

TEST REPORT

Report No. : HST201606-2801-FCC

Product description: WIRELESS BELTPACK

TRANSMITTER

Model/Type: BP500

Applicant's name: PROFORA INTERNATIONAL

CORPORATION

Lab: Guangdong Huesent Testing & Inspection Technology Co., Ltd Add: No. 91, Dongguanzhuang Road, Guangzhou, Guangdong, China.

TEST REPORT

FCC Part 74.861e: 2015

FCCID: 2AAQCBP500

Report Reference No. HST201606-2801-FCC

Tested by (+ signature) Lemon Fu

Review by (+ signature) Sandy Yu Sandy Yu

Date of Sample Receive Jun. 1, 2016

Date of issue Jun. 15, 2016

Total number of pages: 36 Pages

Testing Laboratory..... Guangdong Environment Radiation Monitoring Center

(Accredited by CNAS, Accredited Number: L5539)

FCC- Registration No: 667318 Renewal on Sep. 12, 2012

Address No. 860, South Guangzhou Avenue, Guangzhou, 510300 China

Applicant's name PROFORA INTERNATIONAL CORPORATION

Manufacturer's name.....: XINYINGKE ELECTROACOUSTIC TECHNOLOGY CO., LTD.

Address C3, AREA2, ENPING, GUANGDONG, CHINA

Test specification.....: Entrusted testing

Standard..... FCC Part 74.861e: 2015

Non-standard test method......: N/A

Test item description.....: WIRELESS BELTPACK TRANSMITTER

Trade Mark..... PENDOMAX

Model/Type reference BP500

Ratings 3.0Vdc by two AA Batteries

TABLE OF CONTENT

	TES	ST REPORT	1
1	Test Su	mmary	4
2	General	Information	5
	2.1	Client Information	5
	2.2	General Description of E.U.T.	
	2.3	Details of E.U.T.	5
	2.4	Description of Support Units	5
	2.5	Standards Applicable for Testing	5
	2.6	Test Location	
	2.7	Deviation from Standards	
	2.8	Abnormalities from Standard Conditions	6
3	Test Re	sults	7
	3.1	E.U.T. Operation Condition	7
	3.2	Test Procedure & Measurement Data	8
	3.2.		
	3.2.		
	3.2.	- 1	
	3.2.		
	3.3	Measurement Uncertainty	
	3.4	Photographs	
	3.4.		
	3.4.		
	3.4.	3 Antenna Photo	35
4	Eguipme	ents Used during Test	36

Page 4 of 36 Report No.: HST201606-2801-FCC

1 TEST SUMMARY

Test	Test Requirement	Standard Paragraph	Result
Carrier Radiated Power	FCC Part 2.1046	74.861 e) 1) 54–72, 76–88 & 174–216 MHz bands, 50 mW 470–608 and 614–806 MHz bands, 250 mW	PASS
Modulation Deviation	FCC Part 2.1047	74.861 e) 3) Within 75kHz	PASS
Frequency Stability	FCC Part 2.1055	74.861 e) 4) <0.005% 50 ppm	PASS
Operating Bandwidth	FCC Part 2.1049 c)	74.861 e) 5) Within 200kHz	PASS
Unwanted Radiation	FCC Part 2.1049 c)	74.861 e) 6) within the mask	PASS
Radiated Spurious Emission	FCC Part 2.1053	74.861 d) 3) < 43+10lgP(W) dB	PASS

Remark:

♣The EUT has one channel, which is located in the range <u>516.000 MHz to 541.000MHz</u>.

Only test result of sample of $\,$ in channels 516.0 MHz, 522.88 MHz and 541.0 MHz were recorded in this report.

Page 5 of 36 Report No.: HST201606-2801-FCC

2 GENERAL INFORMATION

2.1 Client Information

Applicant: PROFORA INTERNATIONAL CORPORATION

Address of Applicant: 719 LAMBS CREEK ROAD P.O. BOX 99 MANSFIELD PA 16933

USA

2.2 General Description of E.U.T.

EUT Name: WIRELESS BELTPACK TRANSMITTER

Item No.: Listed on the 3rd page
Serial No.: Not supplied by client

2.3 Details of E.U.T.

Power Supply: 3.0Vdc by two AA Batteries

Main Function: Wireless microphone system with an associated receiver for

transmitting voice.

The final amplifier Collector Voltage and Collector Current are 0.07V & 3.5mA respectively.

Necessary Bandwidth: 2M+2DK= 2 x 91 kHz + 2 x 9 kHz x 1.0 = 200 kHz

1 channel for each microphone; Modulation: F3E; Antenna Type: external wire antenna (1/5

wave); Gained: 0 dBi

2.4 Description of Support Units

Connect the EUT to mains power, and then test the EUT with signal generator.

2.5 Standards Applicable for Testing

The standard used was FCC Part 74.861e: 2015

The EUT belongs to licensed low power auxiliary devices.

Page 6 of 36 Report No.: HST201606-2801-FCC

2.6 Test Location

Guangdong Huesent Testing & Inspection Technology Co., Ltd No.91, Dongguanzhuang Road, Guangzhou, China.

Tel: 86-20-87221905, Fax: 86-20-87223892

CNAS- Accreditation No.: L2885.

