FCC TEST REPORT

for

Hunan Ocean Wing E-commerce Technology Co., Ltd.

Anker Portable Bluetooth Speaker Model No.: 99ANSP9901

Prepared for : Hunan Ocean Wing E-commerce Technology Co., Ltd.

Address : 25 Floor, Jiatian International Building, #359 Furong Zhonglu,

Changsha, Hunan Province, China

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F., Building 1, SEC Industrial Park, No.0409 Qianhai Road,

Nanshan District, Shenzhen, Guangdong, China

Tel: (86) 755-26066544 Fax: (86) 755-26014772

Report Number : 201312870F

Date of Test : Dec. 25, 2013~ Jan. 23, 2014

Date of Report : Jan. 23, 2014

TABLE OF CONTENTS

Description

Page

Test Report

4 CENEDAL INCODICATION	
1. GENERAL INFORMATION	
1.1. Description of Device (EUT)	
1.2. Auxiliary Equipment Used during Test	
1.3. Description of Test Facility	
1.4. Measurement Uncertainty	
2. TEST PROCEDURE	6
3. CONDUCTED LIMITS	7
3.1. Block Diagram of Test Setup	7
3.2. Power Line Conducted Emission Measurement Limits (15.207)	7
3.3. Configuration of EUT on Measurement	7
3.4. Operating Condition of EUT	7
3.5. Test Procedure	
3.6. Power Line Conducted Emission Measurement Results	8
4. RADIATION INTERFERENCE	11
4.1. Requirements (15.249, 15.209):	11
4.2. Test Procedure	
4.3. Test Configuration:	12
4.4. Test Results	13
5. OCCUPIED BANDWIDTH	19
5.1. Requirements (15.249):	19
5.2. Test Procedure	
5.3. Test Configuration:	19
5.4. Test Results	
6. PHOTOGRAPH	23
6.1. Photo of Conducted Emission Test	23
6.2. Photo of Radiation Emission Test	
APPENDIX I (EXTERNAL PHOTOS)	
APPENDIX II (INTERNAL PHOTOS)	
	,

TEST REPORT

Applicant : Hunan Ocean Wing E-commerce Technology Co., Ltd.

Manufacturer : Hunan Ocean Wing E-commerce Technology Co., Ltd.

EUT : Anker Portable Bluetooth Speaker

Model No. : 99ANSP9901

Serial No. : N/A

Trade Mark : ANKER

Rating : DC 3.7V, 2100mAh

Measurement Procedure Used:

FCC Part15 Subpart C, Paragraph 15.207, 15.249 & 15.209

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test: Dec. 25, 2013~ Jan. 23, 20							
Prepared by:	Zock zeng						
	(Tested Engineer / Rock Zeng)						
Reviewer:	Jerry Du						
	(Project Manager / Jerry Du)						
Approved & Authorized Signer:	Ton Chen						
	(Manager / Tom Chen)						

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Anker Portable Bluetooth Speaker

Model Number : 99ANSP9901

Test Power Supply: DC 3.7V

Frequency: 2402-2480MHz

No. of Channel: 79

Channel Space : 1MHz

Antenna : Printed Antenna: 2 dBi

Specification

Applicant : Hunan Ocean Wing E-commerce Technology Co., Ltd.

Address : 25 Floor, Jiatian International Building, #359 Furong Zhonglu,

Changsha, Hunan Province, China

Manufacturer : Hunan Ocean Wing E-commerce Technology Co., Ltd.

Address : 25 Floor, Jiatian International Building, #359 Furong Zhonglu,

Changsha, Hunan Province, China

Factory : Hunan Ocean Wing E-commerce Technology Co., Ltd.

Address : Room 08 09 5th, Y2 Creative Industry Park, Yayuan Road, Bantian

Street, Longgang, Shenzhen

Date of receiver : Dec. 25, 2013

Date of Test : Dec. 25, 2013~ Jan. 23, 2014

1.2. Auxiliary Equipment Used during Test

Adapter : Power Supply

Model: CW0502000

Input: 100-240V~, 50-60Hz, 0.4A Max

Output: 5V----, 2A

1.3. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 463622

EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 463622, June 14, 2011.

IC-Registration No.: 46405-9469

EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada. The acceptance letter from the IC is maintained in our files. Registration 46405-9469, May 02, 2011.

