

Shenzhen CTL Testing Technology Co., Ltd.
Tel: +86-755-89486194 Fax: +86-755-26636041

FCC PART 15 SUBPART C TEST REPORT

FCC Part 15.247

Report Reference No. **CTL1509012520-WF01**

Compiled by

(position+printed name+signature) ... File administrators Jacky Chen

Jacky Chen

Name of the organization performing
the tests Test Engineer Happy Guo

Happy Guo

(position+printed name+signature) ...

Approved by

(position+printed name+signature) ... Manager Tracy Qi

Tracy Qi

Date of issue Sept. 08, 2015

Test Firm **Shenzhen CTL Testing Technology Co., Ltd.**

Address Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,
Nanshan District, Shenzhen, China 518055

Applicant's name **SHENZHEN ZOWEE TECHNOLOGY CO.,LTD**

Address Science&Technology Industrial Park of Privately Owned Enterprises,
Pingshan, Xili, Nanshan District, Shenzhen, China

Test specification:

Standard FCC Part 15.247: Operation within the bands 902–928 MHz, 2400–
2483.5 MHz, and 5725–5850 MHz.

Master TRF Dated 2011-01

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description 7 inch MID

FCC ID 2AAP6M7065

Trade Mark NuVision

Model/Type reference TM700A520L, TW748G, TM700A510L, TM700A530L,
TM700A540L, TM700A550L

Work frequency 2402~2480MHz

Version V3.0

Type of modulation FHSS

Antenna Gain 0 dBi

Antenna type Internal

Result **Positive**

TEST REPORT

Test Report No. :	CTL1509012520-WF01	Sept. 08, 2015 Date of issue
-------------------	--------------------	---------------------------------

Equipment under Test : 7 inch MID

Model /Type : TM700A520L

Listed Models : TW748G, TM700A510L, TM700A530L, TM700A540L,
TM700A550L

Difference Description : Only the color and model's name is different

Applicant : SHENZHEN ZOWEE TECHNOLOGY CO.,LTD

Address : Science&Technology Industrial Park of Privately Owned
Enterprises, Pingshan, Xili, Nanshan District, Shenzhen,
China

Manufacturer : SHENZHEN ZOWEE TECHNOLOGY CO.,LTD

Address : Science&Technology Industrial Park of Privately Owned
Enterprises, Pingshan, Xili, Nanshan District, Shenzhen,
China

Test Result according to the standards on page 4:	Positive
---	-----------------

The test report merely corresponds to the test sample.
It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1.</u>	<u>TEST STANDARDS</u>	4
<u>2.</u>	<u>SUMMARY</u>	5
2.1.	General Remarks	5
2.2.	Equipment Under Test	5
2.3.	Short description of the Equipment under Test (EUT)	5
2.4.	EUT operation mode	5
2.5.	EUT configuration	6
2.6.	Configuration of Tested System	6
2.7.	Related Submittal(s) / Grant (s)	6
2.8.	Modifications	6
2.9.	Note	6
2.10.	Frequency Hopping System Requirements	7
2.11.	Mode of Operation	9
<u>3.</u>	<u>TEST ENVIRONMENT</u>	10
3.1.	Address of the test laboratory	10
3.2.	Test Facility	10
3.3.	Environmental conditions	10
3.4.	Statement of the measurement uncertainty	10
3.5.	Test Description	11
3.6.	Equipments Used during the Test	12
<u>4.</u>	<u>TEST CONDITIONS AND RESULTS</u>	13
4.1.	AC Power Conducted Emission	13
4.2.	Radiated Emission Test	16

1. TEST STANDARDS

The tests were performed according to following standards:

[**FCC Rules Part 15.247:**](#) Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz.

[**ANSI C63.10-2013:**](#) American National Standard for Testing Unlicensed Wireless Devices

[**ANSI C63.4-2014:**](#) American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Sept. 01, 2015
Testing commenced on	:	Sept. 01, 2015
Testing concluded on	:	Sept. 08, 2015

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	<input checked="" type="radio"/> 120V / 60 Hz	<input type="radio"/> 115V / 60Hz
		<input type="radio"/> 12 V DC	<input type="radio"/> 24 V DC
		<input checked="" type="radio"/> Other (specified in blank below)	

DC 3.7V from internal battery

2.3. Short description of the Equipment under Test (EUT)

7 inch MID with WIFI and Bluetooth function.

For more details, refer to the user's manual of the EUT.

Serial number: Prototype

2.4. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel.

