

EMC Test Report for FCC No. 130601891SHA-002

Applicant : Enhance (HK) Limited

Room 301-2 Hangseng Wan Chai Building, 3rd Floor, No. 200, Hennessy Road, Wan Chai,

Hongkong

Manufacturer : Ningbo KML Electrical Co., Ltd.

No. 707 Xiufeng Road, Gaoqiao Industrial Park, Gaoqiao Town, Yinzhou District, Ningbo, Zhejiang

315173, China

Product Name : Outlet adapter with remote control

Type/Model : IRCRF

SUMMARY

The equipment complies with the requirements according to the following standard(s):

47CFR Part 15 (2012): Radio Frequency Device: Subpart B; Unintentional radiators class B

ANSI C63.4 (2003): Interim Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz.

Date of issue: July 15, 2013

Nem li

Prepared by: Reviewed by:

Nemo Li (Project Engineer)

Jonny Jing (Reviewer)

Content

SUMMARY	1
CONTENT	2
1. GENERAL INFORMATION	3
1.1 Description of equipment under Test (EUT)	3
1.2 Description of Client	
1.3 Description of Test Facility	
2. TEST SPECIFICATIONS	5
2.1 Standards	5
2.2 Mode of operation during the test / Test peripherals used	5
2.2.1 Description of operation	5
2.3 Instrument list	
2.4. Test Summary	7
3. CONDUCTED DISTURBANCE VOLTAGE AT MAINS TERMINALS	8
3.1 Limits	8
3.1.1 Limits for conducted disturbance voltage at the mains ports of class A device	8
3.1.2 Limits for conducted disturbance voltage at the mains ports of class B device	8
3.2 Test setup	
3.3 Test Setup and Test Procedure	
3.4 Test Protocol	
4. RADIATED EMISSION	12
4.1 Radiated emission limits	12
4.2 Block diagram and test set up	
4.3 Test Setup and Test Procedure	14
A A Tast Protocol	1.4

1. GENERAL INFORMATION

1.1 Description of equipment under Test (EUT)

Product Name : Outlet adapter with remote control

Description of EUT : There is one model only.

The EUT is a receiver to receive wireless signal so that its on/off condition can be controlled by the transmitter.

Model number : IRCRF

FCC ID : 2AAMP-IRCRF

Category of EUT : Class B

Rating : IRCRF: 125V~ 60Hz 15A Max.1875W

EUT type : \square Table top

Floor standing

Sample received date : May 22, 2013 Sample Identification No : 0130522-20-007

Date of test : May 22~ June 5, 2013

1.2 Description of Client

Applicant: Enhance (HK) Limited

Room 301-2 Hangseng Wan Chai Building, 3rd Floor,

No. 200, Hennessy Road, Wan Chai, Hongkong

Manufacturer: NINGBO KML ELECTRICAL CO., LTD.

No.707 Xiufeng Road, Gaoqiao Industry Park, Gaoqiao Town, Yinzhou District, Ningbo, Zhejiang 315173,

P.R.China

1.3 Description of Test Facility

Name: Intertek Testing Services Limited Shanghai

Address: Building No.86, 1198 Qinzhou Road (North), Shanghai 200233, P.R. China

FCC Registration Number: 236597

IC Assigned Code: 2042B-1

Name of contact: Steve Li Tel: +86 21 64956565 ext. 214 Fax: +86 21 54262335 ext. 214

2. TEST SPECIFICATIONS

2.1 Standards

47CFR Part 15 (2012): Radio Frequency Device: Subpart B; Unintentional radiators class B

ANSI C63.4 (2003): Interim Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz.

2.2 Mode of operation during the test / Test peripherals used

2.2.1 Description of operation

Within this test report, EUT was tested with modulation and tested under its rating voltage and frequency.

The EUT was set up and tested as typically used.

The Signal generator "SMR20" together with a transmitting antenna was employed to radiate 315MHz CW signal in close proximity to the EUT.

