

FCC PART 90

TEST REPORT

For

Fujian BelFone Communications Technology Co., Ltd.

A15, Huaqiao Economic Development Zone, Shuangyang, Luojiang, Quanzhou, Fujian, China

FCC ID: 2AARFBFTD51101

Report Type: Original Report	Product Type: Digital transceiver
Report Number: <u>RSZ171116010-00</u>	
Report Date: <u>2018-03-12</u>	
Reviewed By: <u>Rocky Kang</u> <u>RF Engineer</u>	
Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn	

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP* or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk “*”.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S)	4
TEST METHODOLOGY	4
MEASUREMENT UNCERTAINTY	5
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT EXERCISE SOFTWARE	6
SPECIAL ACCESSORIES.....	6
EQUIPMENT MODIFICATIONS	6
SUPPORT EQUIPMENT LIST AND DETAILS	6
EXTERNAL I/O CABLE.....	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC §1.1307 & §2.1093 - RF EXPOSURE	10
APPLICABLE STANDARD	10
TEST RESULT	10
FCC §2.1046 & §90.205 - RF OUTPUT POWER	11
APPLICABLE STANDARD	11
TEST PROCEDURE	11
TEST DATA	11
FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC	12
APPLICABLE STANDARD	12
FCC §2.1049 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	13
APPLICABLE STANDARD	13
TEST PROCEDURE	13
TEST DATA	13
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	17
APPLICABLE STANDARD	17
TEST PROCEDURE	17
TEST DATA	17
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	19
APPLICABLE STANDARD	19
TEST PROCEDURE	19
TEST DATA	19
FCC §2.1055 & §90.213 - FREQUENCY STABILITY	21
APPLICABLE STANDARD	21
TEST PROCEDURE	21
TEST DATA	21
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR	22
APPLICABLE STANDARD	22

TEST PROCEDURE	22
TEST DATA	22

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Fujian BelFone Communications Technology Co., Ltd.*'s product, model number: *BF-TD511 UHF (FCC ID: 2AARFBFTD51101)* in this report is a *Digital transceiver*, which was measured approximately: 119 mm (L) * 57 mm (W) * 32 mm (H) for main EUT, 84 mm (L) x 80 mm (W) x 49 mm (H) for charger, rated with input voltage: DC 7.4V rechargeable battery or DC 9V from adapter for charging.

Adapter information

Model: RSF-DY056-09000800
Input: AC 100-240V~50/60Hz 0.4A
Output: DC 9V, 0.8A

Notes: This products model: BF-TD512 UHF, BF-TD510 UHF and BF-TD511 UHF are identical schematics and only are different for model name, LCD display and keyboards. Model BF-TD511 UHF was selected for fully testing, the detailed information can be referred to the attached declaration which was stated and guaranteed by the applicant.

** All measurement and test data in this report was gathered from production sample serial number: 1702541 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2017-11-16.*

Objective

This test report is prepared on behalf of *Fujian BelFone Communications Technology Co., Ltd.* in accordance with Part 2, and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 – Private Land Mobile Radio Service

Applicable Standards: TIA 603-D and ANSI C63.4-2014.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter	uncertainty
Occupied Channel Bandwidth	±5%
RF output power, conducted	±1.5dB
Unwanted Emission, conducted	±1.5dB
All emissions, radiated	±4.88dB
Temperature	±1 °C
Supply voltages	±0.4%

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 382179, the FCC Designation No. : CN5001.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

EUT Specification:

Operating frequency band	400-480MHz
Modulation type	4FSK
Channel separation	12.5kHz
Rate Output Power	High:4.2W Low:1W