Frequency Range:	2402-2480MHz
Channel number:	79 channels
Modulation type:	GFSK, $\pi/4$ -DQPSK, 8-DPSK
Antenna:	integral

Test Channel	Test Frequency
Low Channel	2402 MHz
Middle Channel	2441 MHz
High Channel	2480 MHz

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- - supplied by the lab

●	Notebook PC	Manufacturer :	DELL
		Model No. :	PP18L
		FCC approved:	FCC DoC
●	AC adapter	Manufacturer :	SHENZHEN JUKE ELECTRONICS CO.,LTD
		Model No. :	JK050200-S04USA

2.6. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

No.	Product	Manufacturer	Model No.	Serial No.	FCC approved
1	Notebook PC	DELL	PP18L	27548966 7000262	FCC DoC

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AAP6M7065 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. Note

1. The EUT is a 7 inch MID, The functions of the EUT listed as below:

	Test Standards	Reference Report
BT 3.0	FCC Part 15 Subpart C (Section15.247)	CTL1509012520-WF01
BT 4.0	FCC Part 15 Subpart C (Section15.247)	CTL1509012520-WF02
WIFI	FCC Part 15 Subpart C (Section15.247)	CTL1509012520-WF03

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850
BT 3.0	✓	—	—	—
BT 4.0	✓	—	—	—
WIFI	✓	—	—	—

3. The EUT provides one completed transmitter and receiver.

Modulation Mode	TX Function
BT 3.0	1TX
BT 4.0	1TX
WIFI	1TX

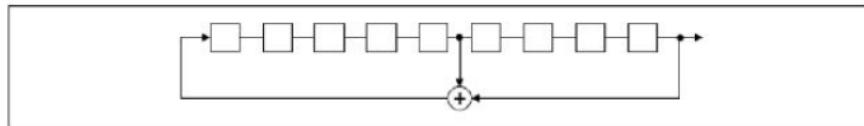
2.10. Frequency Hopping System Requirements

Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.


EUT Pseudorandom Frequency Hopping Sequence

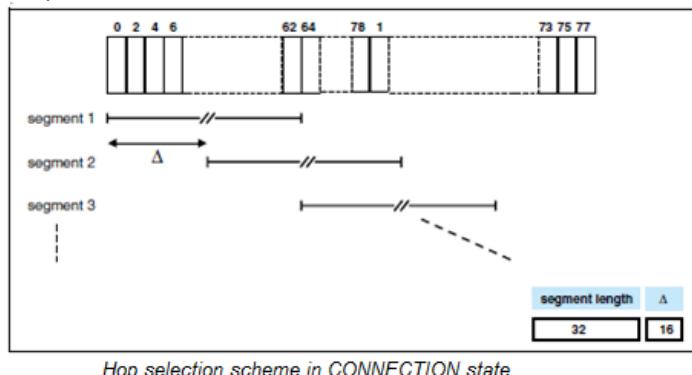
The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage, and the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

Number of shift register stages: 9

Length of pseudo-random sequence: $2^9 - 1 = 511$ bits

Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence


The frequencies allocated for the Bluetooth Module is $F(\text{MHz}) = 2402 + 1 \cdot n$ ($0 \leq n \leq 78$). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The selection scheme chooses a segment of 32 hop frequencies spanning about 64 MHz and visits these hops in a pseudo-random order. Next, a different 32-hop segment is chosen, etc. In the page, master page response, slave page response, page scan, inquiry, inquiry response and inquiry scan hopping sequences, the same 32-hop segment is used all the time (the segment is selected by the address; different devices will have different paging segments).

When the basic channel hopping sequence is selected, the output constitutes a pseudo-random sequence that slides through the 79 hops.

Channels list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454	--	--
26	2428	53	2455	--	--