Test Location

All Emissions tests were performed at NINGBO EMTEK CO., LTD. at 1F Building 4, 1177#, Lingyun Road, Ningbo National Hi-Tech Zone, Ningbo, Zhejiang, China

1.4. Measurement Uncertainty

Radiation Uncertainty : Ur = 4.3 dB

Conduction Uncertainty : Uc = 3.4dB

2. Test Procedure

GENERAL: This report shall NOT be reproduced except in full without the written approval of Shenzhen Anbotek Compliance Laboratory Limited. The EUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2009 using a spectrum analyzer with a pre-selector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz. The ambient temperature of the EUT was 74.3oF with a humidity of 69%.

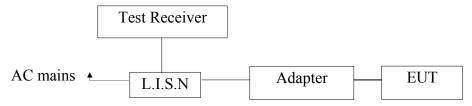
FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3 m

ANSI STANDARD C63.4-2009 10.1.7 MEASUREMENT PROCEDURES: The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The EUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.


3. Conducted Limits

Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schewarz	ESCI	101108	08/01/2013	1 Year
2.	L.I.S.N	Rohde & Schewarz	ENV216	101193	08/01/2013	1 Year
3.	L.I.S.N	Schwarzbeck	NSLK 8126	8126-462	08/01/2013	1 Year
4.	Pulse Limiter	MTS-system technik	IMP-136	2611115-0 01-0033	08/01/2013	1 Year

3.1. Block Diagram of Test Setup

3.1.1. Block diagram of connection between the EUT and simulators

3.2. Power Line Conducted Emission Measurement Limits (15.207)

Frequency	Limits	dB(μV)
MHz	Quasi-peak Level	Average Level
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*
0.50 ~ 5.00	56	46
5.00 ~ 30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner which tends to maximize its emission characteristics in a normal application.

3.4. Operating Condition of EUT

- 3.4.1. Setup the EUT and simulator as shown as Section 3.1.
- 3.4.2. Turn on the power of all equipment.
- 3.4.3. Let the EUT work in test mode (Charging) and measure it.

3.5. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.4-2003 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9KHz.

The frequency range from 150KHz to 30MHz is checked.

The test results are reported on Section 3.6.

3.6. Power Line Conducted Emission Measurement Results **PASS.**

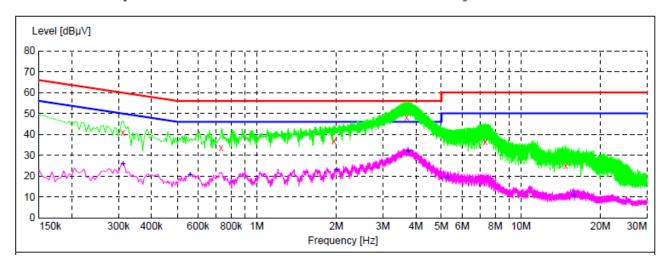
The frequency range from 150KHz to 30 MHz is investigated.

Please refer the following pages.

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room

Operating Condition: Charging


Test Specification: AC 120V/60Hz for Adapter

Comment: Live Line

Tem:25°C Hum:50%

SCAN TABLE: "Voltage (150K~30M) FIN"

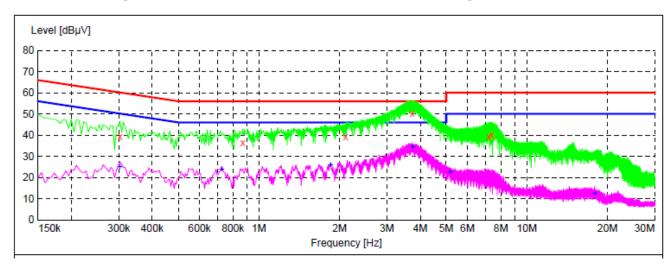
Short Description: 150K-30M Disturbance Voltages

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.312000	40.80	20.1	60	19.1	QP	L1	GND
0.735000	33.50	20.1	56	22.5	QP	L1	GND
1.959000	36.70	20.3	56	19.3	QP	L1	GND
3.691500	48.30	20.4	56	7.7	QP	L1	GND
7.327500	36.60	20.5	60	23.4	QP	L1	GND
14.779500	24.80	20.7	60	35.2	QP	L1	GND