EUT Exercise Software

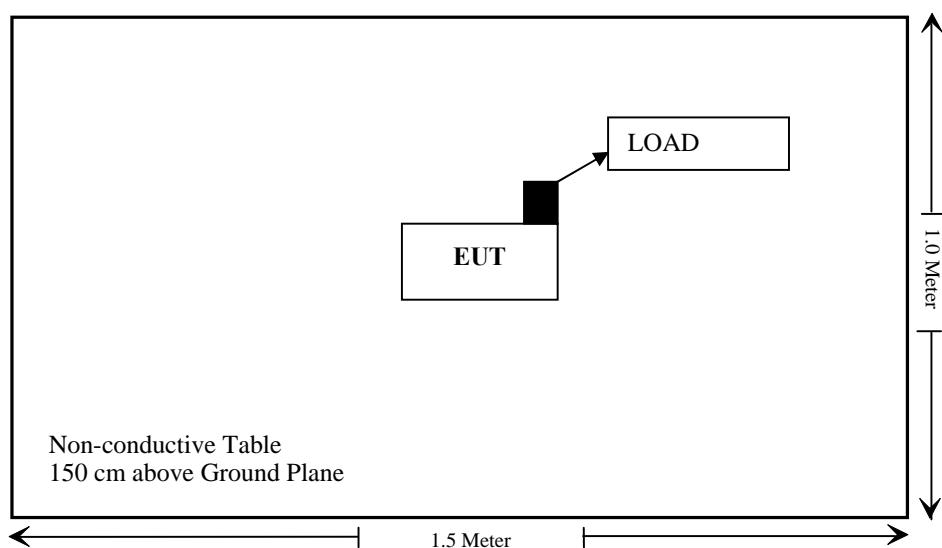
No exercise software was used.

Special Accessories

No special accessory was used.

Equipment Modifications

No modification was made to the EUT tested.


Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
N/A	Load	N/A	N/A

External I/O Cable

Cable Description	Length (m)	From Port	To
N/A	N/A	N/A	N/A

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307 & §2.1093	RF EXPOSURE	Compliance
§2.1046; §90.205	RF Output Power	Compliance
§2.1047; §90.207	Modulation Characteristic	Compliance
§2.1049; §90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051;§90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053;§90.210	Spurious Radiated Emissions	Compliance
§2.1055;§90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Radiated Emission Test					
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017-12-22	2020-12-21
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2017-04-24	2018-04-24
Sunol Sciences	Bi-log Antenna	JB1	A040904-2	2017-12-17	2020-12-16
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2017-05-21	2018-05-21
HP	Amplifier	HP8447E	1937A01046	2017-11-19	2018-05-21
Anritsu	Signal Generator	68369B	004114	2017-12-24	2018-12-24
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2017-12-07	2018-12-07
COM POWER	Dipole Antenna	AD-100	041000	NCR	NCR
A.H. System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17
Ducommun technologies	RF Cable	UFA210A-1-4724-30050U	MFR64369 223410-001	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	104PEA	218124002	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	RG-214	1	2017-11-19	2018-05-21
Ducommun technologies	RF Cable	RG-214	2	2017-11-19	2018-05-21
RF Conducted Test					
Rohde & Schwarz	SPECTRUM ANALYZER	FSU26	200120	2016-12-05	2017-12-05
Rohde & Schwarz	SPECTRUM ANALYZER	FSU26	200120	2017-12-05	2018-12-05
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2016-11-22	2017-11-22
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2017-11-22	2018-11-22
Long Wei	DC Power Supply	TPR-6420D	398363	NCR	NCR
Ducommun technologies	RF Cable	RG-214	3	2017-05-22	2017-11-22
Ducommun technologies	RF Cable	RG-214	3	2017-11-22	2018-05-22
WEINSCHEL	30dB Attenuator	53-30-43	PG633	2017-05-22	2017-11-22
WEINSCHEL	30dB Attenuator	53-30-43	PG633	2017-11-22	2018-05-22

*** Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 & §2.1093 - RF EXPOSURE

Applicable Standard

FCC§1.1310 and §2.1093.

Test Result

Compliance, please refer to the SAR report: RSZ171116010-20.

FCC §2.1046 & §90.205 - RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Spectrum Analyzer Setting:

R B/W Video B/W
100 kHz 300 kHz

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Kong on 2018-02-12.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

Modulation	Channel Separation (kHz)	Frequency (MHz)	Power Level	Output Power (dBm)	Output Power (W)
Digital	12.5	400.0125	High	36.78	4.76
			Low	30.68	1.17
	12.5	453.2125	High	36.74	4.72
			Low	30.54	1.13
	12.5	479.9875	High	36.91	4.91
			Low	29.73	0.94

Note: The rated high power is 4.2W. The limit of the high output power is 3.36W-5.04W.
The rated low power is 1W. The limit of the low output power is 0.8W-1.2W.

