FCC SAR Measurement and Test Report

For

Bulltech Electronic Products S.L.

Gran Via, 64, 2-1, 28013 Madrid, Spain.

FCC ID: 2AAM3SYRENI500

FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

FCC Rules: FCC OET Bulletin 65C (Edition 01-01)

Product Description: Mobile phone

Tested Model: Syreni 500

Report No.: STR13128307H

Head: 0.2940 W/kg(1g)

Max. SAR Values: Body: 0.7924 W/kg(1g)

Tested Date: 2014-01-02 to 2014-01-04

Issued Date: 2014-01-10

Tested By: Silin Chen / Engineer

Lahm Peng / EMC Manager Reviewed By:

Silim chen Lahm peny Jumlyso

Approved & Authorized By: Jandy so / PSQ Manager

Prepared By:

Shenzhen SEM.Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM. Test Technology Co., Ltd.

TABLE OF CONTENTS

1. General Information	3
1.1 Product Description for Equipment Under Test (EUT)	
1.2 Test Standards	
1.3 Test Methodology	5
1.4 Test Facility	
2. Summary of Test Results	6
3. Specific Absorption Rate (SAR)	7
3.1 Introduction	
3.2 SAR Definition	7
4. SAR Measurement System	
4.1 The Measurement System	
4.2 Probe	
4.3 Probe Calibration Process	
4.4 Phantom	
4.5 Device Holder	
5. Tissue Simulating Liquids	
• .	
5.1 Composition of Tissue Simulating Liquid	
5.2 Tissue Dielectric Parameters for Head and Body Phantonis	
6. SAR Measurement Evaluation	
6.1 Purpose of System Performance Check	
6.2 System Setup	
6.3 Validation Results	
7. EUT Testing Position	
7.1 Define Two Imaginary Lines on The Handset	
7.1 Define 1 wo imaginary Lines on The Handset	
7.3 Tilted Position	
7.4 Body Worn Position	
7.5 EUT Antenna Position	
7.6 EUT Testing Position	
8. SAR Measurement Procedures	22
8.1 Measurement Procedures	
8.2 Spatial Peak SAR Evaluation	
8.3 Area & Zoom Scan Procedures	
8.4 Volume Scan Procedures	
8.5 SAR Averaged Methods	
9. SAR Test Result	
9.1 Conducted RF Output Power	
9.3 Simultaneous Multi-band Transmission SAR Analysis	
10. Measurement Uncertainty	
10.1 Uncertainty for EUT SAR Test	
10.2 Uncertainty for System Performance Check	
Annex A. Plots of System Performance Check	
Annex B. Plots of SAR Measurement	
Annex C. EUT Photos	
Annex D. Test Setup Photos	
Annex E. Calibration Certificate	139

1. General Information

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Bulltech Electronic Products S.L

Address of applicant: Gran Via, 64, 2-1, 28013 Madrid, Spain.

Manufacturer: Gipo Holdings Limited

Address of manufacturer: East 1201, Phase II, Tian'an Hi-tech Plaza, Futian

District, Shenzhen, China

General Description of EUT	
Product Name:	Mobile phone
Brand Name:	SZENIO, GIPO, AKAI, XION, Everaj
Model No.:	Syreni 500
Adding Mode:	PHA-5880, XI-CE600, U5, U6, Syreni 550
Software Version:	Hugiga HWA860 20131214-190427
Hardware Version:	A25_MB_V2.0
Rated Voltage:	DC 3.7V
Battery:	1900mAh
Power Adaptor:	Input 100-240V, 50/60Hz, Output DC 5V
Device Category:	Portable Device

The EUT is GSM850/900/PCS1800/1900, WCDMA Band I, Band V network mobile phone. the mobile phone is intended for speech and Multimedia Message Service (MMS) transmission. It is equipped with GPRS class 12 for GSM850 and GSM1900 and Bluetooth, Wi-Fi, and camera functions. The EUT has two SIM sockets while with the same RF circuit and function controlled by the firmware software. For more information see the following datasheet

The test data is gathered from a production sample, provided by the manufacturer. The other model listed in the report has different appearance only of Syreni 500 without circuit and electronic construction changed, declared by the manufacturer.

Technical Characteristics of EUT					
2G					
Support Networks:	GSM, GPRS				
Support Band:	GSM850/PCS1900				
Unlink Fraguenov	GSM/GPRS 850: 824~849MHz				
Uplink Frequency:	GSM/GPRS 1900: 1850~1910MHz				
Downlink Fraguency:	GSM/GPRS 850: 869~894MHz				
Downlink Frequency:	GSM/GPRS 1900: 1930~1990MHz				
RF Output Power:	GSM850: 31.72dBm, GSM1900: 29.18dBm				

Report No.: STR13128307H Page 3 of 139 SAR Report

Type of Modulation:	GMSK, QPSK
Antenna Type:	Internal Antenna
Antenna Gain:	GSM850: -1.8dBi
	GSM1900: 0.4dBi
GPRS Class:	Class 12
3G	
Support Networks:	WCDMA
Support Band:	WCDMA Band V
Uplink Frequency:	WCDMA Band V: 824~849MHz
Downlink Frequency:	WCDMA Band V: 869~894MHz
RF Output Power:	WCDMA Band V: 22.76dBm
Type of Modulation:	BPSK
Antenna Type:	Integral Antenna
Antenna Gain:	WCDMA Band V: -1.7dBi
Bluetooth	
Bluetooth Version:	V4.0
Frequency Range:	2402-2480MHz
RF Output Power:	4.37dBm (Conducted)
Modulation Type:	GFSK, Pi/4 DQPSK, 8DPSK
Data Rate:	1Mbps, 2Mbps, 3Mbps
Quantity of Channels	79/39
Channel Separation:	1MHz/2MHz
Antenna Type:	Internal Antenna
Antenna Gain:	0.3dBi
Wi-Fi	
Support Standards:	802.11b, 802.11g, 802.11n
Fraguerou Dongo	2412-2472MHz for 11b/g/n-HT20
Frequency Range:	2422-2462MHz for 11n-HT40
RF Output Power:	17.46dBm (Conducted)
Type of Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM
Data Rate:	1-11Mbps, 6-54Mbps, up to 150Mbps
Quantity of Channels	13 for 802.11b/g/n(HT20)
Quantity of Channels	9 for 802.11b/g/n(HT40)
Channel Separation:	5MHz
Type of Antenna:	Internal Antenna
Antenna Gain:	0.3dBi

Model: Syreni 500

1.2 Test Standards

The following report is prepared on behalf of the Bulltech Electronic Products S.L in accordance with FCC 47 CFR Part 2.1093, ANSI/IEEE C95.1-1992, IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (Edition 01-01).

The objective is to determine compliance with FCC Part 2.1093 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with FCC OET Bulletin 65 Supplement C. The public notice KDB 447498 D01 V05 for Mobile and Portable Devices RF Exposure Procedure also.

1.4 Test Facility

• FCC – Registration No.: 934118

Shenzhen SEM.Test Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 934118.

• Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM.Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

• CNAS Registration No.: L4062

Shenzhen SEM.Test Technology Co., Ltd. is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L4062. All measurement facilities used to collect the measurement data are located at 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C (518101)

Report No.: STR13128307H Page 5 of 139 SAR Report

2. Summary of Test Results

The maximum results of Specific Absorption Rate (SAR) have found during testing are as follows:

Frequency Band	Position	SAR _{1g} (W/kg)	Scaled SAR _{1g} (W/kg)
GSM850	Head	0.1564	0.1668
GSM1900	Head	0.1411	0.1519
WCDMA Band V	Head	0.1740	0.1839
WLAN 2.4GHz	Head	0.0968	0.1101
GSM850	Body (1.0cm Gap)	0.6887	0.6983
GSM1900	Body (1.0cm Gap)	0.5856	0.6525
WCDMA Band V	Body (1.0cm Gap)	0.3820	0.4037
WLAN 2.4GHz	Body (1.0cm Gap)	0.0827	0.0941
WWAN and WLAN	Head	-	0.2940
WWAN and WLAN	Body (1.0cm Gap)	-	0.7924

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2.1093 and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedure specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (Edition 01-01).

Report No.: STR13128307H Page 6 of 139 SAR Report

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techiques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δ T is the temperature rise and δ t is the exposure duration, or related to the

electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Report No.: STR13128307H Page 7 of 139 SAR Report

4. SAR Measurement System

4.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

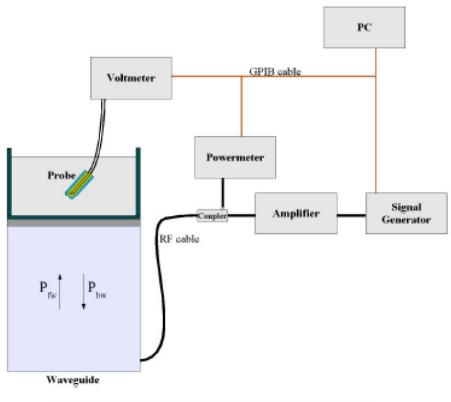
4.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SSE5 SN 09/13 EP168 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Probe Length: 330 mm

Length of Individual Dipoles: 4.5 mmMaximum external diameter: 8 mmProbe Tip External Diameter: 5 mm


- Distance between dipoles / probe extremity: 2.7mm

- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.50 dB

- Calibration range: 700 to 3000MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:1ess than 30°

Probe calibration is realized, in compliance with EN 62209-1 and IEEE 1528 STD, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1 annexe technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta}\cos^2\left(\pi\frac{y}{a}\right)e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

I = Skin depth

Keithley configuration:

Rate = Medium; Filter = ON; RDGS = 10; Filter type = Moving Average; Range auto after each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

Report No.: STR13128307H Page 9 of 139 SAR Report

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$
 (N=1,2,3)

where DCP is the diode compression point in mV.

4.3 Probe Calibration Process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1mW/cm2.

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:
$$\Delta t = \text{exposure time (30 seconds)},$$

$$C = \text{heat capacity of tissue (brain or muscle)},$$

$$\Delta T = \text{temperature increase due to RF exposure}.$$

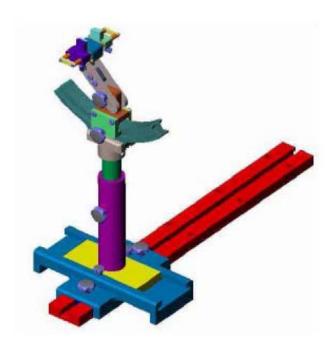
SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Report No.: STR13128307H Page 10 of 139 SAR Report

$$SAR = \frac{\left| \mathbf{E} \right|^2 \cdot \sigma}{\rho}$$

Where:

 $\sigma = \text{simulated tissue conductivity},$


 ρ = Tissue density (1.25 g/cm3 for brain tissue)

4.4 Phantom

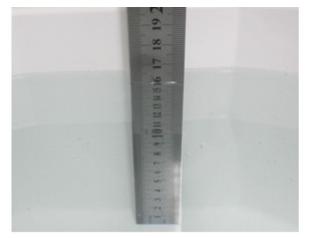
For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

4.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

Report No.: STR13128307H Page 11 of 139 SAR Report


4.6 Test Equipment List

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
E-Field Probe	SATIMO	SSE5	SN 09/13 EP168	2013-03-21	2014-03-20
835MHz Dipole	SATIMO	SID835	SN 47/12 DIP 0G835-204	2013-11-26	2014-11-25
1900MHz Dipole	SATIMO	SID1900	SN 47/12 DIP 1G900-207	2013-11-26	2014-11-25
2450MHz Dipole	SATIMO	SID2450	SN 47/12 DIP 2G450-209	2013-11-26	2014-11-25
Dielectric Probe	SATIMO	SCLMP	SN 47/12 OCPG49	2013-11-26	2014-11-25
SAM Phantom	SATIMO	SAM	SN/ 47/12 SAM95	N/A	N/A
Multi Meter	Keithley	Keithley 2000	4006367	2013-05-07	2014-05-06
Signal Generator	Rohde & Schwarz	SMR20	100047	2013-05-07	2014-05-06
Universal Tester	Rohde & Schwarz	CMU200	112012	2013-05-07	2014-05-06
Network Analyzer	HP	8753C	2901A00831	2013-05-07	2014-05-06

5. Tissue Simulating Liquids

5.1 Composition of Tissue Simulating Liquid

For the measurement of the field distribution inside the SAM phantom with SMTIMO, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. Please see the following photos for the liquid height.

