TEST REPORT

CTK Co., Ltd.

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (1) / (30) Pages

1. Applicant

• Name: NEOLAB CONVERGENCE

Address: #1501, Mario Tower, 28, Digital-ro 30-gil, Guro-gu, Seoul, Korea 08389

Date of Receipt: 2025-04-30

2. Manufacturer

• Name: NEOLAB CONVERGENCE

Address: #1501, Mario Tower, 28, Digital-ro 30-gil, Guro-gu, Seoul, Korea 08389

3. Use of Report : For FCC Conformance

4. Test Sample / Model: SMARTPEN / NWP-F55

5. Date of Test: 2025-05-12 to 2025-05-29

6. Test Standard(method) used: FCC 47 CFR part 15 subpart C 15.247

7. Testing Environment: refer to 6 page

8. Test Results : Compliance

9. Location of Test: \boxtimes Permanent Testing Lab \square On Site Testing

(Address: (Unhak-Dong) 5, Dongbu-ro 221beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Republic of Korea)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

This report cannot be reproduced or copied without the written consent of CTK.

Approval

Tested by

Technical Manager

Approval

Kun-Hui Park: (Signature)

Ji-Hye, Kim: (Signatur

Remark. This report is not related to KOLAS accreditation and relevant regulation.

2025-06-05

CTK Co., Ltd.

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (2) / (30) Pages

REPORT REVISION HISTORY

Date	Revision	Page No
2025-06-05	Issued (CTK-2025-01451)	all

This report shall not be reproduced except in full, without the written approval of CTK Co., Ltd. This document may be altered or revised by CTK Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by CTK Co., Ltd. will constitute fraud and shall nullify the document.

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (3) / (30) Pages

Project Number: CTK-R-2025-02343

CONTENTS

1. General Product Description	4
1.1 Applicant Information	4
1.2 Product Information	4
1.3 Peripheral Devices	4
1.4 Model Differences	4
2. Accreditations	5
2.1 Laboratory Accreditations and Listings	5
2.2 Calibration Details of Equipment Used for Measurement	5
3. Test Specifications	6
3.1 Standards	6
3.2 Testing Environment	6
3.3 Mode of operation during the test	7
3.4 Device Modifications	7
3.5 Measurement Uncertainty	7
3.6 Test Software	7
4. Technical Characteristic Test	8
4.1 6dB Bandwidth	8
4.2 Maximum peak Conducted Output Power	1
4.3 Transmitter Power Spectral Density	3
4.4 Conducted Spurious emission	5
4.5 Radiated Emission	7
4.6 AC Conducted Emissions	8
APPENDIX A – Test Equipment Used For Tests	0

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (4) / (30) Pages

1. General Product Description

1.1 Applicant Information

Company	NEOLAB CONVERGENCE	
Contact Point	#1501, Mario Tower, 28, Digital-ro 30-gil ,Guro-gu, Seoul, Korea 08389	
Contact Person	Name: Kim Haneul E-mail: haneul95.kim@neolab.net Tel: +82-02-3462-2981 Fax: +82-02-3462-2983	

1.2 Product Information

FCC ID	2AALG-NWP-F55
Product Description	SMARTPEN
Model name	NWP-F55
Operating Frequency	2 402 MHz - 2 480 MHz
RF Output Power	0.118 dBm (1.028 mW)
Antenna Specification	Antenna type : Chip antenna Peak Gain : 0.51 dBi
Number of channels	Bluetooth LE 1 Mbps: 40
Channel Spacing	2 MHz
Type of Modulation	GFSK
Power Source	DC 3.7 V (Battery)
Hardware Rev	V1.00
Software Rev	V1.01

1.3 Peripheral Devices

Device	Manufacturer	Model No.	Serial No.
Note Computer	Samsung Electronics Co., Ltd.	NT550XEZ-A58AG	5RNV9FFTA00272V
AC/DC Adapter	Samsung Electronics Co., Ltd.	EP-TA845001	-
Travel Adapter	HAEM VINA Co., Ltd	EP-TA200 002	RK7W38XJR54HMK

1.4 Model Differences

Not applicable

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Tel: +82-31-339-9970 Fax: +82-31-624-9501 Report No.: CTK-2025-01451 Page (5) / (30) Pages

2. Accreditations

2.1 Laboratory Accreditations and Listings

Country	Agency	Registration Number
USA	FCC	805871
CANADA	ISED	CN: 8737A CAB ID: KR0025
KOREA	NRRA	KR0025

2.2 Calibration Details of Equipment Used for Measurement

Test equipment and test accessories are calibrated on regular basis. The maximum time between calibrations is one year or what is recommended by the manufacturer, whichever is less. All test equipment calibrations are traceable to the Korea Research Institute of Standards and Science (KRISS), therefore, all test data recorded in this report is traceable to KRISS.