FCC §2.1047 & §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

According to FCC § 2.1047(d), Part 90 there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC §2.1049 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

FCC §2.1049 and §90.210

Emission Mask D - 12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 ($f_d - 2.88$ kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz at least: At least $50 + 10 \log (P)$ dB or 70 dB, whichever is the lesser attenuation.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band ± 50 kHz from the carrier frequency.

Test Data

Environmental Conditions

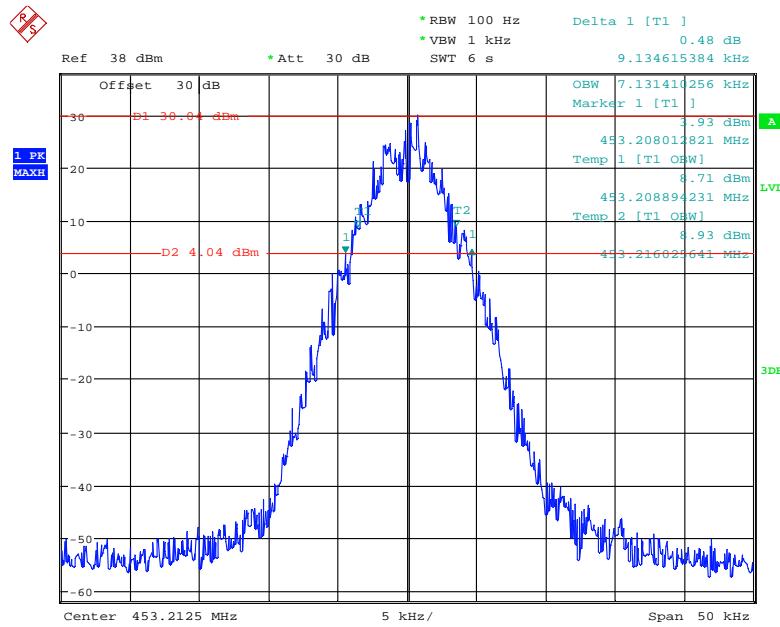
Temperature:	25 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Kong on 2017-11-21.

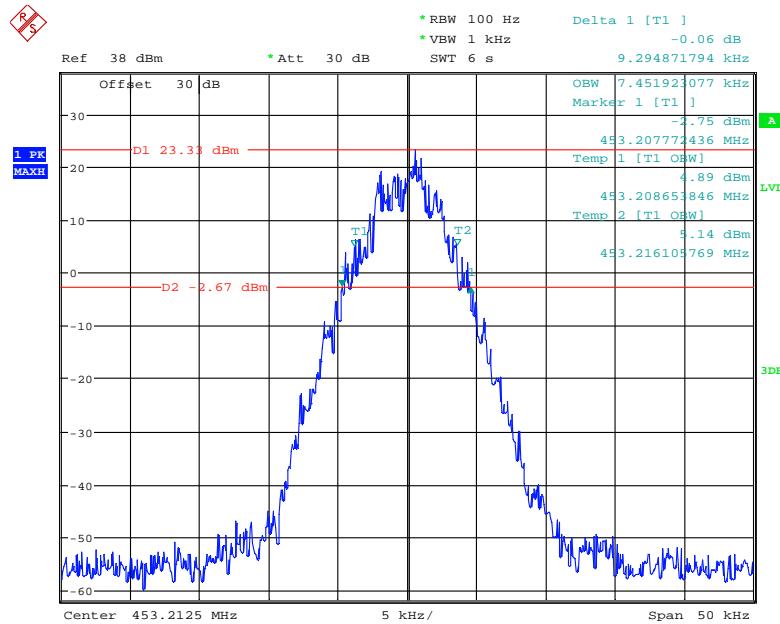
Modulation	Channel Separation (kHz)	Frequency (MHz)	Power Level	99% Occupied Bandwidth (kHz)	26 dB Emissions Bandwidth (kHz)
Digital	12.5	453.2125	High	7.131	9.135
			Low	7.452	9.295

Note: Emission bandwidth was based on calculation method instead of measurement.