Guangdong Environment Radiation Monitoring Center
Address: No. 860, South Guangzhou Avenue, Guangzhou, 510300 China
Accredited by CNAS, Accredited Number: L5539
FCC- Registration No: 667318 Renewal on Sep. 12, 2012

2.7 Deviation from Standards

None.

2.8 Abnormalities from Standard Conditions

None.

Page 7 of 36 Report No.: HST201606-2801-FCC

3 TEST RESULTS

3.1 E.U.T. Operation Condition

Operating Environment:

Temperature: $20.0 \,^{\circ}\text{C} \,^{\sim}25 \,^{\circ}\text{C}$ Humidity: $50 \,^{\sim}70\% \,^{\circ}\text{RH}$ Atmospheric Pressure: $980 \,^{\sim}1012 \,^{\circ}\text{mbar}$

EUT Operation: Test the EUT in transmitting mode.

Performed Carrier Radiated Power & Radiated Spurious Emissions testing in highest/ middle / lowest frequency spots within the range, and performed Occupied Bandwidth, Frequency Stability & Modulation Characteristics in middle

frequency spot.

Page 8 of 36 Report No.: HST201606-2801-FCC

3.2 Test Procedure & Measurement Data

3.2.1 Carrier Radiated Power & Radiated Spurious Emissions

Test Requirement: FCC CFR 47 Part 74.861 e) 1) & d) 3)

Test Method: EIA/TIA 603-D:2010 section 2.2,

FCC CFR 47 Part 2.1047 & 1053

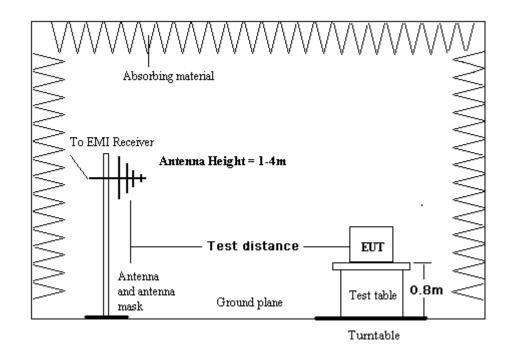
Measurement Distance: 3m (Semi-Anechoic Chamber)

Test Requirement:

(d) For low power auxiliary stations operating in the bands other than those allocated for TV broadcasting, the following technical requirements are imposed.

- (3) The occupied bandwidth shall not be greater than that necessary for satisfactory transmission and, in any event, an emission appearing on any discrete frequency outside the authorized band shall be attenuated, at least, 43+10 log ¹⁰ (mean output power, in watts) dB below the mean output power of the transmitting unit.
- (e) For low power auxiliary stations operating in the bands allocated for TV broadcasting, the following technical requirements apply:
- (1) The power of the measured unmodulated carrier power at the output of the transmitter power amplifier (antenna input power) may not exceed the following:
 - (i) 54-72, 76-88, and 174-216 MHz bands-50 mW
 - (ii) 470-608 and 614-806 MHz bands-250 mW

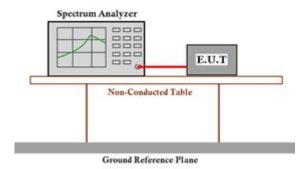
Test Procedure:


The procedure used was EIA/TIA 603-D:2010. The receiver was scanned from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier. When an emission was found, the table was rotated to produce the maximum signal strength. An initial pre-scan was performed for in peak detection mode using the receiver. The EUT was measured for both the Horizontal and Vertical polarities and performed a pre-test three orthogonal planes.

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading +Antenna Factor +Cable Factor -Preamplifier Factor

An initial pre-scan was performed in the 3m chamber using the spectrum analyzer in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by Bilog antenna with 2 orthogonal polarities


Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the Carrier Radiated Power and spurious emissions were measured by the substitution.

Conducted output power:

Remove the antenna from the EUT and then connect a low attenuation RF cable from the antenna port to the spectrum.

Set the spectrum analyzer: RBW = 300 kHz. VBW >= RBW. Span=2MHz, Sweep = auto; Detector Function = Peak (Max. hold).

Test Result:

Carrier Frequency (MHz)	Factual Level dBm (mW)	conducted output power dBm (mW)	Limit in 74.861 e) 1)
516.000	1.2dBm(i.e.1.32 mW)	1.1dBm(i.e.1.29 mW)	24 dBm (i.e. 250 mW)
522.880	1.0dBm(i.e.1.26 mW)	0.9dBm(i.e.1.23 mW)	24 dBm (i.e. 250 mW)
541.000	1.0dBm(i.e 1.26 mW)	0.9dBm(i.e 1.23 mW)	24 dBm (i.e. 250 mW)

The Factual Level is ERP value.