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (6) / (30) Pages

3. Test Specifications

3.1 Standards

Section in FCC	Requirement(s)	Status (Note 1)	Test Condition	
15.247(a)	6 dB Bandwidth	С		
15.247(b)	Maximum Output Power	С		
15.247(d)	Conducted Spurious emission	С	Conducted	
15.247(d)	Unwanted Emission(Conducted) C			
15.247(e)	Transmitter Power Spectral Density	С		
15.209	Radiated Emissions	С	Radiated	
15.207	AC Conducted Emissions C Line Conducted		Line Conducted	
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable				
<u>Note 2</u> : The data in this test report are traceable to the national or international standards.				
Note 3: The sample was tested according to the following specification: FCC Part 15.247, ANSI C63.10-2013				

3.2 Testing Environment

	Test Item	Test Date	Temperature (°C)	Relative Humidity (%)
Unwanted Emi		2025-05-29	24 ± 1	42 ± 3
	1) 9 kHz to 30 MHz	2025-05-20	21 ± 1	39 ± 3
T	2) 30 MHz to 1 GHz	2023 03 20	21 + 1	39 1 3
Transmitter emission	3) 1 GHz to 18 GHz			
(Radiated)	4) 18 GHz to 25 GHz	2025-05-28	24 ± 1	45 ± 3
	5) Restricted Frequency Bands			
AC Conducted	Emissions	2025-05-12	23 ± 1	41 ± 3

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501 Report No.: CTK-2025-01451 Page (7) / (30) Pages

3.3 Mode of operation during the test

The EUT is operated in a manner representative of the typical of the equipments. During at testing, system components were manipulated within the confines of typical usage to maximize each emission. All modulation modes were tests. The results are only attached worst cases.

Test Frequency

Mode	Lowest channel	Middle channel	Highest channel
BLE 1 Mbps	2 402 MHz	2 440 MHz	2 480 MHz

Duty Cycle

Mode	Duty Cycle	Duty Cycle Factor
BLE 1 Mbps	64.10 %	1.93 dB

3.4 Device Modifications

The following modifications were necessary for compliance:

Not applicable

3.5 Measurement Uncertainty

The value of the measurement uncertainty for the measurement of each parameter. Coverage factor k=2, Confidence levels of 95 %

Description	Uncertainty
Conducted RF Output Power	1.50 dB (C.L.: Approx. 95 %, k = 2)
Power Spectral Density	1.50 dB (C.L.: Approx. 95 %, k = 2)
Occupied Bandwidth	0.1 MHz (C.L.: Approx. 95 %, $k = 2$)
Unwanted Emission(conducted)	3.00 dB (C.L.: Approx. 95 %, k = 2)
Radiated Emissions ($f \le 1 \text{ GHz}$)	3.82 dB (C.L.: Approx. 95 %, $k = 2$)
Radiated Emissions (f > 1 GHz)	4.48 dB (C.L.: Approx. 95 %, k = 2)
Line Conducted Emission	2.00 dB (C.L.: Approx. 95 %, k = 2)

3.6 Test Software

Conducted Test	Ics Pro Ver. 6.0.3
Radiated Test	EP5RE Ver. 6.0.10, ES10 Ver. 2022.04.000
Line Conducted Test	EMC32 Ver. 10.50.00

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Tel: +82-31-339-9970 Fax: +82-31-624-9501 Report No.: CTK-2025-01451 Page (8) / (30) Pages

4. Technical Characteristic Test

4.1 6dB Bandwidth

Test Procedures

KDB 558074 - Section 8.2 ANSI C63.10-2013 - Section 11.8.2

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Procedures

ANSI C63.10-2013 - Section 6.9

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

<u>Test Settings</u>:

Center frequency = the highest, middle and the lowest channels

a) RBW = 100 kHz

b) VBW \geq 3 x RBW

c) Detector = peak

d) Trace mode = Max hold

- e) Sweep = auto couple
- f) Allow trace to fully stabilize
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Minimum Standard:

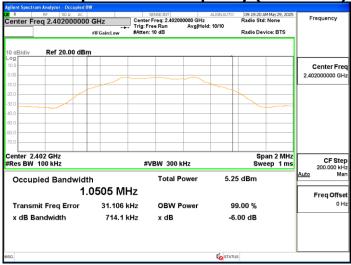
6 dB Bandwidth > 500kHz

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (9) / (30) Pages

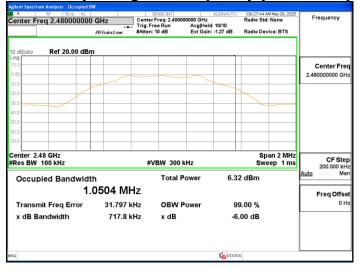
Test Data:

Mode	Frequency [MHz]	6 dB Bandwidth [MHz]	99 % Bandwidth [MHz]	Result
	2 402	0.714	1.051	
1 Mbps	2 440	0.716	1.051	Complies
	2 480	0.718	1.050	


See next pages for actual measured spectrum plots.