Emission Designator Per CFR 47 §2.201& §2.202&, Bn = 2M + 2D

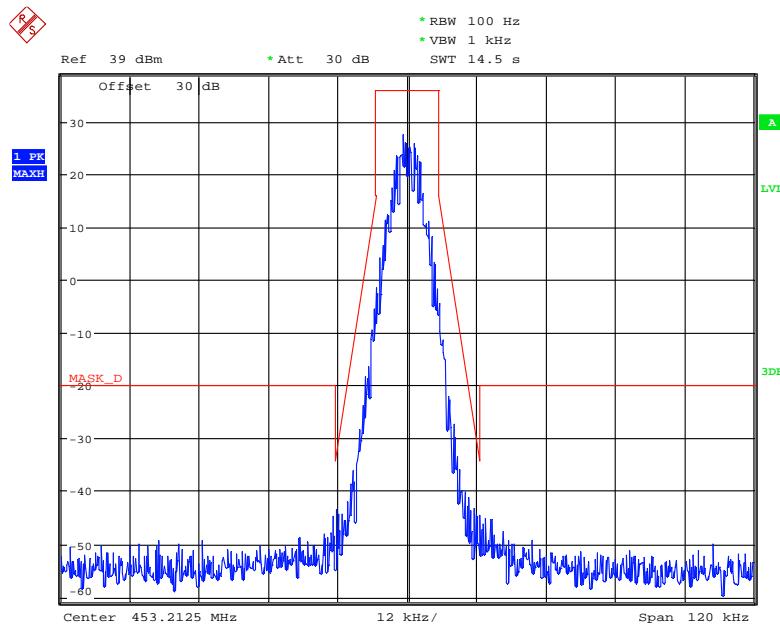

For Digital Mode (Channel Spacing: 12.5 kHz)

Emission Designator 7K60F1D and 7K60F1E


The 99% energy rule (title 47CFR 2.1049) was used for digital mode. It basically states that 99% of the modulation energy falls within X kHz, in this case, 7.452 kHz. The emission mask was obtained from 47CFR 90.210(d).

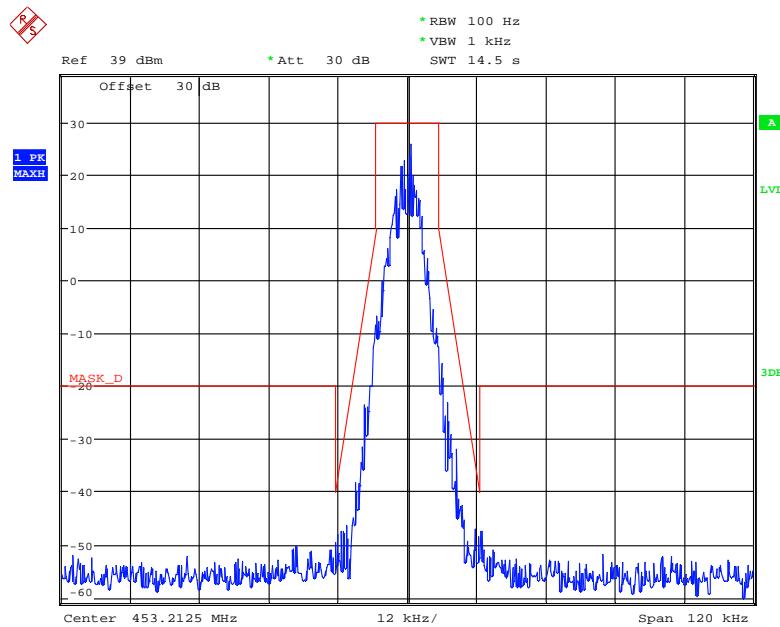
F1D and F1E portion of the designator indicates digital information.

Therefore, the entire designator for 12.5 kHz channel spacing digital mode is 7K60F1D and 7K60F1E.