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.312000	25.80	20.1	50	24.1	AV	L1	GND
0.559500	20.50	20.1	46	25.5	AV	L1	GND
2.004000	23.00	20.3	46	23.0	AV	L1	GND
3.741000	32.10	20.4	46	13.9	AV	L1	GND
5.257500	19.30	20.5	50	30.7	AV	L1	GND
15.814500	10.50	20.7	50	39.5	AV	L1	GND

CONDUCTED EMISSION TEST DATA

Test Site: 1# Shielded Room


Operating Condition: Charging

Test Specification: AC 120V/60Hz for Adapter

Comment: **Neutral Line**

Tem:25°C Hum:50%

SCAN TABLE: "Voltage(150K~30M) FIN"
Short Description: 150K-30M Disturbance Voltages

Frequency	Level	Transd		Margin	De	tector	Li	ne F	Έ
MHz	dΒμV	dB	dΒμ∇	dB					
0.303000	39.10	20.1	60	21.1	QP		N	GN	ID
0.870000	36.40	20.1	56	19.6	QP		N	GN	ID
2.107500	39.30	20.3	56	16.7	QP		N	GN	ID
3.732000	50.30	20.4	56	5.7	QP		N	GN	ID
7.210500	39.40	20.5	60	20.6	QP		N	GN	ID
7.417500	40.10	20.5	60	19.9	QP		N	GN	ID
Frequency	Level	Transo	d Limit	t Margi	in	Detect	or	Line	PE
MHz	dΒμV			_	lΒ				
0.303000	24.80	20.1	1 5	0 25.	. 4	AV		N	GND
0.726000	23.60	20.1	1 4	6 22.	. 4	AV		N	GND
1.851000	25.60	20.3	3 4	6 20.	. 4	AV		N	GND
3.745500	34.40	20.4	4 4	6 11.	. 6	AV		N	GND
5.163000	22.60	20.5	5 5	0 27.	. 4	AV		N	GND
17.907000	12.50	20.8	3 5	0 37.	. 5	AV		N	GND

4. Radiation Interference

4.1. Requirements (15.249, 15.209):

4.1.1. Test Limits (< 30 MHZ)

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meter)	
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

4.1.2. Test Limits (\geq 30 MHZ)

FIELD STRENGTH	FIELD STRENGTH	S15.209	
of Fundamental:	of Harmonics	30 - 88 MHz	40 dBuV/m
@3M			
902-928 MHZ		88 - 216 MHz	43.5
2.4-2.4835 GHz		216 - 960 MHz	46
94 dBμV/m @3m	54 dBμV/m @3m	ABOVE 960 MHz	54dBuV/m

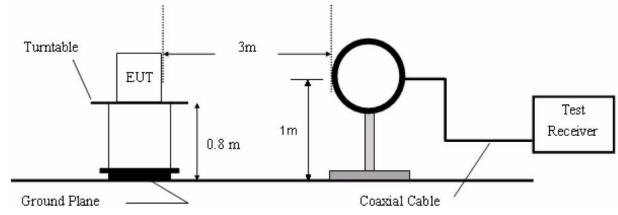
For range 9KHz~30MHz, The measured value is really too low to be recorded.

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation.

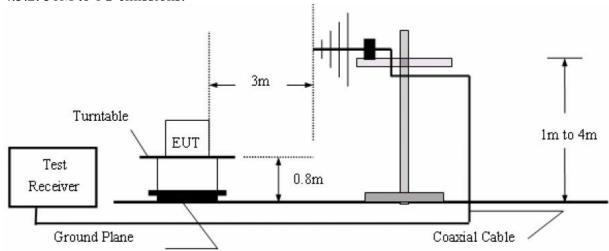
4.2. Test Procedure

The EUT is placed on a turn table which is 0.8 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

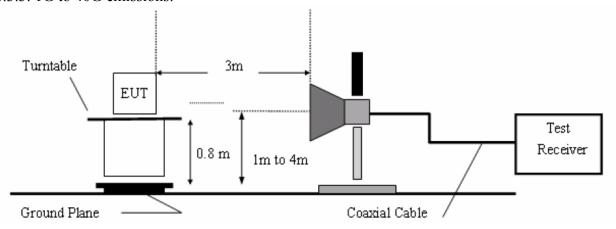
All readings from 30MHz to 1GHz are quasi-peak values with a resolution bandwidth of 120kHz. All reading are above 1GHz, peak & average values with a resolution bandwidth of 1MHz. The EUT is tested in 9*6*6 Chamber.