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (10) / (30) Pages


BLE 1 Mbps - Lowest Frequency (2 402 MHz)

BLE 1 Mbps - Middle Frequency (2 440 MHz)

BLE 1 Mbps - Highest Frequency (2 480 MHz)

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (11) / (30) Pages

4.2 Maximum peak Conducted Output Power

Test Procedures

KDB 558074 - Section 8.3.1.1 ANSI C63.10-2013 - Section 11.9.1.1

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

Test Settings:

Center frequency = the highest, middle and the lowest channels

a) RBW \geq DTS bandwidth

b) VBW \geq 3 x RBW

c) span \geq 3 x RBW

d) Sweep time = auto couple

e) Detector = peak

f) Trace mode= max hold

- g) Allow trace to fully stabilize
- h) Use peak marker function to determine the peak amplitude level.

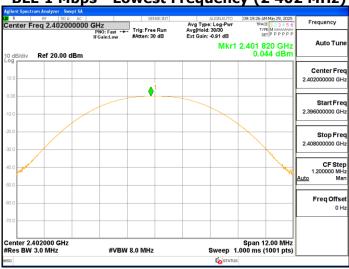
Limit:

Maximum Output Power < 1 W (30 dBm)

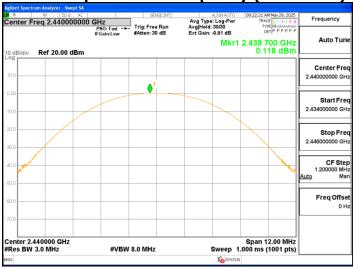
Test Data:

Mode	Frequency	Output	Power	Dogult
Mode	[MHz]	[dBm]	[mW]	Result
	2 402	0.044	1.010	
1 Mbps	2 440	0.118	1.028	Complies
	2 480	-0.160	0.964	

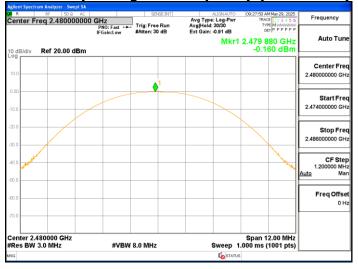
See next pages for actual measured spectrum plots.



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970


Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (12) / (30) Pages



BLE 1 Mbps - Middle Frequency (2 440 MHz)

BLE 1 Mbps - Highest Frequency (2 480 MHz)

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Tel: +82-31-339-9970 Fax: +82-31-624-9501 Report No.: CTK-2025-01451 Page (13) / (30) Pages

4.3 Transmitter Power Spectral Density

Test Procedures

KDB 558074 - Section 8.4 ANSI C63.10-2013 - Section 11.10.2

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance.

Test Settings:

Center frequency = the highest, middle and the lowest channels

a) RBW : $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$

b) VBW \geq 3 x RBW

c) span \geq 1.5 x DTS bandwidth

d) Sweep time = auto couple

e) Detector = peak

f) Trace mode= max hold

- g) Allow trace to fully stabilize
- h) Use the peak marker function to determine the maximum amplitude level within the RBW.

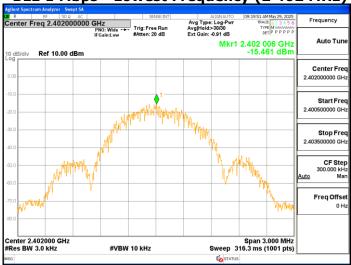
Limit:

Power Spectral Density < 8dBm @ 3 kHz BW

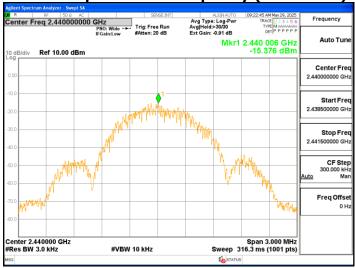
Test Data:

Mode	Frequency [MHz]	Power Spectral Density [dBm]	Result
	2 402	-15.461	
1 Mbps	2 440	-15.376	Complies
	2 480	-15.656	

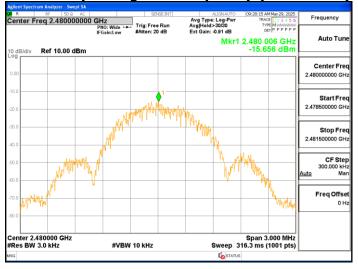
See next pages for actual measured spectrum plots.



