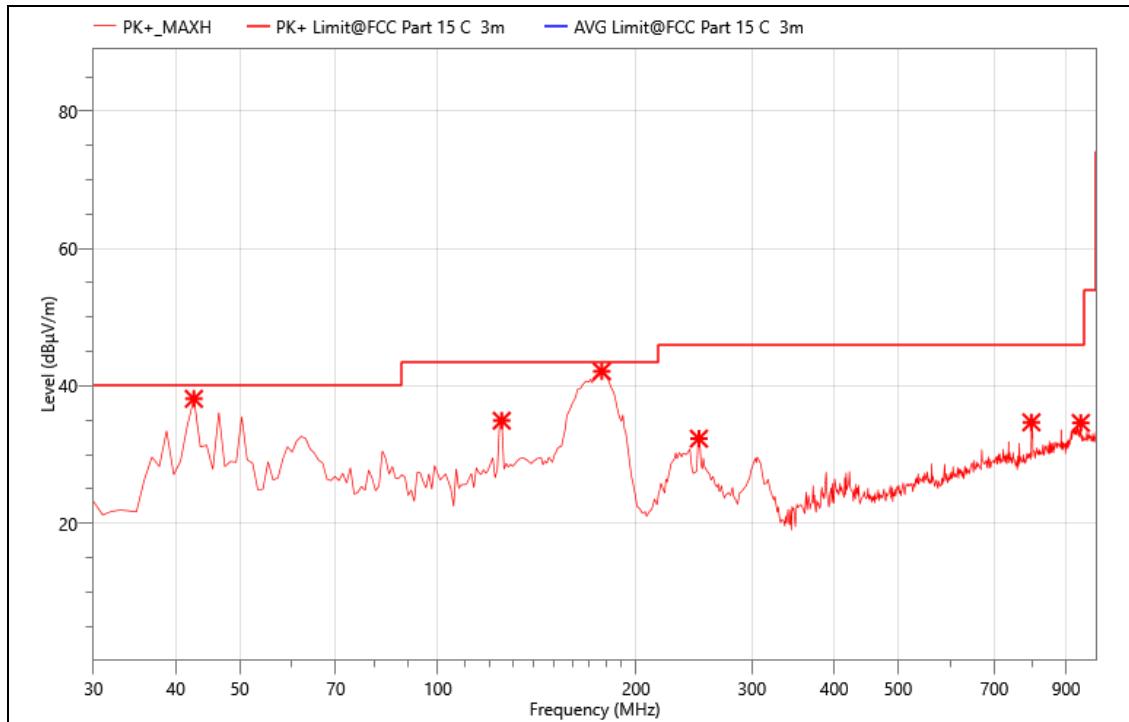

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
3. The EUT was placed on a turntable with 1.5 m above ground.
4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

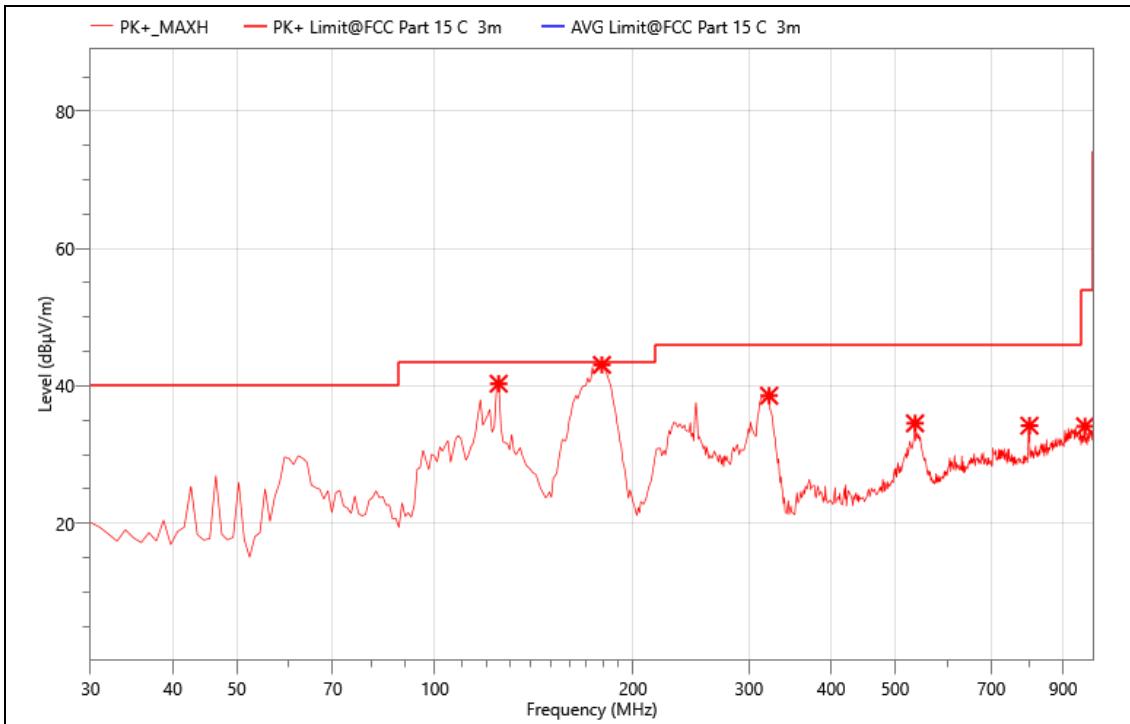
TEST SETUP

TEST ENVIRONMENT


Temperature	24.5°C	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

- Undesirable radiated Spurious Emission below 1GHz (30MHz to 1GHz)