The test results are listed in Section 3.3

Test Equipment


Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval	
1	Spectrum Analysis	Rohde &	ESU	1302.6005.26	05/28/2013	1 Year	
1.	Spectrum / marysis	Schwarz	LSC	1302.0003.20	03/20/2013	1 1 641	
2.	EMI Test Receiver Rohde &		ESU	1302.6005.26	05/28/2013	1 Year	
۷.	EIVII TEST RECEIVE	Schwarz	ESU	1302.0003.20	03/28/2013	1 1 cal	
3.	Pre-Amlifier	HP	8447D	2944A07999	05/28/2013	1 Year	
4.	Bilog Antenna	Schwarzbeck	VULB9163	142	05/28/2013	1 Year	
5.	Loop Antenna	ARA	PLA-1030/B	1029	05/28/2013	1 Year	
6.	Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170399	05/28/2013	1 Year	
7.	Horn Antenna	Schwarzbeck	BBHA9120	D143	05/28/2013	1 Year	

4.3. Test Configuration:


4.3.1. 9k to 30MHz emissions:

4.3.2. 30M to 1G emissions:

4.3.3. 1G to 40G emissions:

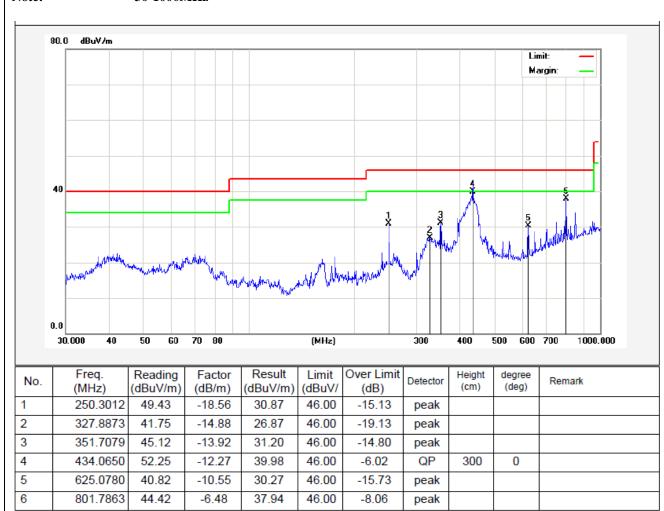
4.4. Test Results

PASS.

Please refer the following pages.

Data:

3m


Below 1GHz:

Job No.: AT1312810F Polarziation: Horizontal Standard: (RE)FCC PART15 C _3m Power Source: DC 3.7V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Mode: ON Distance:

Note: 30-1000MHz

Job No.:AT1312810FPolarziation:VerticalStandard:(RE)FCC PART15 C _3mPower Source:DC 3.7V

Test item: Radiation Test Temp.(C)/Hum.(%RH): 24.3(C)/55%RH

Mode: ON Distance: 31

Note: 30-1000MHz

											Li	mit:	
												argin:	_
	40	s. our torses					1	Ž	3		53		×
	10.141 9	AV 11 11/4				4.						LUMAY"	
	0.0	0 40		60 70		Mylharibra	(MHz)	halana (1)	300		500 600	700	1000.000
	0.0 30.00	0 40 Freq.	50 (60 70	D 80	Result	(MHz)	Over Limit		400	500 600 degree		1000.000
	0.0 30.000	o 40 req. MHz)	Readir	60 70 ng I m) ((Factor dB/m)	Result (dBuV/m)	(MHz) Limit (dBuV/	(dB)	Detector	400	500 600	700	1000.000
	0.0 30.000	req. MHz) 62.0414	Readir (dBuV/d	ng I m) (d	Factor dB/m)	Result (dBuV/m) 28.81	(MHz) Limit (dBuV/ 43.50	(dB) -14.69	Detector peak	400	500 600 degree	700	1000.000
	0.0 30.000 F (N	o 40 Freq. MHz) 62.0414 50.3012	Readir (dBuV/ 46.62 47.19	ng I m) (d	Factor dB/m) -17.81	Result (dBuV/m) 28.81 33.15	(MHz) Limit (dBuV/ 43.50 46.00	(dB) -14.69 -12.85	Detector peak peak	400	500 600 degree	700	1000.000
	0.0 30.000 F (N	req. MHz) 62.0414 50.3012	Readir (dBuV/r 46.62 47.19	ng I m) (d	Factor dB/m) -17.81 -14.04	Result (dBuV/m) 28.81 33.15 33.31	Limit (dBuV/ 43.50 46.00	(dB) -14.69 -12.85 -12.69	Detector peak peak peak	Height (cm)	degree (deg)	700	1000.000
lo.	0.0 30.000 F (N	o 40 Freq. MHz) 62.0414 50.3012	Readir (dBuV/ 46.62 47.19	ng I m) (d	Factor dB/m) -17.81	Result (dBuV/m) 28.81 33.15	(MHz) Limit (dBuV/ 43.50 46.00	(dB) -14.69 -12.85	Detector peak peak	400	500 600 degree	700	1000.000