Page 10 of 36 Report No.: HST201606-2801-FCC

Radiated spurious emissions:

516.000 MHz					
Spurious Emission	Horizontal		Vertical		Linait
Frequency (MHz)	Factual Level (dBm) Margin(d		Factual Level (dBm)	Margin(dB)	Limit (dBm)
258.000	<-43	NA	<-43	NA	-13
1032.000	-36.5	-23.5	-33.2	-20.2	-13
1548.000	-29.1	-16.1	-22.3	-9.3	-13
2064.000	-29.2	-16.2	-27.2	-14.2	-13
2580.000	<-43	NA	<-43	NA	-13
3096.000	<-43	NA	<-43	NA	-13
3612.000	<-43	NA	<-43	NA	-13
4128.000	<-43	NA	<-43	NA	-13
4644.000	<-43	NA	<-43	NA	-13
5160.000	<-43	NA	<-43	NA	-13
522.880 MHz					
261.440	<-43	NA	<-43	NA	-13
1045.760	-36.8	-23.8	-34.3	-21.3	-13
1568.640	-29.8	-16.8	-22.4	-9.4	-13
2091.520	-29.6	-16.6	-27.6	-14.6	-13
2614.400	<-43	NA	<-43	NA	-13
3137.280	<-43	NA	<-43	NA	-13
3660.160	<-43	NA	<-43	NA	-13
4183.040	<-43	NA	<-43	NA	-13
4705.920	<-43	NA	<-43	NA	-13
5228.800	<-43	NA	<-43	NA	-13
541.000 MHz					
270.500	<-43	NA	<-43	NA	-13
1082.000	-37.1	-24.1	-34.5	-21.5	-13
1623.000	-29.3	-16.3	-22.0	-9.0	-13
2164.000	-29.4	-16.4	-27.3	-14.3	-13
2705.000	<-43	NA	<-43	NA	-13
3246.000	<-43	NA	<-43	NA	-13
3787.000	<-43	NA	<-43	NA	-13
4328.000	<-43	NA	<-43	NA	-13
4869.000	<-43	NA	<-43	NA	-13
5410.000	<-43	NA	<-43	NA	-13

The Factual Level is ERP value.

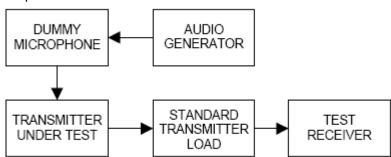
The peak emission of other frequency in rang from 30MHz up to 10 times carrier were 25dB lower than the limit, hence no data was recorded in the report.

NA: Not applicable, since the level is over 30dB lower than the limit.

TEST RESULTS: The unit does meet the FCC requirements.

Page 11 of 36 Report No.: HST201606-2801-FCC

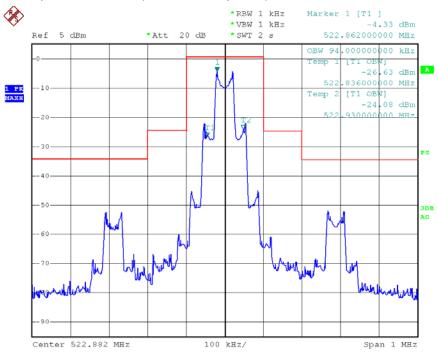
3.2.2 Occupied Bandwidth


Test Requirement: FCC CFR 47 Part 74.e) 5) & 6)
Test Method: FCC CFR 47 Part 2.1049 f) 2)

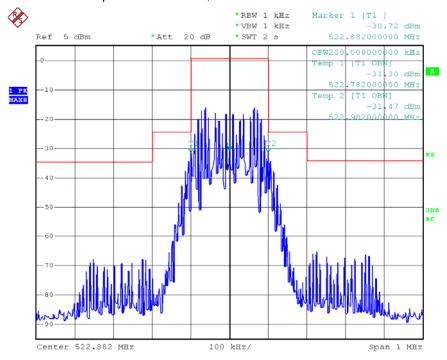
Requirements:

- (e) For low power auxiliary stations operating in the bands allocated for TV broadcasting, the following technical requirements apply:
- (5) The operating bandwidth shall not exceed 200 kHz.
- (6) The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:
- (i) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25dB;
- (ii) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35dB;
- (iii) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10log₁₀ (mean output power in watts) dB.

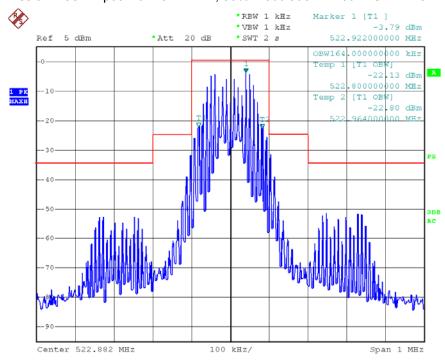
Test Procedure


Setup

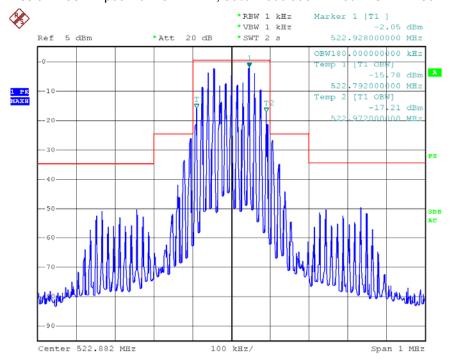
Input 2500Hz signal to the microphone, find the 50% rated deviation, add the level 16dB, test this status the 99% occupied bandwidth and record it.


Test Result: The graph as below, represents the emissions take for this device.

