FCC TEST REPORT

FOR

E-SENSE Technology Co., Ltd.

Wireless presenter

Test Model: G800

Additional Model NO.: HCG-800, 12-HTG800

Prepared for : E-SENSE Technology Co., Ltd.

8F., No. 10, Lane 366, Sec. 2, Chung Shan Rd., Zhonghe Dist., New Address

Taipei City 235, Taiwan, R.O.C.

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an

District, Shenzhen, Guangdong, China

: (+86)755-82591330 Tel Fax (+86)755-82591332 Web www.LCS-cert.com

Mail webmaster@LCS-cert.com

Date of receipt of test sample : November 07, 2017

Number of tested samples : 1

Sample number : A170522022

Date of Test : November 07, 2017- November 20, 2017

Date of Report : November 20, 2017

FCC TEST REPORT FCC CFR 47 PART 15 C(15.249)

Report Reference No.: LCS171107010AE

Date of Issue: November 20, 2017

Testing Laboratory Name.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Full application of Harmonised standards

Partial application of Harmonised standards \Box Testing Location/ Procedure......

Other standard testing method \Box

Applicant's Name: E-SENSE Technology Co., Ltd.

Address: 8F., No. 10, Lane 366, Sec. 2, Chung Shan Rd., Zhonghe Dist.,

New Taipei City 235, Taiwan, R.O.C.

Test Specification

Standard......: FCC CFR 47 PART 15 C(15.249) / ANSI C63.10: 2013

Test Report Form No.....: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF.....: Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Wireless presenter

Trade Mark: N/A

Test Model.....: G800

Ratings.....: DC 3.0V by 2*AAA

Result: Positive

Compiled by:

Supervised by:

Approved by:

Raing Ye/ File administrators

Dick Su / Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

November 20, 2017 **Test Report No.:** LCS171107010AE Date of issue

Test Model..... : G800 EUT.....: Wireless presenter Applicant.....: : E-SENSE Technology Co., Ltd. Address.....: 8F., No. 10, Lane 366, Sec. 2, Chung Shan Rd., Zhonghe Dist., New Taipei City 235, Taiwan, R.O.C. Telephone....: : / Fax.....:: : / Manufacturer.....: : E-SENSE Technology Co., Ltd. Address.....: 8F., No. 10, Lane 366, Sec. 2, Chung Shan Rd., Zhonghe Dist., New Taipei City 235, Taiwan, R.O.C. Telephone....: : / Fax.....:: : / Factory.....: : E-SENSE Technology Co., Ltd. Address.....: 8F., No. 10, Lane 366, Sec. 2, Chung Shan Rd., Zhonghe Dist., New Taipei City 235, Taiwan, R.O.C. Telephone....:: / Fax....:: : /

Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	November 20, 2017	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. Description of Device (EUT)	6
1.2. Support Equipment List	6
1.3. External I/O	
1.4. Description of Test Facility	
1.5. List of Measuring Equipment	
1.6. Statement of the measurement uncertainty	
1.7. Measurement Uncertainty	
1.8. Description Of Test Modes	
2. TEST METHODOLOGY	10
2.1. EUT Configuration	10
2.2. EUT Exercise	
2.3. General Test Procedures	10
3. CONNECTION DIAGRAM OF TEST SYSTEM	11
3.1. Justification	11
3.2. EUT Exercise Software	11
3.3. Special Accessories	
3.4. Block Diagram/Schematics	
3.5. Equipment Modifications	
3.6. Test Setup	
4. SUMMARY OF TEST RESULTS	12
5. POWER LINE CONDUCTED EMISSIONS	13
5.1 Standard Applicable	13
5.2 Block Diagram of Test Setup	
5.3 Test Results	
6. RADIATED EMISSION MEASUREMENT	14
6.1. Standard Applicable	
6.2. Instruments Setting	
6.3. Test Procedure	
6.4. Block Diagram of Test Setup	19
6.5. Test Results	
6.6. Results for Radiated Emissions (Above 1GHz)	22
6.7. Results for Band edge Testing	23
7. 20 DB BANDWIDTH MEASUREMENT	25
7.1. Standard Applicable	25
7.2. Block Diagram of Test Setup	
7.3. Test Procedure	
7.4. Test Results	26
8. ANTENNA REQUIREMENTS	28
8.1 Standard Applicable	28
8.2 Antenna Connected Construction	28

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT Wireless presenter

Test Model G800

Additional Model HCG-800, 12-HTG800

Model Declaration PCB board, structure and internal of these model(s) are the

same, So no additional models were tested

Hardware Version 1.0 Software Version 1.0

DC 3.0V by 2*AAA Power Supply

2.4G

Frequency Range 2403-2475MHz

Channel Number 3 channels(2403MHz, 2450MHz, 2475MHz)

Modulation Type **GFSK**

Antenna Description Internal antenna, 0dBi(Max.)