Above 1 GHz:

7206.000

7206.000

9608.000 9608.000 2.98

2.98

Horizontal

CH Low	(2402MH	z)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	dB	
2402.000	2.17	31.21	35.30	91.84	89.92	114.0	-24.08	Peak
2402.000	2.17	31.21	35.30	82.03	80.11	94.0	-13.89	AV
4804.000	2.56	34.01	34.71	47.77	49.63	74.0	-24.37	Peak
4804.000	2.56	34.01	34.71	34.89	36.75	54.0	-17.25	AV

45.05

30.57

49.04

34.56

-24.96

-19.44

Peak

AV

74.0

54.0

12010.000 --- -- --- --- ---12010.000 --- -- --- ---

36.16

36.16

35.15

35.15

Vertical CH Low (2402MHz) Cable Read Over Ant Preamp Frequency Level Limit Remark Limit Loss Factor Factor Level MHz dB dB/m dB $dB\mu V$ $dB\mu V/m$ $dB\mu V/m$ dB 92.94 2402.000 2.17 31.21 35.30 91.02 -22.98 114.0 Peak 2402.000 2.17 31.21 35.30 82.77 80.85 94.0 -13.15 AV 43.89 45.75 4804.000 2.56 34.01 34.71 74.0 -28.25 Peak 4804.000 2.56 34.01 37.96 54.0 -14.18 AV 34.71 39.82 42.54 7206.000 2.98 36.16 35.15 46.53 74.0 -27.47 Peak 2.98 36.16 -15.15 7206.000 35.15 34.86 38.85 54.0 AV 9608.000 9608.000 ------12010.000 12010.000 ---------

NOTE: "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The results of different modulations are the same.

Horizont CH Midd	al lle (2441N	ЛНz)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	dB	
2441.000	2.19	31.22	34.60	94.12	92.93	114.0	-21.07	Peak
2441.000	2.19	31.22	34.60	82.69	81.5	94.0	-12.5	AV
4882.000	2.57	35.00	34.58	44.89	47.88	74.0	-26.12	Peak
4882.000	2.57	35.00	34.58	39.83	42.82	54.0	-11.18	AV
7323.000	3.00	36.17	35.14	42.44	46.47	74.0	-27.53	Peak
7323.000	3.00	36.17	35.14	37.65	41.68	54.0	-12.32	AV
9764.000								
9764.000								
12205.000								
12205.000								
Vertical	lle (2441N	MH2)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	dBμV	$dB\mu V/m$	$dB\mu V/m$	dB	
2441.000	2.19	31.22	34.60	90.88	89.69	114.0	-24.31	Peak
2441.000	2.19	31.22	34.60	83.52	82.33	94.0	-11.67	AV
4882.000	2.57	35.00	34.58	42.15	45.14	74.0	-28.86	Peak
4882.000	2.57	35.00	34.58	40.84	43.83	54.0	-10.17	AV
7323.000	3.00	36.17	35.14	41.87	45.90	74.0	-28.10	Peak
7323.000	3.00	36.17	35.14	36.69	40.72	54.0	-13.28	AV
9764.000								
9764.000								
12205.000								

NOTE: " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The results of different modulations are the same.

