

SAR TEST REPORT

Test report No:	EMC-FCC-A0015

Type of Equipment: Action Camera

Model Name: ACT-LX

Applicant: ISAW Camera Inc. FCC ID: 2AAHK-ACT-LX

FCC Rule Part: CFR §2.1093

Test standards FCC OET Bulletin 65 supplement C

IEEE 1528,2003

ANSI/IEEE C95.1

Max. SAR(1g) 1.48 W/kg

Test result: Complied

This report details the results of the testing carried out on one sample, the results contained in this testreport do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in anyconfiguration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of EMC Compliance Ltd. or testing done by EMC compliance Ltd. in connection with distribution or use of the product described in this report must be approved by EMC Compliance Ltd. in writing.

Date of receipt: 2014,09.23

Date of testing: 2014.10.28 ~ 12.08 Issued date: 2014.12.08

Tested by: Approved by: Choi Cheon-sig

Contents

1. Applicant information	3
2. Laboratory information	4
3. Identification of Sample	5
4.Test Result Summary	6
5. Report Overview	6
6. Test Lab Declaration or Comments	6
7. Applicant Declaration or Comments	6
8. Measurement Uncertainty	7
9. The SAR Measurement System	8
10. System Verification	12
11. Operation Configurations	15
12. SAR Measurement Procedures	16
13. Test Equipment Information	18
14. RF Power	19
15. SAR Test Results	19
16. Test System Verification Results	21
17. Test Results	23
Annex A. Photographs	25
Annex B. Calibration certificate	33

Page: 3 of 56

1. Applicant information

Applicant: ISAW Camera Inc.

Address: 501, Suntec City 1st, Dunchon-daero 474, Jungwon, Seongnam, Gyeonggi,

Korea

Telephone: +82-31-777-2090 **Fax:** +82-2-6499-7002

E-mail: dykim@isawcam.com

Contact name: Lee Kang-hoon

Manufacturer: ISAW Camera Inc.

Address: 501, Suntec City 1st, Dunchon-daero 474, Jungwon, Seongnam, Gyeonggi,

Korea

2. Laboratory information

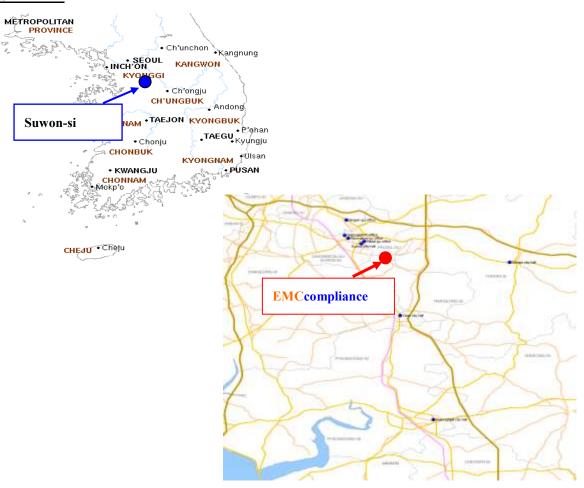
Address

EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-390, Korea

Telephone No.: 82-31-336-9919 Facsimile No.: 82-505-299-8311

Certificate

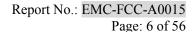

KOLAS No.: 231

FCCSite Registration No.: 687132

VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849

IC Site Registration No.:8035A-2

SITE MAP



3. Identification of Sample

Mode of Operation	WLAN 802.11b/g/n(HT-20)
Model Number	ACT-LX
Serial Number	N/A
Sample Version	N/A
TxFreq.Range	2412 MHz ~ 2462 MHz
Rx Freq.Range	2412 MHz ~ 2462 MHz
RF Output Power	802.11b : 16.8 dBm 802.11g :15.0 dBm 802.11n(HT-20) :13.4 dBm
Antenna Type	Chip Type Antenna
Antenna Gain	- 2.00 dBi
Normal Voltae	DC 3.7 V

4. Test Result Summary

Frequ	iency	RF Output Power	Max. tune	Scaling	EUT	Distance	Measured 1 g SAR	Scaled 1 g SAR
MHz	Ch.	(dBm)	up power (dBm)	Factor	Position	(mm)	8	(W/kg)
2 462	11	16.0	17.5	1.413	Left	0	1.05	1.48

5. Report Overview

This report details the results of testing carried out on the samples listed in section 3, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of EMC Compliance Ltd Wireless lab or testing done by EMC Compliance Ltd Wireless lab made in connection with the distribution or use of the tested product must be approved in writing by EMC Compliance Ltd Wireless lab.

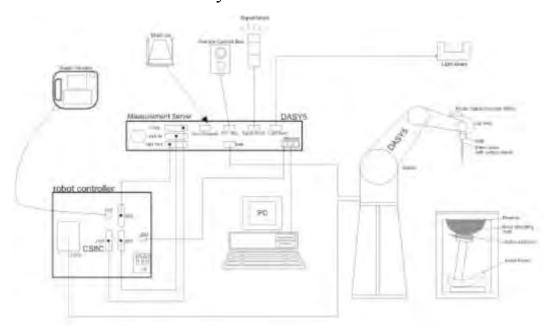
6. Test Lab Declaration or Comments

None

7. Applicant Declaration or Comments

None

8. Measurement Uncertainty


All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/ fail criteria.