1.2. Support Equipment List

Manufacturer	Description	Model	Serial Number	Certificate

1.3. External I/O

I/O Port Description	Quantity	Cable
	-	-

1.4. Description of Test Facility

CNAS Registration Number. is L4595. FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

NVLAP Registration Code is 600167-0.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10:2013 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. List of Measuring Equipment

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Meter	R&S	NRVS	100444	2017-06-17	2018-06-16
2	Power Sensor	R&S	NRV-Z81	100458	2017-06-17	2018-06-16
3	Power Sensor	R&S	NRV-Z32	10057	2017-06-17	2018-06-16
4	EPM Series Power Meter	Agilent	E4419B	MY45104493	2017-06-17	2018-06-16
5	E-SERIES AVG POWER SENSOR	Agilent	Е9301Н	MY41495234	2017-06-17	2018-06-16
6	ESA-E SERIES SPECTRUM ANALYZER	Agilent	E4407B	MY41440754	2017-11-17	2018-11-16
7	MXA Signal Analyzer	Agilent	N9020A	MY49100040	2017-06-17	2018-06-16
8	SPECTRUM ANALYZER	R&S	FSP	100503	2017-06-17	2018-06-16
9	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2017-06-17	2018-06-16
10	Positioning Controller	MF	MF-7082	/	2017-06-17	2018-06-16
11	EMI Test Software	AUDIX	E3	N/A	2017-06-17	2018-06-16
12	EMI Test Receiver	ROHDE & SCHWARZ	ESR 7	101181	2017-06-17	2018-06-16
13	AMPLIFIER	QuieTek	QTK-A2525G	CHM10809065	2017-11-17	2018-11-16
14	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2017-06-23	2018-06-22
15	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2017-05-02	2018-05-01
16	Horn Antenna	EMCO	3115	6741	2017-06-23	2018-06-22
17	Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	2017-06-10	2018-06-09
18	RF Cable-R03m	Jye Bao	RG142	CB021	2017-06-17	2018-06-16
19	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2017-06-17	2018-06-16
20	TEST RECEIVER	R&S	ESCI	101142	2017-06-17	2018-06-16
21	RF Cable-CON	UTIFLEX	3102-26886-4	CB049	2017-06-17	2018-06-16
22	10dB Attenuator	SCHWARZBECK	MTS-IMP136	261115-001-0032	2017-06-17	2018-06-16
23	Artificial Mains	R&S	ENV216	101288	2017-06-17	2018-06-16

1.6. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.7. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
Dodiction Uncontainty		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	•	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	4.00dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.8. Description Of Test Modes

The EUT operates in the unlicensed ISM band at 2.4GHz. The following operating modes were applied for the related test items.

All test modes were tested, only the result of the worst case was recorded in the report. It was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane.

Mode of Operations	Transmitting Frequency (MHz)	
	2403	
GFSK	2450	
	2475	
For Conducted Emission		
Test Mode	TX Mode	
For Radiated Emission		
Test Mode	TX Mode	

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

According to the requirements in Section 6.2 of ANSI C63.10: 2013, AC power-line conducted emissions shall be measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table and the turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10: 2013

3. CONNECTION DIAGRAM OF TEST SYSTEM

3.1. Justification

The system was configured for testing in a continuous transmit condition.

3.2. EUT Exercise Software

Press different combined keys, then power on will enter the EMI mode, as follows:

PgUp and laser Button - low frequency modulation transmitter;

PgUp and PgDn – middle frequency modulation transmitter;

PgDn key - and laser --High frequency modulation transmitter.