Liquid Height for Head SAR

Liquid Height for Body SAR

The Composition of Tissue Simulating Liquid

Frequency	Water	Salt	Triton	HEC	Preventol	DGBE
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)
			Head			
835	35.34	0.98	0.00	0.00	63.68	0.00
1900	55.26	0.52	30.40	0.00	0.00	13.82
2450	55.44	0.32	30.50	0.00	0.00	13.74
			Body			
835	52.87	1.07	0.00	0.00	46.10	0.00
1900	69.99	0.41	20.66	0.00	0.00	8.93
2450	55.44	0.32	30.50	0.00	0.00	13.74

5.2 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

To F	Не	ead	Body		
Target Frequency	Conductivity	Permittivity	Conductivity	Permittivity	
(MHz)	(σ)	(E _r)	(σ)	(E _r)	
150	0.76	52.3	0.80	61.9	
300	0.87	45.3	0.92	58.2	
450	0.87	43.5	0.94	56.7	
835	0.90	41.5	0.97	55.2	
900	0.97	41.5	1.05	55.0	
915	0.98	41.5	1.06	55.0	
1450	1.20	40.5	1.30	54.0	
1610	1.29	40.3	1.40	53.8	
1800-2000	1.40	40.0	1.52	53.3	
2450	1.80	39.2	1.95	52.7	
3000	2.40	38.5	2.73	52.0	
5800	5.27	35.3	6.00	48.2	

5.3 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using COMOSAR Dielectric Probe Kit and an Agilent Network Analyzer.

Calibration Result for Dielectric Parameters of Tissue Simulating Liquid

Head Tissue Simulating Liquid									
Emag	Тотт	Conductivity Permitt				Conductivity Permittivity			
Freq. MHz.	Temp. (°C)	Reading	Target	Delta	Reading	Target	Delta	Limit (%)	Date
MITIZ.	(0)	(σ)	(σ)	(%)	$(\mathcal{E} \mathbf{r})$	$(\mathcal{E}\mathbf{r})$	(%)	(70)	
835	21.2	0.88	0.90	-2.22	41.4	41.5	-0.2	±5	01-02-2014
1900	21.3	1.43	1.40	2.14	39.4	40.0	-1.5	±5	01-02-2014
2450	21.3	1.76	1.80	-2.22	38.6	39.2	-1.53	±5	01-02-2014

Body Tissue Simulating Liquid									
Emag	Tomp	Conductivity			Permittivity			T ::4	
Freq. MHz.	Temp. (°C)	Reading	Target	Delta	Reading	Target	Delta	Limit (%)	Date
WIIIZ.	(0)	(σ)	(σ)	(%)	$(\mathcal{E}\mathbf{r})$	$(\mathcal{E}\mathbf{r})$	(%)	(70)	
835	21.2	0.96	0.97	-1.03	55.8	55.2	1.1	±5	01-02-2014
1900	21.3	1.51	1.52	-0.66	51.2	53.3	-3.9	±5	01-02-2014
2450	21.3	2.00	1.95	2.56	52.3	52.7	-0.76	±5	01-02-2014

6. SAR Measurement Evaluation

6.1 Purpose of System Performance Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

6.2 System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom.

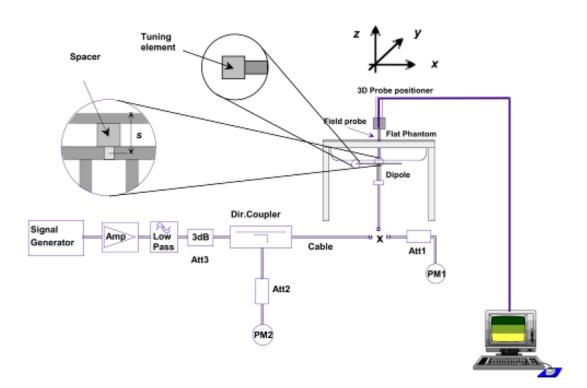


Fig 7.1 System Verification Setup Block Diagram

Report No.: STR13128307H Page 16 of 139 SAR Report

Fig 7.2 Setup Photo of Dipole Antenna

The output power on dipole port must be calibrated to 24 dBm (250 mW) before dipole is connected.

6.3 Validation Results

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %. Table 6.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion.

Frequency	Liquid	Targeted SAR _{1g}	Measured SAR _{1g}	Normalized SAR _{1g}	Tolerance
MHz	(Head/Body)	(W/kg)	(W/kg)	(W/kg)	(%)
835	Head	9.82	2.40	9.60	-2.24
1900	Head	40.79	9.90	39.60	-2.92
2450	Head	52.50	13.00	52.01	-0.93
835	Body	10.19	2.41	9.64	-5.40
1900	Body	40.41	9.87	39.48	-2.30
2450	Body	51.80	12.82	51.29	-0.98

Table 7.1 Targeted and Measurement SAR

Please refer to Annex A for the plots of system performance check.

7. EUT Testing Position

7.1 Define Two Imaginary Lines on The Handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

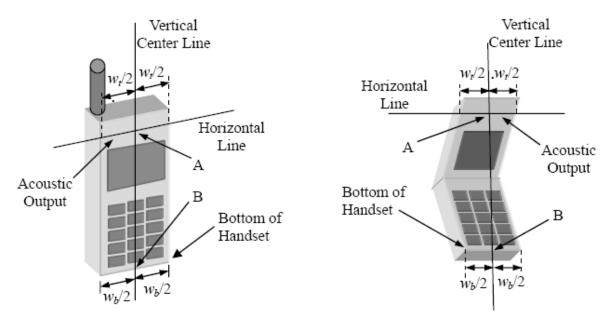


Fig 7.1 Illustration for Handset Vertical and Horizontal Reference Lines

7.2 Cheek Position

(a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE. (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 7.2).

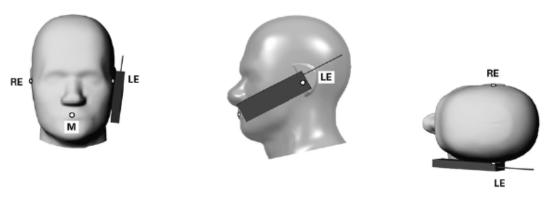


Fig 7.2 Illustration for Cheek Position

7.3 Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 7.3).

Fig 7.3 Illustration for Tilted Position

7.4 Body Worn Position

- (a) To position the device parallel to the phantom surface with either keypad up or down.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 1.0cm.

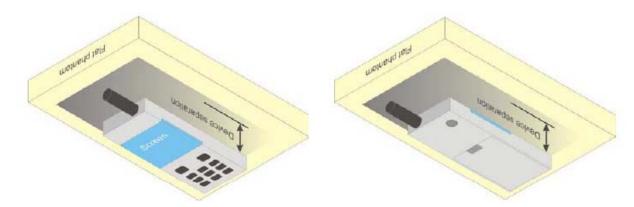


Fig 7.4 Illustration for Body Worn Position

7.5 EUT Antenna Position

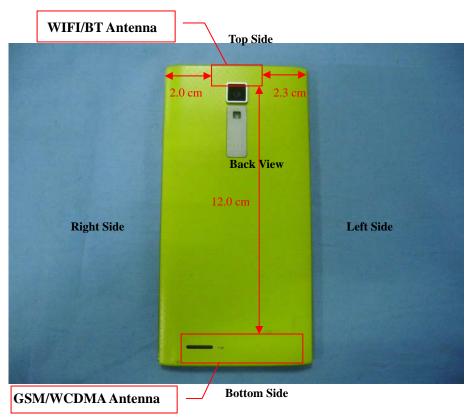


Fig 7.5 Block Diagram for EUT Antenna Position

Model: Syreni 500

7.6 EUT Testing Position

Head/Body-worn/Hotspot mode SAR assessments are required for this device. This EUT was tested in different positions for different SAR test modes, more information as below:

Head SAR tests								
Antennas	Right Cheek	Left Cheek	Right Tilted	Left Tilted				
WWAN	Yes	Yes	Yes	Yes				
WLAN	Yes	Yes	Yes	Yes				

	Hotspot SAR tests, Test distance: 10mm									
Antennas	Front	Back	Right Side	Left Side	Top Side	Bottom Side				
WWAN	Yes	Yes	Yes	Yes	Yes	Yes				
WLAN	Yes	Yes	Yes	Yes	Yes	Yes				

Body-worn SAR tests, Test distance: 10mm							
Antennas	Front	Back	Body-worn with headset				
WWAN	Yes	Yes	Yes				
WLAN	Yes	Yes	Yes				

Remark: Body-worn means the back of device.

Remark:

- 1. Referring to KDB 941225 D06, when the overall device length and width are >= 9cm*5cm, the test separation is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.
- 2. For WWAN antenna, SAR measurements at Bottom/Left side are not required since the distance between WWAN transmitting antenna and surface or edge > 25mm.
- 3. For WLAN & Bluetooth antenna, SAR measurements Up/Left sides are not required since the distance between WLAN & Bluetooth transmitting antenna and surface or edge > 25mm.

Please refer to Annex D for the EUT test setup photos.

8. SAR Measurement Procedures

8.1 Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the highest power channel.
- (b) Keep EUT to radiate maximum output power or 100% factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as Annex E demonstrates.
- (e) Set scan area, grid size and other setting on the SATIMO software.
- (f) Measure SAR results for the highest power channel on each testing position.
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.2 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The SATIMO software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

Report No.: STR13128307H Page 22 of 139 SAR Report

Model: Syreni 500

8.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

8.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.5 SAR Averaged Methods

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10g and 1 g requires a very fine resolution in the three dimensional scanned data array.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In SATIMO measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

9. SAR Test Result

9.1 Conducted RF Output Power

GSM - Burst Average Power (dBm)									
Band		GSM850			PCS1900				
Channel	128	128 190 251 512				810			
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880	1909.8			
GSM	31.72	31.55	31.59	29.18	28.90	28.90			
GPRS (1 slot)	31.64	31.45	31.49	29.27	29.02	28.56			
GPRS (2 slots)	30.75	30.75	30.79	28.15	28.11	27.91			
GPRS (3 slots)	29.07	29.01	29.12	26.14	25.96	25.91			
GPRS (4 slots)	28.44	28.21	28.27	25.03	24.79	24.88			

GSM - Source-Based Time-Average Power (dBm)									
Band		GSM850			PCS1900				
Channel	128	128 190 251			661	810			
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880	1909.8			
GSM	22.72	22.55	22.59	20.18	19.90	19.90			
GPRS (1 slot)	22.64	22.45	22.49	20.27	20.02	19.56			
GPRS (2 slots)	24.75	24.75	24.79	22.15	22.11	21.91			
GPRS (3 slots)	24.82	24.76	24.87	21.89	21.71	21.66			
GPRS (4 slots)	25.44	25.21	25.27	22.03	21.79	21.88			

Note: The source-based time-averaged power is linearly scaled the maximum burst averaged power based on time slots. The calculated method are shown as below:

Source based time-average power = Burst averaged power - Duty cycle factor in dB

Duty cycle factor = 9 dB for 1 Tx slot, 6 dB for 2 Tx slots, 4.25 dB for 3 Tx slots, 3 dB for 4 Tx slots

Remark:

- 1. For Head SAR testing, GSM should be evaluated, therefore the EUT was set in GSM for GSM850 and GSM1900 due to its highest source-based time-average power.
- 2. For Body SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS (4 Tx slots) for GSM850 and GSM1900 due to its highest source-based time-average power.
- 3. Per KDB 447498, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 4. The DUT do not support DTM function.