(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970


Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (14) / (30) Pages



BLE 1 Mbps - Middle Frequency (2 440 MHz)

BLE 1 Mbps - Highest Frequency (2 480 MHz)

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Tel: +82-31-339-9970 Fax: +82-31-624-9501 Report No.: CTK-2025-01451 Page (15) / (30) Pages

4.4 Conducted Spurious emission

Test Procedures

KDB 558074 - Section 8.5 ANSI C63.10-2013 - Section 11.11.3

The Unwanted emission from the EUT were measured according to the dictates PKPSD measurement procedure in section 11.11 of ANSI C63.10-2013.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

<u>Test Settings:</u>

Center frequency = the highest, middle and the lowest channels

a) RBW = 100 kHz

b) VBW \geq 3 x RBW

c) Detector = peak

d) Sweep time = auto couple

- e) Trace mode= max hold
- f) Allow trace to fully stabilize
- g) Use the peak marker function to determine the maximum amplitude level.

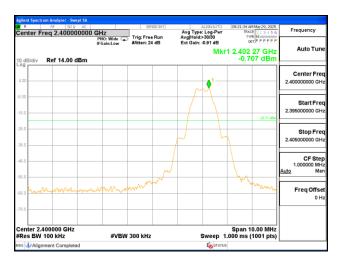
Limit:

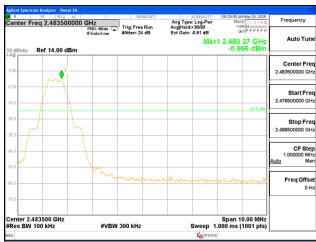
Emission level < 20 dBc

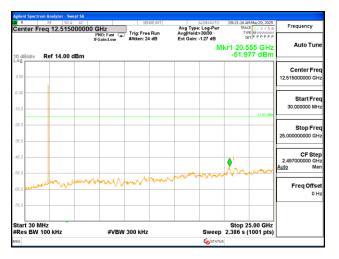
Test results: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest in-band spectral density. Therefore the applying equipment meets the requirement.

See next pages for actual measured spectrum plots.




(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970


Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (16) / (30) Pages

Test Mode: BLE 1 Mbps

element

CTK Co., Ltd.

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-339-9970

Report No.: CTK-2025-01451 Page (17) / (30) Pages

4.5 Radiated Emission

Test		^	~>	^	n
1631	_	u	La	u	

 \boxtimes 10 m SAC (test distance : \square 10 m, \boxtimes 3 m)

□ 3 m SAC (test distance : 3 m)

Test Procedures

KDB 558074 - Section 8.5, 8.6 ANSI C63.10-2013 - Section 11.11, 11.12

- 1) In the frequency range of 9 kHz to 30 MHz, magnetic field is measured with Loop Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- 2) In the frequency range above 30 MHz, Bi-Log Test Antenna(30 MHz to 1 GHz) and Horn Test Antenna(above 1 GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is carried from 1m to 4m above the ground to determine the maximum value of the field strength. The emissions levels at both horizontal and vertical polarizations should be tested.

Test Settings:

Frequency Range = 9 kHz ~ 1 GHz

- a) RBW = 100 kHz for f < 1 GHz, 9 kHz for f < 30 MHz
- b) VBW ≥ RBW
- c) Detector = CISPR Quasi-peak
- d) Sweep time = auto couple

- Peak

Frequency Range = 1 GHz ~ 25 GHz (2.4 GHz 10th harmonic)

- a) RBW = 1 MHz
- b) VBW \geq 3 x RBW

c) Detector = Peak

d) Sweep time = auto

e) Trace mode = max hold

- Average (duty cycle ≥ 98%)

Frequency Range = 1 GHz ~ 25 GHz (2.4 GHz 10th harmonic)

- a) RBW = 1 MHz
- b) VBW \geq 3 x RBW

c) Detector = RMS

d) Sweep time = auto

- e) Averaging type = power (i.e., RMS)
- f) Trace mode = average (at least 100 traces)

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Tel: +82-31-339-9970 Fax: +82-31-624-9501 Report No.: CTK-2025-01451 Page (18) / (30) Pages

- Average (duty cycle < 98%, duty cycle variations are less than $\pm 2\%$)

Frequency Range = 1 GHz ~ 25 GHz (2.4 GHz 10th harmonic)

a) RBW = 1 MHz

b) VBW \geq 3 x RBW

c) Detector = RMS

d) Sweep time = auto

e) Averaging type = power (i.e., RMS)

f) Trace mode = average (at least 100 traces)

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 % duty cycle.

If power averaging (RMS) mode, then the applicable correction factor is

 $10 \log(1/x)$, where x is the duty cycle.