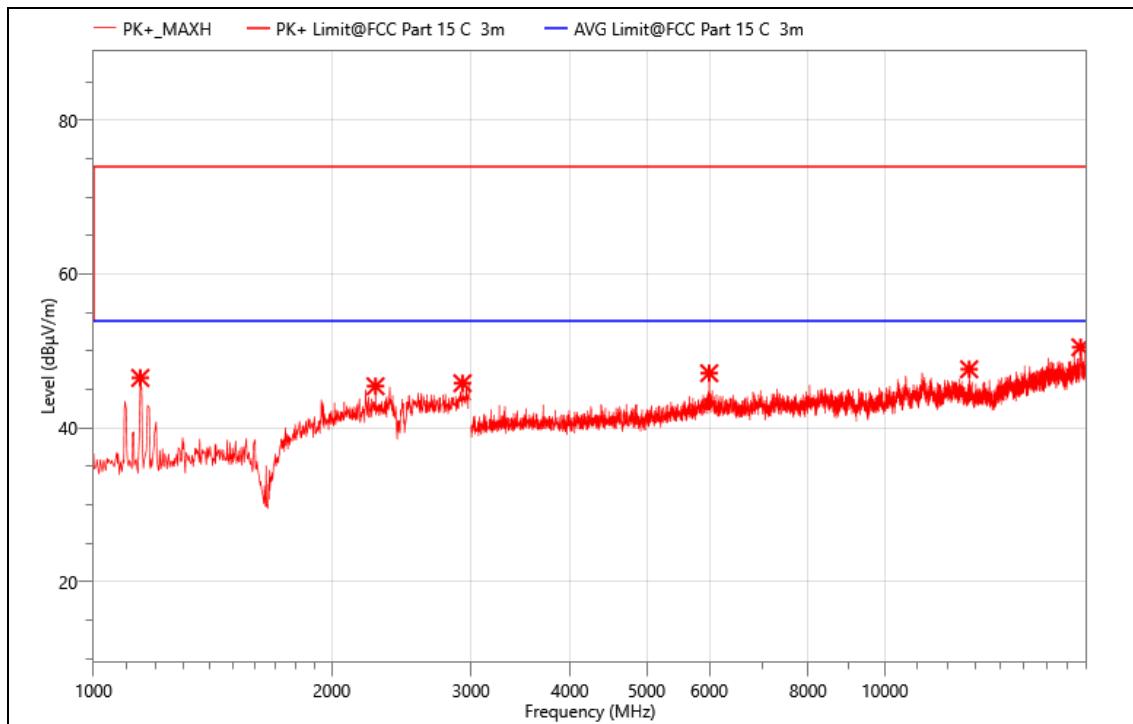

The worst result as bellow:

Mode:	11B 2412MHz
Power:	DC 5V
TE:	Vier
Date	2023/10/13
T/A/P	24.5°C/54%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBμV)	Meas. (dBμV/m)	Limit (dBμV/m)	Margin (dBμV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	42.610	53.61	38.13	40.00	1.87	PK+	126.0	V	360.1	-15.48
2	125.060	53.37	34.95	43.50	8.55	PK+	126.0	V	360.1	-18.42
3	177.440	57.95	42.12	43.50	1.38	PK+	126.0	V	360.1	-15.83
4	249.220	45.01	32.33	46.00	13.67	PK+	126.0	V	360.1	-12.68
5	797.270	34.41	34.71	46.00	11.29	PK+	126.0	V	360.1	0.3
6	947.620	30.69	34.62	46.00	11.38	PK+	126.0	V	360.1	3.93

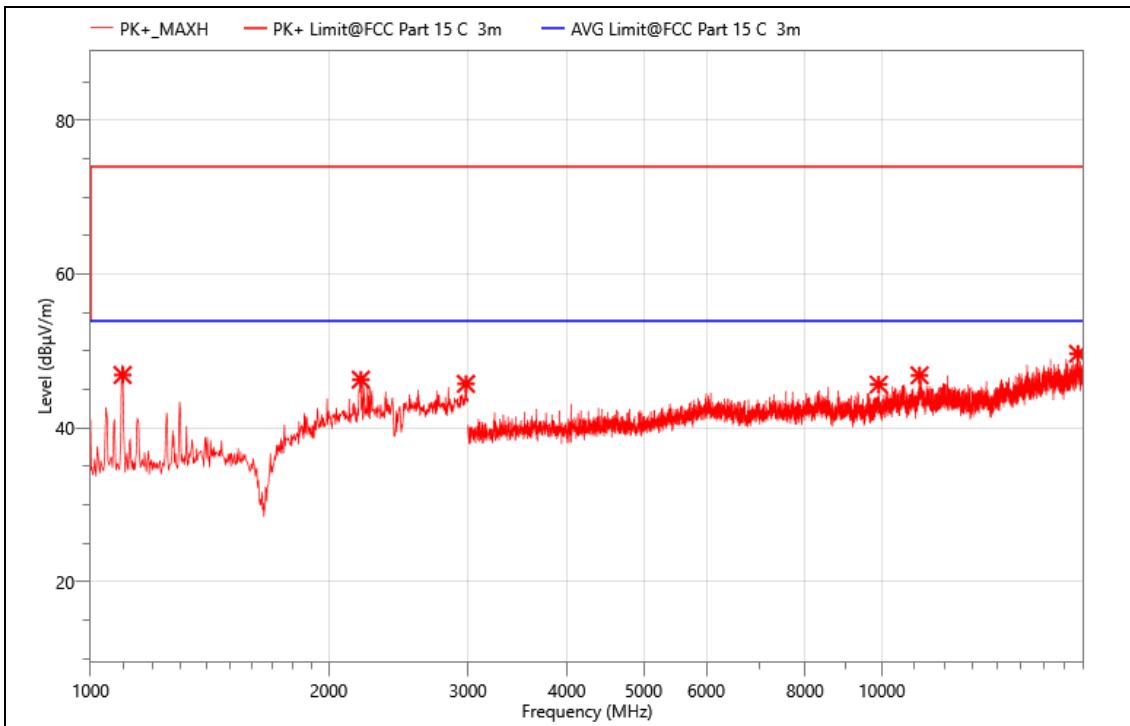
Mode:	11B 2412MHz
Power:	DC 5V
TE:	Vier
Date	2023/10/13
T/A/P	24.5°C/54%/101Kpa