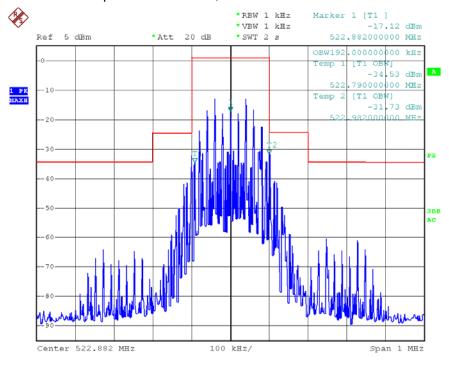
Occupied Bandwidth (99% of total power): 94.0 kHz.


Date: 7.JUN.2016 06:38:37

Emission Mask: input with 9 kHz AF, 50% modulation + 16dB. OBWmax=200 kHz


Date: 7.JUN.2016 06:32:43

Emission Mask: input with 10 kHz AF, 50% modulation + 16dB. OBW=164 kHz


Date: 7.JUN.2016 06:39:28

Emission Mask: input with 15 kHz AF, 50% modulation + 16dB. OBW=180 kHz

Date: 7.JUN.2016 06:39:02

Emission Mask: input with 20 kHz AF, 50% modulation + 16dB. OBW=192 kHz

Date: 7.JUN.2016 06:28:41

Test results: The unit does meet the FCC requirements.

Page 15 of 36 Report No.: HST201606-2801-FCC

3.2.3 Frequency Stability

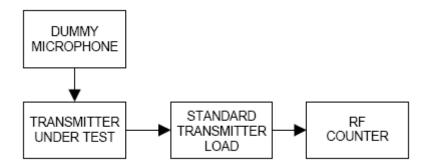
Test Requirement: FCC CFR 47 Part 74.e) 4)

Test Method: FCC CFR 47 Part 2.1055

Requirements: +/-50 ppm

(e) For low power auxiliary stations operating in the bands allocated for TV broadcasting, the following technical requirements apply:

(4) The frequency tolerance of the transmitter shall be 0.005 percent.


Test Procedure:

Frequency stability versus Environmental Temperature

The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed through attenuators. The EUT was placed inside the temperature chamber. After the temperature stabilized for approximately 20 minutes, the frequency of the output signal was recorded from the counter.

Frequency Stability versus Input Voltage

At room temperature ($25 \pm 5^{\circ}$ C), an external variable DC power supply was connected to the EUT. The frequency of the transmitter was measured for 115%, 100% and 85% of the nominal operating input voltage. For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

Test Result:

Assigned Frequency: 516.0 MHz/ 522.88 MHz/ 541.0 MHz						
Environment Temperature	Power Supplied	Frequency Measure with Time Elapsed				
(°C)	(Vdc)	Total emission within				
		+/-25.8kHz	+/-26.1kHz	+/-27.05kHz		
50	3.0	-7.9	-6.2	-7.6		
40	3.0	9.5	8.3	8.7		
30	3.0	10.5	8.0	8.7		
20	3.0	-6.7	-8.5	-7.3		
10	3.0	-8.3	-4.6	-6.5		
0	3.0	15.4	12.7	13.2		
-10	3.0	-7.5	-8.1	-7.5		
-20	3.0	-20.0	-15.2	-15.4		
-30	3.0	-15.5	-17.4	-17.1		
Environment Temperature Power Supplied Frequency Measure with				me Elapsed		
(°C)	(Vdc)	Total emission within				
		+/-25.8kHz	+/-26.1kHz	+/-27.05kHz		
25	3.0	-13.5	-9.5	-6.2		
25	2.8	0.3	0.4	0.5		
25	2.6	1.5	1.2	4.0		
25	2.5	-3.1	-4.1	-4.4		

The EUT end point: 2.5Vdc
The results: The unit does meet the FCC requirements.

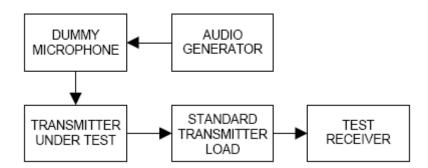
Page 17 of 36 Report No.: HST201606-2801-FCC

3.2.4 Modulation Characteristics

Test Requirement: FCC CFR 47 Part 74.e) 3)

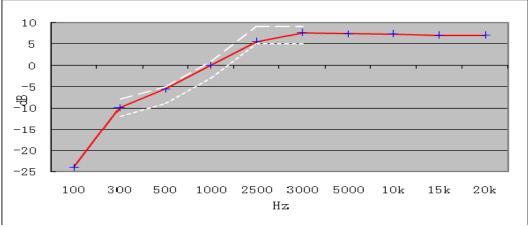
Test Method: FCC CFR 47 Part 2.1047

Requirements:


- (e) For low power auxiliary stations operating in the bands allocated for TV broadcasting, the following technical requirements apply:
- (3) Any form of modulation may be used. A maximum deviation of ±75 kHz is permitted when frequency modulation is employed.