Test Mode	Duty Cycle Factor
BLE 1 Mbps	1.93 dB

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-339-9970

Report No.: CTK-2025-01451 Page (19) / (30) Pages

Limit:

FCC Part 15 § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	MHz	GHz
0.09-0.11	8.37626-8.38675	73-74.6	399.9-410	2690-2900	10.6-12.7
¹ 0.495-0.505	8.41425-8.41475	74.8-75.2	608-614	3260-3267	13.25-13.4
2.1735-2.1905	12.29-12.293	108-121.94	960-1240	3332-3339	14.47-14.5
4.125-4.128	12.51975-12.52025	123-138	1300-1427	3345.8-3358	15.35-16.2
4.17725-4.17775	12.57675-12.57725	149.9-150.05	1435-1626.5	3600-4400	17.7-21.4
4.20725-4.20775	13.36-13.41	156.52475- 156.52525	1645.5-1646.5	4500-5150	22.01-23.12
6.215-6.218	16.42-16.423	156.7-156.9	1660-1710	5350-5460	23.6-24
6.26775-6.26825	16.69475-16.69525	162.0125-167.17	1718.8-1722.2	7250-7750	31.2-31.8
6.31175-6.31225	16.80425-16.80475	167.72-173.2	2200-2300	8025-8500	36.43-36.5
8.291-8.294	25.5-25.67	240-285	2310-2390	9000-9200	² Above 38.6
8.362-8.366	37.5-38.25	322-335.4	2483.5-2500	9300-9500	

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-339-9970

Report No.: CTK-2025-01451 Page (20) / (30) Pages

FCC Part 15 § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table 2:

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in Table 2 Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

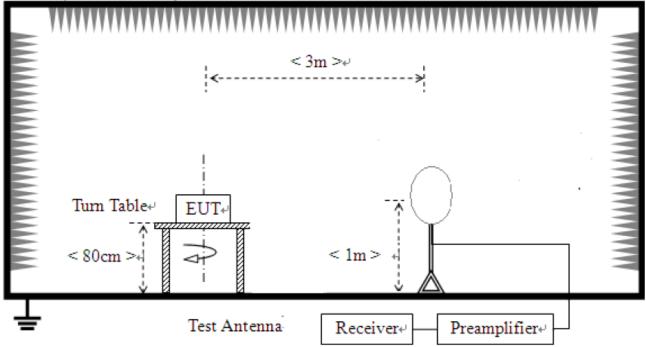
Table 2. General Field Strength Limits for Licence-Exempt Transmitters

Frequency(MHz)	Field Strength uV/m	Field Strength dBuV/m	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	24000/F(kHz)	-	30
1.705-30	30	-	30
30-88	100**	40	3
88-216	150**	43.5	3
216-960	200**	46	3
Above 960	500	54	3

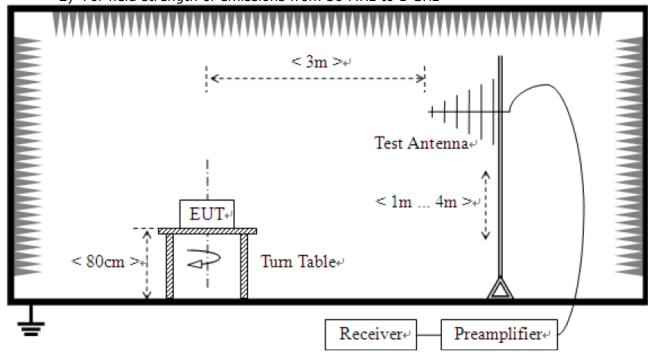
^{**} Except as provided in 15.209(g).fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz, 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g.15.231 and 15.241.

Note

- 1) For above 1 GHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
- 2) For above 1 GHz, limit field strength of harmonics : 54 dBuV/m (AV) and 74 dBuV/m (PK)



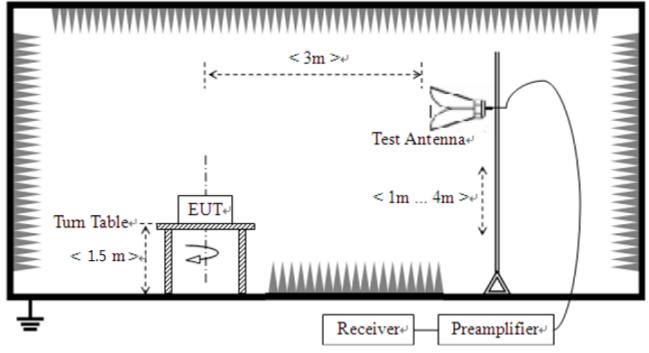
Fax: +82-31-624-9501


Report No.: CTK-2025-01451 Page (21) / (30) Pages

Test Setup:

1) For field strength of emissions from 9 kHz to 30 MHz

2) For field strength of emissions from 30 MHz to 1 GHz



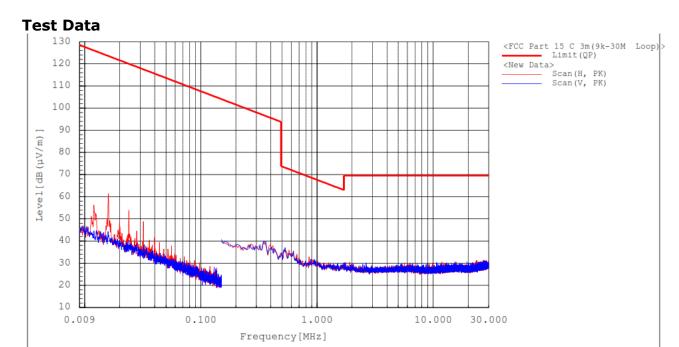
Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (22) / (30) Pages

3) For field strength of emissions above 1 GHz

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501


Report No.: CTK-2025-01451 Page (23) / (30) Pages

Test results

1) 9 kHz to 30 MHz

Test mode: Transmitter (Worst Case-2 440 MHz)

The requirements are:

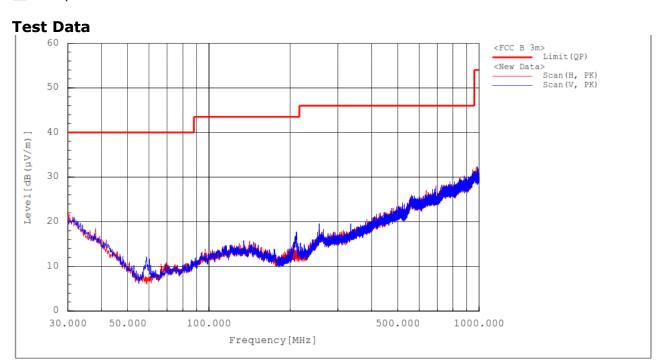
Frequency [MHz] (P)	Reading c.f [dBuV] [dB(1/s	Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
------------------------	----------------------------	------------------	---------------------	-------------

The emissions 9 kHz to 30 MHz were 20 dB lower than the limit.

Remark:

- 1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator
- 4. This data is the Peak(PK) value.

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970


Fax: +82-31-339-9970

Report No.: CTK-2025-01451 Page (24) / (30) Pages

2) 30 MHz to 1 GHz

Test mode: Transmitter (Worst Case-2 440 MHz)

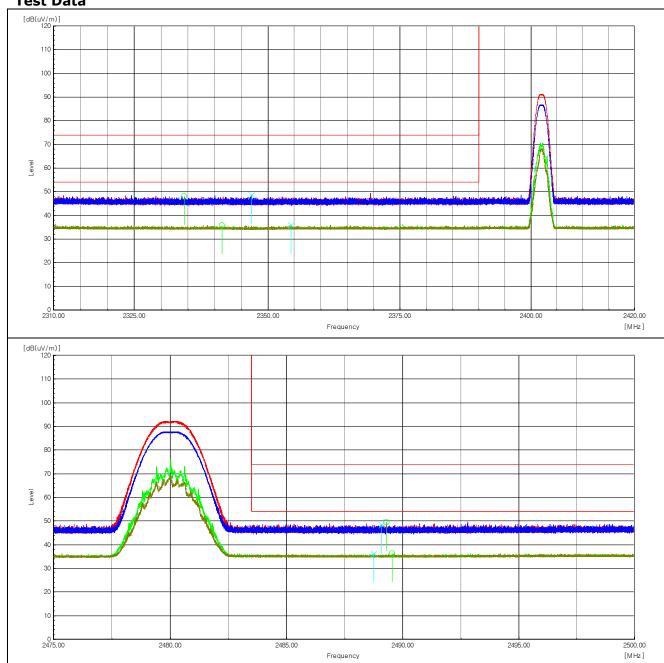
The requirements are:

Frequency (P) Reading [dBuV]	c.f [dB(1/m)]	Level [dB(uV/m)]	Limit [dB(uV/m)]	Margin [dB]
------------------------------	------------------	---------------------	---------------------	-------------

The emissions 30 MHz to 1 GHz were 20 dB lower than the limit.