Digital Modulation:**Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, High Power**

Date: 21.NOV.2017 09:47:53

Frequency 453.2125 MHz: 99% Occupied & 26 dB Bandwidth, Low Power


Date: 21.NOV.2017 09:46:34

Frequency 453.2125 MHz: Emission Mask, High Power

Date: 21.NOV.2017 11:47:15

Frequency 453.2125 MHz: Emission Mask, Low Power

Date: 21.NOV.2017 11:49:36

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

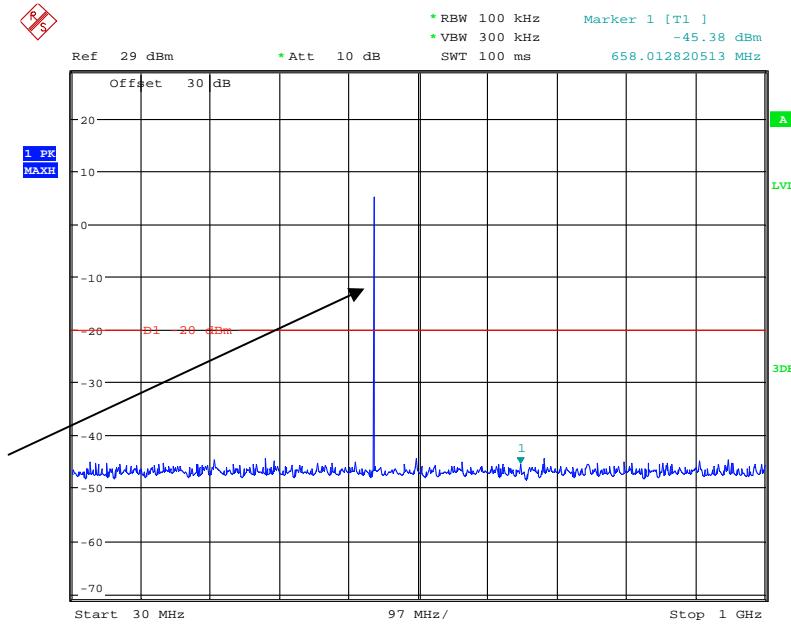
- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 ($f_d - 2.88$ kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least $50 + 10 \log (P)$ dB or 70 dB, whichever is the lesser attenuation.

Test Procedure

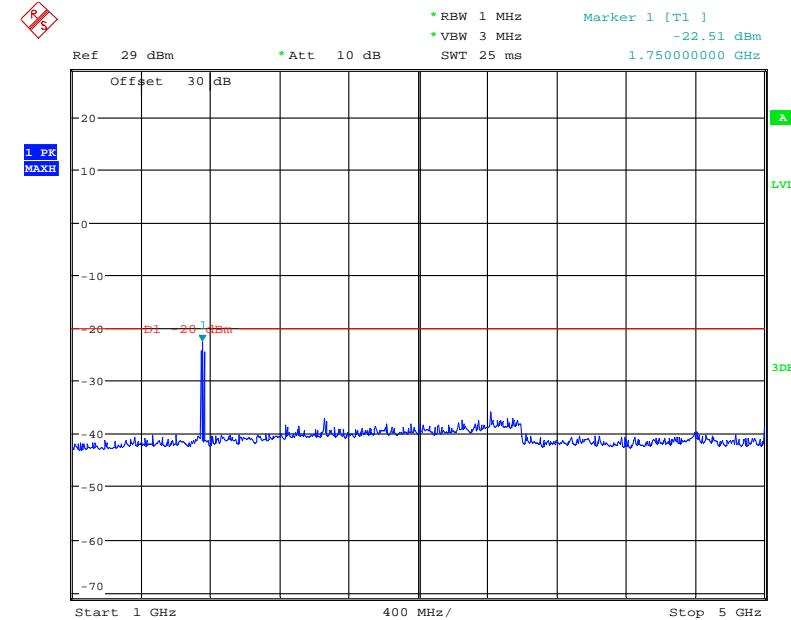
The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100kHz for below 1GHz, and 1MHz for above 1GHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Kong on 2017-11-21.


Test Mode: Transmitting, please refer to the following plots.

Digital Modulation:**30MHz – 1 GHz, Spacing Channel 12.5 kHz, 453.2125 MHz**

Fund.test

Date: 21.NOV.2017 15:03:08

1 GHz – 5 GHz, Spacing Channel 12.5 kHz, 453.2125 MHz

Date: 21.NOV.2017 15:03:46

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB = $10 \log_{10}(\text{TXpwr in Watts}/0.001)$ - the absolute level

Spurious attenuation limit in dB = $50 + 10 \log_{10}(\text{power out in Watts})$ for EUT with a 12.5 kHz channel bandwidth.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Kong on 2018-01-10.