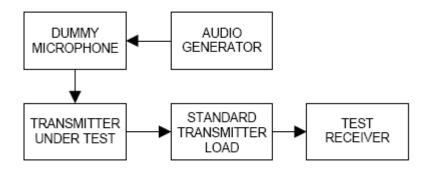
Test Procedure:

Audio Frequency Response

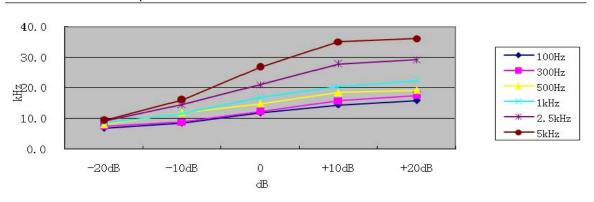

The RF output of the transceiver was connected to the input of FSP 30 with FM deviation module through sufficient attenuation so as not to overload the meter or distort the reading. An audio signal generator was connected to the audio input of microphone.

The audio signal input level was adjusted to obtain 20% of the maximum rated system deviation at 1 kHz, and recorded as DEV $_{REF}$. With the audio signal generator level unchanged, set the generator frequency between 100 to 5000 Hz. The transmitter deviations (DEV $_{FREQ}$) were measured and the audio frequency response was calculated as 20log10 [DEV $_{FREQ}$ / DEV $_{REF}$]

Page 18 of 36 Report No.: HST201606-2801-FCC


The plot(s) of Audio Frequency Response is presented hereinafter as reference.

0dB=10mV at 1kHz (20% of the maximum rated system deviation).

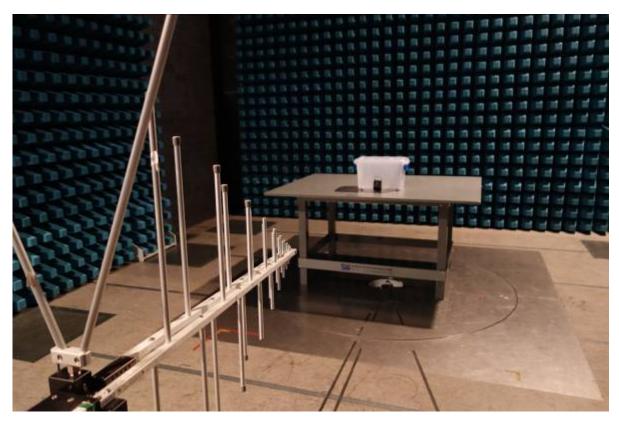

Modulation Limiting

- a) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- b) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15,000 Hz. Turn the de-emphasis function off.
- c) Apply a **1000 Hz** modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain **60% of full rated system deviation**.
- d) Increase the level from the audio frequency generator by 20 dB in one step (rise time between the 10% and 90% points shall be 0.1 second maximum).
- e) Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level.
- f) With the level from the audio frequency generator held constant at the level obtained in step e), slowly vary the audio frequency from 100 to 5000 Hz and observe the steady-state deviation. Record the maximum deviation.

Test at five different modulating frequencies (100Hz ,300Hz, 500Hz, 1KHz, 2.5kHz, 5kHz), the output level of the audio generator was varied up to 1V and the FM deviation level was recorded.

Positive peak deviation

3.3 Measurement Uncertainty


Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2

Measurement		Frequency	Uncertainty
Conducted Emission	by LISN	150kHz-108MHz	2.8dB
	by AC probe	150kHz-108MHz	2.8dB
Radiated Emission	ALSE method	0.15MHz-30MHz	4.3dB
	Horizontal	30M-300MHz	4.2dB
	Horizontal	300M-1GHz	4.2dB
	Horizontal	1G-18GHz	4.3dB
	Vertical	30M-300MHz	4.3dB
	Vertical	300M-1GHz	4.3dB
	Vertical	1G-18GHz	4.4dB
Temperature		-30℃-50℃	±0.5°C
Humidity		30%-75%	±2%

The reported uncertainty of measurement y $\pm U_{\nu}$ where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

3.4 Photographs

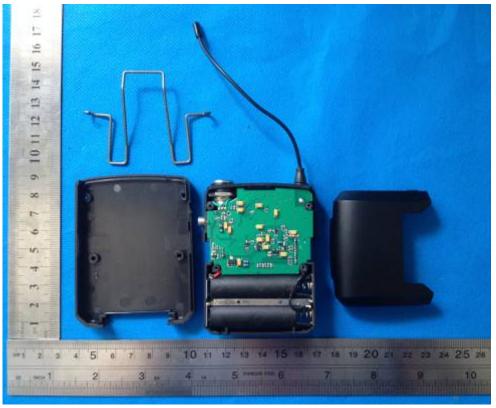
3.4.1 Radiated Emission Test Setup 30MHz - 1GHz