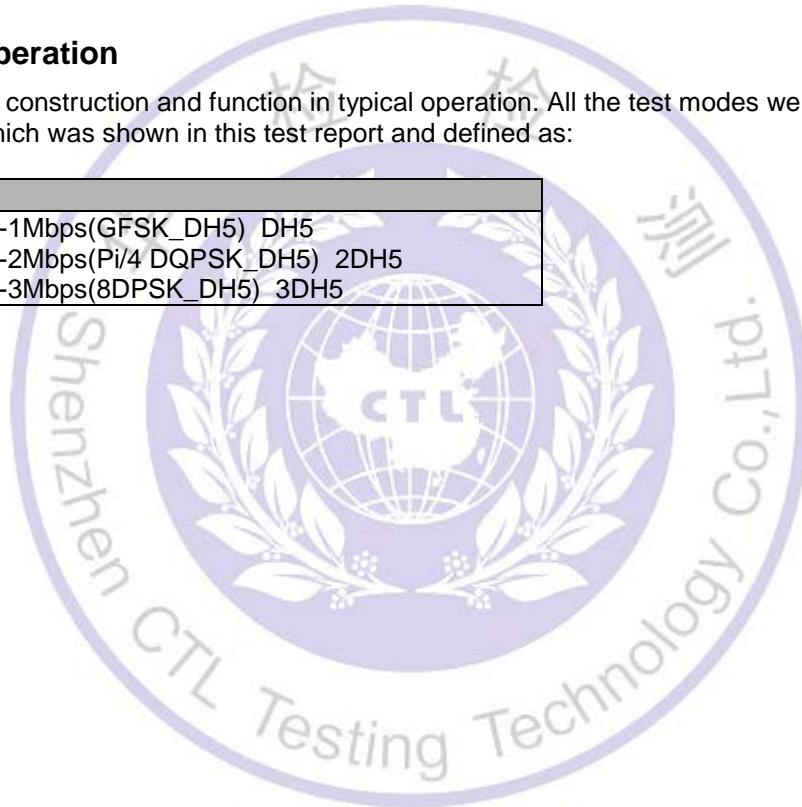
The pseudorandom frequency hopping sequence sample:

42,41,66,4,78,59,55,48,54,46,52,78,41,26,24,34,39,32,51,18,25,9,12,73,70,58,54,6,66,4,32,67,60,16,3,78,78,76,47,45,47,49,14,34, etc.

Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 channels (1 MHz separation; from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.


Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for DA 00-705 and FCC Part 15.247 rule.

2.11. Mode of Operation

CTL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in TX mode, which was shown in this test report and defined as:

Test Mode
Mode 1: Transmitter-1Mbps(GFSK_DH5) DH5
Mode 2: Transmitter-2Mbps(Pi/4 DQPSK_DH5) 2DH5
Mode 3: Transmitter-3Mbps(8DPSK_DH5) 3DH5

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.
Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, China 518055

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 (2013) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 °C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 „Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements“ and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

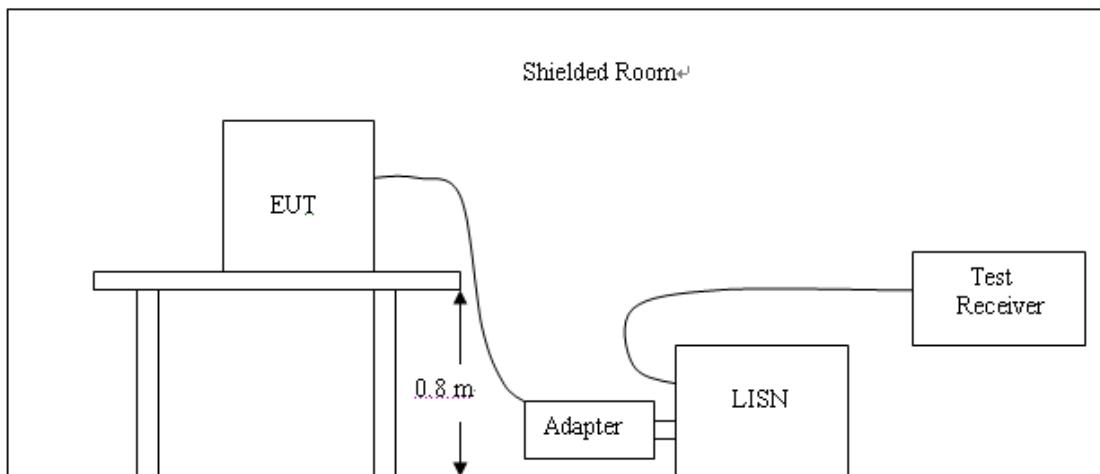
3.5. Test Description

FCC PART 15 Subpart C		
FCC Part 15.207	AC Power Conducted Emission	PASS
FCC Part 15.247(a)	20dB Bandwidth	PASS*
FCC Part 15.247(d)	Spurious Emission	PASS
FCC Part 15.247(b)	Maximum Peak Output Power	PASS*
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS*
FCC Part 15.247(a)(1)	Frequency Separation	PASS*
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency	PASS*
FCC Part 15.247(a)(1)(iii)	Time of Occupancy	PASS*

Remark: The measurement uncertainty is not included in the test result.