Uncertainty of SAR equipments for measurement Body300 MHz to 3GHz

A	b.	C	D	a = f(d, k)	g	1= c xg/e	k
Source of Uncertainty	Description IEEE P1528	Tolerance/ Uncertainty value	Probability Distribution	Div.	Cī	Standard uncertainty	Vi or Veff
	(0.3 ~ 3 GHz)	±96	,		(1 g)	= % (1 g)	
Measurement System							
Probe calibration(k=1)	E.2.1	6.30	28	1	I	6.30	00
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	50
Hemispherical isotropy	E22	2.60	R.	1.73	0.71	1.06	40
Linearity	E.2.4	0.60	R	1.73	1	0.35	oc I
Boundary effect	E.2.3	1.00	R.	1.73	-1-	0.58	*
System detection limits	E,2.5	1.00	R.	1.73	1.	0,58	40
Readout electronics	E.2.6	0,30	\$4	1	1	0.30	30
Response time	E.2.7	0.80	R	1.73	11	0,46	20
Integration time	E.2.8	2:60	R	1,73	1	1,50	00
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	96
Kr ambient conditions—	E.6.1	3.00	R	1.73	1	1.73	90
Probe positioner mechanical tolerance	E.6.2	0.40	R.	1.73	1	0,23	10
Probe positioning with respect to phantom shell	E.6.3	2.90	R.	1.73	t	1.67	×
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	2.00	R.	1.73	1	1.15	*
Test Sample Related	-					11	200
Test sample positioning	E.4.2	4.71	N	1	1	4.71	9
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5
Output power variation—SAR drift measurement	6.6.2	5.00	R.	1.73	I	2,89	æ
Phantom and Tissue Par	rameters	-		-		17	-
Phantom uncertainty (shape and thickness tolerances)	E.3.1	7.50	R.	1.73	I	4,33	-04
Liquid conductivity-measurement uncertainty	E.3.3	1.53	N	1	0.64	0.98	5
Liquid permittivity-measurement uncertainty	E33	3,07	N	ī	0.6	1.84	3
Liquid conductivity-deviation from target values	E3.2	5.00	R	1.73	0.64	1,85	*
Liquid permittivity-deviation from target values	E.3.2	5,00	R	1,73	0,6	1.73	çe.
Combined standard uncertainty				RSS		11.29	183
Expanded uncertainty (95% CONFIDENCE				K=2		22.57	
INTERVAL)							

9. The SAR Measurement System

<SAR System Configuration>

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension foraccommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit
 is battery powered withstandard or rechargeable batteries. The signal is optically transmitted to the
 EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

9.1 Isotropic E-field Probe EX3DV4

EX3DV4 Smallest Isotropic E-Field Probe for Dosimetric Measurements (Preliminary Specifications)

Page: 10 of 56

9.2 Phantom

ELI	
	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.
	ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure. ELI V6.0, released in August 2014, has the same shell geometry as ELI4 but offers increased long
Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table
Accessories	Mounting Device and Adaptors

Page: 11 of 56

9.3 Device Holder for Transmitters

Mounting Devices and Adaptors

http://www.emc2000.co.kr

Mounting Device for Hand-Held Transmitters

MD4HHTV5 - Mounting Device for Hand-Held Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528. FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat)

Material: Polyoxymethylene (POM)

Page: 12 of 56

10. System Verification

10.1 Tissue Verification

The dielectric properties for this Tissue Simulant Liquids were measured by using the Speag DAK-3.5 in conjunction with Agilent E5071B Network Analyzer. The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was (22 ± 2) °C.

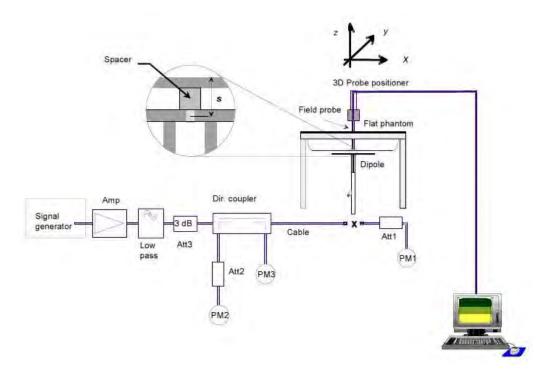
Freq. (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp (°C)
2 412	Body	Recommended Limit	52.75± 5 % (50.1131 ~ 55.3882)	$1.91 \pm 5 \%$ $(1.8180 \sim 2.0094)$	22 ± 2
	5	Measured, 2014-10-28	51.59	1.97	22.17
2 437	Body	Recommended Limit	52.72± 5 % (50.0815 ~ 55.3532)	1.94± 5 % (1.8407 ~ 2.0345)	22 ± 2
	5	Measured, 2014-10-28	51.70	2.01	22.17
2 450	2 450 Body	Recommended Limit	52.70± 5 % (50.0650 ~ 55.3350)	$1.95 \pm 5 \%$ $(1.8525 \sim 2.0475)$	22 ± 2
	5	Measured, 2014-10-28	51.85	2.01	22.17
2 462	Body	Recommended Limit	52.69± 5 % (50.0530 ~ 55.3218)	$1.93 \pm 5 \%$ $(1.8380 \sim 2.0315)$	22 ± 2
	_ = = = 5	Measured, 2014-10-28	51.89	1.99	22.17
2 450	Recommended Lin		52.70± 5 % (50.0650 ~ 55.3350)	$1.95 \pm 5 \%$ $(1.8525 \sim 2.0475)$	22 ± 2
	5	Measured, 2014-12-08	51.82	1.99	20.91
2 462	Body	Recommended Limit	52.69± 5 % (50.0530 ~ 55.3218)	$1.93 \pm 5 \%$ $(1.8380 \sim 2.0315)$	22 ± 2
	,	Measured, 2014-12-08	51.86	2.01	20.91

<Table 1.Measurement result of Tissue electric parameters>

Page: 13 of 56

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	4:	50	8.	35	9	15	19	000	24	150
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78


Salt: $99^+\%$ Pure Sodium Chloride Sugar: $98^+\%$ Pure Sucrose Water: De-ionized, $16 \text{ M}\Omega^+$ resistivity HEC: Hydroxyethyl Cellulose DGBE: $99^+\%$ Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

10.2Test System Verification

The microwave circuit arrangement for system verification is sketched below picture. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SARmeasurement was performed to see if the measured SAR was within \pm 10% from the target SAR values. These tests were done at 2450MHz. The tests were conducted on the samedays as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table Table 2 (A power level of 250 mW was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range (22 \pm 2) °C, the relative humidity was in the range (50 \pm 20)% and the liquid depth above the ear/grid reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Validation	Dipole Ant.	Frequency	Tissue	Limit/Measurement (Normalized to 1 W)			
Kit	S/N	(MHz)	Type		1 g	10 g	
				Recommended Limit	$50.9 \pm 10 \%$	$23.6 \pm 10 \%$	
D2450V2	895	2 450	Body	(Normalized)	$(45.81 \sim 55.99)$	$(21.24 \sim 25.96)$	
				Measured, 2014-10-28	53.60	24.72	
				Recommended Limit	$50.9 \pm 10 \%$	$23.6 \pm 10 \%$	
D2450V2	895	2 450	Body	(Normalized)	$(45.81 \sim 55.99)$	$(21.24 \sim 25.96)$	
				Measured, 2014-12-08	52.40	24.08	

<Table 2.Test System Verification Result>

Page: 15 of 56

11. Operation Configurations

Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged. The test result is measured in operation of Wi-Fi.