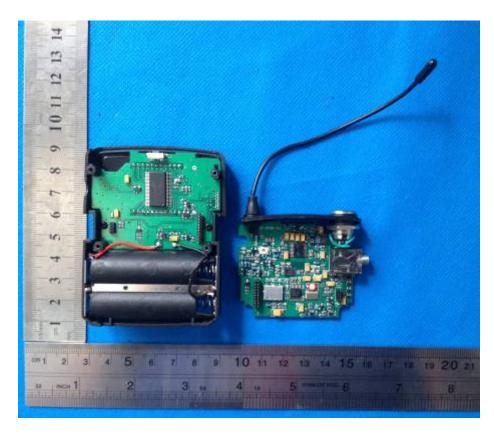


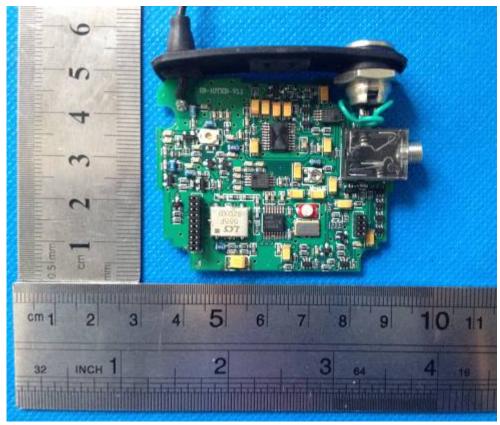
Above 1GHz

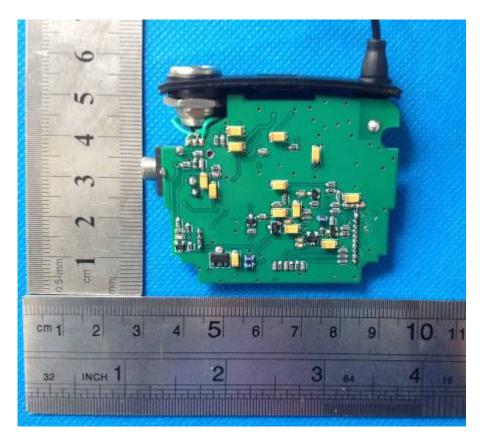
3.4.2 EUT Constructional Details

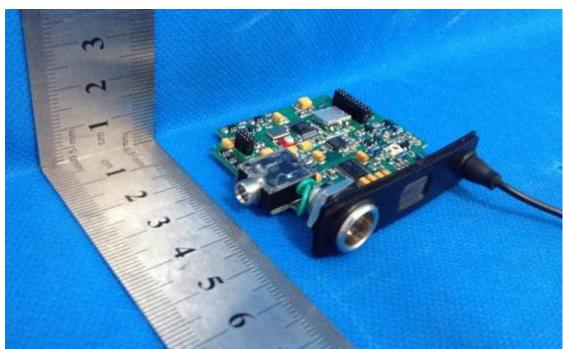
BP500

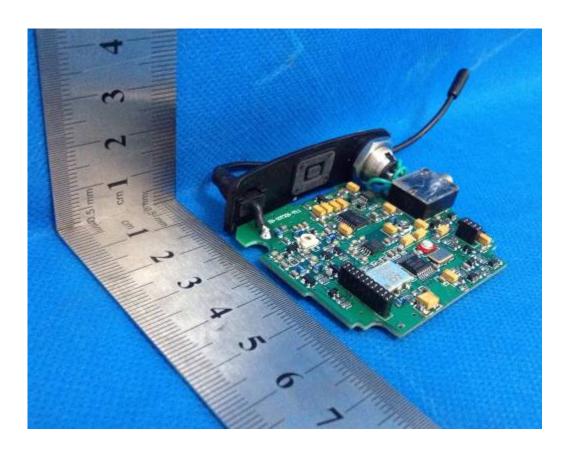


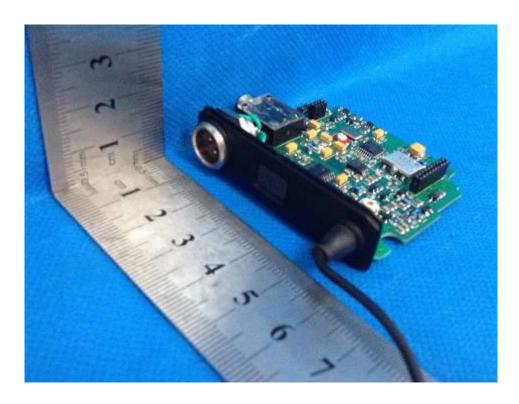


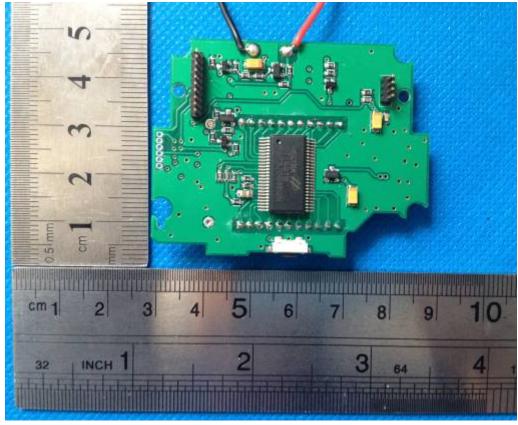


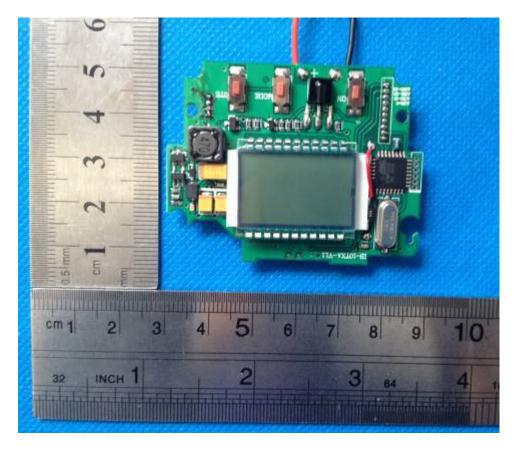


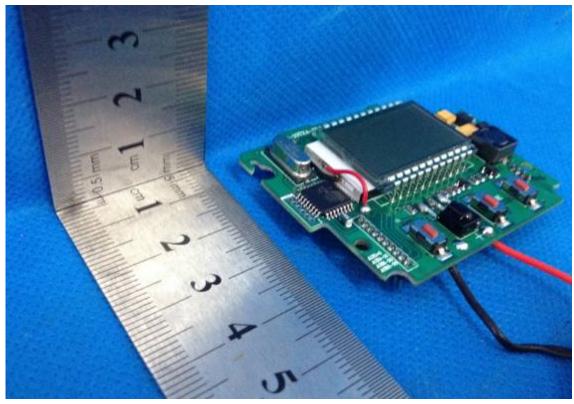


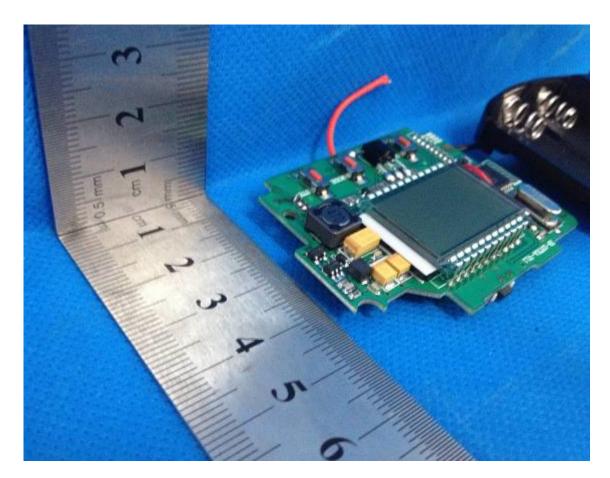


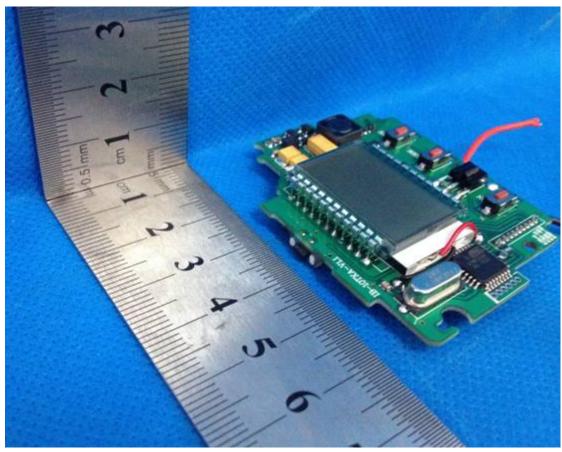


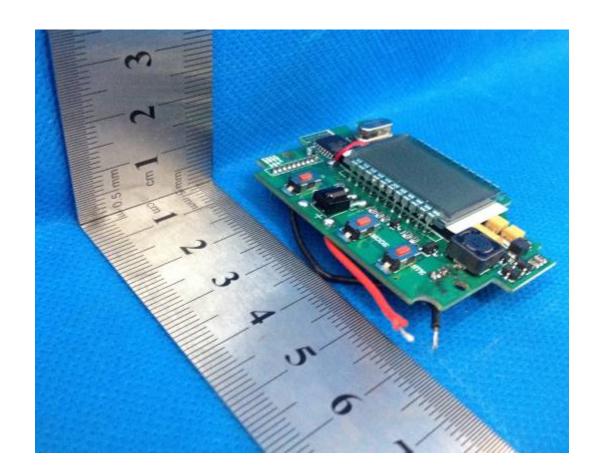


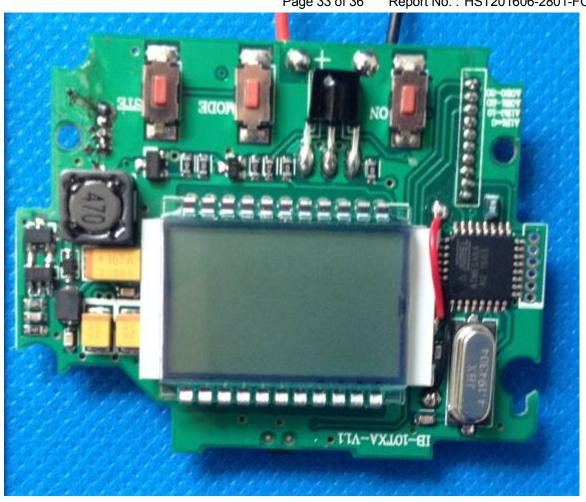


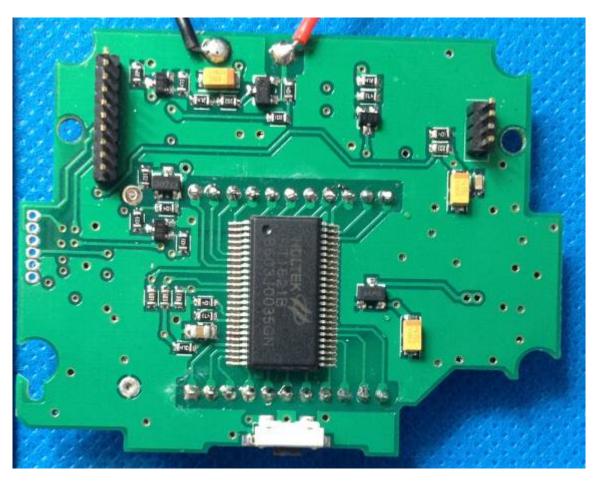


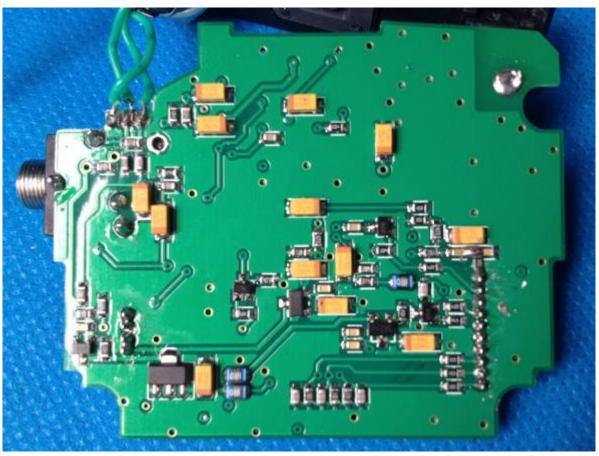




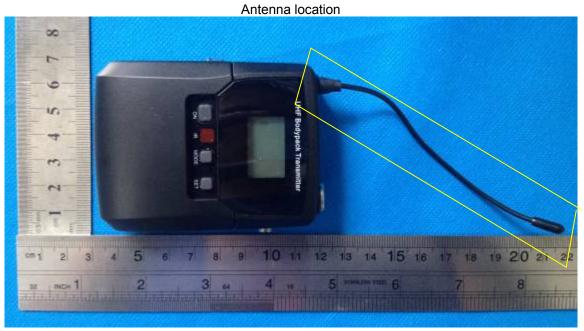








Page 33 of 36 Report No. : HST201606-2801-FCC



3.4.3 Antenna Photo

4 EQUIPMENTS USED DURING TEST

Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date	Cal. Due date