This report is on the basis of the original FCC ID: 2AAP6M7065 report, the rear camera of the EUT was removed, except that, all others are the same, and this change are not influence all the RF circuit. Only conducted emission and radiated emission below 1GHz are re-tested.

*. The result, please reference to the original report.


3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
ULTRA-ROADBAND ANTENNA	Sunol Sciences Corp.	JB1	A061713	2015/06/02	2016/06/01
EMI Test Receiver	R&S	ESCI	103710	2015/06/02	2016/06/01
Spectrum Analyzer	Agilent	E4407B	MY41440676	2015/05/21	2016/05/20
Controller	EM Electronics	Controller EM 1000	N/A	2015/05/21	2016/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19	2016/05/18
Active Loop Antenna	Daze	ZN30900A	N/A	2015/05/19	2016/05/18
LISN	R&S	ENV216	3560.6550.12	2015/06/02	2016/06/01
LISN	R&S	ESH2-Z5	860014/010	2015/06/02	2016/06/01
ISN	FCC	F-071115-1057-1-09	11229	2015/05/19	2016/05/18
Amplifier	Agilent	8349B	3008A02306	2015/05/19	2016/05/18
Amplifier	Agilent	8447D	2944A10176	2015/05/19	2016/05/18
Transient Limiter	SCHWARZCECK	VTSD 9561F	9666	2015/06/02	2016/06/01
Radio Communication Tester	R&S	CMU200	115419	2015/05/22	2016/05/21
Temperature/Humidity Meter	Gangxing	CTH-608	02	2015/05/20	2016/05/19
SIGNAL GENERATOR	Agilent	E4421B	US40051744	2015/05/20	2016/05/19
Wideband Peak Power Meter	Anritsu	ML2495A	220.23.35	2015/05/20	2016/05/19
Climate Chamber	ESPEC	EL-10KA	A20120523	2015/05/20	2016/05/19
High-Pass Filter	K&L	9SH10-2700/X12750-O/O	N/A	2015/05/20	2016/05/19
High-Pass Filter	K&L	41H10-1375/U12750-O/O	N/A	2015/05/20	2016/05/19
RF Cable	HUBER+SUHNER	RG214	N/A	2015/05/20	2016/05/19

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

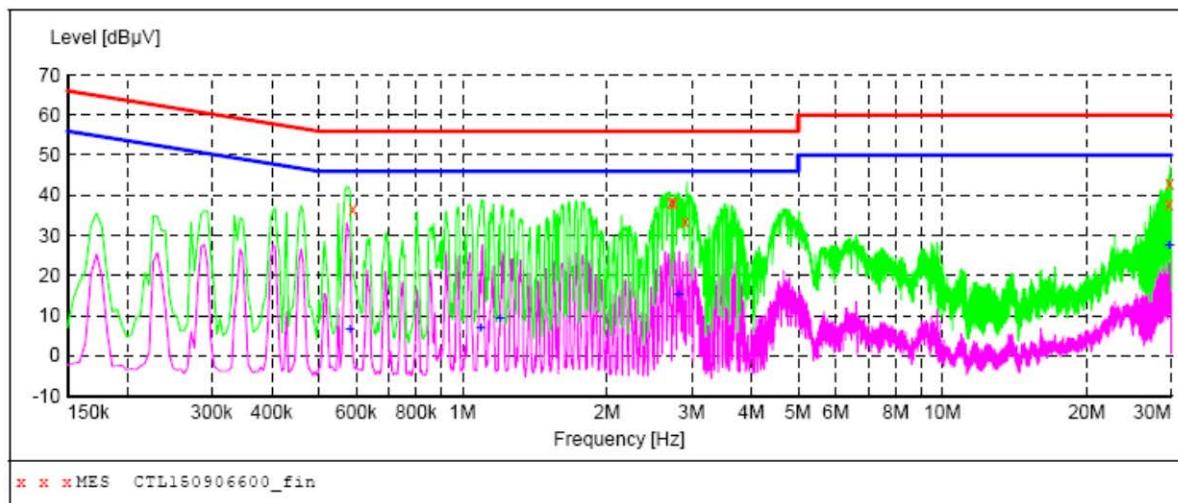
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency (MHz)	Maximum RF Line Voltage (dB μ V)			
	CLASS A		CLASS B	
	Q.P.	Ave.	Q.P.	Ave.
0.15 - 0.50	79	66	66-56*	56-46*
0.50 - 5.00	73	60	56	46
5.00 - 30.0	73	60	60	50