Page: 16 of 56

12. SAR Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift ofthe device under test in the batch process. The Minimum distance of probe sensors to surfacedetermines the closest measurement point to phantom surface. The minimum distance of probe sensors surface is 2 mm. This distance cannot be smaller than the Distance of sensor calibration points toprobe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan hasmeasured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is arequirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measument 100 MHz to 6 GHz v01r03.

	≤3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Page: 17 of 56

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 5x5x7 points within a cube whose base faces are centered on the maxima found in a preceding area scanjob within the same procedure. When the measurement is done, the Zoom Scan evaluates theaveraged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measument 100 MHz to 6 GHz v01r03.

			\leq 3 GHz	> 3 GHz
Maximum zoom scan	spatial reso	olution: Ax _{Zeeus} , Ay _{Zeeus}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm	3 -4 GHz: ≤5 mm ⁴ 4 -6 GHz: ≤4 mm ⁸
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: Δz _{Zeom} (n)	≤5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz; ≤ 2 mm
	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz; ≤ 3 mm 4 – 5 GHz; ≤ 2.5 mm 5 – 6 GHz; ≤ 2 mm
	grid ∆z _{Zoom} (n>1): between subsequent points		$\leq 1.5 \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume	X, Y, Z		≥30 mm	3 - 4 GHz; ≥ 28 mm 4 - 5 GHz; ≥ 25 mm 5 - 6 GHz; ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE. P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent powerreference measurement within the same procedure, and with the same settings. The Power DriftMeasurement gives the field difference in dB from the reading conducted within the last PowerReference Measurement. This allows a user to monitor the power drift of the device under test within abatch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensionalgrid. In order to get a reasonable extrapolation, the extrapolated distance should not belarger than the step size in Z-direction.

* Z Scan Report on Liquid Measure the height Annex A.4 Liquid Depth photo to replace

When zoom scan is required and the <u>reported SAR</u> from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page: 18 of 56

13. Test Equipment Information

Test Platform	SPEAG DASY5 System							
Description	SAR Test System (Frequency range 300MHz-6GHz)							
Software Reference	DASY5: V52.8.8.1222, SEMCAD: V14.6.10 (7331)							
Hardware Reference								
Equipment	Model	Serial Number	Date of Calibration	Due date of next Calibration				
DASY5 Robot	TX90XL Speag	F12/5L7FA1/A/01	N/A	N/A				
DASY5 Controller	TX90XL Speag	F12/5L7FA1/C/01	N/A	N/A				
Phantom	2mm Oval Phantom ELI 5	1178	N/A	N/A				
Mounting Device	Mounting Device	None	N/A	N/A				
DAE	DAE4	1342	2014-07-24	2015-07-24				
Probe	EX3DV4	3928	2014-01-15	2015-01-15				
Dipole Validation Kits	D2450V2	895	2014-07-24	2016-07-24				
Network Analyzer	E5071B	MY42403524	2014-07-15	2015-07-15				
Dielectric Assessment Kit	DAK-3.5	1078	2014-08-19	2015-08-19				
Dual Directional Coupler	772D	2839A00719	2014-08-29	2015-08-29				
Signal Generator	E4438C	MY42080486	2014-02-11	2015-02-11				
Power Amplifier	2055-BBS3Q7E9I	1005D/C0521	2014-05-15	2015-05-15				
Dual Power Meter	E4419B	GB43312301	2014-07-17	2015-07-17				
Power Sensor	8481H	3318A19377	2014-08-30	2015-08-30				
Power Sensor	8481H	331BA19379	2014-08-30	2015-08-30				
LP Filter	LA-30N	40058	2014-08-28	2015-08-28				
Humidity/Temp. Data Recorder	MHB-382SD	73871	2014-08-26	2015-08-26				

Page: 19 of 56

14. RF Power

14.1 Average Conducted Output Power

WLAN	WLAN 2 412 MHz		2 462 MHz		
802.11b 1 Mbps	16.3 dBm	16.8 dBm	16.0 dBm		
802.11g 6 Mbps	14.4 dBm	15.0 dBm	14.8 dBm		
802.11n(HT-20) 6.5 Mbps	12.7 dBm	13.4 dBm	13.4 dBm		

14.2 Max. tune up power

WLAN 802.11b		802.11g	802.11n(HT-20)		
Max. Allowed Power	17.5 dBm	15.5 dBm	14.0 dBm		

15. SAR Test Results

15.1 SAR Test Results

Frequ	Frequency		Average Power Max. tune up		EUT	Distance	Measured 1 g SAR	Scaled 1 g SAR	
MHz	Channel	(dBm)	power (dBm)	Factor	Position	(mm)	(W/kg)	(W/kg)	
2 437	6	16.8	17.5	1.042	Front	0	0.033	0.034	
2 437	6	16.8	17.5	1.042	Back	0	0.012	0.013	
2 437	6	16.8	17.5	1.042	Тор	0	0.115	0.120	
2 437	6	16.8	17.5	1.042	Left	0	0.764	0.796	
2 437	6	16.8	17.5	1.042	Right	0	0.030	0.031	
2 437	6	16.8	17.5	1.042	Bottom	0	0.014	0.015	
2 412	1	16.3	17.5	1.318	Left	0	0.693	0.913	
2 462	11	16.0	17.5	1.413	Left	0	1.05	1.48	

<Note>

SAR values were scaled to the maximum allowed power to determine compliance per KDBPublication 447498D01v05r02.