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

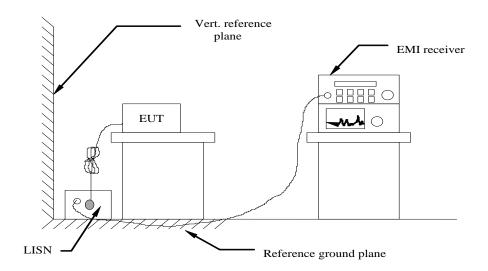
Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Power Line Conducted Emissions	N/A
\$15.205(a), \$15.209(a), \$15.249(a), \$15.249(c)	Radiated Emissions Measurement	Compliant
§15.249	Band Edges Measurement	Compliant
§15.249, §15.215	20 dB Bandwidth	Compliant


5. POWER LINE CONDUCTED EMISSIONS

5.1 Standard Applicable

According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range	Limits ((dBµV)
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50

5.2 Block Diagram of Test Setup

5.3 Test Results

Not applicable as the EUT is powered by 2*AA battery.

6. RADIATED EMISSION MEASUREMENT

6.1. Standard Applicable

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation. 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

Fundamental Frequency	Field Strength of fundamental (millivolts/meter)	Field Strength of harmonics (microvolts/meter)
902-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

6.2. Instruments Setting

The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1000KHz / 1000KHz for peak

6.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

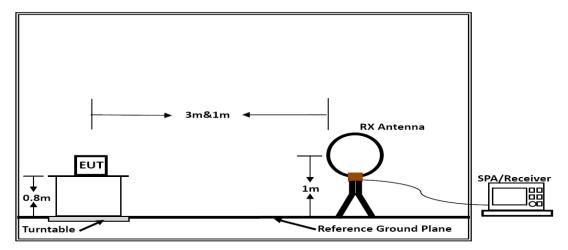
Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

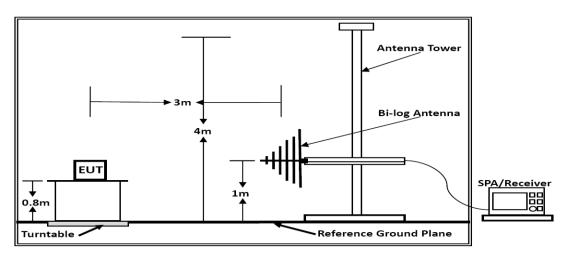
- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

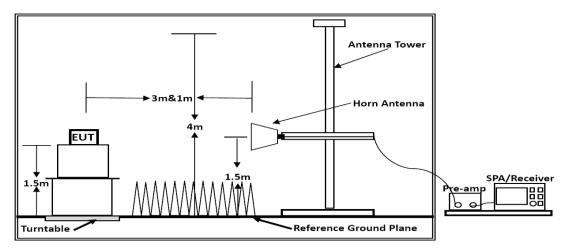
Setup:


- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:


--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
 - --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.


6.4. Block Diagram of Test Setup

Below 30MHz

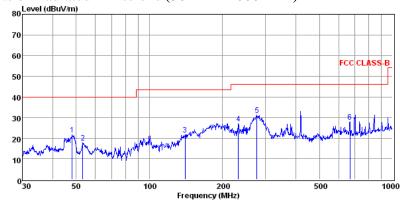
Below 1GHz

Above 1GHz

6.5. Test Results

Results of Radiated Emissions (9 kHz~30MHz)

Frequency (MHz)	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-	-	-	-	See Note

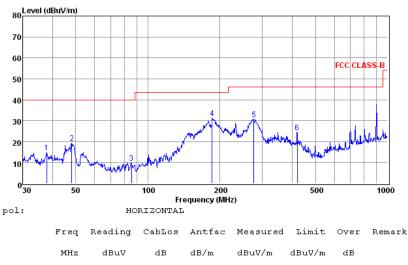

Note:

pol:

The radiated emissions from 9kHz to 30MHz are at least 20dB below the official limit and no need to report.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

Results of Radiated Emissions (30MHz~1000MHz)



	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	48.16	8.12	0.35	13.36	21.83	40.00	-18.17	QP
2	53.13	4.23	0.46	13.11	17.80	40.00	-22.20	QP
3	140.34	12.75	0.75	8.19	21.69	43.50	-21.81	QP
4	232.53	14.46	0.98	11.76	27.20	46.00	-18.80	QP
5	277.09	17.55	1.00	12.58	31.13	46.00	-14.87	QP
6	668.14	7.44	1.71	18.70	27.85	46.00	-18.15	QP

Note: 1. All readings are Quasi-peak values.