CH High	(2480MF	łz)						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	dB	
2480.000	2.20	31.65	36.00	93.94	91.79	114.0	-22.21	Peak
2480.000	2.20	31.65	36.00	81.25	79.1	94.0	-14.9	AV
4960.000	2.58	35.06	34.79	47.33	50.18	74.0	-23.82	Peak
4960.000	2.58	35.06	34.79	36.12	38.97	54.0	-15.03	AV
7440.000	3.02	36.19	34.90	49.36	53.67	74.0	-20.33	Peak
7440.000	3.02	36.20	35.20	38.15	42.17	54.0	-11.83	AV
9920.000								
9920.000								
12400.000								
12400.000								
Vertical								
CH High (2	2480MHz)	1						
Frequency	Cable Loss	Ant Factor	Preamp Factor	Read Level	Level	Limit	Over Limit	Remark
MHz	dB	dB/m	dB	$dB\mu V$	$dB\mu V/m$	$dB\mu V/m$	dB	
2480.000	2.20	31.65	36.00	93.15	91.00	114.0	-23.00	Peak
2480.000	2.20	31.65	36.00	83.07	80.92	94.0	-13.08	AV
4960.000	2.58	35.06	34.79	44.21	47.06	74.0	-26.94	Peak
4960.000	2.58	35.06	34.79	35.96	38.81	54.0	-15.19	AV
7440.000	3.02	36.19	34.90	42.88	47.19	74.0	-26.81	Peak
7440.000	3.02	36.20	35.20	35.45	39.47	54.0	-14.53	AV
9920.000								
9920.000								
12400.000								
12400.000								

Horizontal

NOTE: "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The results of different modulations are the same.

5. Occupied Bandwidth

5.1. Requirements (15.249):

The field strength of any emissions appearing outside the band edges and up to 10 kHz above and below the band edges shall be attenuated at least 50 dB below the level of the carrier or to the general limits of 15.249.

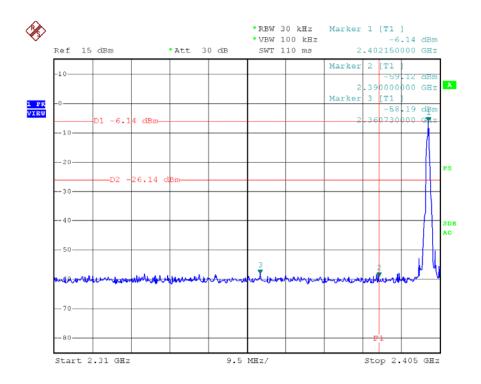
5.2. Test Procedure

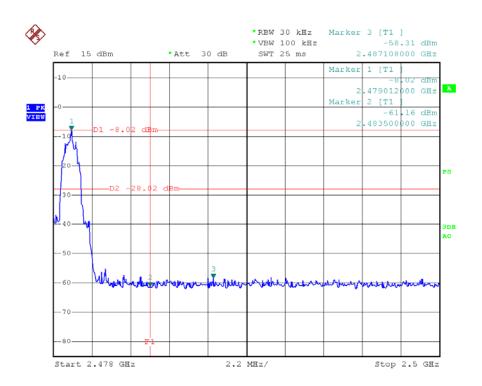
The EUT is placed on a turn table which is 0.8 meter high above the ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on test.

Test Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Aug. 09, 2013	1 Year
2.	Preamplifier	Instruments corporation	EMC01183 0	980100	Aug. 09, 2013	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESPI	101604	Apr. 23, 2013	1 Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Aug. 09, 2013	3 Year
5.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Apr. 23, 2013	3 Year
6.	Loop Antenna	ARA	PLA-1030/ B	1029	Apr. 23, 2013	3 Year
7.	Pre-amplifier	SONOMA	310N	186860	Apr. 23, 2013	1 Year
8.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A

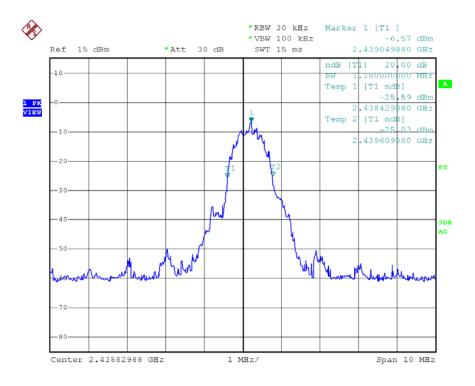
5.3. Test Configuration:

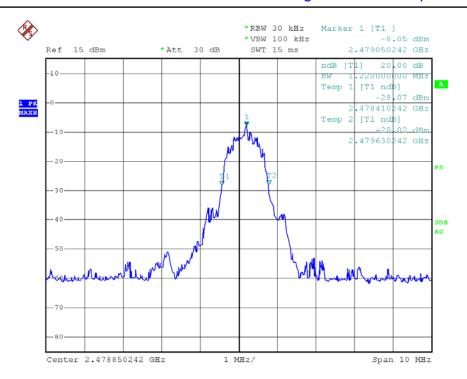

Same as the test configuration in 4.3.