1	RF Generator	Rohde & Schwarz	SMB100A-B106	1.031	2016-5-10	2017-5-10
2	Spectrum Analyzer	Rohde & Schwarz	FSP30	EMC0001	2016-3-24	2017-3-24
3	EMI Test Receiver	Rohde & Schwarz	ESCI	EMC1002	2016-3-24	2017-3-24
4	2-Channel Power Meter	Rohde & Schwarz	NRP2	1.033	2016-5-10	2017-5-10
5	Audio Analyzer	Hewlett Packard	8903B	EMC0011	2015-11-5	2016-11-5
6	Power Sensor	Rohde & Schwarz	NRP-Z91	1.034	2016-5-10	2017-5-10
7	Power Sensor	Rohde & Schwarz	NRP-Z91	1.035	2016-5-10	2017-5-10
8	Temperature Chamber	Gongwen	GDS-250	SFT0009	2015-11-5	2016-11-5
9	D.C. Power Supply	KIKUSUI	PAN35-10A	SFT0319	2015-11-5	2016-11-5
10	Temperature Chamber	Gongwen	GDS-250	SFT0009	2015-11-5	2016-11-5
11	D.C. Power Supply	KIKUSUI	PAN35-10A	SFT0319	2015-11-5	2016-11-5
12	Humidity/ Temperature Meter	Anymetre	TH101B	SFT0063	2015-11-5	2016-11-5
13	Barometer	ChangChun	DYM3	SEL0088	2015-6-8 2016-6-8	2016-6-8 2017-6-8