VERTICAL

^{2.} Measured= Reading + Antenna Factor + Cable Loss
3. The emission that ate 20db blow the offficial limit are not reported

	MHz	dBuV	dB	dB/m	dBuV/m	dBuV/m	dB	
1	37.81	1.53	0.38	13.02	14.93	40.00	-25.07	QP
2	48.16	5.67	0.35	13.36	19.38	40.00	-20.62	QP
3	85.30	-1.13	0.47	10.40	9.74	40.00	-30.26	QP
4	185.14	20.38	0.70	10.13	31.21	43.50	-12.29	QP
5	277.09	17.02	1.00	12.58	30.60	46.00	-15.40	QP
6	420.58	7.70	1.33	15.47	24.50	46.00	-21.50	QP

***Note: Pre-scan all modes and recorded the worst case results in this report (TX-2403MHz).

Note: 1. All readings are Quasi-peak values.
2. Measured= Reading + Antenna Factor + Cable Loss
3. The emission that ate 20db blow the offficial limit are not reported

6.6. Results for Radiated Emissions (Above 1GHz)

	Field Strength Of Fundamental (TX-2403MHz)											
Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)	AVG Limit (dBuV/m)	Result						
2403	Н	83.45	72.46	114	94	Pass						
2403	V	82.59	71.25	114	94	Pass						

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measure d dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
4806.00	48.79	33.06	35.04	3.94	50.75	74.00	-23.25	Peak	Horizontal
4806.00	34.03	33.06	35.04	3.94	35.99	54.00	-18.01	Average	Horizontal
4806.00	49.46	33.06	35.04	3.94	51.42	74.00	-22.58	Peak	Vertical
4806.00	34.61	33.06	35.04	3.94	36.57	54.00	-17.43	Average	Vertical

Field Strength Of Fundamental (TX-2450MHz)										
Frequency (MHz) Pol. Measure Result (PK, dBuV/m) Measure Result (AVG, dBuV/m) Measure Result (AVG, dBuV/m) (AVG, dBuV/m) Result										
2450	Н	84.15	73.20	114	94	Pass				
2450	V	83.72	72.14	114	94	Pass				

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/ m	Margin dB	Remark	Pol.
4900.00	46.63	33.16	35.15	3.96	48.60	74.00	-25.40	Peak	Horizontal
4900.00	32.65	33.16	35.15	3.96	34.62	54.00	-19.38	Average	Horizontal
4900.00	48.63	33.16	35.15	3.96	50.60	74.00	-23.40	Peak	Vertical
4900.00	32.65	33.16	35.15	3.96	34.62	54.00	-19.38	Average	Vertical

	Field Strength Of Fundamental (TX-2475MHz)											
	Frequency (MHz)	Pol.	Measure Result (PK, dBuV/m)	Measure Result (AVG, dBuV/m)	Peak Limit (dBuV/m)							
ŀ	2475	Н	83.44	73.44	114	94	Pass					
İ	2475	V	82.05	72.15	114	94	Pass					

Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/ m	Margin dB	Remark	Pol.
4950.00	49.18	33.26	35.14	3.98	51.28	74.00	-22.72	Peak	Horizontal
4950.00	32.07	33.26	35.14	3.98	34.17	54.00	-19.83	Average	Horizontal
4950.00	52.31	33.26	35.14	3.98	54.41	74.00	-19.59	Peak	Vertical
4950.00	34.70	33.26	35.14	3.98	36.80	54.00	-17.20	Average	Vertical

Notes:

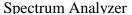

- 1. Measuring frequencies from 9k~10th harmonic (ex. 26GHz), No emission found between lowest internal used/generated frequency to 30MHz.
- 2. Radiated emissions measured in frequency range from 9k~10th harmonic (ex. 26GHz) were made with an instrument using Peak detector mode.
- 3. No emission was be recorded above 18GHz means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