Page: 20 of 56

15.2 Repeated SAR Test Results

Freq	uency	Average Power	Max. tune up	Scaling Factor	EUT Position	Distance (mm)	Measured 1 g SAR	1st Repeated SAR (1g)	Ratio
MHz	Ch.	(dBm)	(dBm)				(W/kg)	(W/kg)	
2 462	11	16.0	17.5	1.413	Left	0	1.05	1.06	0.99

<Note>

FCC KDB Publication 865664 D01v01r03

SAR Measurement Variability was assessed using the following procedures for each frequency band:

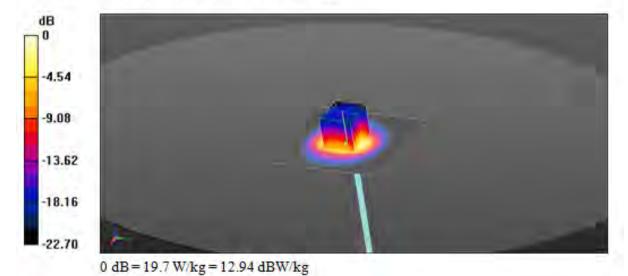
- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is ≥ 1.20 .

16. Test System Verification Results

System check for 2 450MHz-Body(2014-10-28)

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2-SN:895 Procedure Name: d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe) 2

Communication System: UID 0, cw1; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f=2450 MHz; $\sigma=2.007$ S/m; $z_r=51.851$; $\rho=1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(6.84, 6.84, 6.84); Calibrated: 2014-01-15;
 - Sensor-Surface: 2mm(Mechanical Surface Detection)
 - Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
 - Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe) 2/Area Scan (81x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.3 W/kg

System Performance Check at Frequencies/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe) 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

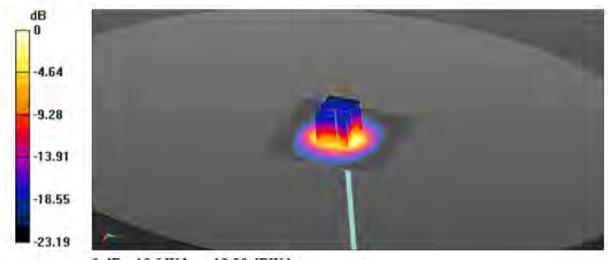
Reference Value = 100.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Report No.: EMC-FCC-A0015 Page: 22 of 56

System check for 2 450MHz-Body(2014-12-08)

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:895 Procedure Name: d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)

Communication System: UID 0, cw1; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.993$ S/m; $z_c = 51.815$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(6.84, 6.84, 6.84); Calibrated: 2014-01-15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Area Scan (81x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.9 W/kg

System Performance Check at Frequencies/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.77 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.02 W/kg Maximum value of SAR (measured) = 19.5 W/kg

0 dB = 19.5 W/kg = 12.90 dBW/kg

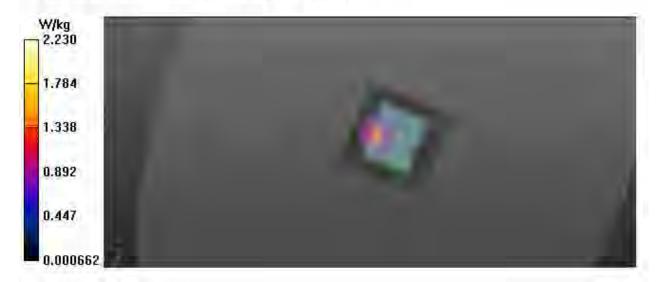
Report No.: EMC-FCC-A0015 Page: 23 of 56

17. Test Results

Body 2 462MHz Left Gap0mm

DUT: ACT-LX; Type: Action Camera; Serial: N/A Procedure Name: 802.11b_ch11_f2 462_Body Left_Gap 0 mm

Communication System: UID 0, 2.4GWLAN (0); Frequency: 2462 MHz; Duty Cycle: 1.1 Medium parameters used: f = 2462 MHz; $\sigma = 1.986$ S/m; $s_r = 51.888$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN3928; ConvF(6.84, 6.84, 6.84); Calibrated: 2014-01-15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA, Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

ACT-LX/802.11b_ch11_f2 462_Body Left_Gap 0 mm/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm
Maximum value of SAR (interpolated) = 1.39 W/kg

ACT-LX/802,11b chl1 f2 462 Body Left Gap 0 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.07 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 4.62 W/kg SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.358 W/kg Maximum value of SAR (measured) = 2.23 W/kg

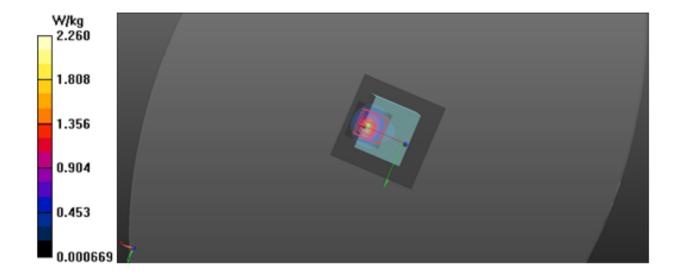
Report No.: EMC-FCC-A0015 Page: 24 of 56

Body_2 462MHz_Left_Gap0mm (Repeated SAR)

DUT: ACT-LX; Type: Action Camera; Serial: N/A Procedure Name: 802.11b chl1 f2 462 Body Left Gap 0 mm

Communication System: UID 0, 2.4 GWLAN (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f=2462 MHz; $\sigma=2.007$ S/m; $\epsilon_f=51.855$; $\rho=1000$ kg/m³ Phantom section: Flat Section

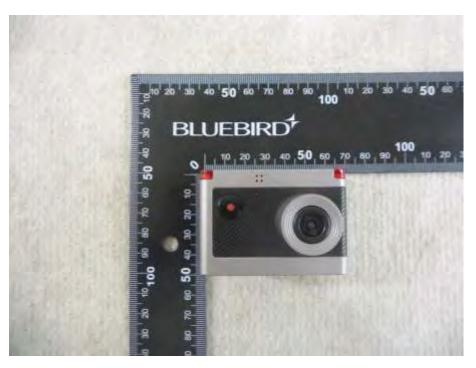
DASY5 Configuration:


- Probe: EX3DV4 SN3928; ConvF(6.84, 6.84, 6.84); Calibrated: 2014-01-15;
- Sensor-Surface: 2mm(Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

ACT-LX/802.11b_ch11_f2 462_Body Left_Gap 0 mm/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAP (interpolated)=1.40 W/kg

Maximum value of SAR (interpolated) = 1.40 W/kg

ACT-LX/802.11b_ch11_f2 462_Body Left_Gap 0 mm/Zoom Scan (7x7x7)/Cube 0:

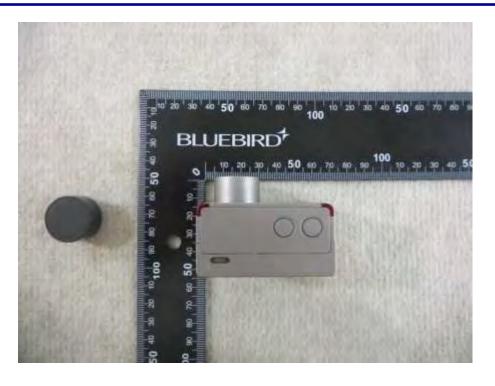

Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 11.14 V/m; Power Drift = 0.19 dB
Peak SAR (extrapolated) = 4.67 W/kg
SAR(1 g) = 1.06 W/kg; SAR(10 g) = 0.362 W/kg
Maximum value of SAR (measured) = 2.26 W/kg

Annex A. Photographs

Annex A.1 EUT

Front View

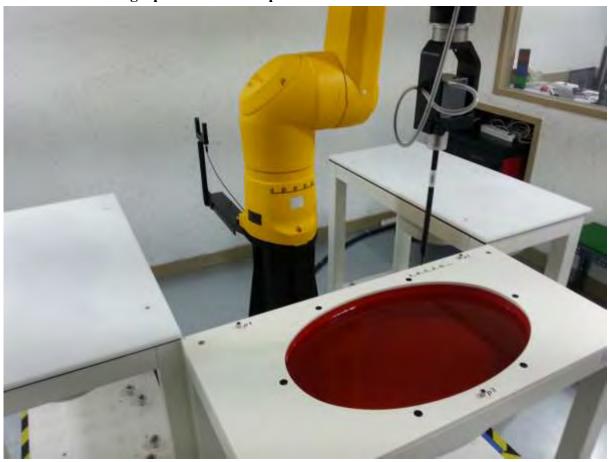
Back View



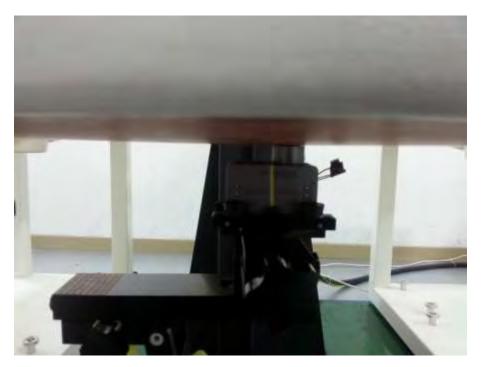
Left side View

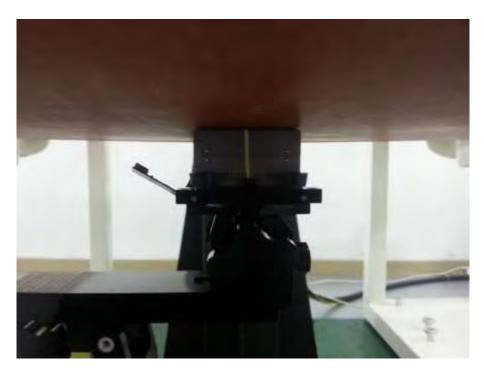


Right side View

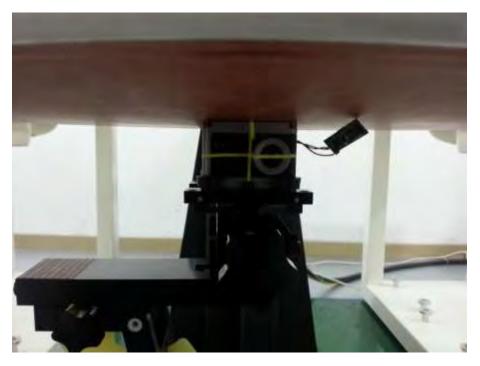

Top side View

Bottom side View


Annex A.2 Photographs of Test Setup


Photograph of the SAR measurement System

Annex A.3 Test Position

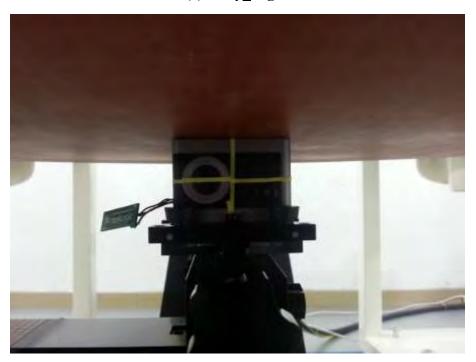


(a) Body_Front

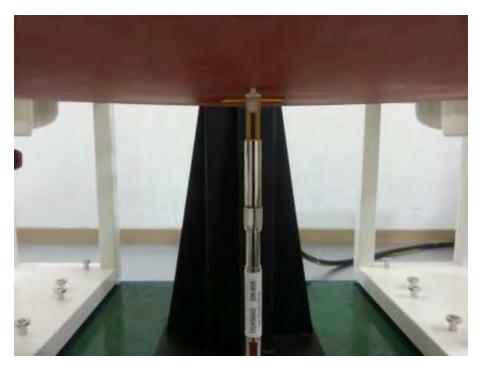
(b) Body_Back



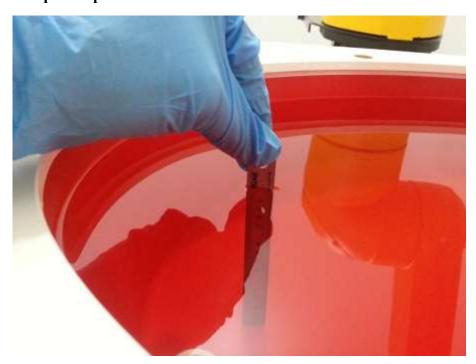
(c) Body_Top



(d) Body_Left



(e) Body_Right


(f) Body_Bottom

(g) Body Validation 2 450 MHz

Annex A.4 Liquid Depth

Body 2 450 MHz

Annex B. Calibration certificate

Annex B.1 Probe Calibration certificate

Page: 34 of 56

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausatrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kullbrierdiens! Service suisse d'étalonnage C Servicio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Apprecised by the Swiss Appreciation Service (SAS) The Swiss Accreditation Service is one of the algenterius to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating iquid NORMX, y, Z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point

crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization of o rotation around probe axis.