WCDMA - Average Power (dBm)								
Band	WCDMA Band V							
Channel	4132	4182	4233					
Frequency (MHz)	826.4	836.4	846.6					
AMR	22.58	<mark>22.76</mark>	22.70					

	WLAN - Maximum Average Power									
Test Mode	Data Rate	Channel	Frequency (MHz)	Average Power (dBm)						
		CH 01	2412	17.76						
802.11b	1Mbps	CH 07	2442	17.44						
		CH 13	2472	17.00						
		CH 01	2412	16.24						
802.11g	54Mbps	CH 07	2442	16.21						
		CH 13	2472	15.14						
		CH 01	2412	15.36						
802.11n (20MHz)	MCS7	CH 07	2442	14.69						
		CH 13	2472	14.32						
	CH 03		2422	14.79						
802.11n (40MHz)	MCS7	CH 07	2442	14.56						
		CH 11	2462	14.76						

Remark:

- 1. Per KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. Per KDB 248227, if 11g and 11n average output power is higher than 1/4 dB higher than 11b mode, SAR will be verified.
- 3. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4 dB higher than those measured at the lowest data rate. For 802.11n mode, SAR test according to the highest power channel with correspondence data rates.

	Bluetooth - Maximum Average Power									
Test Mode	Data Rate	Channel Frequency (MHz)		Average Power (dBm)						
		CH 00	2402	4.77						
GFSK	1Mbps	CH 39	2441	4.76						
		CH 78	2480	4.12						
	3Mbps	CH 00	2402	4.12						
8DPSK		CH 39	2441	4.21						
		CH 78	2480	3.48						
		CH 00	2402	-3.12						
BLE	1Mbps	CH 19	2442	-3.12						
		CH 39	2480	-3.92						

Remark:

Bluetooth maximum output power (including tune-up tolerance) is 6.0 dBm. Per KDB 648474 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances $\leq 50 mm$ are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR,16 where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation17
- The result is rounded to one decimal place for comparison

Max. Power (dBm)	Max. Power (mW)	Distance (mm)	Frequency (GHz)	Result	Limit	
4.77	3.00	5	2.402	1.48	3	

The exclusion thresoholds is 1.48 < 3, therefore, the RF exposure evaluation is not required.

9.2 Test Results for Standalone SAR Test

Head SAR

	GSM850 – Head SAR Test											
Plot		Test Position	Frequency		Output	Rated	Scaling	Sacina SAD1a				
No.	Mode	Head	CH. MHz		Power	Limit	Factor	SAR1g (W/kg)	SAR1g			
No.		Heau	CII.	MIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
1	GSM	Right Cheek	128	824.2	31.72	32.0	1.07	0.1564	0.1668			
2	GSM	Right Tilted	128	824.2	31.72	32.0	1.07	0.0504	0.0538			
3	GSM	Left Cheek	128	824.2	31.72	32.0	1.07	0.1284	0.1370			
4	GSM	Left Tilted	128	824.2	31.72	32.0	1.07	0.0509	0.0543			

	GSM1900 – Head SAR Test											
Plot	Dl.4 To.4		Freq	uency	Output	Rated	Scaling	SAR1g	Scaled			
No.	Mode	Test Position Head	CH. MHz	МНа	Power	Limit	Factor	(W/kg)	SAR1g			
NO.		Heau		WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
11	GSM	Right Cheek	512	1850.2	29.18	29.5	1.08	0.0844	0.0909			
12	GSM	Right Tilted	512	1850.2	29.18	29.5	1.08	0.0252	0.0271			
13	GSM	Left Cheek	512	1850.2	29.18	29.5	1.08	0.1411	0.1519			
14	GSM	Left Tilted	512	1850.2	29.18	29.5	1.08	0.0458	0.0493			

	WCDMA Band V – Head SAR Test											
Plot		Test Postion	Frequency		Output	Rated	Scaling	SAR1g (W/kg)	Scaled			
No.	Mode	Head	CH. MHz	Power	Limit	Factor	SAR1g					
NO.		Head		WIIIZ	(dBm)	(dBm)	ractor	(117Mg)	(W/kg)			
21	RMC	Right Cheek	4182	836.4	22.76	23.0	1.06	0.1740	0.1839			
22	RMC	Right Tilted	4182	836.4	22.76	23.0	1.06	0.0547	0.0578			
23	RMC	Left Cheek	4182	836.4	22.76	23.0	1.06	0.1435	0.1517			
24	RMC	Left Tilted	4182	836.4	22.76	23.0	1.06	0.0609	0.0644			

	WLAN 2.4GHz – Head SAR Test										
Plot		Test Postion	Frequency		Output	Rated	Scaling	SAR1g	Scaled		
No.	Mode	Head	CII MII-	MII	Power	Limit	Factor	(W/kg)	SAR1g		
110.		IIcau	CH. MHz		(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)		
31	802.11b	Right Cheek	07	2442.0	17.44	18.0	1.14	0.0968	0.1101		
32	802.11b	Right Tilted	07	2442.0	17.44	18.0	1.14	0.0715	0.0813		
33	802.11b	Left Cheek	07	2442.0	17.44	18.0	1.14	0.0798	0.0908		
34	802.11b	Left Tilted	07	2442.0	17.44	18.0	1.14	0.0755	0.0859		

Remark: Per KDB 447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary.

Body-worn SAR

	GSM850 – Body SAR Test (Gap: 10mm)										
Plot		Tand Dandian	Freq	Frequency Outpu		Rated	Casling CAD1a		Scaled		
	Mode	Test Postion	CII	MIII-	Power	Limit	Scaling	SAR1g	SAR1g		
No.		Body	СН.	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)		
5	GSM	Body-worn	128	824.2	31.77	32	1.05	0.4259	0.4491		

	GSM1900 – Body SAR Test (Gap: 10mm)										
Dlat		Test Destion	Freq	Frequency Output		Rated	Caalina	ealing SAR1g	Scaled		
Plot No.	Mode	Test Postion	CII	MII-	Power	Limit	Scaling	U	SAR1g		
NO.		Body	СН.	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)		
15	GSM	Body-worn	512	1850.2	29.18	29.5	1.08	0.2755	0.2966		

	WCDMA Band V – Body SAR Test (Gap: 10mm)										
Dlat		Test Destion	Frequency		Output	Rated	Caalina	CAD1a	Scaled		
Plot No.	Mode	Test Postion	CII	MII-	Power	Limit	Scaling	SAR1g	SAR1g		
140.		Body	СН.	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)		
30	RMC	Body-worn	4182	836.4	22.76	23.0	1.06	0.3820	0.4037		

	WLAN 2.4GHz –Body SAR Test(Gap: 10mm)										
Plot		Test Postion	Frequency		Output	Rated	Scaling	SAR1g	Scaled		
No.	Mode		CII	MIII-	Power	Limit		O	SAR1g		
140.		Body	СН.	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)		
40	802.11b	Body-worn	07	2442.0	17.44	18.0	1.14	0.0863	0.0982		

Remark:

- 1. Per KDB 447498, if the highest output channel SAR for each exposure position \leq 0.8 W/kg other channels SAR tests are not necessary.
- 2. The Body-worn SAR for the back device with headset position is worst case and was reported.

Hotspot SAR

	GSM850 – Body SAR Test (Gap: 10mm)										
Plot		Test Postion	Frequency		Output	Rated	Scaling	SAR1g	Scaled		
No.	Mode	Body	СН.	MHz	Power	Limit	Scaling Factor	(W/kg)	SAR1g		
110.		Douy	CII.	WIIIZ	(dBm) (dBm)		ractor	(W/Kg)	(W/kg)		
6	GPRS_4TX	Front	128	824.2	28.44	28.5	1.01	0.3783	0.3836		
7	GPRS_4TX	Back	128	824.2	28.44	28.5	1.01	0.6887	0.6983		
8	GPRS_4TX	Bottom side	128	824.2	28.44	28.5	1.01	0.0826	0.0837		
9	GPRS_4TX	Right side	128	824.2	28.44	28.5	1.01	0.3727	0.3779		
10	GPRS_4TX	Left side	128	824.2	28.44	28.5	1.01	0.5447	0.5523		

	GSM1900 – Body SAR Test (Gap: 10mm)										
Plot	26.1	Test Postion	Frequency		Output	Rated	Saaling	SAR1g	Scaled		
No.	Mode	Body	СН.	MHz	Power	Limit	Scaling Factor	(W/kg)	SAR1g		
110.		Douy	Cn.	MITZ	(dBm)	(dBm)			(W/kg)		
16	GPRS_4TX	Front	512	1850.2	25.03	25.5	1.11	0.5297	0.5902		
17	GPRS_4TX	Back	512	1850.2	25.03	25.5	1.11	0.5856	0.6525		
18	GPRS_4TX	Bottom side	512	1850.2	25.03	25.5	1.11	0.5061	0.5639		
19	GPRS_4TX	Right side	512	1850.2	25.03	25.5	1.11	0.1435	0.1599		
20	GPRS_4TX	Left side	512	1850.2	25.03	25.5	1.11	0.2363	0.2633		

	WCDMA Band V – Body SAR Test (Gap: 10mm)											
Plot		Test Postion	Frequency		Output	Rated	Scaling	SAD1a	Scaled			
No.	Mode		CH	MUa	Power	Limit	Scaling Factor	SAR1g	SAR1g			
110.		Body	CH. MHz (dBm)		(dBm)	Factor	(W/kg)	(W/kg)				
25	RMC	Front	810	1909.8	22.76	23.0	1.06	0.3424	0.3619			
26	RMC	Back	810	1909.8	22.76	23.0	1.06	0.3820	0.4037			
27	RMC	Bottom side	810	1909.8	22.76	23.0	1.06	0.0503	0.0532			
28	RMC	Right side	810	1909.8	22.76	23.0	1.06	0.1969	0.2081			
29	RMC	Left side	810	1909.8	22.76	23.0	1.06	0.3037	0.3210			

	WLAN 2.4GHz –Body SAR Test(Gap: 10mm)											
Plot		Test Postion Body	Freq	uency	Output	Rated	Caslina	SAR1g	Scaled			
No.	Mode		СН.	Power Lin	Limit	Scaling Factor	(W/kg)	SAR1g				
110.		Bouy	Cn.	MHz	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
35	802.11b	Front	07	2442	17.44	18.0	1.14	0.0294	0.0334			
36	802.11b	Back	07	2442	17.44	18.0	1.14	0.0827	0.0941			
37	802.11b	Top Side	07	2442	17.44	18.0	1.14	0.0148	0.0168			
38	802.11b	Right Side	07	2442	17.44	18.0	1.14	0.0209	0.0238			
39	802.11b	Left Side	07	2442	17.44	18.0	1.14	0.0272	0.0309			

Remark: Per KDB 447498, if the highest output channel SAR for each exposure position \leq 0.8 W/kg other channels SAR tests are not necessary.