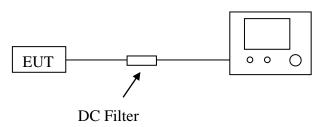
6.7. Results for Band edge Testing

	<u>GFSK</u>												
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	Ground Reflection Factor (dB)	Covert Radiated E Level At 3m (dBuV/m)	Detector	Limit (dBuV/m)	Verdict						
2310.000	-53.977	2.0	0.0	43.283	Peak	74.00	PASS						
2310.000	-71.755	2.0	0.0	25.505	AV	54.00	PASS						
2390.000	-37.628	2.0	0.0	59.632	Peak	74.00	PASS						
2390.000	-72.494	2.0	0.0	24.766	AV	54.00	PASS						
2483.500	-58.714	2.0	0.0	38.546	Peak	74.00	PASS						
2483.500	-71.659	2.0	0.0	25.601	AV	54.00	PASS						
2500.000	-59.481	2.0	0.0	37.779	Peak	74.00	PASS						
2500.000	-72.082	2.0	0.0	25.178	AV	54.00	PASS						

NOTE: Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

Please refer to following test plots;




7. 20 DB BANDWIDTH MEASUREMENT

7.1. Standard Applicable

According to §15.215

7.2. Block Diagram of Test Setup

7.3. Test Procedure

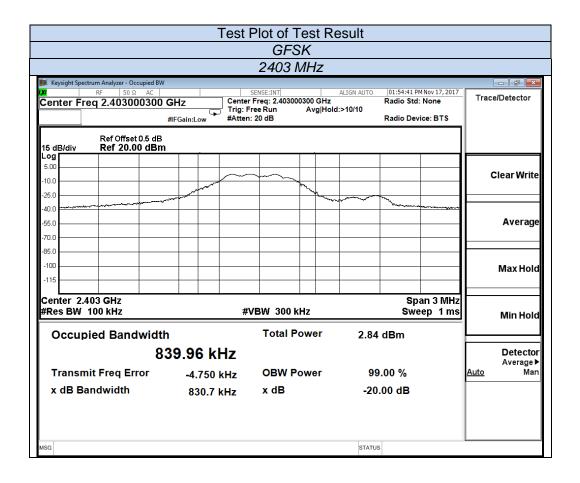
Use the following spectrum analyzer settings:

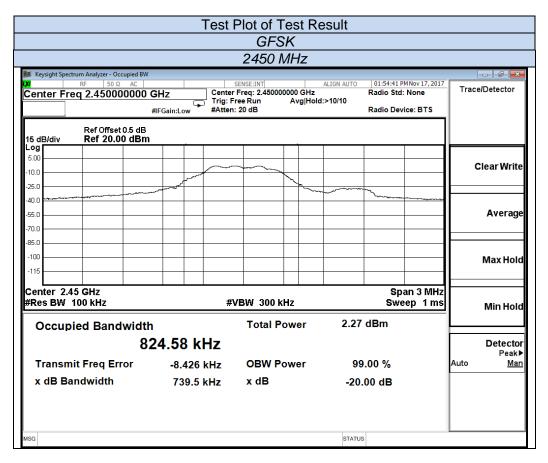
Span = 3MHz

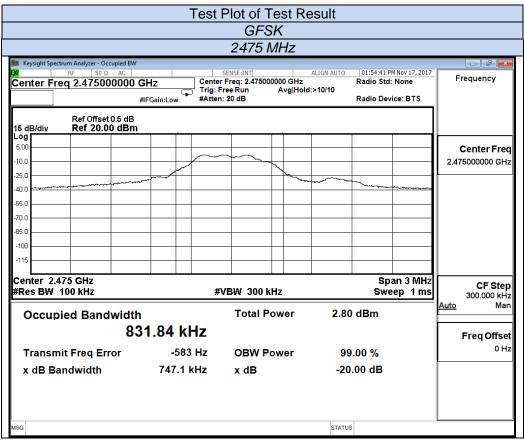
RBW = 30KHz

VBW = 100KHz

Sweep = auto


Detector function = peak


Trace = max hold


The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

7.4. Test Results

Test Result Of 20dB Bandwidth Measurement		
Test Frequency	20dB Bandwidth	Limit
(MHz)	(KHz)	(MHz)
2403	830.70	Non-Specified
2450	739.50	Non-Specified
2475	747.10	Non-Specified

8. ANTENNA REQUIREMENTS

8.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

8.2 Antenna Connected Construction

8.2.1. Standard Applicable

8.2.3. Results: Compliance.

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

8.2.2. Antenna Connector Construction

The directional gains of antenna used for transmitting is 0.0dBi, and the antenna is a Internal antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details.

THE END OF TEST REPORT