Test Mode: Transmitting(High power level)

30MHz - 5GHz:

Model: BF-TD511 UHF:

Frequency (MHz)	Receiver Reading (dB μ V)	Turn Table Angle Degree	Rx Antenna		Substituted			Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)			
Digital Modulation 453.2125MHz										
906.425	44.24	2	2.5	H	-52.8	0.70	0	-53.50	-20	33.50
906.425	45.36	79	1.6	V	-51.6	0.70	0	-52.30	-20	32.30
1359.6375	45.73	70	2.1	H	-62.2	1.60	8.30	-55.50	-20	35.50
1359.6375	57.95	272	2.3	V	-50.3	1.60	8.30	-43.60	-20	23.60

Model: BF-TD512 UHF:

Frequency (MHz)	Receiver Reading (dB μ V)	Turn Table Angle Degree	Rx Antenna		Substituted			Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)			
Digital Modulation 453.2125MHz										
906.425	45.80	280	1.7	H	-51.2	0.70	0	-51.90	-20	31.90
906.425	44.04	82	1.6	V	-53.0	0.70	0	-53.70	-20	33.70
1359.6375	59.56	317	1.3	H	-48.4	1.60	8.30	-41.70	-20	21.70
1359.6375	62.22	346	1.3	V	-46.0	1.60	8.30	-39.30	-20	19.30

Model: BF-TD510 UHF:

Frequency (MHz)	Receiver Reading (dB μ V)	Turn Table Angle Degree	Rx Antenna		Substituted			Absolute Level (dBm)	Limit (dBm)	Margin (dB)
			Height (m)	Polar (H/V)	Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)			
Digital Modulation 453.2125MHz										
906.425	45.52	321	1.0	H	-51.5	0.70	0	-52.20	-20	32.20
906.425	44.62	9	1.4	V	-52.4	0.70	0	-53.10	-20	33.10
1359.6375	49.42	355	1.6	H	-58.5	1.60	8.30	-51.80	-20	31.80
1359.6375	63.16	126	2.0	V	-45.1	1.60	8.30	-38.40	-20	18.40

Note:

Absolute Level = Substituted Level - Cable loss + Antenna Gain
Margin = Limit- Absolute Level

FCC §2.1055 & §90.213 - FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 and §90.213

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

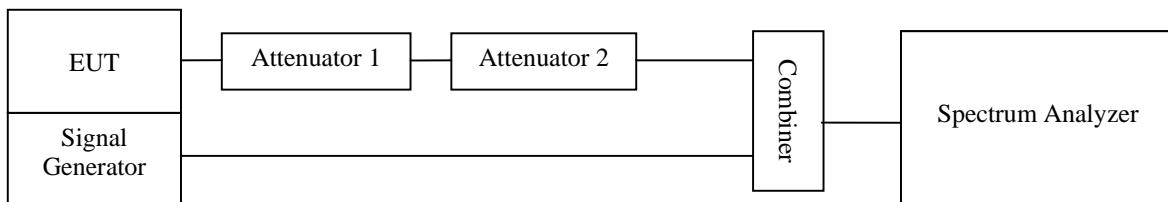
Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Kong on 2017-12-31.

Test Mode: Transmitting

Reference Frequency: 453.2125MHz, Limit: ±2.5 ppm, Digital 12.5 kHz			
Test Environment		Frequency Measure with Time Elapsed	
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency error (MHz)	Frequency Error (ppm)
Frequency Stability versus Input Temperature			
50	7.4	453.212339	-0.3552
40		453.212380	-0.2648
30		453.212416	-0.1853
20		453.212379	-0.2670
10		453.212325	-0.3861
0		453.212341	-0.3508
-10		453.212358	-0.3133
-20		453.212382	-0.2604
-30		453.212376	-0.2736
Frequency Stability versus Input Voltage			
20	6.4	453.212355	-0.3199