Critical_Freqs

No.	Freq. (MHz)	Reading (dB μ V)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB μ V/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	125.060	58.75	40.33	43.50	3.17	PK+	150.0	H	-0.1	-18.42
2	179.380	59.00	43.07	43.50	0.43	PK+	150.0	H	-0.1	-15.93
3	321.970	49.91	38.58	46.00	7.42	PK+	150.0	H	-0.1	-11.33
4	536.340	38.54	34.57	46.00	11.43	PK+	150.0	H	-0.1	-3.97
5	800.180	33.78	34.22	46.00	11.78	PK+	150.0	H	-0.1	0.44
6	971.870	30.71	34.12	53.90	19.78	PK+	150.0	H	-0.1	3.41

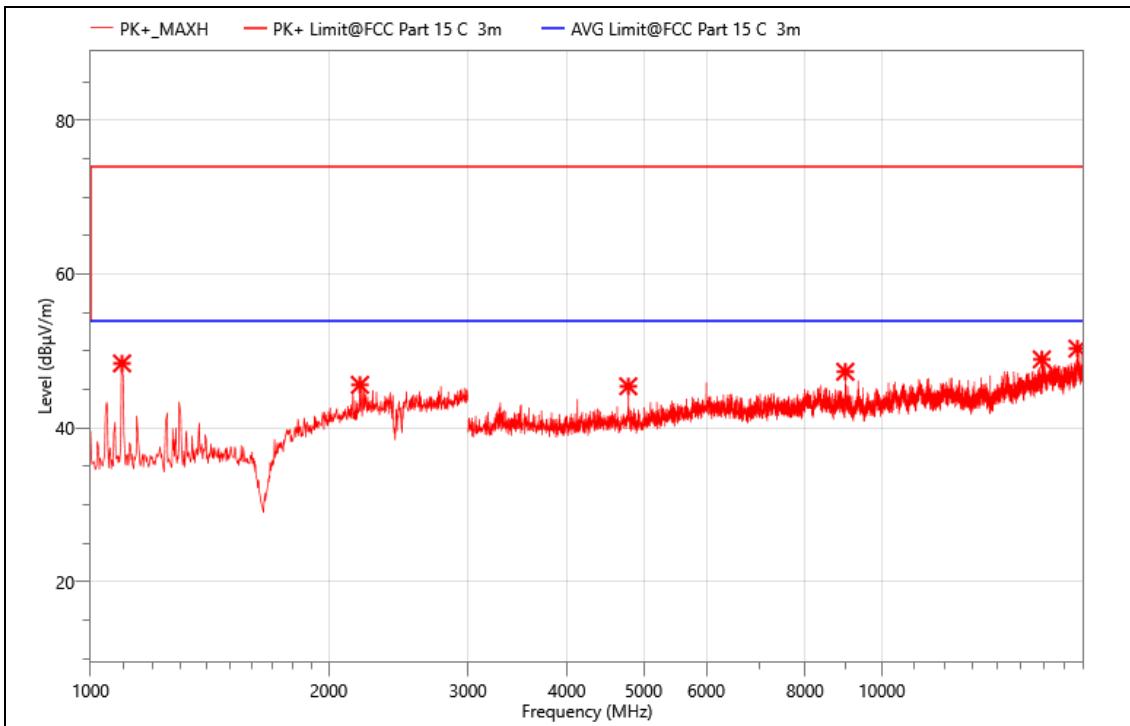
Note: 1. Result Level = Read Level+ Antenna Factor+ Cable Loss- Amp. Factor

- Undesirable radiated Spurious Emission Above 1GHz (1GHz to 40GHz)
All modes has been tested and the worst result (801.11B) recorded as below:


Mode:	11B 2412MHz
Power:	DC5V
TE:	Berny
Date	2023/9/26
T/A/P	24.5°C/54%/101Kpa

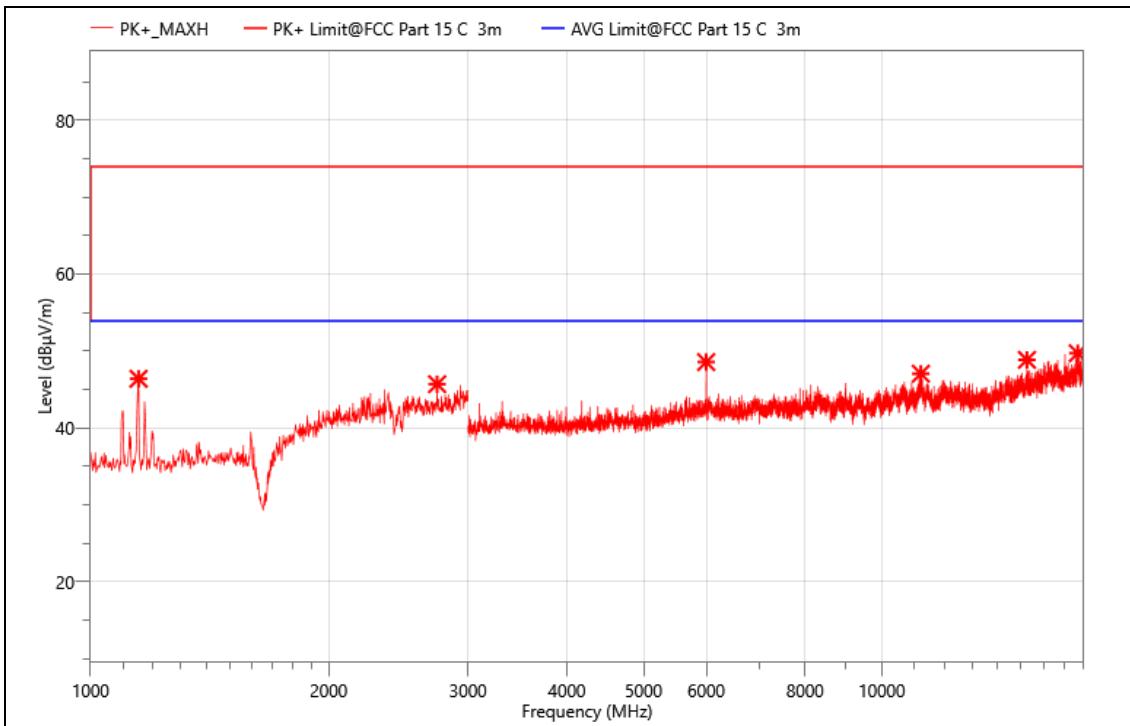
Critical_Freqs

No.	Freq. (MHz)	Reading (dBμV)	Meas. (dBμV/m)	Limit (dBμV/m)	Margin (dBμV/m)	Det.	Pol.	Corr. (dB)
1	1146.000	61.50	46.50	74.00	27.50	PK+	H	-15
2	2272.000	54.57	45.42	74.00	28.58	PK+	H	-9.15
3	2926.000	53.38	45.81	74.00	28.19	PK+	H	-7.57
4	6000.000	54.93	47.11	74.00	26.89	PK+	H	-7.82
5	12783.000	50.01	47.63	74.00	26.37	PK+	H	-2.38
6	17676.000	48.18	50.49	74.00	23.51	PK+	H	2.31