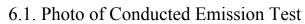

5.4. Test Results

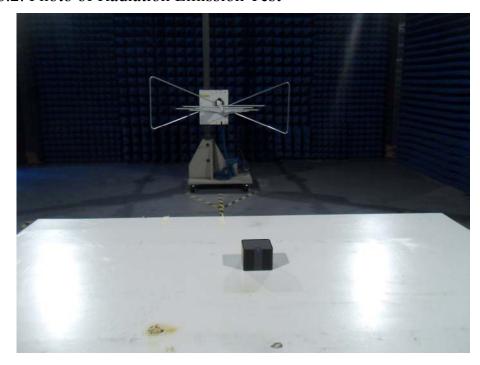
Pass.

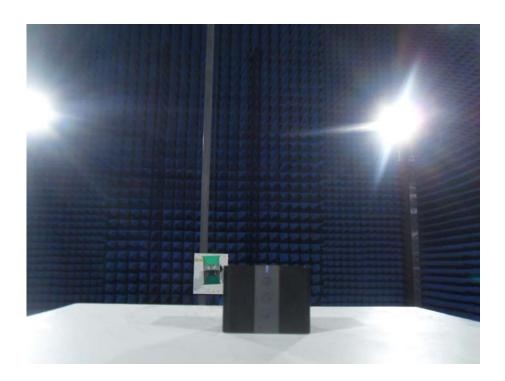
Please refer the following plot.


(Note: Marker 3 means the highest value in 2.39GHz~2.4GHz or 2.4835~2.5GHz)

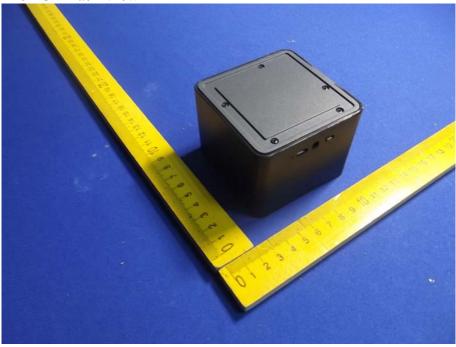



20dB Down:




6. PHOTOGRAPH

6.2. Photo of Radiation Emission Test



APPENDIX I (EXTERNAL PHOTOS)

Figure 1
The EUT-Front View

Figure 2
The EUT-Back View

APPENDIX II(INTERNAL PHOTOS)

Figure 4
The EUT-Inside View

Figure 5
PCB of the EUT-Front View

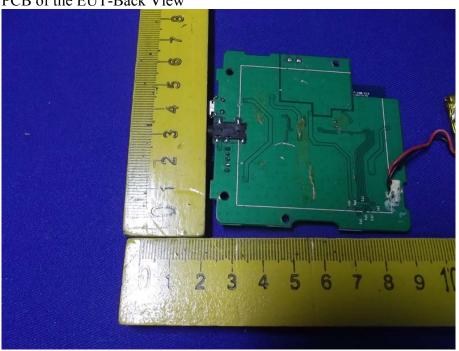


Figure 7
The Battery of EUT View

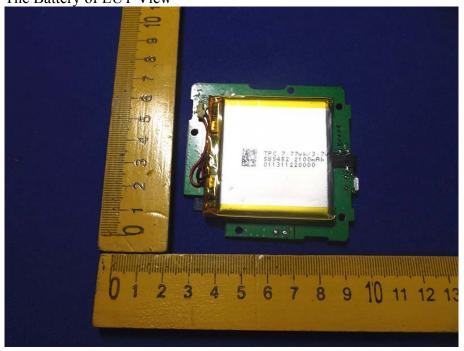
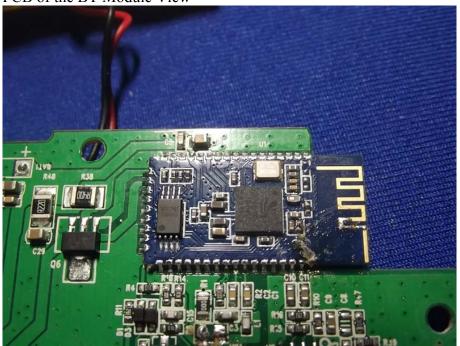



Figure 8

PCB of the BT Module View