14	Multimeter	UNI-T	UT70A	EMC0017	2015-11-5	2016-11-5
15	Monopole Antenna	HST	N/A	EMC0089	2015-11-5	2016-11-5
16	Low loss coaxial cable	HST	2 m	EMC1008	2015-11-5	2016-11-5
17	Monopole Antenna	HST	N/A	N/A	2015-11-5	2016-11-5
18	Noise Generaror	Ningbo Zhongce	DF1681	EMC0009	2015-11-5	2016-11-5
19	Semi-Anechoic chamber	ETS•Lindgren	FACT3 2.0	ITL-100	2013-6-17	2016-6-17
20	EMI Test receiver	R&S	ESVS10	ITL-111	2016-1-19	2017-1-19
21	EXA Spectrum Analyzer	Agilent Technologies	N9010A	ITL-114	2016-1-19	2017-1-19
22	Biconilog Antenna	ETS•Lindgren	3142D	ITL-105	2015-1-24	2018-1-24
23	Pre Amplifier	HP	8447F	ITL-116	2016-1-19	2017-1-19
24	Wideband Amplifier Super Ultra	Mini-circuits	ZVA-183-S+	ITL-117	2016-1-19	2017-1-19
25	Horn Antenna	A-INFOMW	JXTXLB- 10180-N	ITL-110	2015-1-24	2018-1-24
26	Software	Audix	E3	ITL-109	1	1
27	Loop Antenna	BJ 2nd Factory	ZN30900A	EMC6001	2013-7-29	2016-7-29

^{***}End of report***