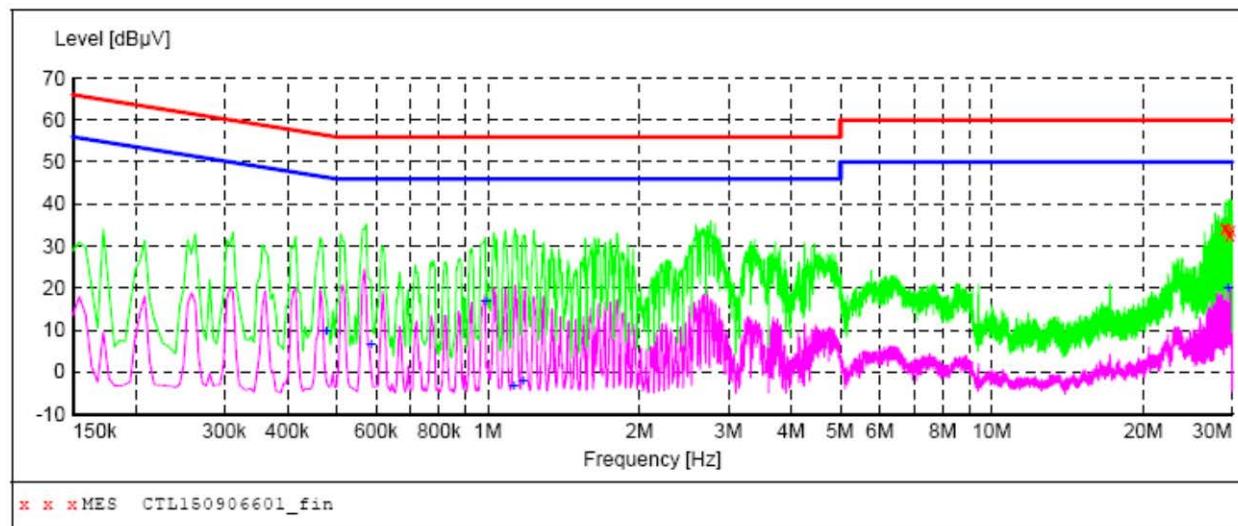

* Decreasing linearly with the logarithm of the frequency

TEST RESULTS

The 1Mbps (GFSK Modulation) is the worst case as results in the report based on the Pre-test for all modulation models.

Mode 1:

SCAN TABLE: "Voltage (9K-30M) FIN"
Short Description: 150K-30M Voltage


MEASUREMENT RESULT: "CTL150906600_fin"

9/6/2015 10:24AM	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dB μ V	dB	dB μ V	dB			
	0.591001	36.60	10.2	56	19.4	QP	L1	GND
	2.719501	38.30	10.4	56	17.7	QP	L1	GND
	2.760001	38.10	10.4	56	17.9	QP	L1	GND
	2.908501	33.60	10.4	56	22.4	QP	L1	GND
	29.661001	37.80	11.3	60	22.2	QP	L1	GND
	29.782501	42.80	11.3	60	17.2	QP	L1	GND

MEASUREMENT RESULT: "CTL150906600_fin2"

9/6/2015 10:24AM	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dB μ V	dB	dB μ V	dB			
	0.582001	6.60	10.2	46	39.4	AV	L1	GND
	1.090501	7.10	10.3	46	38.9	AV	L1	GND
	1.198501	9.10	10.3	46	36.9	AV	L1	GND
	2.823001	15.20	10.4	46	30.8	AV	L1	GND
	29.661001	27.50	11.3	50	22.5	AV	L1	GND
	29.782501	27.60	11.3	50	22.4	AV	L1	GND