9.3 Simultaneous Multi-band Transmission SAR Analysis

List of Mode for Simultanous Multi-band Transmission

No.	Configurations	Head SAR	Body-worn SAR	Hotspot SAR
1	GSM + WLAN	Yes	Yes	-
2	WCDMA + WLAN	Yes	Yes	-
3	GPRS + WLAN (Hotspot)	-	-	Yes
4	GSM + Bluetooth	-	-	-
5	WCDMA + Bluetooth	-	-	-
6	GPRS + Bluetooth (Tethering)	-	-	-

Remark:

- 1. GSM and WCDMA share the same antenna, and cannot transmit simultaneously.
- 2. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 3. According to the KDB 447498 D01v05r01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05r01 as below:

4. The maximum SAR summation is calculated based on the same configuration and test position. If 1g-SAR scalar summation < 1.6W/kg, simultaneous SAR measurement is not necessary.

Report No.: STR13128307H Page 30 of 139 SAR Report

Head SAR WWAN and WLAN

	WW	AN	WLAN	C
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Right Cheek	GSM850	0.1668	0.1101	0.2769
Right Tilted	GSM850	0.0538	0.0813	0.1351
Left Cheek	GSM850	0.1370	0.0908	0.2278
Left Tilted	GSM850	0.0543	0.0859	0.1402
Right Cheek	GSM1900	0.0909	0.1101	0.2010
Right Tilted	GSM1900	0.0271	0.0813	0.1084
Left Cheek	GSM1900	0.1519	0.0908	0.2427
Left Tilted	GSM1900	0.0493	0.0859	0.1352
Right Cheek	WCDMA Band V	0.1839	0.1101	0.2940
Right Tilted	WCDMA Band V	0.0578	0.0813	0.1391
Left Cheek	WCDMA Band V	0.1517	0.0908	0.2425
Left Tilted	WCDMA Band V	0.0644	0.0859	0.1503

Body-worn SAR

WWAN and WLAN

	WW	VAN	WLAN	Summed SAR	
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	(W/kg)	
Body-worn	GSM850	0.4491	0.0982	0.5473	
Body-worn	GSM1900	0.2966	0.0982	0.3948	
Body-worn	WCDMA Band V	0.4037	0.0982	0.5019	

Hotspot SAR WWAN and WLAN

	Position Band		WLAN	Summed SAR		
Position			caled SAR Scaled SAR (W/kg) (W/kg)			
Front	GSM850	0.3836	0.0334	0.4170		
Back	GSM850	0.6983	0.0941	0.7924		
Top side	GSM850	-	0.0168	0.0168		
Bottom side	GSM850	0.0837	-	0.0837		
Right side	GSM850	0.3779	0.0238	0.4017		
Left side	GSM850	0.5523	0.0309	0.5832		
Front	GSM1900	0.5902	0.0334	0.6236		
Back	GSM1900	0.6525	0.0941	0.7466		
Top side	GSM1900	-	0.0168	0.0168		
Bottom side	GSM1900	0.5639	-	0.0532		
Right side	GSM1900	0.1599	0.0238	0.1837		
Left side	GSM1900	0.2633	0.0309	0.2942		
Front	RMC	0.3619	0.0334	0.3953		
Back	RMC	0.4037	0.0941	0.4978		
Top side	RMC	-	0.0168	0.6408		
Bottom side	RMC	0.0532	-	0.0532		
Right side	RMC	0.2081	0.0238	0.2319		
Left side	RMC	0.3210	0.0309	0.3519		

10. Measurement Uncertainty

10.1 Uncertainty for EUT SAR Test

b	с	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Sec.	Tol	Prob.	Div.	Ci (1g)	Ci (10g)	1g Ui	10g Ui	Vi
(+- %) Dist. (+-%) (+-%) (+-%)								
	5 0					7 00	7 .00	
E.2.1	7.0	N		1	1	7.00	7.00	∞
E.2.2	2.5	R	√3	(1_Cp)^1/2	(1_Cp)^1/2	1.02	1.02	∞
E.2.2	4.0	R	$\sqrt{3}$	(Cp)^1/2	(Cp)^1/2	1.63	1.63	∞
E.2.3	1.0	R	√3	1	1	0.58	0.58	8
E.2.4	5.0	R	√3	1	1	2.89	2.89	8
E.2.5	1.0	R	√3	1	1	0.58	0.58	×
E.2.6	0.02	N	1	1	1	0.02	0.02	×
E.2.7	3.0	R	√3	1	1	1.73	1.73	œ
E.2.8	2.0	R	√3	1	1	1.15	1.15	×
E.6.1	3.0	R	√3	1	1	1.73	1.73	8
E.6.2	2.0	R	√3	1	1	1.15	1.15	œ
E.6.3	0.05	R	√3	1	1	0.03	0.03	&
E.5.2	5.0	R	√3	1	1	2.89	2.89	8
			•					
E.4.2.1	0.03	N	1	1	1	0.03	0.03	N-1
E.4.1.1	5.00	N	1	1	1	5.00	5.00	
6.6.2	12.02	R	√3	1	1	6.94	6.94	8
E.3.1	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
E.3.2	5.00	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	
E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	
F 2 2	0.27	Б	la.	0.5	0.40	0.12	0.10	
E.3.2	0.37	R	√3	0.6	0.49	0.13	0.10	
E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
	E.2.1 E.2.2 E.2.2 E.2.3 E.2.4 E.2.5 E.2.6 E.2.7 E.2.8 E.6.1 E.6.2 E.6.2 E.6.3 E.5.2 E.4.1.1 6.6.2 E.3.1 E.3.2 E.3.2	Sec. Tol (+- %) E.2.1 7.0 E.2.2 2.5 E.2.2 4.0 E.2.3 1.0 E.2.4 5.0 E.2.5 1.0 E.2.6 0.02 E.2.7 3.0 E.2.8 2.0 E.6.1 3.0 E.6.2 2.0 E.6.3 0.05 E.5.2 5.0 E.4.2.1 5.00 E.3.1 0.05 E.3.2 5.00 E.3.3 5.00 E.3.2 0.37	Sec. Tol (+-%) Prob. Dist. E.2.1 7.0 N E.2.2 2.5 R E.2.2 4.0 R E.2.3 1.0 R E.2.4 5.0 R E.2.5 1.0 R E.2.6 0.02 N E.2.7 3.0 R E.6.1 3.0 R E.6.2 2.0 R E.6.3 0.05 R E.5.2 5.0 R E.4.2.1 0.03 N E.4.1.1 5.00 N 6.6.2 12.02 R E.3.1 0.05 R E.3.2 5.00 R E.3.3 5.00 N E.3.2 0.37 R	Sec. Tol (+-%) Prob. Dist. Div. E.2.1 7.0 N 1 E.2.2 2.5 R $\sqrt{3}$ E.2.2 4.0 R $\sqrt{3}$ E.2.3 1.0 R $\sqrt{3}$ E.2.4 5.0 R $\sqrt{3}$ E.2.5 1.0 R $\sqrt{3}$ E.2.6 0.02 N 1 E.2.7 3.0 R $\sqrt{3}$ E.6.1 3.0 R $\sqrt{3}$ E.6.2 2.0 R $\sqrt{3}$ E.6.3 0.05 R $\sqrt{3}$ E.5.2 5.0 R $\sqrt{3}$ E.4.2.1 0.03 N 1 E.4.1.1 5.00 N 1 6.6.2 12.02 R $\sqrt{3}$ E.3.1 0.05 R $\sqrt{3}$ E.3.2 5.00 R $\sqrt{3}$ E.3.2 0.37 R $\sqrt{3}$	Sec. Tol (+-%) Prob. Dist. Div. Div. Div. Ci (1g) E.2.1 7.0 N 1 1 E.2.2 2.5 R $\sqrt{3}$ (Cp)^1/2 E.2.2 4.0 R $\sqrt{3}$ (Cp)^1/2 E.2.3 1.0 R $\sqrt{3}$ 1 E.2.4 5.0 R $\sqrt{3}$ 1 E.2.5 1.0 R $\sqrt{3}$ 1 E.2.6 0.02 N 1 1 E.2.7 3.0 R $\sqrt{3}$ 1 1 E.2.8 2.0 R $\sqrt{3}$ 1 1 E.6.1 3.0 R $\sqrt{3}$ 1 1 E.6.2 2.0 R $\sqrt{3}$ 1 1 E.6.3 0.05 R $\sqrt{3}$ 1 1 E.4.2.1 0.03 N 1 1 E.4.1.1 5.00 N 1 1 E.3.2 5.00 R $\sqrt{3}$ 1 1 E.3.2 5.00 R <td< td=""><td>Sec. Tol (+-%) Prob. Dist. Div. Div. Div. Ci (1g) Ci (10g) E.2.1 7.0 N 1 1 1 E.2.2 2.5 R $\sqrt{3}$ ($\frac{1}{2}$ Cp)^1/2 ($\frac{1}{2}$ Cp)^1/2 E.2.2 4.0 R $\sqrt{3}$ ($\frac{1}{2}$ Cp)^1/2 ($\frac{1}{2}$ Cp)^1/2 E.2.2 4.0 R $\sqrt{3}$ ($\frac{1}{2}$ T) 1 1 E.2.3 1.0 R $\sqrt{3}$ 1 1 1 E.2.4 5.0 R $\sqrt{3}$ 1 1 1 E.2.5 1.0 R $\sqrt{3}$ 1 1 1 E.2.6 0.02 N 1 1 1 E.2.7 3.0 R $\sqrt{3}$ 1 1 1 E.6.1 3.0 R $\sqrt{3}$ 1 1 1 E.6.2 2.0 R $\sqrt{3}$ 1 1 1 E.6.3 0.05 R $\sqrt{3}$ 1 1 1 E.4.2.1 0.03 N 1 1 1</td><td>Sec. Tol (+-%) Prob. Dist. Div. Div. Div. Ci (1g) Ci (10g) 1 g Ui (+-%) E.2.1 7.0 N 1 1 1 7.00 E.2.2 2.5 R $\sqrt{3}$ $(1 - Cp)^{N/1/2}$ $(1 - Cp)^{N/1/2}$ 1.02 E.2.2 4.0 R $\sqrt{3}$ 1 1 0.58 E.2.3 1.0 R $\sqrt{3}$ 1 1 2.89 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 E.2.5 1.0 R $\sqrt{3}$ 1 1 0.58 E.2.5 1.0 R $\sqrt{3}$ 1 1 0.02 E.2.7 3.0 R $\sqrt{3}$ 1 1 1.73 E.2.8 2.0 R $\sqrt{3}$ 1 1 1.15 E.6.1 3.0 R $\sqrt{3}$ 1 1 <t< td=""><td>Sec. (+-%) Tol (+-%) Prob. Dist. Div. Dist. Ci (1g) Ci (10g) 1g Ui (+-%) 10g Ui (+-%) E.2.1 7.0 N 1 1 1 7.00 7.00 E.2.2 2.5 R $\sqrt{3}$ (1_Cp)^1/2 (1_Cp)^1/2 1.02 1.02 E.2.2 4.0 R $\sqrt{3}$ (1_Cp)^1/2 (Cp)^1/2 1.63 1.63 E.2.3 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 0.58 E.2.5 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 E.2.6 0.02 N 1 1 1 0.02 0.02 E.2.7 3.0 R $\sqrt{3}$ 1 1 1.15 1.15 E.6.1 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 E.6.2 2.0 R</td></t<></td></td<>	Sec. Tol (+-%) Prob. Dist. Div. Div. Div. Ci (1g) Ci (10g) E.2.1 7.0 N 1 1 1 E.2.2 2.5 R $\sqrt{3}$ ($\frac{1}{2}$ Cp)^1/2 ($\frac{1}{2}$ Cp)^1/2 E.2.2 4.0 R $\sqrt{3}$ ($\frac{1}{2}$ Cp)^1/2 ($\frac{1}{2}$ Cp)^1/2 E.2.2 4.0 R $\sqrt{3}$ ($\frac{1}{2}$ T) 1 1 E.2.3 1.0 R $\sqrt{3}$ 1 1 1 E.2.4 5.0 R $\sqrt{3}$ 1 1 1 E.2.5 1.0 R $\sqrt{3}$ 1 1 1 E.2.6 0.02 N 1 1 1 E.2.7 3.0 R $\sqrt{3}$ 1 1 1 E.6.1 3.0 R $\sqrt{3}$ 1 1 1 E.6.2 2.0 R $\sqrt{3}$ 1 1 1 E.6.3 0.05 R $\sqrt{3}$ 1 1 1 E.4.2.1 0.03 N 1 1 1	Sec. Tol (+-%) Prob. Dist. Div. Div. Div. Ci (1g) Ci (10g) 1 g Ui (+-%) E.2.1 7.0 N 1 1 1 7.00 E.2.2 2.5 R $\sqrt{3}$ $(1 - Cp)^{N/1/2}$ $(1 - Cp)^{N/1/2}$ 1.02 E.2.2 4.0 R $\sqrt{3}$ 1 1 0.58 E.2.3 1.0 R $\sqrt{3}$ 1 1 2.89 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 E.2.5 1.0 R $\sqrt{3}$ 1 1 0.58 E.2.5 1.0 R $\sqrt{3}$ 1 1 0.02 E.2.7 3.0 R $\sqrt{3}$ 1 1 1.73 E.2.8 2.0 R $\sqrt{3}$ 1 1 1.15 E.6.1 3.0 R $\sqrt{3}$ 1 1 <t< td=""><td>Sec. (+-%) Tol (+-%) Prob. Dist. Div. Dist. Ci (1g) Ci (10g) 1g Ui (+-%) 10g Ui (+-%) E.2.1 7.0 N 1 1 1 7.00 7.00 E.2.2 2.5 R $\sqrt{3}$ (1_Cp)^1/2 (1_Cp)^1/2 1.02 1.02 E.2.2 4.0 R $\sqrt{3}$ (1_Cp)^1/2 (Cp)^1/2 1.63 1.63 E.2.3 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 0.58 E.2.5 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 E.2.6 0.02 N 1 1 1 0.02 0.02 E.2.7 3.0 R $\sqrt{3}$ 1 1 1.15 1.15 E.6.1 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 E.6.2 2.0 R</td></t<>	Sec. (+-%) Tol (+-%) Prob. Dist. Div. Dist. Ci (1g) Ci (10g) 1g Ui (+-%) 10g Ui (+-%) E.2.1 7.0 N 1 1 1 7.00 7.00 E.2.2 2.5 R $\sqrt{3}$ (1_Cp)^1/2 (1_Cp)^1/2 1.02 1.02 E.2.2 4.0 R $\sqrt{3}$ (1_Cp)^1/2 (Cp)^1/2 1.63 1.63 E.2.3 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 E.2.4 5.0 R $\sqrt{3}$ 1 1 0.58 0.58 E.2.5 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 E.2.6 0.02 N 1 1 1 0.02 0.02 E.2.7 3.0 R $\sqrt{3}$ 1 1 1.15 1.15 E.6.1 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 E.6.2 2.0 R