Polarization 9 8 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 8 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices. Measurement

Techniques, June 2013
IEC 82209-1, "Procedure to messure the Specific Absorption Rate (SAR) for hand-held devices used in crossproximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 3 = 0 (f < 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncortainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included. in the stated uncertainty of ConvF.
- DCPx.y.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor modia.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor modia. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponding to NORMx,y,2 $^{\circ}$ ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the velidity from \pm 50 MHz to \pm 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe up (on probe axis). No tolerance required
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required)

Cartificate No. EX3-3928_Jan14

Page 2 of 11

EX3DV4 - SN:3928 lequary 15, 2014

Probe EX3DV4

SN:3928

Manufactured: March 8, 2013 Calibrated: January 15, 2014

Calibrated for DASY/EASY Systems (Note: non-competible with DASY2 systems)

Certificate No: EX3-3975_Jen14 Page 3 of 11

Page: 36 of 56

EX3DV4- SN:3926

January 15, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unic (k=2)
Norm (µV/(V/m) ²) ^A	0.50	0,23	0.56	± 10.1 %
DCP (mV) ⁿ	97.4	89.0	98.9	

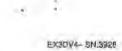
Modulation Calibration Parameters

מוט	Communication System Name		A dB	B dB√μV	C	D dB	VR mV	Unc (k=2)
D	CW	×	0.0	0.0	1.0	0,00	167.7	±2,5 %
	- 1	¥	0.0	0,0	1.0		181.5	
	4	Z	0.0	0.0	1.0		188.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3926_Jan14

Page 4 of 11


The Utcodamies of NormX,Y,Z do not effect the E²-field uncertainty inside TSL (see Pages 5 and 6)

Numerics Timeprosition parameter, uncertainty not reculted.

Uncertainty is determined using the max, deviation from their response applying restanguish distribution and is expressed for the square of the

Page: 37 of 56

January 15, 2014

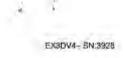
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Calibration Parameter Determined in Head Tissue Simulating Media

r (MHz) ^C	Relative Permittivity	Conductivity (S/m) ²	ConvF X	CONFY	ConvF Z	Alpha G	Depth ^c (mm)	Unct. (k=2)
450	43,5	0.87	10.24	10.24	10.24	0.14	1.58	113.4 %
850	41.5	0.92	9.41	9.41	9.41	0.76	0.59	± 12.0 %
900	41.5	0.97	9.33	9.33	9.33	0.42	0.83	±12.0 %
1750	40.1	1.37	7,88	7.88	7.88	0.62	0.66	± 12.0 %
1900	40.0	1.40	7.62	7.62	7.62	0.33	0.92	±12.0 %
2450	39.2	7.80	6,91	6,91	6.91	0.35	0.87	± 12.0 %
2600	39.0	1.96	6.73	6,73	6.73	0.46	0.71	± 12.0 %
5200	36.0	4.66	5.09	5.09	5.09	D.30	1.80	±13.1 %
5300	35.9	4.76	4.80	4.80	4.80	0.35	1.80	± 13.1 %
5500	35,6	4.96	4.83	4.83	4.83	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.46	4.46	4.46	0.45	1.80	= 13.1 %
5800	35.3	5.27	4.76	4.76	4.76	0.35	1.80	= 13.1 %

Certificate No: EX3-3928_Jan14

Page 5 of 11


Firsquency validity of ± 100 Attito only applies for DASY will 4 and higher (see Page 2), clied it is restricted to ± 50 MHz. The incertainty is the RSS of the Donn's uncertainty at calibration frequency and the uncertainty is the recipited frequency band.

At his particle before 3 GHz, the validity of lissue parameters (s and e) can be retained to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the Donn's uncertainty for indicated target tissue parameters.

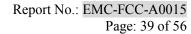
Alpha/DBDID in an detainment during cathration, SPEAG warrants that the remaining diminion due to the boundary effect, after compensation is aways this time ± 1% for friquencies below 3 GHz and below ± 2% for friequencies between 3-6 GHz at any distance larger than half the probe in granteer from the boundary.

Page: 38 of 56

January 15, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Calibration Parameter Determined in Body Tissue Simulating Media

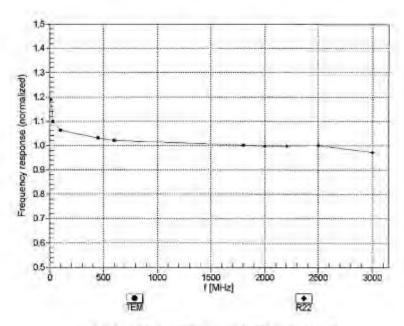

r(MHz) ^E	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF 2	Alpha is	Depth o (mm)	Unet. (k=2)
450	56.7	0.94	10.53	10.53	10.53	0.06	1.20	± 13.4 %
850	55.2	0.99	9.33	9.33	9.33	0.80	0.64	± 12.0 %
900	55,0	1.05	9.21	9.21	9.21	0.52	0.77	± 12.0 %
1750	53.4	1.49	7.65	7.65	7.65	0.38	0.88	±12.0 %
1900	53.3	1.52	7.31	7.31	7.31	0.31	98.0	± 12.0 %
2450	52.7	1.95	6.84	6.84	6.84	0.77	0.55	± 12.0 %
2600	52.5	2.16	6.61	6,61	6,61	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.38	4.39	4.39	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.21	4.21	4.21	0.40	1.90	± 13.1 %
5500	48.6	5.65	3.96	3.96	3.96	0.45	1.90	±13.1 %
5600	48.5	5.77	4.07	4.07	4.07	0.30	1.90	±13.1%
5800	48.2	6.00	4.10	4.10	4.10	0.45	1.90	±13.1 %