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR


Applicable Standard

Regulations: FCC §90.214

Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

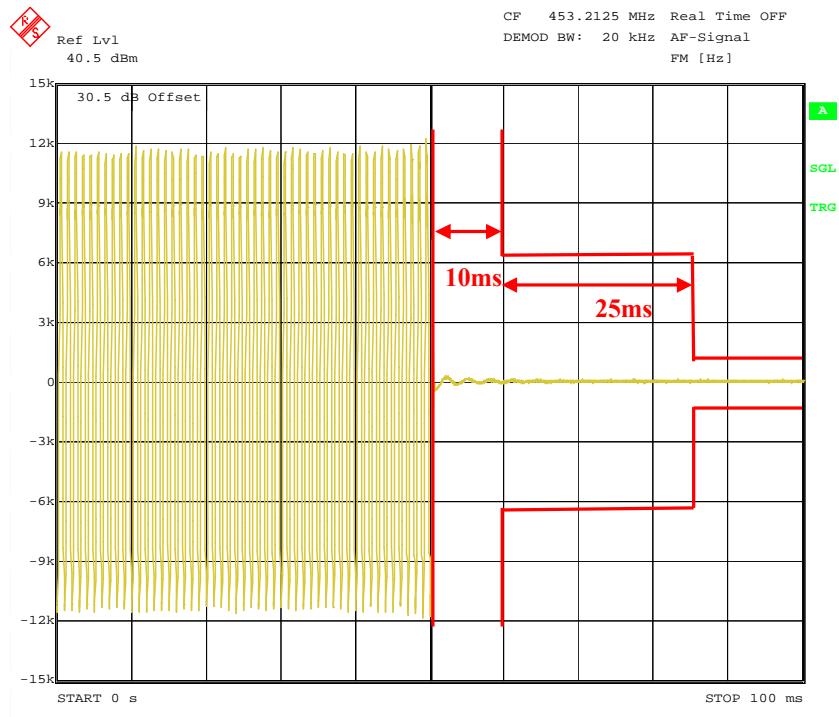
Test Procedure

- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ± 12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P_0 .
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P_0 . This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ± 4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to “Video”, and tune the “trigger level” on suitable level. Then set the “tiger offset” to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .
- k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t_3 .

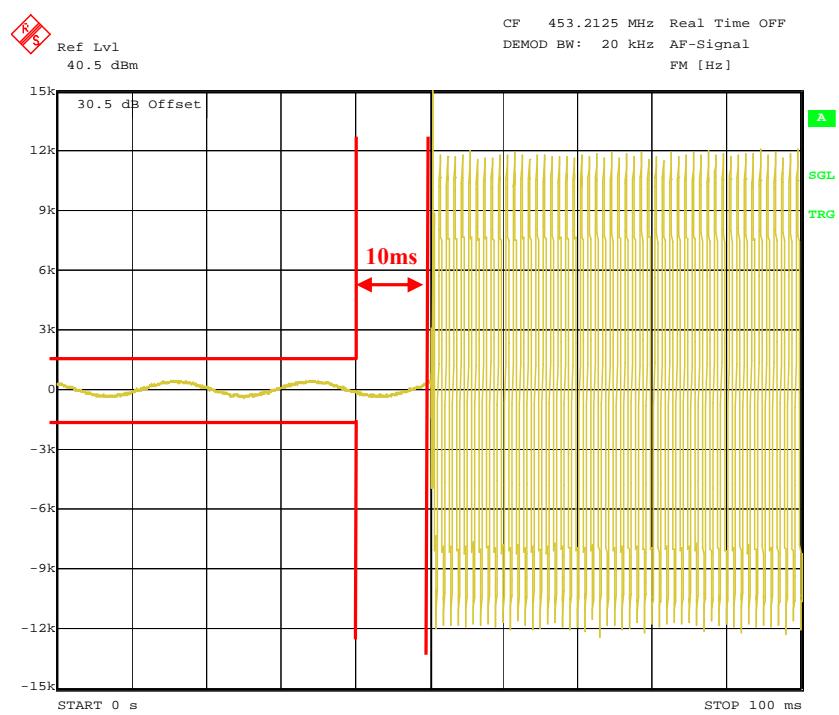
Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa


The testing was performed by Jacob Kong on 2018-03-12.

Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
12.5	10 (t1)	<+/-12.5 kHz	Pass
	25(t2)	<+/-6.25 kHz	
	10 (t3)	<+/-12.5 kHz	


Please refer to the following plots.

Channel: 453.2125 MHz, 12.5 kHz

Turn on

Turn off

***** END OF REPORT *****