Report No.: STR13128307H Page 33 of 139 SAR Report

measurement uncertainty						
Combined Standard Uncertainty		RSS		12.98	12.53	
Expanded Uncertainty		K=2		25.32	24.43	
(95% Confidence interval)						

10.2 Uncertainty for System Performance Check

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci (10g)	1g Ui	10g Ui	Vi
		(+- %)	Dist.				(+-%)	(+-%)	
Measurement System									
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	∞
Axial Isotropy	E.2.2	2.5	R	√3	(1_Cp)^1/2	(1_Cp)^1/2	1.02	1.02	œ
Hemispherical Isotropy	E.2.2	4.0	R	√3	(Cp)^1/2	(Cp)^1/2	1.63	1.63	∞
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	8
Linearity	E.2.4	5.0	R	√3	1	1	2.89	2.89	8
System detection limits	E.2.5	1.0	R	√3	1	1	0.58	0.58	8
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	∞
Reponse Time	E.2.7	3.0	R	√3	1	1	1.73	1.73	8
Integration Time	E.2.8	2.0	R	√3	1	1	1.15	1.15	8
RF ambient Conditions	E.6.1	3.0	R	√3	1	1	1.73	1.73	~
Probe positioner Mechanical	E.6.2	2.0	R	√3	1	1	1.15	1.15	oc
Tolerance									
Probe positioning with respect to	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Phantom Shell				,					
Extrapolation, interpolation and	E.5.2	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
integration Algoritms for Max.									
SAR Evaluation									
Dipole									
Dipole axis to liquid Distance	8,E.4.2	1.00	N	$\sqrt{3}$	1	1	0.58	0.58	N-1
Input power and SAR drift	8,6.6.2	12.02	R	√3	1	1	6.94	6.94	œ
measurement									
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape and	E.3.1	0.05	R	√3	1	1	0.03	0.03	œ
thickness tolerances)									
Liquid conductivity - deviation	E.3.2	5.00	R	√3	0.64	0.43	1.85	1.24	
from target value									

Liquid conductivity	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	
measurement uncertainty									
Liquid permittivity - deviation	E.3.2	0.37	R	$\sqrt{3}$	0.6	0.49	0.13	0.10	
from target value									
Liquid permittivity	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
measurement uncertainty									
Combined Standard Uncertainty			RSS				12.00	11.50	
Expanded Uncertainty			K=2				23.39	22.43	
(95% Confidence interval)									

Annex A. Plots of System Performance Check

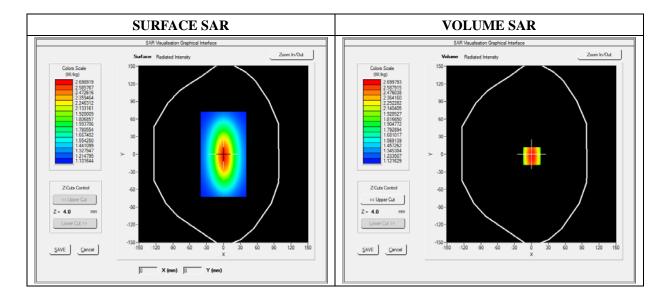
MEASUREMENT 1

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 01/02/2014

Measurement duration: 7 minutes 21 seconds

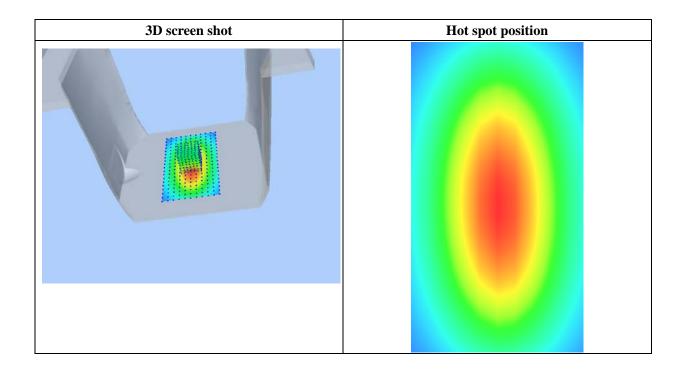

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	dx=8mm dy=8mm
Phantom	Validation plane
Device Position	Dipole
Band	CW835
Channels	Middle
Signal	CW (Crest factor: 1.0)

B. SAR Measurement Results

Frequency (MHz)	835.000000
Relative Permittivity (real part)	41.400000
Conductivity (S/m)	0.880000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3



Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	1.623320
SAR 1g (W/Kg)	2.395100

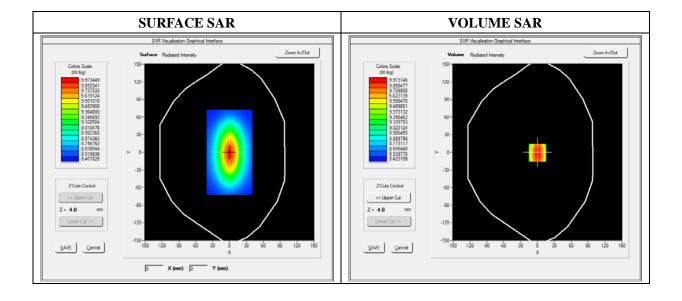
Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.5423	1.9012	1.4112	1.2020	1.1542	1.0658
(W/Kg)							
	2.50	00-					
	2.37	75-				_	
	2.15	50-	\longrightarrow			_	
	夏 1.82 夏 1.82	25-	+				
	S 1.50	00-	++				
	ு 1.37	75-		\longrightarrow			
	1.15				\bot		
	1.028						
	0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0						
	Z (mm)						

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 01/02/2014

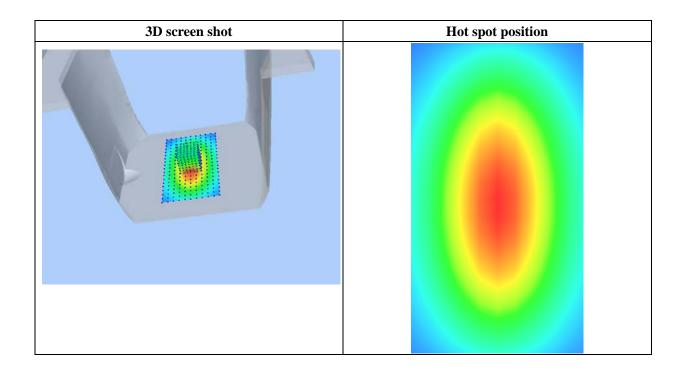

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.16; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW1900		
Channels	Middle		
Signal	CW (Crest factor: 1.0)		

Frequency (MHz)	1900.000000
Relative Permittivity (real part)	39.400200
Conductivity (S/m)	1.431000
Power Variation (%)	-0.523000
Ambient Temperature	21.1
Liquid Temperature	21.3



Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	7.002154
SAR 1g (W/Kg)	9.899210

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.1025	7.1235	5.2350	4.0125	3.2125	2.2458
(W/Kg)							
	10.27 9.25	1 1					
	7.60 W.W. 6.17	,-					
	≥ 6.17 Hy	7-					
	4.50)-					
	3.05 - 2.03 - 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0						
	Z (mm)						

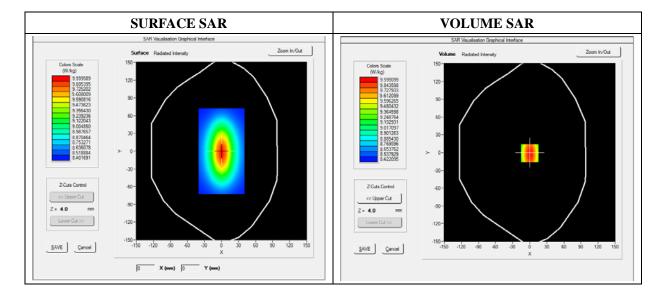
For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 01/02/2014

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.51; Calibrated: 2013/03/21

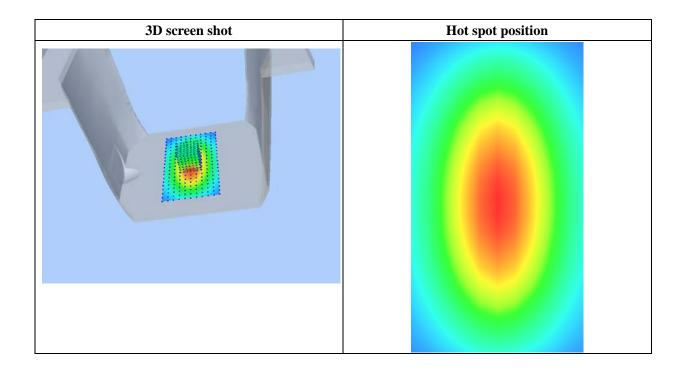

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW2450		
Channels	Middle		
Signal	CW (Crest factor: 1.0)		