Mode:	11B 2412MHz
Power:	DC5V
TE:	Berny
Date	2023/9/26
T/A/P	24.5□/54%/101Kpa

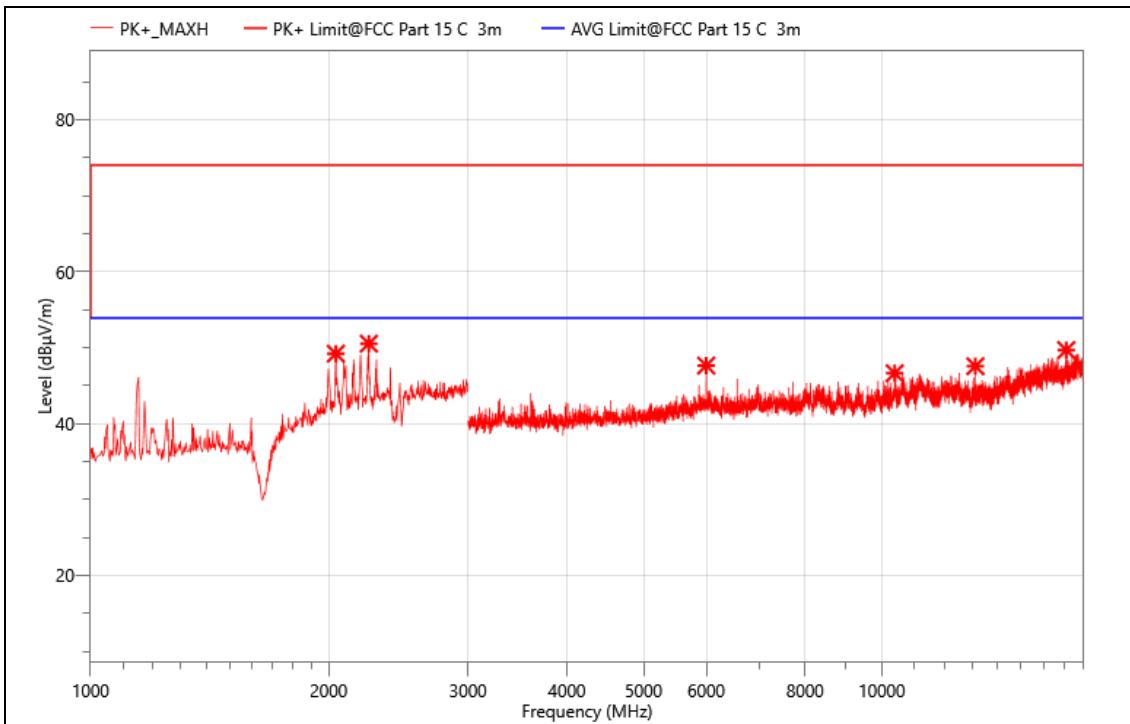
Critical_Freqs

No.	Freq. (MHz)	Reading (dBμV)	Meas. (dBμV/m)	Limit (dBμV/m)	Margin (dBμV/m)	Det.	Pol.	Corr. (dB)
1	1098.000	61.91	46.88	74.00	27.12	PK+	V	-15.03
2	2196.000	55.49	46.27	74.00	27.73	PK+	V	-9.22
3	2982.000	52.69	45.73	74.00	28.27	PK+	V	-6.96
4	9912.000	50.03	45.64	74.00	28.36	PK+	V	-4.39
5	11161.500	49.11	46.83	74.00	27.17	PK+	V	-2.28
6	17703.000	47.53	49.64	74.00	24.36	PK+	V	2.11


Mode:	11B 2437MHz
Power:	DC5V
TE:	Berny
Date	2023/9/26
T/A/P	24.5□/54%/101Kpa

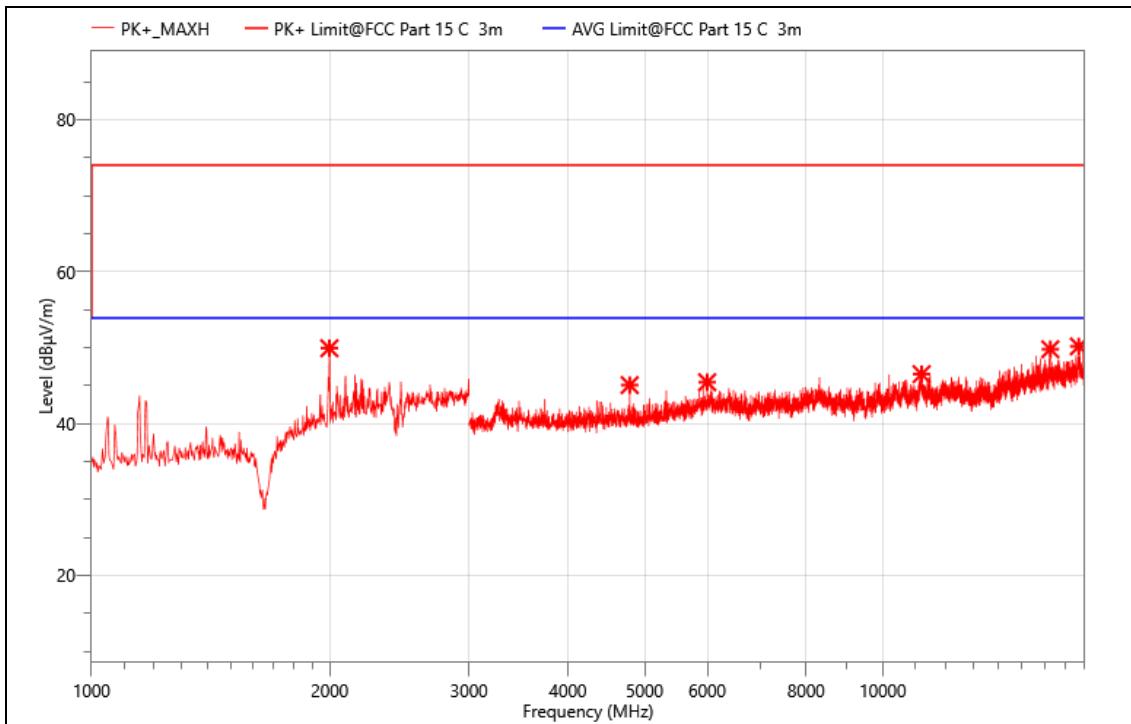
Critical_Freqs

No.	Freq. (MHz)	Reading (dBμV)	Meas. (dBμV/m)	Limit (dBμV/m)	Margin (dBμV/m)	Det.	Pol.	Corr. (dB)
1	1096.000	63.41	48.39	74.00	25.61	PK+	V	-15.02
2	2190.000	54.76	45.60	74.00	28.40	PK+	V	-9.16
3	4782.000	56.67	45.41	74.00	28.59	PK+	V	-11.26
4	8992.500	53.23	47.30	74.00	26.70	PK+	V	-5.93
5	15931.500	49.12	48.91	74.00	25.09	PK+	V	-0.21
6	17673.000	48.01	50.31	74.00	23.69	PK+	V	2.3


Mode:	11B 2437MHz
Power:	DC5V
TE:	Berny
Date	2023/9/26
T/A/P	24.5□/54%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBμV)	Meas. (dBμV/m)	Limit (dBμV/m)	Margin (dBμV/m)	Det.	Pol.	Corr. (dB)
1	1150.000	61.37	46.39	74.00	27.61	PK+	H	-14.98
2	2742.000	53.97	45.69	74.00	28.31	PK+	H	-8.28
3	6000.000	56.38	48.56	74.00	25.44	PK+	H	-7.82
4	11205.000	49.39	47.05	74.00	26.95	PK+	H	-2.34
5	15256.500	49.73	48.85	74.00	25.15	PK+	H	-0.88
6	17689.500	47.47	49.71	74.00	24.29	PK+	H	2.24