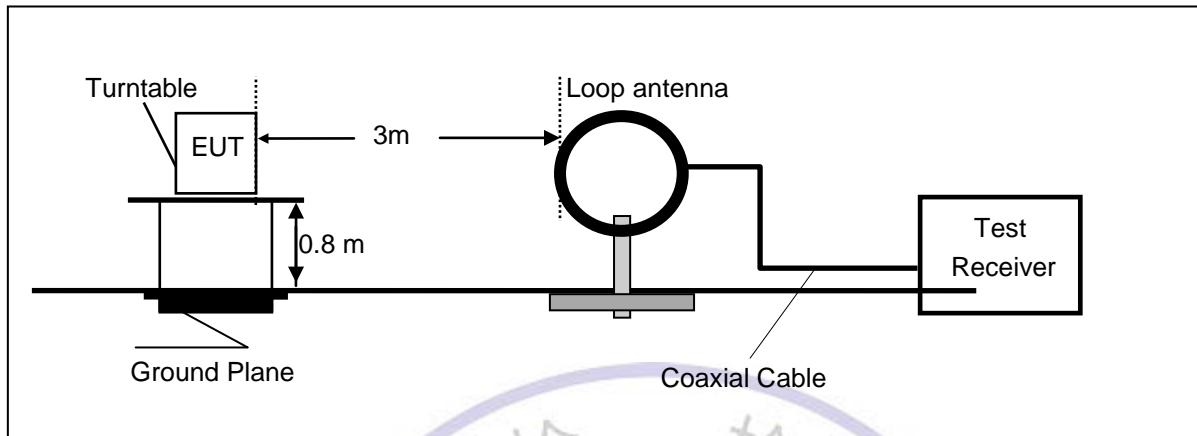
SCAN TABLE: "Voltage (9K-30M) FIN"
 Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL150906601_fin"

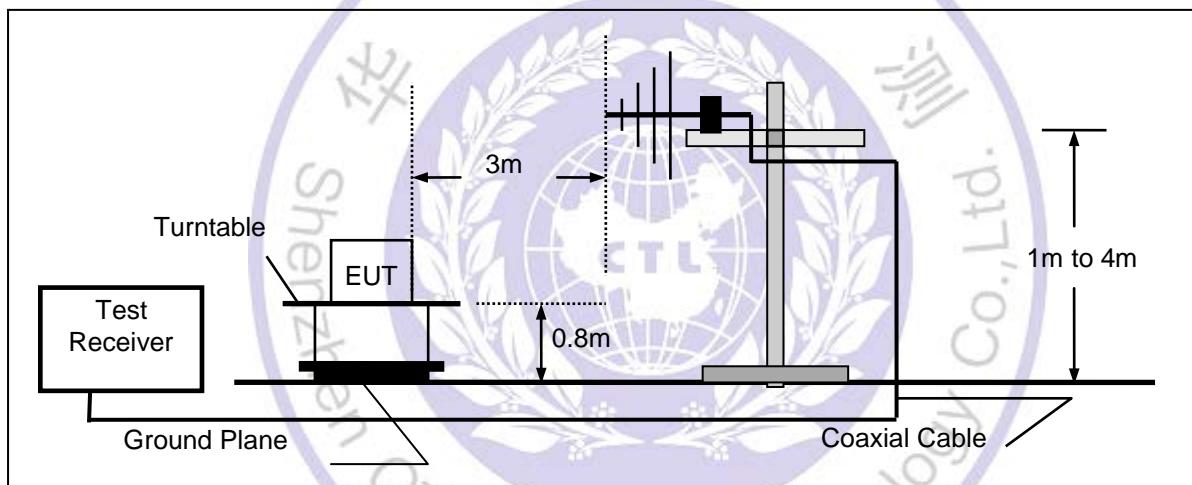
9/6/2015 10:27AM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
28.936501	34.20	11.2	60	25.8	QP	N	GND
29.058001	34.20	11.2	60	25.8	QP	N	GND
29.422501	33.70	11.3	60	26.3	QP	N	GND
29.602501	32.70	11.3	60	27.3	QP	N	GND
29.724001	32.80	11.3	60	27.2	QP	N	GND
29.899501	33.70	11.3	60	26.3	QP	N	GND