B. SAR Measurement Results

Middle Band SAR

Frequency (MHz)	2450.000000
Relative Permittivity (real part)	38.611212
Conductivity (S/m)	1.761202
Power Variation (%)	1.144120
Ambient Temperature	21.1
Liquid Temperature	21.2



Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	8.025695
SAR 1g (W/Kg)	13.026565

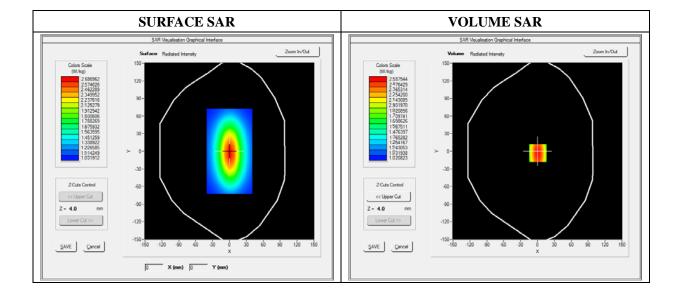
Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	14.1365	12.0299	10.2652	7.4912	5.9123	4.5621
(W/Kg)							
	14.27 13.25 10.60 WWW 7.77 BY 6.50 4.05 3.03	7	7.5 10.0 12.5 15.	0 17.520.0 22.5 Z (mm)	25.0 27.5 30.0 3	2.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 01/02/2014

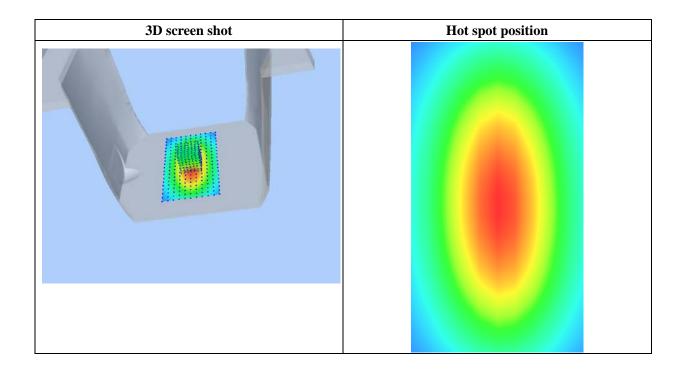

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW835		
Channels	Middle		
Signal	CW (Crest factor: 1.0)		

Frequency (MHz)	835.000000
Relative Permittivity (real part)	55.802100
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3



Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	1.523425
SAR 1g (W/Kg)	2.412850

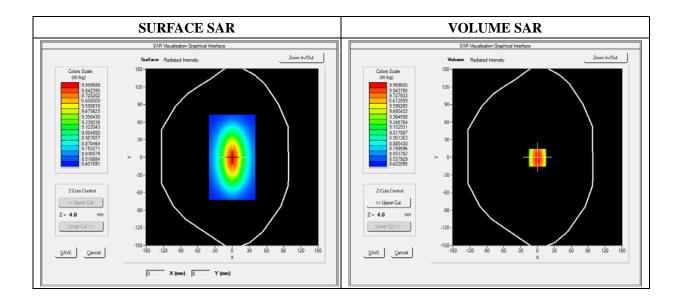
Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.5012	1.6145	1.1321	0.8110	0.54256	0.4012
(W/Kg)							
	2.55 2.16 1.74 1.52 1.30 9 1.18 0.86 0.64	3-	7.5 10.0 12.5 15.	0 17.520.0 22.52 Z (mm)	25.0 27.5 30.0 3	2.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 01/02/2014

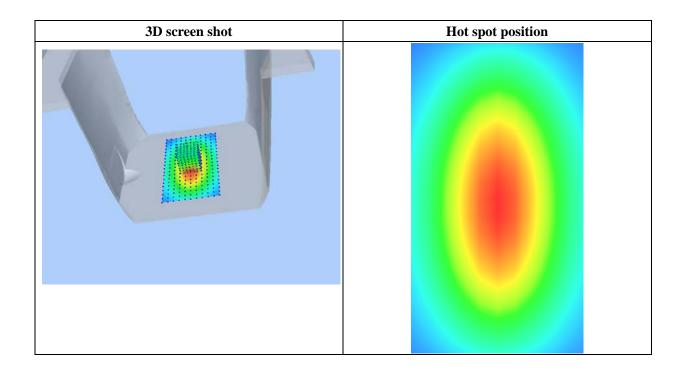

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.30; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	dx=8mm dy=8mm
Phantom	Validation plane
Device Position	Dipole
Band	CW1900
Channels	Middle
Signal	CW (Crest factor: 1.0)

Frequency (MHz)	1900.000000
Relative Permittivity (real part)	51.202000
Conductivity (S/m)	1.510200
Power Variation (%)	0.752100
Ambient Temperature	21.1
Liquid Temperature	21.3



Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	5.012444
SAR 1g (W/Kg)	9.867852

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.0001	6.4250	5.1257	3.9520	3.1256	2.7510
(W/Kg)							
	10.27 9.25 7.60						
	- 7.60 848 (M/kg 4.50	7					
	3.05 2.03	3-	7.5 10.0 12.5 15.	0 17.520.0 22.5 Z (mm)	25.0 27.5 30.0 3	2.5 35.0	

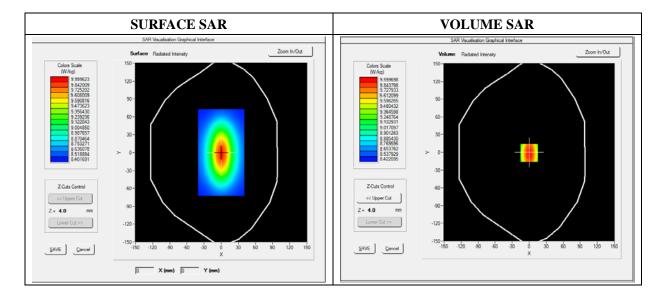
For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 01/02/2014

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.70; Calibrated: 2013/03/21

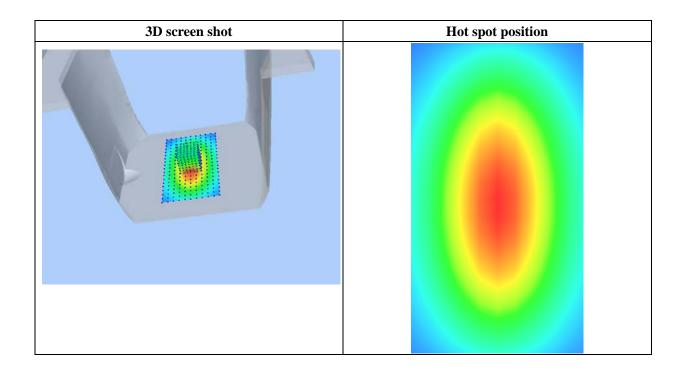

A. Experimental conditions

Area Scan	dx=8mm dy=8mm
Phantom	Validation plane
Device Position	Dipole
Band	CW2450
Channels	Middle
Signal	CW (Crest factor: 1.0)

B. SAR Measurement Results

Middle Band SAR

Frequency (MHz)	2450.000000
Relative Permittivity (real part)	52.315622
Conductivity (S/m)	2.001255
Power Variation (%)	0.542660
Ambient Temperature	21.1
Liquid Temperature	21.2



Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	7.161412
SAR 1g (W/Kg)	12.820533

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	13.3611	11.8523	9.2566	8.5623	6.3469	4.5626
(W/Kg)							
	13.27 12.25 7.60 WW 6.17 EWS 4.50 3.05 2.03	5- 7- 10- 15- 15-	7.5 10.0 12.5 15.	0 17.520.0 22.5 Z (mm)	25.0 27.5 30.0 32	2.5 35.0	

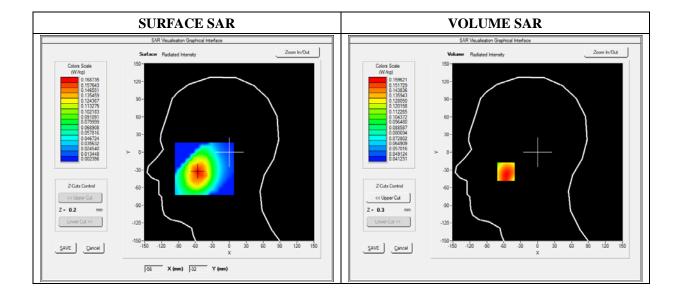
Annex B. Plots of SAR Measurement

TYPE	BAND	<u>PARAMETERS</u>
Mobile phone	GSM850	Measurement 1: Right Head with Cheek device position on Low Channel in GSM mode
Mobile phone	GSM850	Measurement 2: Right Head with Tilt device position on Low Channel in GSM mode
Mobile phone	GSM850	Measurement 3: Left Head with Cheek device position on Low Channel in GSM mode
Mobile phone	GSM850	Measurement 4: Left Head with Tilt device position on Low Channel in GSM mode
Mobile phone	GSM850	Measurement 5: Flat Plane with Body-worn device position on Low Channel in GSM mode
Mobile phone	GPR850_4TX	Measurement 6: Flat Plane with Front device position on Low Channel in GPRS mode
Mobile phone	GPRS850_4T X	Measurement 7: Flat Plane with Back device position on Low Channel in GPRS mode
Mobile phone	GPRS850_4T X	Measurement 8: Flat Plane with Bottom side device position on Low Channel in GPRS mode
Mobile phone	GPRS850_4T X	Measurement 9: Flat Plane with Right side device position on Low Channel in GPRS mode
Mobile phone	GPRS850_4T X	Measurement 10: Flat Plane with Left side device position on Low Channel in GPRS mode
Mobile phone	GSM1900	Measurement 11: Right Head with Cheek device position on Low Channel in GSM mode
Mobile phone	GSM1900	Measurement 12: Right Head with Tilt device position on Low Channel in GSM mode
Mobile phone	GSM1900	Measurement 23: Left Head with Cheek device position on Low Channel in GSM mode
Mobile phone	GSM1900	Measurement 14: Left Head with Tilt device position on Low Channel in GSM mode
Mobile phone	GSM1900	Measurement 15: Flat Plane with Body-worn device position on Low Channel in GSM mode
Mobile phone	GPRS1900_4 TX	Measurement 16: Flat Plane with Front device position on Low Channel in GPRS mode
Mobile phone	GPRS1900_4 TX	Measurement 17: Flat Plane with Back device position on Low Channel in GPRS mode
Mobile phone	GPRS1900_4 TX	Measurement 18: Flat Plane with Bottom side device position on Low Channel in GPRS mode
Mobile phone	GPRS1900_4 TX	Measurement 19: Flat Plane with Right side device position on Low Channel in GPRS mode