Mode:	11B 2462MHz
Power:	DC5V
TE:	Berny
Date	2023/9/26
T/A/P	24.5□/54%/101Kpa

Critical_Freqs

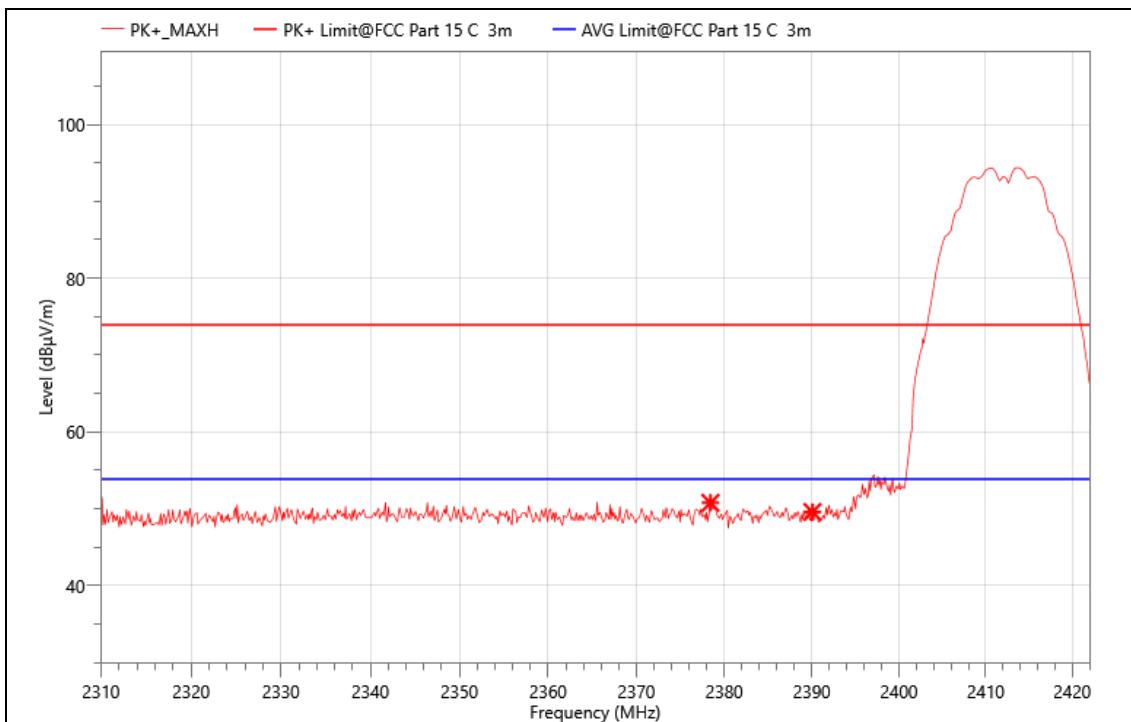
No.	Freq. (MHz)	Reading (dB μ V)	Meas. (dB μ V/m)	Limit (dB μ V/m)	Margin (dB μ V/m)	Det.	Pol.	Corr. (dB)
1	2042.000	58.32	49.19	74.00	24.81	PK+	H	-9.13
2	2248.000	59.51	50.51	74.00	23.49	PK+	H	-9
3	6000.000	55.45	47.63	74.00	26.37	PK+	H	-7.82
4	10383.000	50.29	46.62	74.00	27.38	PK+	H	-3.67
5	13131.000	50.10	47.54	74.00	26.46	PK+	H	-2.56
6	17107.500	48.57	49.67	74.00	24.33	PK+	H	1.1

Mode:	11B 2462MHz
Power:	DC5V
TE:	Berny
Date	2023/9/26
T/A/P	24.5□/54%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Pol.	Corr. (dB)
1	1998.000	59.01	49.91	74.00	24.09	PK+	V	-9.1
2	4788.000	56.34	45.06	74.00	28.94	PK+	V	-11.28
3	5998.500	53.28	45.44	74.00	28.56	PK+	V	-7.84
4	11196.000	49.02	46.50	74.00	27.50	PK+	V	-2.52
5	16281.000	49.22	49.78	74.00	24.22	PK+	V	0.56
6	17692.500	47.93	50.15	74.00	23.85	PK+	V	2.22

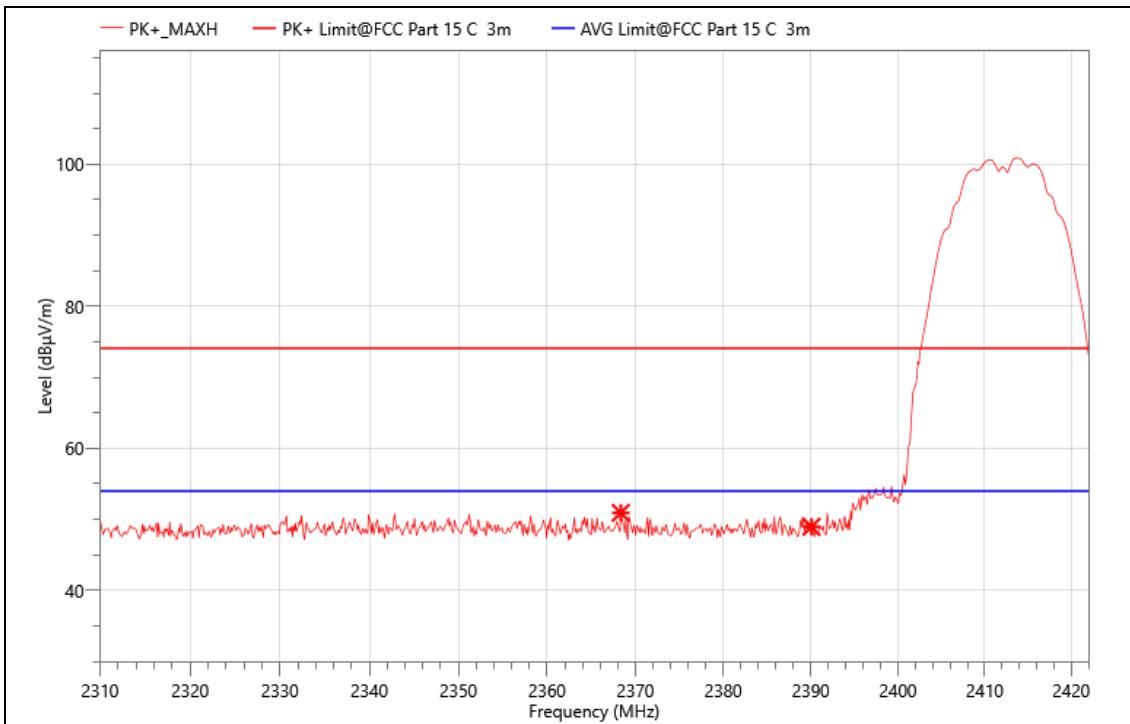
Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).