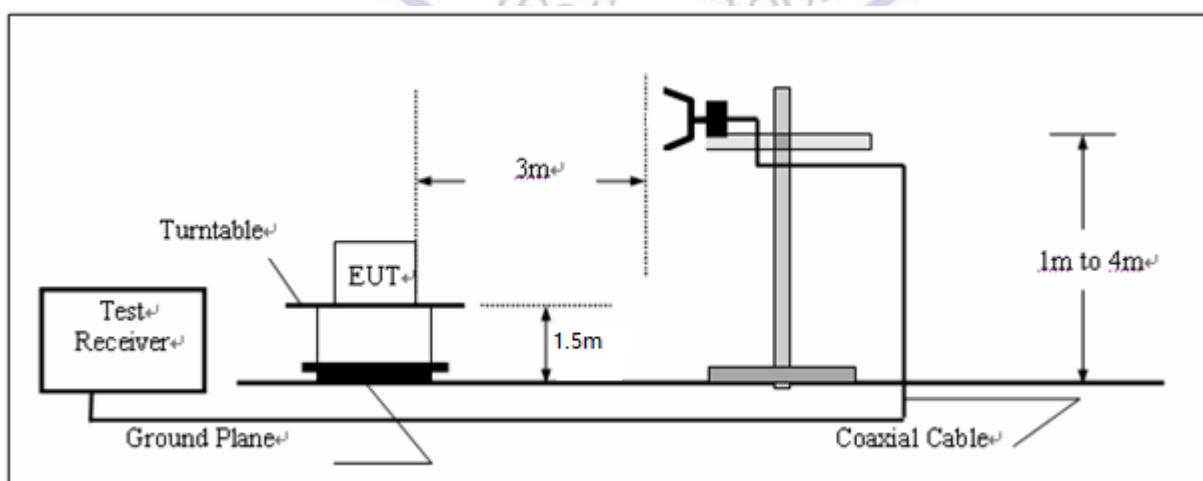
MEASUREMENT RESULT: "CTL150906601_fin2"


9/6/2015 10:27AM

Frequency MHz	Level dB μ V	Transd dB	Limit dB μ V	Margin dB	Detector	Line	PE
0.478501	9.80	10.2	46	36.6	AV	N	GND
0.586501	6.60	10.2	46	39.4	AV	N	GND
0.991501	16.80	10.3	46	29.2	AV	N	GND
1.126501	-3.30	10.3	46	49.3	AV	N	GND
1.176001	-2.10	10.3	46	48.1	AV	N	GND
29.422501	20.10	11.3	50	29.9	AV	N	GND


4.2. Radiated Emission Test

TEST CONFIGURATION


Radiated Emission Test Set-Up
Frequency range 9KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0 $^{\circ}$ to 360 $^{\circ}$ to acquire the highest emissions from EUT.
3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
4. Repeat above procedures until all frequency measurements have been completed.
5. The fundamental frequency is 2400-2483.5MHz, So the radiation emissions frequency range were tested from 9KHz to 25GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

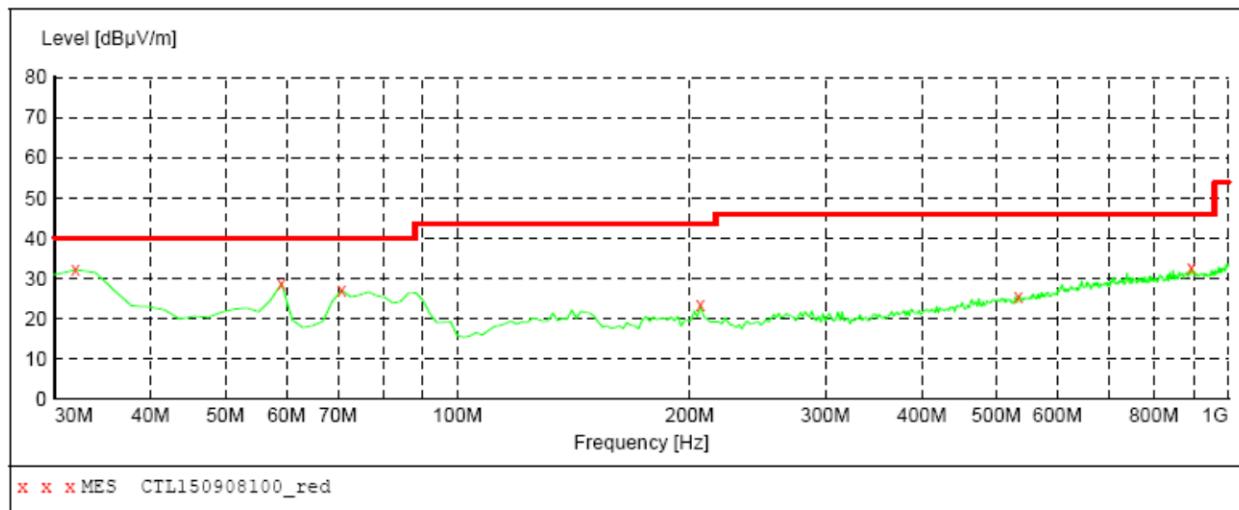
Frequency (MHz)	FS (dB μ V/m)	RA (dB μ V/m)	AF (dB)	CL (dB)	AG (dB)	Transd (dB)
300.00	40	58.1	12.2	1.6	31.90	-18.1

$$Transd = AF + CL - AG$$

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

Frequency (MHz)	Distance (Meters)	Radiated (dB μ V/m)	Radiated (μ V/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