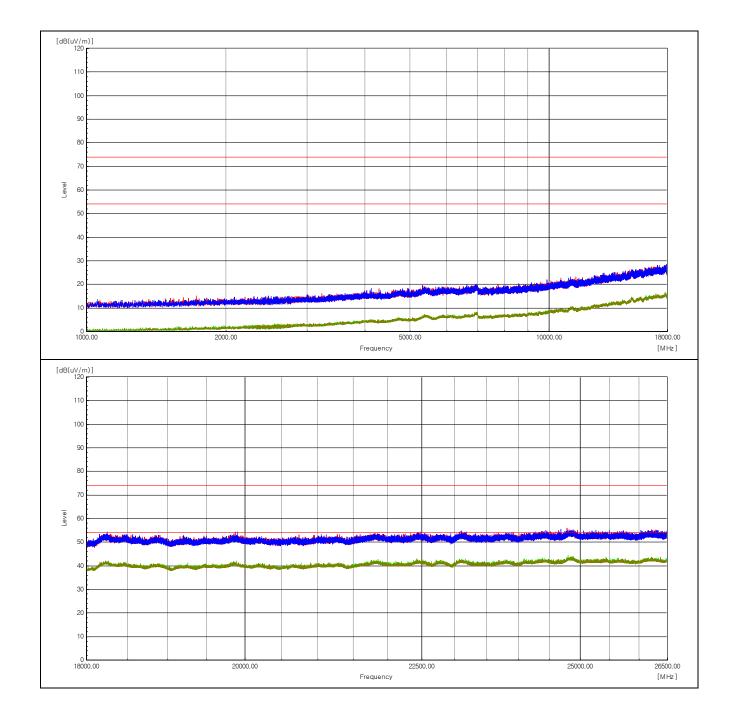
Remark:

- 1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.
- 2. Result = Reading + c.f(Correction factor)
- 3. Correction factor = Antenna factor + Cable loss + 6 dB attenuator Amp Gain


Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (25) / (30) Pages

3) above 1 GHz


The requirements are:

Test Data

Report No.: CTK-2025-01451 Page (26) / (30) Pages

Fax: +82-31-624-9501

(Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (27) / (30) Pages

Test mode: BLE 1Mbps, Transmitter

Lowest channel	(2 402 MHz)
----------------	-------------

Frequency (P) Reading c.f [dBuV] [dB(1/m)]	Duty Cycle Factor [dB] Cycle (dB(uV/m))	Level AV [dB(uV/m)] Limit PK [dB(uV/m)]	Limit AV [dB(uV/m)]	Margin PK [dB]	Margin AV [dB]	Note
--	--	--	------------------------	----------------------	----------------------	------

No peak found

Middle channel (2 440 MHz)

Frequency (P) Reading [dBuV] [d	c.f Duty Cycle dB(1/m)] Factor [dB]	Level PK [dB(uV/m)] [dB(uV	AV Limit PK /m)] [dB(uV/m)]	Limit AV [dB(uV/m)]	Margin PK [dB]	Margin AV [dB]	Note
---------------------------------	--	----------------------------	--------------------------------	------------------------	----------------------	----------------------	------

No peak found

Highest channel (2 480 MHz)

Frequency [MHz]	Reading [dBuV]	c.f [dB(1/m)]	Duty Cycle Factor [dB]	Level PK [dB(uV/m)]	Level AV [dB(uV/m)]	Limit PK [dB(uV/m)]	Limit AV [dB(uV/m)]	Margin PK [dB]	Margin AV [dB]	Note
--------------------	-------------------	------------------	---------------------------------	------------------------	------------------------	------------------------	------------------------	----------------------	----------------------	------

No peak found

Remarks

- 1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X,Y axis). The worst emission was found in stand-up position(Z axis) and the worst case was recorded.
- 2. Peak Result = Reading + c.f(Correction factor)
 Average Result = Reading + c.f(Correction factor) + Duty Cycle Factor
- 3. Correction factor = Antenna factor + Cable loss Amp Gain

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (28) / (30) Pages

4.6 AC Conducted Emissions

Frequency Range of Measurement

150 kHz to 30 MHz

Instrument Settings

IF Band Width: 9 kHz

Test Procedures

ANSI C63.10-2013 - Section 6.2

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m.

Amplitude measurements were performed with a quasi-peak detector and an average detector.

Limit

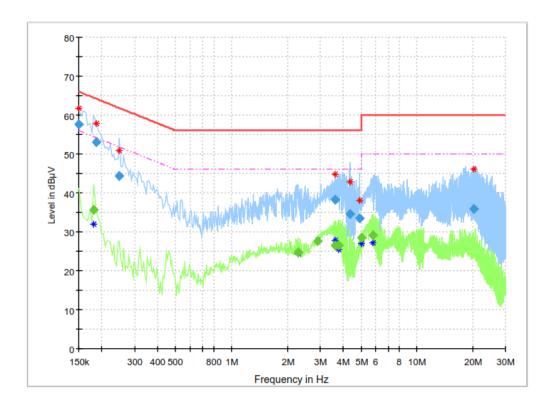
- 15.207(a)

Fraguancy (MHz)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average**				
0.15 ~ 0.5	66 to 56*	56 to 46*				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} The level decreases linearly with the logarithm of the frequency.

Test Results

The requirements are:


^{**} A linear average detector is required.