(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) EIRP[dBm] = E[dBµV/m] + 20 log(d[meters]) - 104.77

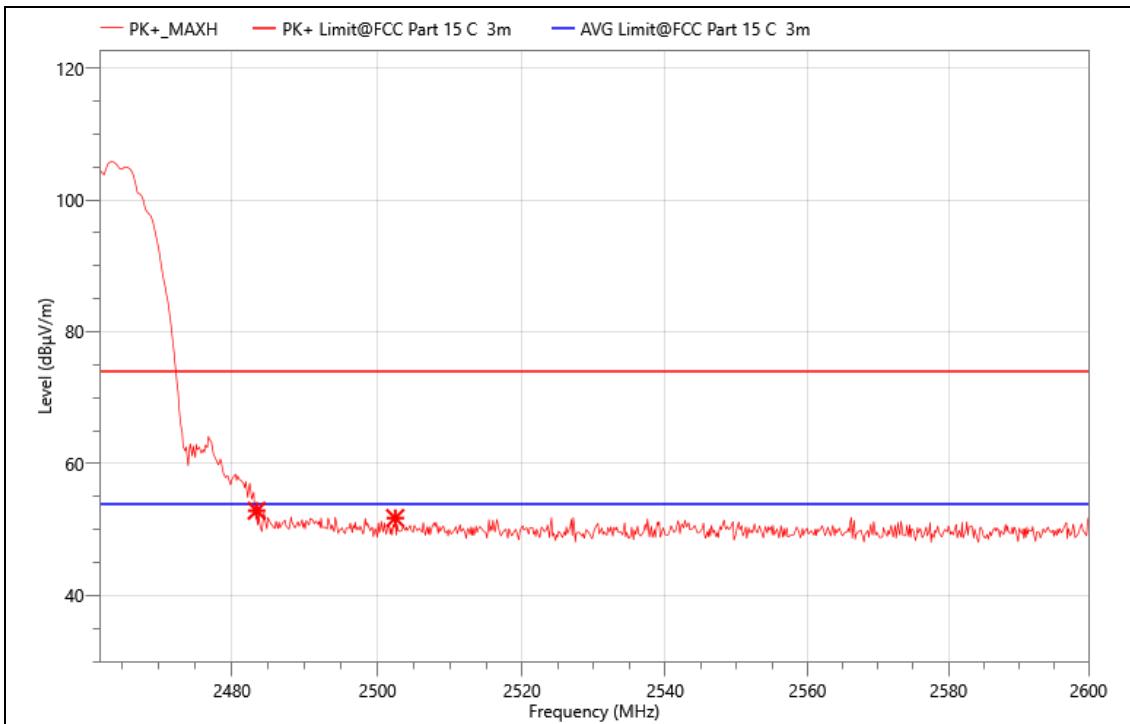
d is the measurement distance in 3 meters