	GPRS1900_4	Measurement 20: Flat Plane with Left side device position
Mobile phone TX		on Low Channel in GPRS mode
N. J. 1.	WCDMA850_	Measurement 21: Right Head with Cheek device position
Mobile phone	RMC	on Middle Channel in WCDMA mode
N. J. 1. 1	WCDMA850_	Measurement 22: Right Head with Tilt device position on
Mobile phone RMC		Middle Channel in WCDMA mode
N. 1.1. 1	WCDMA850_	Measurement 23: Left Head with Cheek device position
Mobile phone	RMC	on Middle Channel in WCDMA mode
Makilankana	WCDMA850_	Measurement 24: Left Head with Tilt device position on
Mobile phone	RMC	Middle Channel in WCDMA mode
Mahila nhana	WCDMA850_	Measurement 25: Flat Plane with Front device position on
Mobile phone	RMC	Middle Channel in WCDMA mode
Mobile phone	WCDMA850_	Measurement 26: Flat Plane with Back device position on
Mobile phone	RMC	Middle Channel in WCDMA mode
Mobile phone	WCDMA850_	Measurement 27: Flat Plane with Bottom side device
wiobite phone	RMC	position on Middle Channel in WCDMA mode
Mobile phone	WCDMA850_	Measurement 28: Flat Plane with Right side device
Wiobiic phone	RMC	position on Middle Channel in WCDMA mode
Mobile phone	WCDMA850_	Measurement 29: Flat Plane with Left side device position
Wiobite phone	RMC	on Middle Channel in WCDMA mode
Mobile phone WCDMA850		Measurement 30: Flat Plane with Body-worn device
Wiobite phone	RMC	position on Middle Channel in WCDMA mode
Mobile phone WiFi_802.1		Measurement 31: Right Head with Cheek device position
Troone phone	**************************************	on Middle Channel in 802.11b mode
Mobile phone	WiFi_802.11b	Measurement 32: Right Head with Tilt device position on
		Middle Channel in 802.11b mode
Mobile phone	WiFi_802.11b	Measurement 33: Left Head with Cheek device position
•	_	on Middle Channel in 802.11b mode
Mobile phone	WiFi_802.11b	Measurement 34: Left Head with Tilt device position on Middle Channel in 802.11b mode
Mobilembers	W:E: 002 11L	Measurement 35: Right Head with Cheek device position
Mobile phone	WiFi_802.11b	on Low Channel in 802.11b mode
Mobile phone	WiFi_802.11b	Measurement 36: Right Head with Cheek device position
wionie phone	**11·1_0U2.11D	on High Channel in 802.11b mode
Mobile phone	WiFi_802.11b	Measurement 37: Flat Plane with Back side device
11100He phone	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	position on Middle Channel in 802.11b mode
Mobile phone	WiFi_802.11b	Measurement 38: Flat Plane with Front side device
1.10bite phone	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	position on Middle Channel in 802.11b mode
Mobile phone	WiFi_802.11b	Measurement 39: Flat Plane with Right side device
11200He phone	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	position on Middle Channel in 802.11b mode
Mobile phone	WiFi_802.11b	Measurement 40: Flat Plane with Left side device position
11200He phone	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	on Middle Channel in 802.11b mode
Mobile phone	WiFi_802.11b	Measurement 41: Flat Plane with Top side device position
Middle phone	, , II I_UU#•IIU	on Middle Channel in 802.11b mode

Mobile phone	Mobile phone WiFi_802.11b	Measurement 42: Flat Plane with Back side device			
Wifi_802.110	position on Low Channel in 802.11b mode				
Mahila nhana	WiFi 802.11b	Measurement 43: Flat Plane with Back side device			
Mobile phone WiFi_802.	WIFI_0U2.11U	position on High Channel in 802.11b mode			
Mobile phone WiFi_802.11b	Measurement 44: Flat Plane with Body-worn device				
	WIFI_802.11D	position on Middle Channel in 802.11b mode			

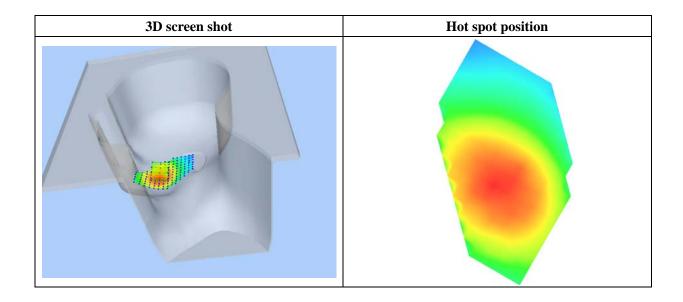
Type: Phone measurement (Complete)
Date of measurement: 01/02/2014


Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Right head	
Device Position	Cheek	
Band	GSM850	
Channels	Low	
Signal	TDMA (Crest factor: 8.0)	

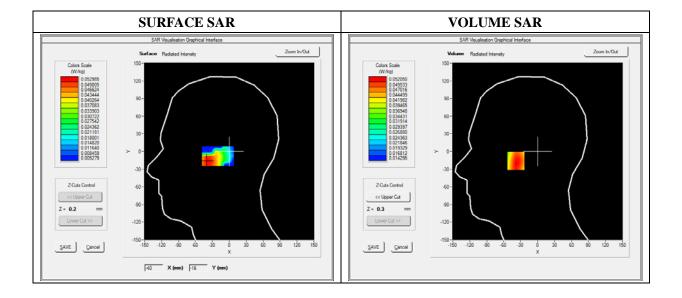

Frequency (MHz)	824.200000
Relative Permittivity (real part)	41.400000
Conductivity (S/m)	0.880000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-56.00, Y=-33.00

SAR 10g (W/Kg)	0.124288
SAR 1g (W/Kg)	0.156358

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1572	0.1410	0.1217	0.1008
	0.16-				
	0.15				
	0.14				
	■ 0.13- ■ 0.12-		+		
	≥ 0.12-		+		
	₩ 0.11-		++		
	0.10-		 		
	0.09-	+	+		
	0.08-	50 75 100	105 150 175	20.0 22.5 25.0	
	0.0 2.5	5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

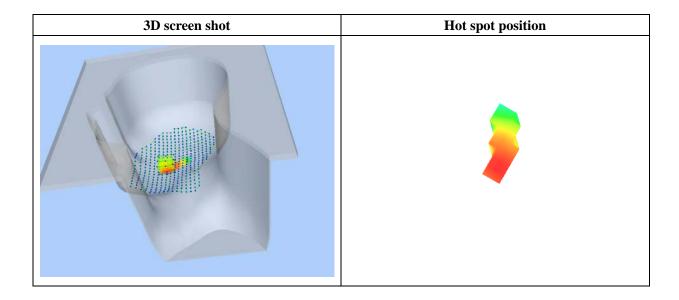
Type: Phone measurement (Complete)
Date of measurement: 01/02/2014


Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Right head	
Device Position	Tilt	
Band	GSM850	
Channels	Low	
Signal	TDMA (Crest factor: 8.0)	

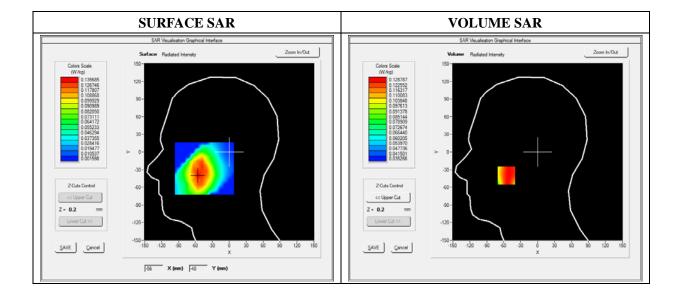

Frequency (MHz)	824.200000
Relative Permittivity (real part)	41.400000
Conductivity (S/m)	0.880000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-38.00, Y=-16.00

SAR 10g (W/Kg)	0.038604
SAR 1g (W/Kg)	0.050372

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0518	0.0406	0.0330	0.0280
	0.052-				
	0.045- 0.040- W 0.035- 0.030- 0.024- 0.0 2.	5 5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

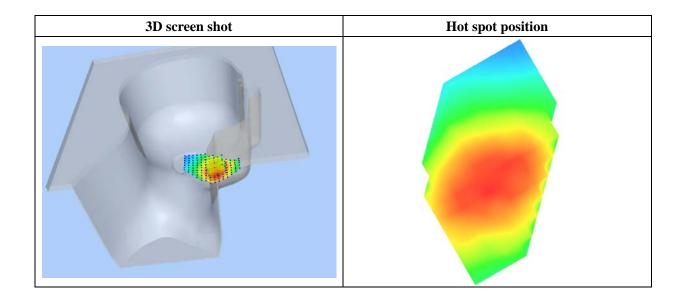
Type: Phone measurement (Complete)
Date of measurement: 01/02/2014


Measurement duration: 11 minutes 48 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Left head	
Device Position	Cheek	
Band	GSM850	
Channels	Low	
Signal	TDMA (Crest factor: 8.0)	


Frequency (MHz)	824.200000
Relative Permittivity (real part)	41.400000
Conductivity (S/m)	0.880000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-55.00, Y=-40.00

SAR 10g (W/Kg)	0.104220
SAR 1g (W/Kg)	0.128425

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.1273	0.1148	0.0992	0.0819
	0.13-				
	0.12-	\rightarrow			
	0.11-				
	<u> </u>				
	₹ 0.10				
	-01.0 Wkg		++		
	0.08-		+++		
	0.07-				
	0.06-				
	0.0 2.5	5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

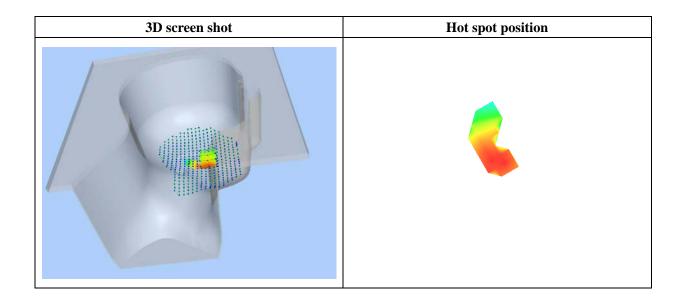
Type: Phone measurement (Complete)
Date of measurement: 01/02/2014

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.25; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Left head	
Device Position	Tilt	
Band	GSM850	
Channels	Low	
Signal	TDMA (Crest factor: 8.0)	

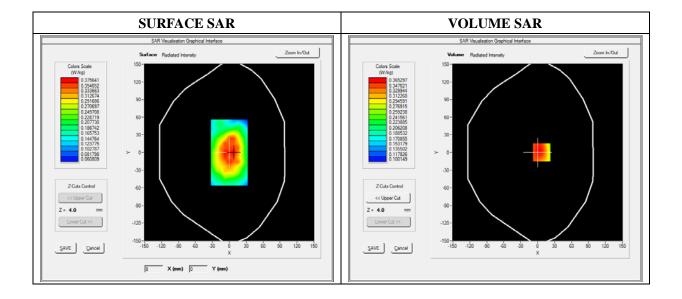

Frequency (MHz)	824.200012
Relative Permittivity (real part)	41.400000
Conductivity (S/m)	0.880000
Power Variation (%)	1.810000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-39.00, Y=-8.00

SAR 10g (W/Kg)	0.038325
SAR 1g (W/Kg)	0.050911

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0519	0.0389	0.0310	0.0265
	0.052-				
	0.045- 0.040- 0.035- 0.030- 0.024- 0.0 2.	5 5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

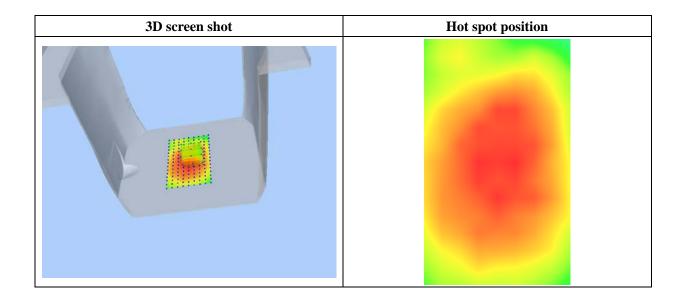
Type: Phone measurement (Complete)
Date of measurement: 01/02/2014


Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Body-worn	
Band	GSM850	
Channels	Low	
Signal	TDMA (Crest factor: 8.0)	

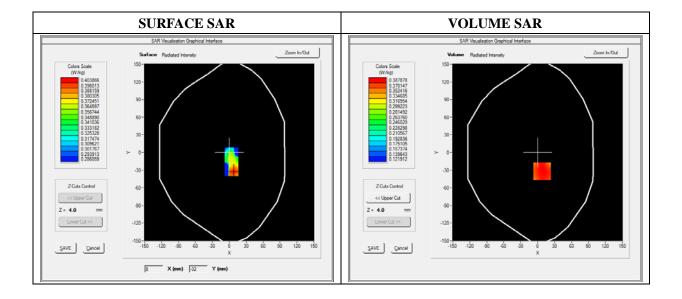

Frequency (MHz)	824.200000
Relative Permittivity (real part)	55.802100
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=7.00, Y=0.00

SAR 10g (W/Kg)	0.328763
SAR 1g (W/Kg)	0.425932

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3594	0.2866	0.2291	0.1835
	0.36-				
	0.30 -	$+\lambda$			
	0.25				
	≥ 0.25 -				
	0.20-				
	0.20			\downarrow	
	0.15-	+++			
	0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0				
			Z (mm)		

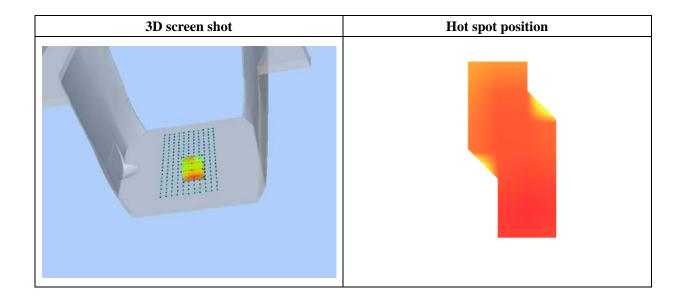
Type: Phone measurement (Complete)
Date of measurement: 01/02/2014


Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Front	
Band	GPRS850_4TX	
Channels	Low	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

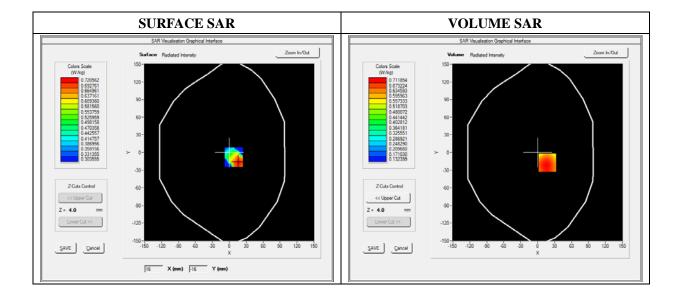

Frequency (MHz)	824.200000
Relative Permittivity (real part)	55.802100
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=8.00, Y=-32.00

SAR 10g (W/Kg)	0.292727	
SAR 1g (W/Kg)	0.378303	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3879	0.3118	0.2518	0.2042
	0.39-				
	0.35				
	ॼ 0.30-				
	<u> </u>		\backslash		
	B 0.30-		\longrightarrow		
	0.20		 		
	0.16-				
	0.0 2.5	5.0 7.5 10.0	12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

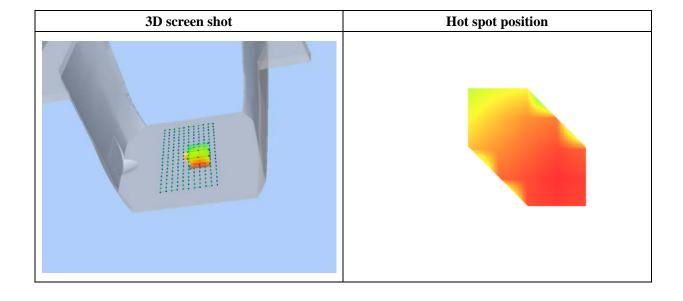
Type: Phone measurement (Complete)
Date of measurement: 01/02/2014


Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Back	
Band	GPRS850_4TX	
Channels	Low	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

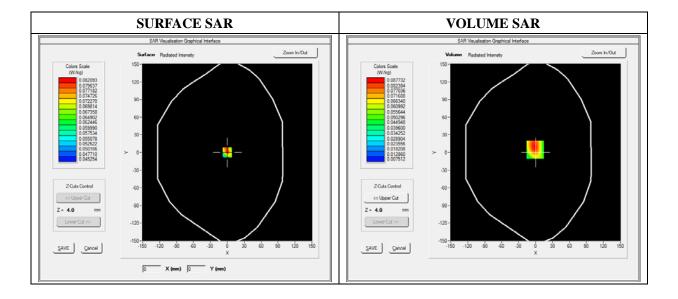

Frequency (MHz)	824.200000
Relative Permittivity (real part)	55.802100
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=17.00, Y=-17.00

SAR 10g (W/Kg)	0.518333
SAR 1g (W/Kg)	0.688745

0.00	4.00	9.00	14.00	19.00
0.0000	0.7038	0.5580	0.4426	0.3507
0.7-				
0.6-	+	\perp		
<u> </u>				
₹ 0.5-	\rightarrow	+++		
A H				
0.4-		+		
0.3				
0.0 2.5			20.0 22.5 25.0	
		Z (mm)		
	0.0000 0.7- 0.6- 0.5- 0.4- 0.3-	0.0000 0.7038 0.7 0.6 0.5 0.4 0.3 0.0 2.5 5.0 7.5 10.0	0.0000 0.7038 0.5580 0.7	0.0000 0.7038 0.5580 0.4426

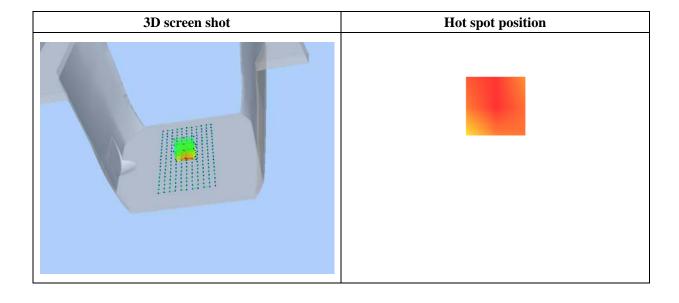
Type: Phone measurement (Complete)
Date of measurement: 01/02/2014


Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Bottom	
Band	GPRS850_4TX	
Channels	Low	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

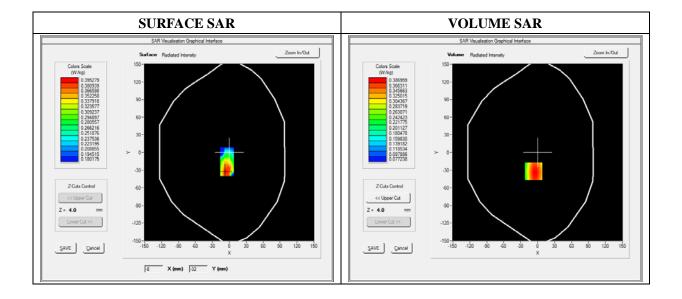

Frequency (MHz)	824.200000
Relative Permittivity (real part)	55.802100
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-1.00, Y=5.00

SAR 10g (W/Kg)	0.051243
SAR 1g (W/Kg)	0.082598

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.0860	0.0535	0.0348	0.0243
	0.09 - 0.08 - 0.07 - 0.06 - 0.05 - 0.04 - 0.03 - 0.02 - 0.0 2.5		12.5 15.0 17.5		
			Z (mm)		

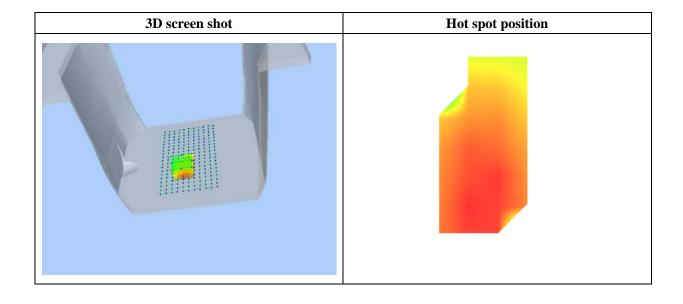
Type: Phone measurement (Complete)
Date of measurement: 01/02/2014


Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Right	
Band	GPRS850_4TX	
Channels	Low	
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)	

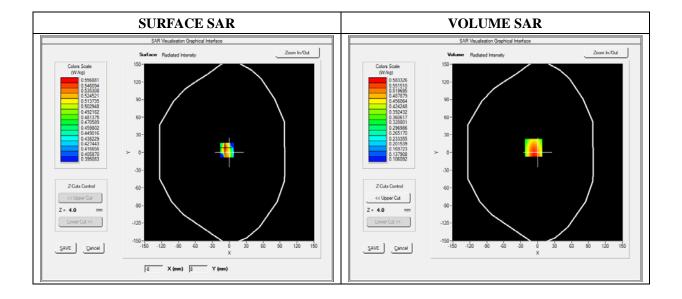

Frequency (MHz)	824.200000
Relative Permittivity (real part)	55.802100
Conductivity (S/m)	0.96000
Power Variation (%)	0.80000
Ambient Temperature	21.1
Liquid Temperature	21.3

 $Maximum\ location:\ X{=}\text{-}7.00,\ Y{=}\text{-}32.00$

SAR 10g (W/Kg)	0.253420
SAR 1g (W/Kg)	0.372675

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.3870	0.2692	0.1913	0.1403
	0.39-				
	0.35-	\longrightarrow	+		
	0.00				
	0.30-				
	₹ 0.25-	++			
	0.30 - WK 0.25 - 0.20 -				
	0.15-				
	0.10-				
	0.0 2.5		12.5 15.0 17.5	20.0 22.5 25.0	
			Z (mm)		

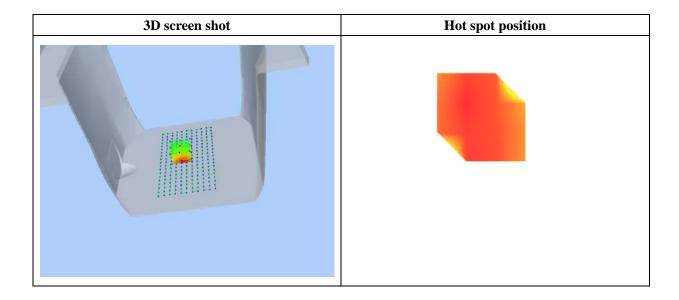
Type: Phone measurement (Complete)
Date of measurement: 01/02/2014


Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.50; Calibrated: 03/21/2013

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat plane		
Device Position	Left		
Band	GPRS850_4TX		
Channels	Low		
Signal	Duty Cycle: 3.00 (Crest factor: 3.00)		


Frequency (MHz)	824.200000		
Relative Permittivity (real part)	55.802100		
Conductivity (S/m)	0.96000		
Power Variation (%)	0.80000		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

Maximum location: X=-7.00, Y=8.00

SAR 10g (W/Kg)	0.366944		
SAR 1g (W/Kg)	0.544672		

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.0000	0.5403	0.3996	0.2940	0.2148
	0.54 - 0.50 - 0.45 - 0.45 - 0.35 - 0.35 - 0.25 - 0.20 - 0.15 - 0.0 2.5	5.0 7.5 10.0	12.5 15.0 17.5 Z (mm)	20.0 22.5 25.0	