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (29) / (30) Pages

Test Data

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)			(dB)
0.150000	57.50		66.00	8.50	15000.0	9.000	L1	ON	9.8
0.181500		35.63	54.42	18.79	15000.0	9.000	N	ON	9.8
0.186000	53.05		64.21	11.17	15000.0	9.000	L1	ON	9.9
0.249000	44.30		61.79	17.49	15000.0	9.000	N	ON	9.6
2.278500		24.86	46.00	21.14	15000.0	9.000	N	ON	9.7
2.904000		27.61	46.00	18.39	15000.0	9.000	N	ON	9.7
3.601500		26.44	46.00	19.56	15000.0	9.000	N	ON	9.7
3.601500	38.19		56.00	17.81	15000.0	9.000	N	ON	9.7
3.795000		26.46	46.00	19.54	15000.0	9.000	N	ON	9.7
4.366500	34.56		56.00	21.44	15000.0	9.000	N	ON	9.7
4.906500	33.53		56.00	22.47	15000.0	9.000	L1	ON	9.9
4.996500		28.43	46.00	17.57	15000.0	9.000	N	ON	9.8
5.797500		29.23	50.00	20.77	15000.0	9.000	N	ON	9.9
20.220000	35.86		60.00	24.14	15000.0	9.000	L1	ON	10.3

Fax: +82-31-624-9501

Report No.: CTK-2025-01451 Page (30) / (30) Pages

APPENDIX A – Test Equipment Used For Tests

	Name of Equipment	Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date
1	Signal Analyzer	Agilent	N9020A	MY46471102	2024-11-26	2025-11-26
2	Signal Generator	Rohde & Schwarz	SMB100A	175528	2025-03-21	2026-03-21
3	EMI TEST RECEIVER	Rohde & Schwarz	ESW44	102039	2025-04-28	2026-04-28
4	BILOG ANTENNA	TESEQ	CBL6111D	60654	2023-08-21	2025-08-21
5	Active Loop Antenna	SCHWARZBECK	FMZB 1513	1513-125	2024-04-15	2026-04-15
6	6dB Attenuator	PASTERNACK	PE7AP006-06	L20210504000023	2024-07-31	2025-07-31
7	6dB Attenuator	NONE	6dB	190557	2024-09-19	2025-09-19
8	AMPLIFIER	SONOMA INSTRUMENT	310N	411011	2024-07-31	2025-07-31
9	Spectrum Analyzer	R&S	FSV40	101574	2025-01-10	2026-01-10
10	PRE AMPLIFIER	HP	8449B	3008A00620	2025-03-11	2026-03-11
11	Double Ridged Guide Antenna	ETS-Lindgren	3115	00078895	2025-03-13	2026-03-13
12	HORN ANTENNA	SCHWARZBECK	BBHA9170	1153	2024-10-18	2025-10-18
13	LOW NOISE AMPLIFIER	TESTEK	TK-PA1840H	210124-L	2024-10-18	2025-10-18
14	Band Reject Filter	Micro Tronics	BRM50702	G233	2024-11-25	2025-11-25
15	EMI Test Receiver	Rohde & Schwarz	ESR3	102826	2025-04-28	2026-04-28
16	LISN	Rohde & Schwarz	ENV216	102698	2025-04-28	2026-04-28
17	DC Power Supply	HP	E3632A	KR93300203	2024-11-25	2025-11-25

	Cable	Manufacturer	Model No.	Serial No.	Check Date
1	RF Cable (Conducted)	Junkosha Inc.	MWX221	2008S244	2025-04-25
2	RF Cable (Line Conducted)	Canare Corporation	L-5D2W	N/A	2025-03-05
2	RF Cable (9 kHz - 30 MHz Radiated)	Canare Corporation	L-5D2W	N/A	2025-03-05
3	RF Cable (30 MHz - 1 GHz Radiated)	Canare Corporation	L-5D2W	N/A	2025-03-05
4	RF Cable (9 kHz - 1 GHz Radiated)	HUBER+SUHNER	SUCOFLEX 104	MY27558/4	2025-03-05
5	RF Cable (1 GHz - 18 GHz Radiated)	Junkosha Inc.	MWX221	2008S246	2025-02-21
6	RF Cable (1 GHz - 18 GHz Radiated)	Junkosha Inc.	MWX221	J0970749	2025-02-21
7	RF Cable (1 GHz - 18 GHz Radiated)	Sensorview Co., LTD	13A26	TPC2204060007	2025-02-21
8	RF Cable (18 GHz -26.5 GHz Radiated)	Junkosha Inc.	MWX221	2008S249	2025-02-21
9	RF Cable (18 GHz – 26.5 GHz Radiated)	HUBER+SUHNER	SUCOFLEX 102	MY2371/2	2025-02-21
10	RF Cable (18 GHz -26.5 GHz Radiated)	Sensorview Co., LTD	9A40	TP210713-001	2025-02-21