TEST RESULTS

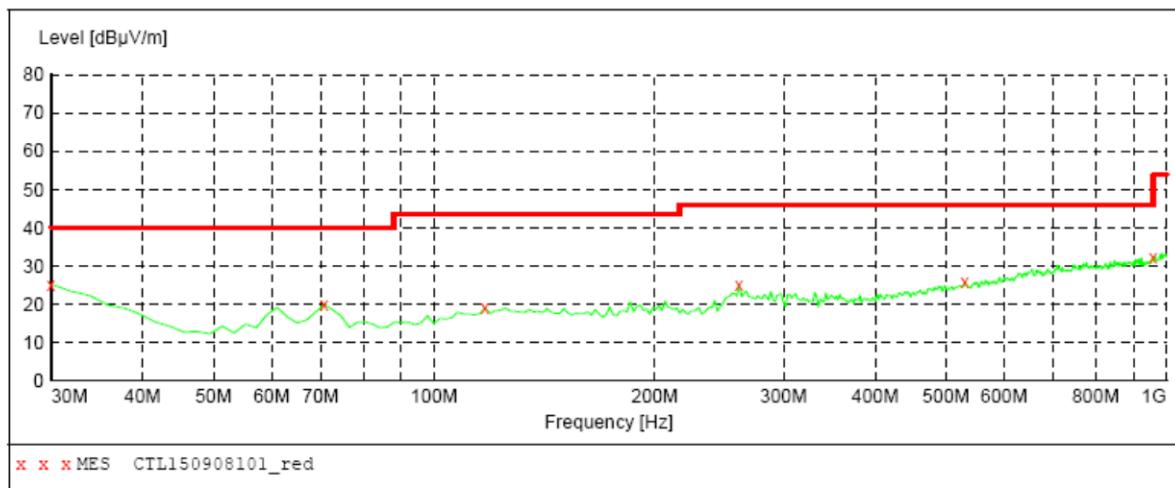
Below 1GHz:

The radiated measurement are performed the each test mode and channel (low/mid/high), the datum recorded below is the worst case for all the test mode and channel.

SWEET TABLE: "test (30M-1G)"

Short Description:		Field Strength			
Start Frequency	Stop Frequency	Detector	Meas. Time	IF Bandw.	Transducer
30.0 MHz	1.0 GHz	MaxPeak	300.0 ms	120 kHz	JB1

MEASUREMENT RESULT: "CTL150908100_red"


9/8/2015 9:39AM

Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det. ---	Height cm	Azimuth deg	Polarization
31.940000	32.10	19.2	40.0	7.9	---	0.0	0.00	VERTICAL
59.100000	28.60	8.0	40.0	11.4	---	0.0	0.00	VERTICAL
70.740000	26.90	8.2	40.0	13.1	---	0.0	0.00	VERTICAL
206.540000	23.30	14.1	43.5	20.2	---	0.0	0.00	VERTICAL
534.400000	25.60	20.5	46.0	20.4	---	0.0	0.00	VERTICAL
895.240000	32.60	25.9	46.0	13.4	---	0.0	0.00	VERTICAL

Testing Test

SWEET TABLE: "test (30M-1G)"

Short Description:		Field Strength		
Start Frequency	Stop Frequency	Detector	Meas.	IF
30.0 MHz	1.0 GHz	MaxPeak	300.0 ms	120 kHz
				Transducer
				JB1

MEASUREMENT RESULT: "CTL150908101_red"

9/8/2015 9:42AM

Frequency MHz	Level dB μ V/m	Transd dB	Limit dB μ V/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	25.20	20.8	40.0	14.8	---	0.0	0.00	HORIZONTAL
70.740000	19.80	8.2	40.0	20.2	---	0.0	0.00	HORIZONTAL
117.300000	19.00	14.7	43.5	24.5	---	0.0	0.00	HORIZONTAL
260.860000	25.10	14.7	46.0	20.9	---	0.0	0.00	HORIZONTAL
530.520000	25.80	20.4	46.0	20.2	---	0.0	0.00	HORIZONTAL
959.260000	32.30	26.6	46.0	13.7	---	0.0	0.00	HORIZONTAL

.....End of Report.....