Certificate No: EX3-3928_Jan14

Page 6 of 11

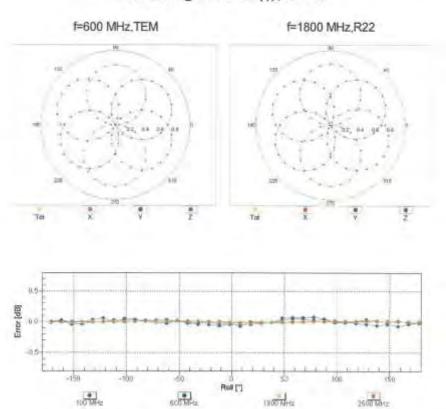
Frequency velidity of ± 100 MHz only applies for DASY vii.6 and higher (see Page 2), else it is restricted to ± 50 MHz. The undertainty is the RSS of the ConvP uncertainty at patients below 3 GHz, the velicity of issue parameters (c and n) can be related to ± 10% if flagist compensation formula is applied to measured SAR velues. At frequencies above 3 GHz, the velicity of issue parameters (c and n) is restricted to ± 5%. The uncertainty is the RSS of the ConvP uncertainty for indicated larger tissue parameters.

Aphablicpth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe fin dismester from the boundary.



January 15, 2014

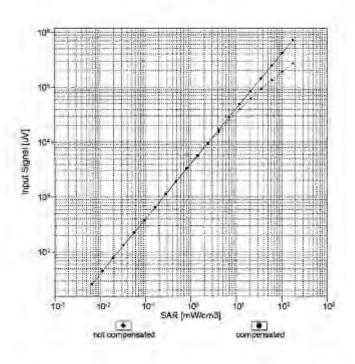
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

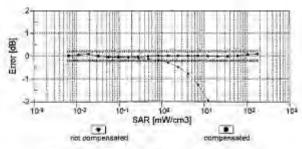

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3928_Jan14 Page 7 of 11

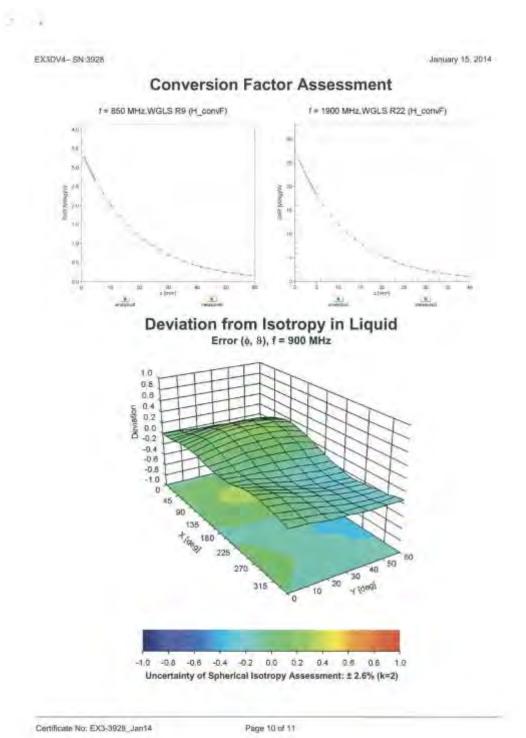
Receiving Pattern (\$\phi\$), \$\partial = 0°

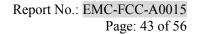
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Certificate No: EX3-3928_Jan14


Page 8 of 11

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3928_lan14 Page 9 of 11

4

EX3DV4-SN:3028 Jenuary 15, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-112
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tlp Diameter	2,5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1.mm
Probe Tip to Sensor Z Calibration Point	1.mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3928_Jan14

Page 11 of 11

Annex B.2 DAE Calibration certification

Calibration Laboratory of Schmid & Partner Engineering AG Zeughsusstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kelibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swise Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client EMC Compliance (Dymstec)

Cardificate No: DAE4-1342 Jul14

Accreditation No.: SCS 108

ALIBRATION C	ENTIFICATE		
Object	DAE4 - SD 000 D0	04 BM - SN: 1342	
alibration procedure(s)	QA CAL-06.v26 Calibration proced	lure for the data acquisition ele	ctronics (DAE)
Californition data:	July 24, 2014	전 직	생절도중인
		nal standards, which realize the physical standards are given on the following pages	
All calibrations have been condu	cted in the closed laboratory	facility environment temperature (22 ± 3	3°C and flumidity < 70%.
Calibration Equipment used (M&	TE critical for calibration).		
Primary Standards	10 e	Cal Date (Certificate No.)	Scheduled Calibration
Koitnley Multimeter Type 2001	SN: 0810278	01-Oct-13 (No;13976)	Dct-54
Secondary Standards	ID a	Check Date (in house)	Scheduled Check
Auti DAE Calibration Unit. Calibrator Box V2.†		07-Jan-14 (in house check) 07-Jan-14 (in house check)	In house check; Jan-1! In house check: Jan-1!
	Manus	Executive	Descriptions
Calibrated by:	Name Enc Hainfeld	Function Technician	Signature
Calibrated by:	Enc Hainfeld	Technician	
Calibrated by:	A THE STATE OF THE		

Certificate No: DAE4-1342 Jul 14

Page 1 of 5

Page: 45 of 56

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 3004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di teratura.
S Swiss Calibration Service

Accrecited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signaturies to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE

data acquisition electronics

Connector angle informati

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

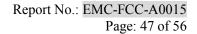
- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity; Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Centicate	Not D	AE4-1	342	July4

Page: 46 of 56

DC Voltage Measurement

ND - Converter Resolution nominal
High Range: 1LSB = High Range: 1LSB = 6.1µV, full range = -100...+300 mV
Low Range: 1LSB = 61nV, full range = -1......+3mV
DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec


Calibration Factors	X	γ	Z
High Range	404,079 ± 0.02% (k=2)	404.229 ± 0.02% (k=2)	404.193 ± 0.02% (k=2)
Low Range	3.97194 ± 1.50% (x=2)	3.97818 ± 1.50% (k=2)	3.97832 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	36.5 "±1"

Certificate No: DAE4-1342_Jul14

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS108)

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199994.48	-2.71	-0,00
Changel X + Input	20003.12	2.03	0.01
Channel X - Input	-19998.22	2.56	-0,0)
Channel Y + Input	199994.97	-2.37	-0.00
Channel Y + Input	20000.20	-0.94	-0.00
Channel Y - Input	20001.55	-0,79	0.00
Channel Z + Input	199993.69	-3.29	-0.00
Channel Z + Input	20000 13	-0.68	-0.00
Channel Z - Input	-20001.35	-0.58	0.00

Low Hange	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.66	0.29	-0.01
Channel X + Input	201,58	0.18	0.09
Channel X - Input	-198.71	-D.04	0.02
Channel Y + Input	2001.16	0.25	0.01
Channel Y + Input	201.20	-0.03	-0.02
Channel Y - Input	-199.87	-1.04	0.53
Channel Z + Input	2001.06	0.27	0.01
Channel Z + Input	200.54	-0.49	-0.24
Channel Z - Input	-200,16	-1.24	0.62

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	11.07	9.27
	= 200	-8.96	-10.56
Channel Y	200	0.81	0.58
	-200	-2.58	-2.76
Channel Z	200	1,15	0.69
	-200	-2.73	-3,02

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	W	4,50	-2.81
Channel Y	200	9.68	-	6.17
Channel Z	200	10.07	7.09	

Certificate No: DAE4-1342_Jul14

Page 4 of 5

Page: 48 of 56

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zoro Time: 3 sec: Missisuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15949	75477
Channel Y	16473	14871
Channel Z	15687	14031

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Irrord TOM

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.59	-0.36	1.97	0.56
Channel Y	-0.70	-1.87	0.51	0.54
Channel Z	-0.60	-1.90	0.78	0.80

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25/A

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	500	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	¥7.9	
Supply (- Vcc)	-7.6	

Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-6	-9

Certificate No: DAE4-1342_Jul14

Page 5 of 5

Annex B.3 Dipole Calibration certification D2450V2

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 49, 8004 Zurich, Switzerland

S

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdiensl Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swass Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Chent EMC Compliance (Dymstec)

Certificate No: D2450V2-895_Jul14

Certificate No: D2450V2-895_Jul14

Page 7 of 8

Page: 50 of 56

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeigheisstresse 13, 8004 Zerich, Switzerland

S Schwetzmischer Kallbrierdienst
C Service suisse d'étitionnage
Servizie svizzere di taratura
S Swiss Calibration Service

reditation No.: SCS 108

Accredied by the Swiss Accreditation Service (EAS)

The Swiss Accresitation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is	stated as the standard uncertainty of measurement
multiplied by the coverage factor k=2, which	for a normal distribution corresponds to a coverage
probability of approximately 95%.	

Certificate No: 02450V2-895_Jul14

Page 2 of 8

Page: 51 of 56

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52,8.8
Extrapolation	Advanced Extrapolation	
Phantom	Moduler Flat Phantom	
Distance Dipole Center - TSL	10 cress	with Spacer
Zoom Scan Resolution	ds, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	378±6%	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0,5 °C	-	-

SAR result with Head TSL

SAR averaged over 1 cm ⁴ (1 g) of Head TSL	Condition	
SAR measured	250 mW Input power	13.4 W/kg
SAP for nominal Head TSL parameters	normalized to 1W	52,5 W/kg ± 17.0 % (k=2)

SAB averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following norameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mbo/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.03 mha/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		-

SAR result with Body TSL

SAR averaged over 1 cm ² (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for norminal Body TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAP measured	250 mW Input power	6.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.6 W/kg ± 16.5 % (k=2)

Certificate Not D2450V2-895_Jul 14

Page 3 of 8

Page: 52 of 56

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedence, transformed to feed point	$53.0 \Omega + 1.6 j\Omega$
Return Loss	-29.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.6 Ω + 3.7 Ω
Return Loss	-28.7 dB

General Antenna Parameters and Design

Electrical Dality (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard sentingid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedbornt may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 19, 2012

Certificate No: D2450V2-895_Jul14

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 895

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\alpha = 1.85$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

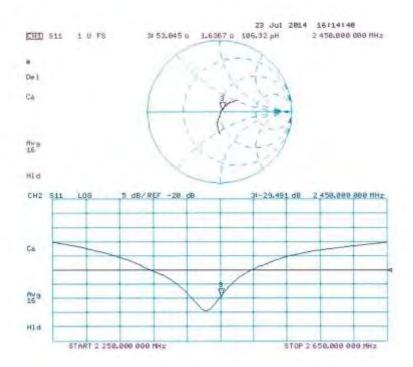
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

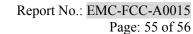
Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0;

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.2 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 17.9 W/kg


0 dB = 17.9 W/kg = 12.53 dBW/kg

Cartificate No: D2450V2-895_Jul14

Page 5 of 8



Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-895_Jul14

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 16,07,2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 895

Communication System: UID 0 - CW; Frequency: 2450 MHz

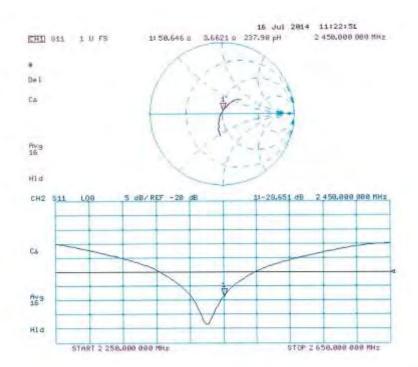
Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 50.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5,0 (back); Type: QD000P50AA: Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid; dx=5mm, dy=5mm, dz=5mm Reference Value = 95,39 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.01 W/kg Maximum value of SAR (measured) = 17.3 W/kg

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-895_Jul14

Page 8 of 8