2.3 Instrument list

Equipment	Type	Manu.	Internal no.	Cal. Date	Due date
Test Receiver	ESIB 26	R&S	EC 3045	2012-10-21	2013-10-20
Semi-anechoic	-	Albatross	EC 3048	2013-5-21	2014-5-20
chamber		project			
Bilog Antenna	CBL 6112D	TESEQ	EC 4206	2013-5-16	2015-5-15
Horn antenna	HF 906	R&S	EC 3049	2013-5-13	2015-5-12
Pre-amplifier	Pre-amp 18	R&S	EC 3222	2013-4-12	2014-4-11
Test Receiver	ESCS 30	R&S	EC 2107	2012-10-21	2013-10-20
A.M.N.	ESH2-Z5	R&S	EC 3119	2013-1-9	2014-1-8
A.M.N.	ESH3-Z5	R&S	EC 2109	2013-1-10	2014-1-9
High Pass Filter	WHKX	Wainwright	EC4297-1	2013-2-8	2014-2-7
	1.0/15G-10SS				
High Pass Filter	WHKX	Wainwright	EC4297-2	2013-2-8	2014-2-7
	2.8/18G-12SS				
High Pass Filter	WHKX	Wainwright	EC4297-3	2013-2-8	2014-2-7
	7.0/1.8G-8SS				
Band Reject Filter	WRCGV	Wainwright	EC4297-4	2013-2-8	2014-2-7
	2400/2483-				
	2390/2493-				
	35/10SS				
Test Receiver	FSV40	R&S	/	2012-10-21	2013-10-20
Power	ZN2PD2-63	Mini-	815	2012-12-3	2013-12-2
Splitter/Combiner		Circuits			

2.4. Test Summary

This report applies to tested sample only. This report shall not be reproduced in part without written approval of Intertek Testing Service Shanghai.

TEST ITEM	RESULT	NOTE
Disturbance voltage at a.c. mains terminal	Pass	
Radiated emission	Pass	

Notes: 1: NA =Not Applicable

3. Conducted disturbance voltage at mains terminals

Test result: Pass

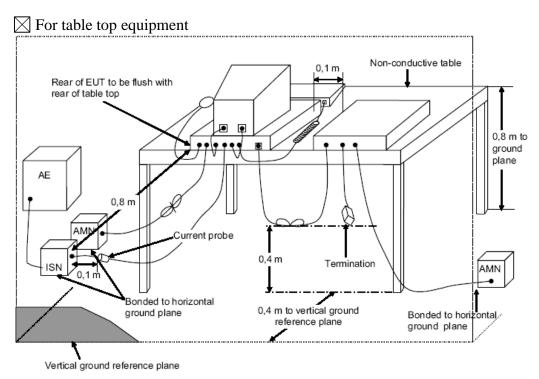
3.1 Limits

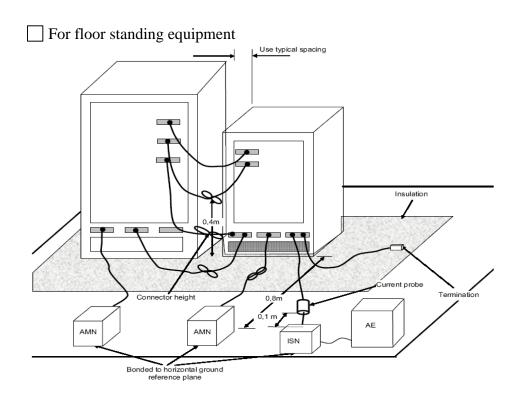
3.1.1 Limits for conducted disturbance voltage at the mains ports of class A device

Frequency range	Limits dB(μV)			
(MHz)	Quasi-peak	Average		
0.15 ~ 0.5	79	66		
0.5 ~ 30	73	60		

Note: If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out.

3.1.2 Limits for conducted disturbance voltage at the mains ports of class B device


Frequency range	Limits dB(μV)			
(MHz)	Quasi-peak	Average		
0.15 ~ 0.5	66 ~ 56 *	56 ~ 46 *		
0.5 ~ 5	56	46		
5 ~ 30	60	50		


Note: 1. * Means the limit decreasing linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz

2. If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out.

3.2 Test setup

3.3 Test Setup and Test Procedure

Measurement was performed in shielded room, and instruments used were following clause 4 and clause 5 of ANSI 63.4.

Detailed test procedure was following clause 7.2 of ANSI 63.4.

EUT arrangement and operation conditions were according to clause 6 and clause 7 of ANSI 63.4.

Frequency range $150 \mathrm{kHz} - 30 \mathrm{MHz}$ was checked and EMI receiver measurement bandwidth was set to 9 kHz.

3.4 Test Protocol

Temperature : 25 °C Relative Humidity : 55 %

Test Data:

Frequency	Quasi-peak		Average			Line	
(MHz)	level dB(µV)	Limit dB(µV)	Margin (dB)	level dB(µV)	limit dB(µV)	Margin (dB)	
2.00	7.53	56.00	48.47	4.78	46.00	41.22	L
4.50	8.02	56.00	47.98	4.71	46.00	41.29	L
4.89	26.62	56.00	29.38	21.44	46.00	24.56	L
5.49	9.03	60.00	50.97	6.20	50.00	43.80	L
6.00	10.89	60.00	49.11	8.64	50.00	41.36	L
29.38	7.62	60.00	52.38	3.57	50.00	46.43	L
2.00	8.77	56.00	47.23	6.44	46.00	39.56	N
4.01	7.72	56.00	48.28	3.56	46.00	42.41	N
4.50	10.38	56.00	45.62	7.99	46.00	38.01	N
4.89	27.28	56.00	28.72	24.37	46.00	21.63	N
6.00	12.08	60.00	47.92	9.25	50.00	40.75	N
29.85	7.96	60.00	52.04	3.29	50.00	46.71	N

Remark: 1. Correction Factor (dB) = LISN Factor (dB) + Cable Loss (dB).