- Band Edge


Mode:	11B 2412MHz
Power:	DC 5V
TE:	Vier
Date	2023/10/12
T/A/P	24.5°C/54%/101Kpa

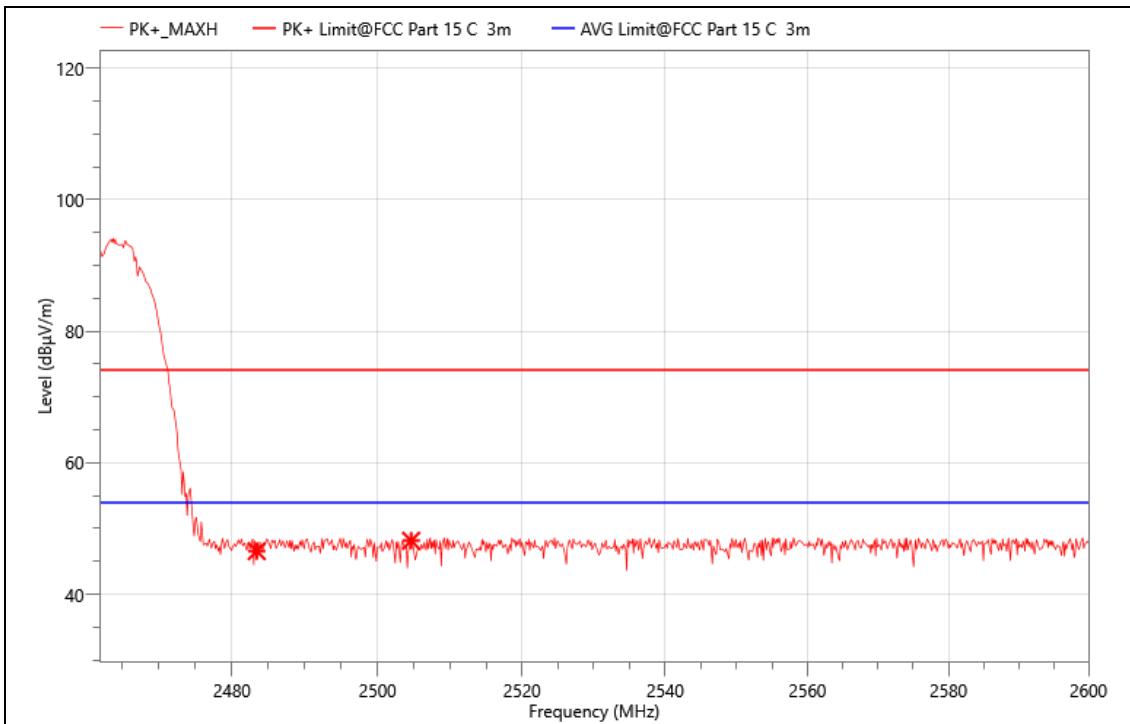
Critical_Freqs

No .	Freq. (MHz)	Readin g (dBμV)	Meas. (dBμV/ m)	Limit (dBμV/ m)	Margin (dBμV/ m)	Det .	Heigh t (cm)	Pol .	Azimut h (deg)	Corr. (dB)
1	2378.43	12.98	50.77	74.00	23.23	PK	150.1	H	360.1	37.7
2	2390.08	11.79	49.57	74.00	24.43	PK	150.1	H	360.1	37.7


Mode:	11B 2412MHz
Power:	DC 5V
TE:	Vier
Date	2023/10/12
T/A/P	24.5□/54%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBμV)	Meas. (dBμV/m)	Limit (dBμV/m)	Margin (dBμV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	2368.352	13.04	50.89	74.00	23.11	PK+	150.1	V	360.1	37.85
2	2390.080	11.14	48.92	74.00	25.08	PK+	150.1	V	360.1	37.78


Mode:	11B 2462MHz
Power:	DC 5V
TE:	Vier
Date	2023/10/12
T/A/P	24.5□/54%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBμV)	Meas. (dBμV/m)	Limit (dBμV/m)	Margin (dBμV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	2483.390	14.61	52.86	74.00	21.14	PK+	150.1	V	360.1	38.25
2	2502.434	13.52	51.74	74.00	22.26	PK+	150.1	V	360.1	38.22

Mode:	11B 2462MHz
Power:	DC 5V
TE:	Vier
Date	2023/10/12
T/A/P	24.5□/54%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBμV)	Meas. (dBμV/m)	Limit (dBμV/m)	Margin (dBμV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	2483.500	8.31	46.56	74.00	27.44	PK+	150.1	H	-0.1	38.25
2	2504.642	9.94	48.15	74.00	25.85	PK+	150.1	H	-0.1	38.21

Note: 802.11b, 802.11g, 802.11n (HT-20), 802.11n (HT-40), 802.11ax (HE-20), 802.11ax (HE-40) all has been tested, the worst case is 802.11b, only shown the worst case.

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

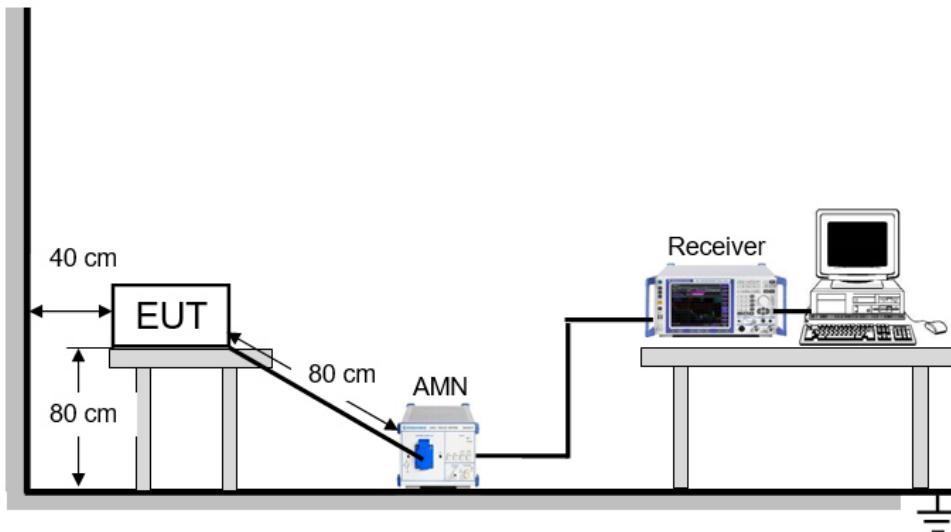
DESCRIPTION

Pass

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8


FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT

Temperature	°C	Relative Humidity	%
Atmosphere Pressure	kPa		

TEST RESULTS

N/A.

11. TEST DATA

Please refer to section "Test Data" - Appendix B.

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

Please refer to the report: E04A23090802F00101.

APPENDIX: PHOTOGRAPHS OF THE EUT

Please refer to the report: E04A23090802F00101.

END OF REPORT