2. Margin (dB) = Limit - Corrected Reading

Notes:

1. All possible modes of operation were investigated. Only the worst case emissions measured.

4. Radiated emission

Test result: Pass

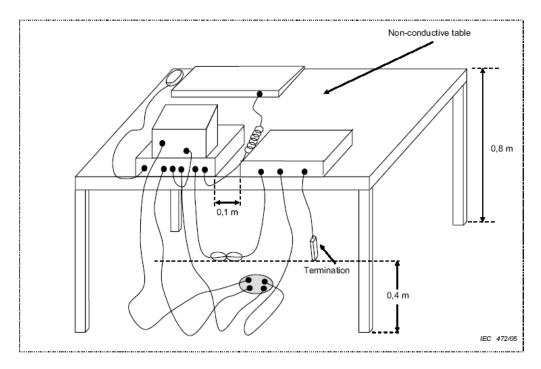
4.1 Radiated emission limits

4.1.1 Limits for radiated disturbance of class A device

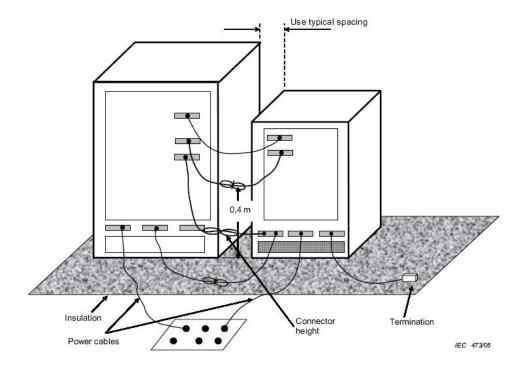
THE PROPERTY OF THE PROPERTY O			
Frequency (MHz)	Permitted limit in dBμV/m		
	(Quasi-peak)		
	of Measurement Distance 10m		
30 - 88	39		
88 - 216	43.5		
216 – 960	46.4		
Above 960	49.5		

Note: for the measurement distance other than 3m and 10m, the limit is varied according to 20dB/10 decades.

4.1.1 Limits for radiated disturbance of class B device


Frequency (MHz)	Permitted limit in dBμV/m	
	(Quasi-peak)	
	of Measurement Distance 3m	
30 – 88	40.0	
88 – 216	43.5	
216 – 960	46.0	
Above 960	54.0	

Note: for the measurement distance other than 3m and 10m, the limit is varied according to 20dB/10 decades.



4.2 Block diagram and test set up

For table top equipment

☐ For floor standing equipment

4.3 Test Setup and Test Procedure

The measurement was performed in a semi-anechoic chamber.

The distance form EUT to receiving antenna is 3 meter.

Measurement was performed according to clause 4 and clause 5 of ANSI 63.4.

Test procedure was according to clause 8.3 of ANSI 63.4.

EUT arrangement and operate condition were according to clause 6 and clause 8 of ANSI 63.4.

The radiated emission was measured using the Spectrum Analyzer with the resolutions bandwidth set as:

RBW = 100kHz, VBW = 300kHz (30MHz~1GHz)

RBW = 1MHz, VBW = 3MHz (>1GHz for PK);

4.4 Test Protocol

Temperature : 25 °C Relative Humidity : 55 %

Test data:

Frequency	Corrected	Correct	Limits	Margin	Polarization
(MHz)	Reading	Factor	$(dB\mu V/m)$	$(dB\mu V/m)$	(H/V)
	$(dB\mu V/m)$				
30.00	22.50	21.00	40.00	17.50	Н
650.10	27.40	21.80	46.00	18.60	Н
955.29	31.30	24.50	46.00	14.70	Н
30.00	22.80	21.00	40.00	17.20	V
657.88	27.30	21.90	46.00	18.70	V
926.13	31.50	24.40	46.00	14.50	V

Remark: 1.Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz)

2. Corrected Reading = Original Receiver Reading + Correct Factor

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10dBuV.

Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading =

10dBuV + 0.20dB/m = 10.20dBuV/m